Skip to main content

Dataset


  • Version 1 of 1


Dataset

Title: 
Optimising Slurry Application Timings to Minimise Nitrogen Losses: OPTI-N. Experimental site in East Yorkshire, 2005

Related Party - Organisation (Author): ADAS UK Ltd
Related Party - Organisation (Funder): Defra
Abstract:
Pig slurry was applied to winter wheat on a shallow free draining arable soil (above chalk), on a commercial farm located in East Yorkshire, north-east England. Slurry was applied to minimise ammonia emissions using commercial trailing hose machinery to replicated (x3) plots (21 x 21 m) arranged in a randomised block design. The slurry application rate was appropriate for the application technique (i.e. c.45 m3 ha-1) and was based on slurry N analysis. The amount of total slurry N applied was 48 kg ha-1. Nitrous oxide was measured following slurry application in spring and from an untreated control. Direct N2O measurements were made using 5 static chambers (0.8 m2 total surface area) per plot and analysed using gas chromatography. Measurements continued for about 12 months after slurry application. Ammonia losses were measured for c.7 days following slurry application using passive samplers (Leuning et al., 1985) on masts (1 per plot and background) in conjunction with the micrometeorological mass balance technique. The East Yorkshire, 2005 experiment contains data sets of; annual nitrous oxide emission, annual nitrous oxide emission factor, total ammonia loss, soil moisture, temperature, rainfall and associated crop, soil and manure measurements. References: LEUNING, R. FRENEY, J.R., DENMEAD, O.T. and SIMPSON, J.R. (1985). A sampler for measuring atmospheric ammonia flux. Atmospheric Environment, 19-7, 1117-1124.

Subject Keywords: SlurryNitrous oxideAmmoniaPig slurryArable landFree draining soilsBandspreadingTrailing hoseWinter wheat
Geographic Keywords: East Riding of YorkshireEnglandUnited Kingdom
Phenomenon Time -  Start Date/Time: 2005-04-05 00:00:00 End Date/Time:  2006-04-04 00:00:00

Geographic Extent -
    Longitude (West): -0.69
    Longitude (East): -0.43
    Latitude (South): 53.86
    Latitude (North): 54.02

Data Quality Statement:
The ADAS Integrated Management System (AIMS) is a business centered management system that effectively integrates business planning, business management and business processes. It also ensures that all the requirements of proprietary quality, environmental management and Health and Safety related standards and schemes to which the ADAS Group of Companies complies are addressed in the one company wide management system. At the core of AIMS are the Group’s policy statements, quality and environmental management system manual and an extensive range of Standard Operating Procedures prescribing internal business processes and technical methodologies. All documents within AIMS are periodically reviewed and revised where necessary, in accordance with a documented procedure so that the Group’s business needs continue to be met and to respond to opportunities and ideas from staff for further improvement. The system is centrally controlled and all documents are available to staff with password controlled computer access via the company’s Intranet. Copies of policy statements and the quality and environmental management system manual are publicly available via the company’s website: www.adas.co.uk. Hard copies of these documents can be provided where necessary. Senior management periodically review AIMS to ensure the continuing suitability, adequacy and effectiveness of the system and to identify or assess opportunities for further improvement or requirement for change. Compliance with AIMS ensures that client needs are identified, understood and that services and products are subsequently delivered in a professional and independent manner designed to fully meet and satisfy client expectations. Delivery to clients is: - Subject to risk assessment and subsequent risk management. - Specified and agreed in formal contract agreements. - Controlled via the use of effective project planning to meet milestones, specifications, time frames and budget. - Project managed by appropriately trained and qualified staff, using up-to-date equipment and facilities where appropriate. - Subject to rigorous quality control checking before release to ensure technical soundness and compliance with contractual requirements and ADAS standards. Effective implementation of AIMS is assessed by scheduled internal audits carried out by independent Quality Assurance staff. Critical aspects of work and that of sub-contractors and collaborators are also audited where contractually required. ISO 9001 The Soils, Agriculture and Water Business Unit and the Animal Health and Chemicals in the Environment Groups within the Development Businesses Unit are certificated to this standard by Lloyd’s Register Quality Assurance (LRQA) for: ‘Provision of independent research and consultancy focusing primarily on arable crop protection, crop physiology, sustainable farming systems, agriculture, horticulture, soils and nutrients, water, sustainable livestock, animal health and chemicals in the environment (excluding advisory work funded directly by farmers and growers).’ Certificate No. LRQ 0936648. Each Research and Development study is led by a Study Director responsible for planning, co-ordinating, controlling and reporting the work. Throughout the work the Study Director has a pivotal role in guiding the scientific content and quality of delivery. A specific protocol approved by the Study Director, sets out the objectives and timetable for the work, and details the experiment design, materials and methods and reporting requirements. Detailed nitrous oxide emission measurement methodology: Direct N2O emissions were measured with five static flux chambers (40 cm wide x 40 cm long x 25 cm high) per plot, covering a total surface area of 0.8 m2. The chambers were of white (i.e. reflective) PVC and un-vented with a water-filled channel running around the upper rim of the chamber allowing an air-tight seal to form following chamber enclosure with a lid (Smith et al., 2012). Chambers were pushed into the soil up to a depth of 5 cm and remained in place throughout the experiment, except during slurry application, drilling and harvesting when chambers were removed, locations were marked, and chambers were re-instated to the same position as prior to removal. Chambers remained open except for a short time on each sampling day. On that day, eight samples of ambient air were taken to represent time zero (T0) N2O samples. From each chamber, after a 40-minute enclosure period (T40) one headspace sample was taken using a 50-ml syringe, reduced to a 20ml sample which was drawn into a pre-evacuated 20 ml glass vial fitted with a chloro-butyl rubber septum and held at atmospheric pressure. The N2O flux was calculated using an assumed linear increase in N2O concentration from the ambient N2O concentration (T0) to the N2O concentration inside the chamber after 40-minutes enclosure (T40) (Chadwick et al., 2014). In order to minimise the effect of diurnal variation, gas sampling was carried out where possible at the same time of day. Gas samples were analysed as soon as possible after collection (to minimise potential leakage) using gas chromatographs fitted with an electron-capture detector and an automated sample injection system. Following receipt in the laboratory, two replicates of one standard N2O gas were kept with the samples and were used to verify sample integrity during storage. The gas chromatographs were calibrated on a daily basis using certified N2O standard gas mixtures. In order to permit sampling from a growing crop, when required and at the time of sampling, an additional chamber was stacked (using the water-filled channel) onto each permanent chamber and the chamber enclosure period extended. Following slurry application, N2O flux measurements were carried out for 5 days immediately following slurry application, daily for a further 5 days during the next week, weekly for the next three weeks and then fortnightly until the end of the 12 month sampling period, or following any above average precipitation events. This sampling schedule resulted in an annual total of c.35 sampling days starting from the day of the first slurry application. Measurements were taken over 12 months to follow IPCC good practice guidance and so that the results were directly comparable to the IPCC 2006 methodology default emission factor. Nitrous oxide fluxes from the five replicate chambers per plot were averaged. Cumulative fluxes were calculated using the trapezoidal rule to interpolate fluxes between sampling points. References Chadwick, D.R., Cardenas, L., Misselbrook, T.H., Smith, K.A., Rees, R.M., Watson, C.J., Mcgeough, K.L., Williams, J.R., Cloy, J.M., Thorman, R.E. and Dhanoa, M.S. (2014). Optimizing chamber methods for measuring nitrous oxide emissions from plot-based agricultural experiments. European Journal of Soil Science 65, 295-307. Smith K.A., Dobbie K.E., Thorman R., Watson C.J., Chadwick D.R., Yamulki S. and Ball B.C. (2012). The effect of N fertilizer forms on nitrous oxide emissions from UK arable land and grassland. Nutrient Cycling in Agroecosystems 93, 127-149.
Publication Date: 
2016-09-19


To discuss any issues relating to this dataset please either send an email to dis@fba.org.uk or post to our forum

Download All 0.03MB

All Version Downloads

Rights Statement

This data is published under the licence FBA Licence

Attribution: R.E. Thorman, L. Sagoo, H. Kingston, D. Green, B.J. Chambers and J.R. Williams

Citation of this data should be as follows:
R.E. Thorman, L. Sagoo, H. Kingston, D. Green, B.J. Chambers and J.R. Williams (2016): Optimising Slurry Application Timings to Minimise Nitrogen Losses: OPTI-N. Experimental site in East Yorkshire, 2005. Version:1. [dataset] Freshwater Biological Association [publisher]. doi:10.17865/ghgno7

Total file downloads: 637

Data ComponentsProjects/Activities