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EXECUTIVE SUMMARY 
 
Probability distributions describing the occurrence of D-day annual minima flow events 
have been determined for twenty-five British rivers having long, stable and natural flow 
records.  
 
In each case a pre-determined set of rules and criteria were applied to the flow record to 
derive time series of D-day annual minima and to ensure that these were both stationary 
and independent. So that low flow events of different duration could be examined a 
range of values were used for D including 1, 7, 30, 60, 90, 180 and 365 days. For each 
time series, estimates of the non-exceedance probabilities corresponding to the annual 
minima were derived using the Gringorten Plotting Position Formula. These were then 
used to build the observed probability curve. It is important to note that the shape of this 
curve is influenced by the number and rank order of the annual minima derived for each 
series, as well as the range of annual minima observed. 
 
A representative probability distribution should describe the frequency of occurrence of 
events beyond the observed range. However, as observed data usually represents only 
the central portion of the true probability distribution of annual minima, the shape of the 
tails of the distribution must be inferred from theory or experience. Extreme Value 
Theory suggests that the frequency behaviour of annual minima will follow that of a 
Generalised Extreme Value distribution. However Pearson Type III and Generalised 
Logistic distributions are commonly used for this type of analysis. Using the L-Moment 
method of parametric estimation, the parameters of each of these three candidate 
distributions were determined based on the flows and probabilities of the observed data. 
A fourth distribution, the Generalised Pareto, was also investigated. Although this 
distribution was not theoretically suitable for describing extreme events such as annual 
minima, it was included to provide a control. 
 
In order to differentiate the most representative of the four parameterised distributions, 
their descriptive and prescriptive characteristics were considered. Goodness-of-fit tests 
and root mean square errors (RMSE) were used to quantify the ability of the modelled 
curve to match the observed data. The results indicated that there was little difference 
between the performances of the different distributions, and therefore that with the best 
goodness-of-fit and lowest RMSE values was considered, in a descriptive sense, the 
most representative. The analysis showed that no one distribution best represents the 
frequency behaviour of annual minima. However, for annual minima of short duration 
(values of D in the range 1 to 30 days) the low flow frequency curves in permeable, 
high storage catchments tend to be best described using the Generalised Logistic or 
Generalised Extreme Value distributions. In contrast those for the low storage 
catchments tend to be best described by the Pearson Type-III or Generalised Extreme 



R&D TECHNICAL REPORT W6-064/TR2   iii

Value distributions. Where the annual minimum is of long duration, with values of D 
above 90 days, many annual minima series were best described by the Generalised 
Pareto distribution.  
 
The shape of the flow-return period relationships derived was examined to qualify the 
predictive ability of each distribution, i.e. to determine whether the tails of the distribution 
provide sensible estimates of return period for given annual minima and vice versa. In 
general sensible estimates are obtained for annual minima of short duration (D=1 or D=7 
days) where the prescribed flow is less than 10% of the mean flow, only where catchments 
are impermeable. As annual minima of longer duration are considered, or as the catchment 
type is permeable sensible estimates are obtained only for higher prescribed flows.  
 
The methodology was also applied to streamflow records shorter than 20 years in 
length. However, as it is unrealistic to expect to identify a representative probability 
distribution where there are few observed data points, a slightly different approach was 
adopted. Properties of the probability distribution for each short-record were inferred 
from that of an analogue site, having similar low flow behaviour and catchment 
characteristics but a much longer flow record. Two variations of this approach were 
considered. Firstly analogue catchments were assumed to have similar probability 
distributions (provided that the flow values were suitably standardised by, for example, 
expressing as a ratio of the mean annual minimum value). Hence the probability curve 
of the long-record analogue was re-scaled by the short-record mean flow to provide an 
estimate of that for the short record catchment.  Although this method proved successful 
for certain catchments, for others it provided poor results. 
 
In the second approach the true probability of non-exceedance for the annual minima 
occurring in a particular year within a short record was assumed to be equivalent to the 
probability of the annual minima occurring in the same year of the long record. This 
method generally provided fairly accurate predictions of the probability distribution, but 
requires the flow records for the short-record catchment and its long-record analogue 
being wholly coincident.  
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1. INTRODUCTION 
 
1.1 Project Background, Aims and Specific Objectives 
 
Estimates of the frequency of occurrence of low flow events are important within the 
context of drought assessment, where drought can be thought of as an extreme and/or 
persistent low flow event. The Environment Agency, for example, estimate return-
periods of low flow events in order to quantify the severity of droughts as they develop 
and intensify. Similarly in design studies, a return period estimate may be required for a 
‘design drought’ of particular magnitude, or a flow magnitude estimate may be required 
on the basis of a ‘design return period’. Typically, the low flow ‘event’ of interest is the 
annual minimum flow; this might be either the smallest daily flow value or the smallest 
average flow over a period (duration) of ‘D’ days occurring within a year. Other types 
of representative annual values might also be used, such as all ‘peaks’ under a threshold 
level, as in a partial duration series. 
 
In low-flow frequency estimation statistical procedures are used to formulate a model of 
the probability distribution of low flow events at a particular site (a similar approach is 
used in flood frequency estimation). The goal is to produce a model that recreates the 
behaviour in the extrapolated upper and/or lower tails of the distribution, which are 
beyond the range of observed events. This is achieved by parameterising, i.e. fitting, a 
mathematical equation (usually this form is a distribution theoretically suitable for 
describing the occurrence of extreme events) based on the magnitude and apparent 
frequencies of the sampled (observed) low flow events at the site. 
 
In the UK there has been little research on this topic since the publication of the Low 
Flow Studies Report in 1980 (Institute of Hydrology, 1980). Although the Low Flow 
Studies Report provided guidelines for fitting probability distributions to the annual 
minima of d-day duration flow events, there remains confusion within a UK context as 
to which probability distributions are best used for flow events of different duration and 
for different streamflow regimes. Furthermore, as shall be discussed in Section 1.2, 
there is currently a lack of a unified approach to low flow frequency analysis in the UK. 
 
Given the large amount of gauged flow data that has been collected since publication of 
the 1980 report it is timely that the problem of estimating low flow frequency for rivers 
in the UK should be revisited. The aim of this technical document, therefore, is to 
establish best practice for the analysis of the frequency low flow events by producing a 
consistent and scientifically sound method for enumerating probability distributions 
describing annual minima of D-day duration low flow events. This method is to be 
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robust and objective enough to use in a regulatory manner and to withstand scrutiny at 
Public Enquiries. The specific objectives are: 
 
1. To formulate a robust methodology for use with “long” gauged flow records (>20 

years) taking into account the developments in hydrological frequency analysis over 
the last 20 years and the increased number of “long” flow records available within 
the UK. 

  
2. To investigate, by prototyping, the potential for development of a similar 

methodology for “short” gauged flow records (i.e. those with less than 20 years of 
data). If the prototyping exercise shows this to be theoretically and practically 
viable, the methodology for short records is to be developed in a second stage, 
phase 2, of the project.  

 
This technical report describes the researches undertaken based on long record data sets, 
the assumptions made, and the methodologies developed and their strengths and 
weaknesses. The results of the prototyping exercise for short records are also presented.  
 
 
1.2 Estimation of Low Flow Probability in the UK 
 
With its mild maritime climate the UK rarely experiences the hydro-meteorological 
extremes, such as multi-year droughts, that are common elsewhere in Europe. However, 
there have been several notable drought events in the UK over the past 30 years, 
including the 1976, 1984, 1990 and 1995 droughts, where rainfall totals have been well 
below average. Droughts affect all aspects of the hydrological cycle: reservoir storage, 
groundwater storage and streamflow levels are all depleted during droughts. As this 
research deals with low flow events, it is useful to define the term streamflow drought, 
which can be thought of as a prolonged period of low-flow, culminating in the depletion 
of flow beyond the usual low-flow level. The strain on surface water resources during 
drought periods is often exacerbated by increased public and agricultural demand for 
water. During these crucial periods the needs of abstractors have to be balanced 
carefully against the need to protect the in-stream environment: mismanagement of 
water resources that are already over-stretched may have serious environmental and 
socio-economic impacts. 
 
Streamflow depletion is usually expressed in terms of the return period of the event, 
which is estimated by applying frequency analysis procedures to estimate the flow-
return period relationship at the site of interest. Operationally, such methods are 
important for considering the severity of individual drought events in the context of the 
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long-term behaviour of a site (i.e. determining the return period of a particular flow 
event) and for determining the severity of a particular ‘design drought’ (i.e. predicting 
the flow associated with a drought of given probability). The former is particularly 
important for assessing whether the criteria for Drought Orders have been met in cases 
of exceptional water shortage.  
 
To-date the water resources industry has taken a rather ad-hoc approach to low flow 
frequency analysis. Although consistent methods for frequency analysis of flood events 
are widely disseminated with the hydrology and engineering communities in the UK, 
for instance the approach documented in The Flood Estimation Handbook (Institute of 
Hydrology, 1999) has been widely adopted, the same cannot be said about low-flow 
frequency analysis. Many agencies and consultants use their own in-house procedures 
or arbitrary guidelines for setting flows levels for a particular ‘design drought’. No 
industry standards have been established and there has been no general agreement 
regarding which of the various theoretical distributions are preferable or to what fitting 
techniques are more appropriate. This irregularity is in part due to the fact a whole 
range of river flow conditions can broadly defined as ‘low’, and as drought analysis in 
the past has been governed by the operational needs of users, a large number of highly 
subjective definitions and criteria have resulted. The effect of artificial influences and 
the problem of zero flows have also been handled differently. However, recent drought 
events have highlighted the need for a consistent methodology to be applied in the UK. 
For instance, the Environment Agency concluded that during the 1995 ‘drought’, water 
resources across most of England and Wales were in a generally satisfactory condition, 
despite abstractors having successfully argued the case for Drought Orders to be put 
into place (NRA, 1995).  
 
 
1.3 Layout of Report 
 
Following this introductory chapter, a review of recent literature on the subject of low 
flow frequency analysis is presented in Chapter 2. The literature review outlines the 
theoretical principles of low flow frequency analysis and assesses the commonly used 
methods of parameterising model distributions; candidate mathematical distributions are 
identified and a methodology that is appropriate for use with fairly long UK flow 
records is outlined. Section 2.1 firstly gives a brief overview of low-flow frequency 
analysis, and describes some of the significant issues that have to be addressed. The 
theoretical background to statistical frequency analysis is discussed in much more detail in 
Section 2.2. Issues relating to the data, including homogeneity and independence, and the 
effect of sample size are discussed in 2.3. Non-parametric methods, including both 
empirical methods and graphical (plotting position) techniques are discussed in Section 
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2.4, whilst the use of parametric estimation techniques is described in 2.5. Various aspects 
of choosing an appropriate family of distributions are discussed in Sections 2.5.1 
(candidate families of distributions are reviewed later in 2.6) and methods for fitting 
distributions (i.e. estimating the parameters of the distribution) are discussed in Section 
2.5.2. Formal statistical procedures for seeing whether there is enough evidence in the 
limited sample of data to rule against use of a particular family or distribution are then 
outlined: model evaluation procedures such as screening and re-sampling are described in 
Section 2.5.3. A review of the distributions that might be useful in low-flow analyses is 
given in Section 2.6, whilst a general assessment of the appropriateness of low-flow 
frequency analyses reported in the literature is given in 2.7. Finally, recommendations for 
best practice are made (analysis of long records), and possible techniques for dealing with 
short records are outlined.   
 
The proposed methodology is discussed and developed in more detail in Chapters 3 to 5 
and is illustrated with 25 high-quality flow records from catchments in the UK 
representing a range of flow regime types. The procedure (e.g. missing data criteria) for 
deriving the time series of annual minima for low flow events of different duration and 
the statistical procedures to test the homogeneity and statistical independence of these 
are described in Chapter 3. The methodology for enumerating distribution models is 
presented in Chapter 4, and includes consideration of different fitting techniques, the 
effect of hydrometric errors and the ability of the methods to deal with flow records that 
are discretized (i.e. contain rounding errors) or contain zero flows. Evaluation of the 
proposed method, based on the 25 flow records, is reported in Chapter 5. Derived 
models are assessed in terms of the fit of the flow frequency curve (i.e. descriptive 
ability) and the uncertainty on the resulting flow estimates at high return periods (i.e. 
prescriptive ability). 
 
The results of a scoping study to investigate the feasibility of determining probability 
distributions where the record length are short is described in Chapter 6. In the 
methodology presented an analogue rather than regionalisation approach is used, i.e. the 
flow – return-period relationship for a short record is derived from that of a single long-
record catchment known to have a similar flow regime. Two different systems of 
transferring information from the probability distribution of the analogue catchment are 
presented and evaluated.  
 
A final discussion of the results and conclusions of the research is given in Chapter 7. 
This includes a final recommendation as to the methodology most appropriate for the 
kinds of river regimes typically found in the UK. This methodology has been 
incorporated into a guidance note ‘Guidelines for Best Practice’, which is included as a 
technical annex. 
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2. LITERATURE REVIEW  
 
2.1 Overview of Low Flow Frequency Analysis 
 
2.1.1 Introduction 
Low flow frequency analysis is based upon the use of a statistical distribution to describe 
the probability of occurrence low flow events (usually the annual flow minima). As only a 
very small fraction of the true probability distribution of low-flow events is realised in any 
flow record, the exact form and parameters of the true distribution can never be known. In 
practice, therefore, a distribution function that describes the low flow behaviour of the 
observed data reasonably well is used. The form of this distribution can then be used to 
make inferences about the probabilities of events beyond the observed range (i.e. by 
extrapolating into the tail of the distribution), allowing the flows associated with long 
return periods to be determined and vice versa.  
 
Section 2.1 introduces the general methodology for low flow frequency analysis. The 
procedure for choosing a reasonable distribution involves fitting a number of candidate 
distributions to the data (i.e. quantifying the distribution parameters using the sample 
data) and testing each for goodness of fit and bias. These individual points are discussed 
in more detail in subsequent sections. 
 
2.1.2 Applicability of flood frequency estimation methods 
Stochastic methods, such as simulation techniques and frequency analyses, are often 
used to characterise extreme hydrological events such as floods and droughts. 
Frequency analysis, in particular, is used widely in flood risk estimation and several 
detailed and ‘robust’ methodologies on this topic have been developed. In fact much of 
the research within the context of flood frequency (an excellent review is given by 
Cunnane, 1989) has contributed to improved understanding and procedures for 
frequency analysis in general. UK research into flood frequency is also highly 
advanced, for instance the Flood Estimation Handbook, a nationally recommended 
methodology, was recently published as a result of a five year study on flood flows in 
UK Rivers (Institute of Hydrology, 1999). 
 
The use of frequency techniques for characterisation of low flow or drought events is, in 
contrast, much less advanced, although studies have been recently published in the USA 
and Europe (a short review of recent research is given by Tallaksen, 2000). There 
remains a lack of a unified approach to drought frequency estimation both from an UK 
(the last major work in the UK was that of the Institute of Hydrology (1980)) and world 
perspective.  
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Although, low flow frequency analysis shares much with its sister topic of flood 
frequency, there are several key differences between the two, and therefore, although 
the concepts and general techniques may be transferred between flood and drought 
analysis, the ‘nuts and bolts’ of the methods are, by necessity, different. The main 
differences can be summarised as:  

• The need to represent the possibility of observing a zero flow. 
• A series of low flow observations might be considered as a discrete distribution 

rather than a continuous distribution due to a lack of precision of recording 
variables at low flows. 

• A drought or low-flow event is not instantaneous, rather it may last for several 
days, weeks or months, and in extreme cases for one or more years. The data 
therefore may be serially correlated especially where flow events of relatively 
long duration are considered. 

 
2.1.3 Annual minima and partial duration approaches 
Low flow frequency analysis uses sample properties of observed drought events to find 
the most suitable probability distribution to describe those events. The sample 
properties can be some kind of representative annual value, such as in an annual minima 
series (AMS), or all ‘peaks’ under a threshold level, as in a partial duration series 
(PDS).  
 
The annual minima (AM) method avoids the need to consider all the complicated day-
to-day variations of flow recorded at a given site over a number of years, instead 
attention is concentrated on a single derived value for each year (the annual minima). 
The single value for each year is usually chosen to reflect the minimum flow averaged 
over a period of particular duration. For instance, the annual minimum 1-day flow is the 
lowest daily flow in the year, the annual minimum 7-day flow is the smallest average 
flow over any 7 consecutive days in the year, the annual minimum 10-day flow is the 
smallest average flow over any 10 consecutive days and so on. Using flows averaged 
over a period of ‘D’ days allows the duration of low flow events to be considered, in 
addition to magnitude or severity. Typically short periods, such as 1, 7 10 or 30 days, 
are used. The annual minimum values for each year are used to build up an AMS to 
which frequency analysis can be applied. The average value of a particular annual 
minima series, the mean annual minimum flow, MAM(D), represents the lowest D-day 
flow on average within the record period. The return period of the MAM(D) flow is 
always fixed for a given distribution. For example, the MAM(7) flow can be thought of 
as that which occurs during the driest week (7 days) in the average summer. For many 
of the distributions assumed in frequency analysis the MAM(D), flow has a return 
period of around 2 years. 
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The main disadvantage of using a series of annual minima is that the minimum flows in 
wet years might not belong to an extreme population, whereas if two random droughts 
happened to occur in the same year, the smaller of the two would be ignored despite 
being an extreme event. The use of an annual minima series is recommended only 
where the flow record at a site is sufficiently long. For shorter record periods it is more 
applicable to use a partial duration series or employ some means of ‘borrowing’ data 
from similar sites, such as ‘regionalisation’ or pooling techniques. 

 
A partial duration series consists of all daily flows below a base magnitude or threshold 
level defining the onset of a streamflow drought, regardless of where they occur in the 
time series. Although more data from the flow record is incorporated in the analysis, the 
PDS method has several disadvantages. Firstly the threshold can strongly influence the 
results of the analysis, yet is difficult to set objectively. On an at-site basis a threshold 
may be set according to ecological, navigational or recreational constraints. 
Alternatively thresholds may be set according to the flow regime, and are usually either 
fixed (e.g. in the UK the 95th percentile flow (Q95) is often used as a low-flow 
threshold) or variable, in which case they take into account the seasonal variability of 
flow levels. Dracup et al. (1980) and Hisdal & Tallaksen (2000) discuss the advantages 
and disadvantages of some of the methods available for setting threshold levels. The 
second major disadvantage of the PDS method is that, as a result of fluctuation of the 
flow around the drought threshold, drought events are often split into a correlated 
sequence of shorter droughts. The user has to be subjective regarding independence of 
adjacent events, and it is likely that a procedure for pooling dependent droughts would 
have to be adopted. 
 
As this review focuses on at-site analysis, where the period of record is long, say not 
shorter than the target return period (in terms of a design drought), the use of the annual 
minima series for characterising the frequency of low-flow events is described. For 
shorter records, some kind of regionalisation or pooling procedure is required to 
augment the amount of data available for analysis. Such approaches are discussed 
briefly where appropriate.  
 

2.1.4 Analysis of annual minima series  
In its basic form, low flow frequency analysis can be characterised as dealing with a set of 
N values, one for each year, i, of record, {qi, …., qN}, where qi denotes the smallest flow in 
year i. In practice "smallest flow" is defined as the smallest average flow over a period of 
given duration, for example 1 day, 7 days, 30 days or even 365 days. The essential 
problem is to make use of these data to provide information about flows in future years 
which, by definition, have not yet been observed: clearly, these data can only be expected 
to provide information about the corresponding low flow statistic for the not-yet-observed 
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years. Consider a single future year, in which the smallest flow will take the unknown 
value q. In order to make any sort of inference about q, some assumptions are required 
which in effect say that the collection of data-values {qi, .. ..., qN} is somehow 
representative of the values that q might take. This means that any considerations of 
change over time in the catchment, or in the climatic regime in which it lies, must have 
been fully considered and dealt with before attempting the analysis.  
 
The sort of information about q provided by {qi, …., qN} can be summarised as follows: 
(i) The average value, or the median value, of {qi, .…, qN} provides an estimate of the 

typical size that q might be in any single year. 
(ii) The variation between the values in the set {qi, .…, qN} provides a guide as to the 

likely variation of q between different future years. 
(iii) The proportion of the values in the set {qi, ….,qN} which are below a certain 

threshold provides an estimate both of the proportion of future values of q in 
different years which will be below the same threshold and of the probability that q 
for a single year will be below the threshold. 

 
Other possible types of information could be sought: for example, if there were longish 
runs of high values and runs of low values in {qi, …., qN} when considered for consecutive 
years, then the same sort of behaviour could be expected to continue into the future. This 
last consideration is outside of the central scope of low flow frequency analysis which, as 
the name implies, deals with estimating how often in future years low flows of a given 
severity can be expected to occur: this may seem to cover only point (iii) above but in fact 
the other two points are included as well. Frequency analysis is based on the assumption 
that the observed data-values and any relevant future values are all outcomes or 
realisations of random quantities which have the same statistical properties. Thus q and {qi, 
…., qN} are assumed to be realisations of random variables Q and {Qi, ..., QN} which share 
the same statistical distribution function.   
 
2.1.5  Methods for determining the statistical distribution function 
There are several ways in which the statistical distribution, and the parameters that define 
its exact form, can be determined. This review focuses on parametric estimation techniques 
(Section 2.1.6), which involve matching the sample data to a hypothetical distribution 
and using objective statistical tests to assess the appropriateness of that match.  
 
Empirical distribution functions and simple graphical techniques based on plotting 
positions are also common ways of estimating low-flows of a given frequency, and are 
also included in this review. As these do not depend on the having to make correct 
assumptions about the form of the distribution from which the data arise, they are classed 
as non-parametric estimation techniques. The graphical method is particularly useful, and, 
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as it very straightforward, it is nearly always used as a preliminary first step in frequency 
analysis. A plotting position formula is used to estimate the exceedance probability for 
each discharge and a curve is fitted graphically through these probability points: no prior 
assumptions are made about the distribution. If the set of data points plots as a straight line 
on probability paper then its underlying distribution is taken as that corresponding to the 
probability paper. Graphical procedures are therefore particularly useful for identifying 
which type or family of distribution function a particular data set belongs to, and are 
discussed in this context later. The graphical procedure can also be used to assess the 
goodness of fit of distributions.   
 
Other approaches include transformation (e.g. to a normal distribution) and physically 
based probability modelling. Transformations are often applied to sample data in order to 
simplify the search for a suitable probability distribution, and for this transformations to 
the normal are widely used. The physically based approach relies upon characterising 
hydrological behaviour during the low flow period and using this to derive theoretical 
expressions for low flow distribution functions. For example Gottschalk et al. (1996) 
derived expressions for distribution functions based upon low flow recession behaviour. 
These two methods are not central to frequency analysis, and are therefore beyond the 
scope of this review.  
 
2.1.6 Fitting hypothetical distributions with parametric methods 
 
Principles of parametric estimation 
Parametric estimation is the usual method of determining probability distribution from 
observed flow data. Because the amount of data available for low flow frequency analyses 
is usually small (typically 10-30 years of data and rarely more than 60 years) it is usually 
assumed that the distribution function concerned is a member of some particular family of 
statistical distributions. Use of a family of distributions involves consideration of the 
parameters of the family and any inferences about the actual distribution, from which the 
recorded data set has arisen, are made via inferences about the parameter values (i.e. the 
distribution parameters are quantified using the sample data). Provided that the true 
distribution can be closely matched by one of the chosen family of distributions, the 
uncertainty in the parameter estimates is also much reduced. Despite there being a fairly 
large body of low-flow literature, there is no clear guidance as to which distribution 
families are best for low flow frequency analysis. Theory suggests that the Generalised 
Extreme Value (GEV) family of distributions is good for describing extreme data sets, and 
for low flow data the reverse EVIII distribution, or Weibull distribution, seems to be most 
appropriate. In practice a wide range of distribution families have been ‘successfully’ 
applied to describe the distribution of low flows; including the Pearson Type-III, the EVI 
and Log-Normal distributions, in addition to the Weibull/EVIII. In fact no universally 
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applicable distribution for low flows has ever been shown to exist. A more detailed 
discussion regarding the different candidate distribution families is given in Section 2.6. 
 
Methodology for parametric estimation 
The procedures for selecting the particular member of a family of distributions on the basis 
of the sample of data involve estimating the parameters of the distribution via a fitting 
technique, such as the method of moments or the method of maximum likelihood, and 
assessing the goodness of fit using objective statistical or graphical tests. Finally, 
resampling techniques are employed to assess the variability of the quantile estimates 
and determine confidence intervals. The procedure should follow the following outline 
(after Takara and Stedinger, 1994): 
(i) Evaluate the homogeneity and statistical independence of the data 
(ii) Enumerate several candidate distribution families. 
(iii) Estimate parameters for each distribution. 
(iv) Screen the distribution to assess goodness of fit (i.e. exclude those distributions for 

which the agreement between the estimated distribution and the data is poor). 
(v) Analyse the bias of estimates for distributions that have not been excluded in step 4 

(e.g. by using resampling methods, such as bootstrapping or jack-knifing). 
(vi) Select a distribution that fits data well, exhibits the smallest bias and also provides 

the least biased quantile estimates. 
 
Statistical theory relating to distribution fitting assumes that the sample data represent 
random occurrences of the quantity of interest and therefore depends upon the data being 
independent and from the same statistical population. Ensuring that the sample is not 
serially correlated, that the data is stationary (i.e. shows no trends over time) and 
homogeneous, and that there are no ‘outliers’ amongst the sample data are therefore 
important prerequisites for frequency analysis. Unfortunately most hydrological time series 
are temporally correlated (dependent) in some way. Low flow events are particularly likely 
to be serially correlated if the duration considered is large. It is therefore very important to 
evaluate the homogeneity and statistical independence of the data prior to attempting a 
frequency analysis of low flow data and to be aware of the influence of this on any flow-
return period relationships that are derived. Methods for evaluating time series are 
discussed further in Section 2.3.  
 
 
2.2 Theoretical background 
 
2.2.1 Distribution functions 
As described in Section 2.1 the fundamental concept in frequency estimation is that of the 
frequency distributions. Statistical distribution functions provide the mechanism whereby 
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the probability that a low-flow event will occur is determined. In fact this is essentially the 
definition of a distribution function. The frequency distribution of a quantity, X, shows the 
frequency at which possible values of X occur (for this X is assumed to occur randomly). 
The cumulative frequency distribution (c.d.f.), known also as the probability distribution 
(p.d.f.) denoted by FX(x), gives for any value, x, the probability that X will be below or 
equal to x.  
 
FX(x) = Pr{ X ≤ x }           (2.1) 
 
Quite often the subscript X is omitted when it is clear to which random variable the 
distribution function relates (i.e. to give F(x)). For the purposes of this report, capital letters 
X, Y, Z, etc. are used to denote general types of random variables while Q is reserved for 
the random variable corresponding to annual minimum flow. Lowercase letters x, y, z, etc. 
are used to represent particular outcomes (i.e. observations) of the random variables. 
The interpretation of F(x) as the probability that X does not exceed x means that 
distribution functions must be non-decreasing and must take values in the range 0 to 1. 
Furthermore, in order to be a proper distribution function (i.e. to assign zero probability to 
infinite values) it must have limiting values of zero for large negative values and one for 
large positive values of x. When a random variable cannot take negative values, the 
corresponding distribution function must be such that F(0-)=0, where F(0-) denotes the 
limiting value of F(x) as x approaches zero from below. If F(0-)=0, then F(0) is the 
probability that the random variable is exactly equal to zero. 
 
A family of distribution functions is simply a collection of distributions indexed by a set of 
parameters α1, α2, ... , αn: all this means is that, for any particular set of parameter values 
{α1, α2, ... , αn }, the function 
 
F(x) = F(x; α1, α2, ... , αn) (2.2) 
 
is a distribution function. Formally, the definition of a family of distributions should 
include the range of permissible values of its parameters. Here, for brevity, a single symbol 
is used to denote a collection of parameter values.  Thus equation (2.1.1) might be 
rewritten as 
 
F(x) = F(x; α)  (2.3) 
 
Evans et al. (1993) provide a simple guide to the families of distributions most often used 
in applications of statistics. Families of distributions that have been used for low flow 
frequency estimation and for the closely connected topic of flood estimation are reviewed 
in Smakhtin (2001) and Cunnane (1989) respectively.  
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2.2.2 Quantile (inverse) functions 
Clearly, if the true distribution function of annual minimum flows were known, this would 
immediately provide the answer to questions of how often flows below any given critical 
value will occur. Similarly, if the question is what value of flow is such that there is a 
given probability of an annual minimum flow falling below that value, the inverse 
distribution function provides the answer. Within statistical theory, the standard notation 
for the inverse distribution function is F-1(p). Recently a new notation, x(F), has been used 
to describe the same idea, which is then referred to as the quantile function for the 
distribution. The quantile function gives the magnitude of an event corresponding to a 
particular probability, p, of non-exceedance of x. In this case F denotes a numerical value 
rather than a distribution function. For example, if p is a probability value (where 0 < p < 
1), the quantile function x(p) is defined as follows: 
 
 x(p) = F-1(p)             (2.4) 
 
i.e.  x(F) is the value satisfying F(x) = p. 
 
Where distributions have discrete components the quantile function is defined to take the 
value x*, where x* is the largest value of x for which F(x) ≤ p, hence 
 
x(p) = F-1(p) = x*           (2.5) 
 
If there is no discrete component then x* is the value satisfying F(x*) = p. In the same way 
as for distribution functions, the quantile functions corresponding to a family of 
distributions with parameter α will be denoted by x(p; α). 
 
2.2.3 Density functions 
An alternative to the distribution function F(x) is the density function f(x), where  
 
f(x) = dF(x)/dx,  F(x) = ∫ f(z) dz.      (2.6) 
 
Thus the distribution function and density function are essentially equivalent to one 
another. If the distribution is either discretely-valued or has a discrete component, rather 
than being continuously-valued, it can still be defined by using special functions that allow 
for this.  
 
Families of statistical distributions are usually defined by giving a functional form for 
either their distribution or density functions, or for their quantile functions. There are 
useful families of distributions for which the quantile function can be written in a simple 
explicit form, while the distribution and density functions cannot, and vice versa. 
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2.2.4  Multi-parameter distributions 
Some common families of distribution have as many as four parameters. The quantile 
functions corresponding to a family of distributions with n parameters are denoted by 
x(p; α1, α2, … αn). Inclusion of more parameters will typically imply a wider range of 
possible shapes for the distributions in the family, and thus an enhanced ability to match 
the shape of the unknown distribution. It will also generally lead to increased sampling 
variability in the estimates of the distribution function, for a given sample size, as the 
estimates attempt to reflect the patterns in the specific sample of data. Two-parameter 
distributions usually include parameters representing the location and the scale of the 
distribution. Further parameters usually reflect the level of skew and kurtosis in the 
shape of the distribution. 
 
2.2.5 Return period 
Estimating the aspects of the distribution function by fitting methods allows us to 
estimate the required quantity relating to a particular probability of occurrence or the 
probability that the quantity will be below a given value. It also allows an assessment of 
the uncertainty of that estimate to be made, possibly in the form of an estimated 
sampling variance or a confidence interval, or as a sampling covariance matrix. The 
probability of an event is often expressed in terms of its recurrence interval, or return 
period. The return period is the interval between two consecutive events, and, for the 
general case, is related to the probability of non-exceedance as follows: 

 

p(X ≤ XT) = 
T
1

           (2.7) 

 
where T represents the return period or recurrence interval of interest, and XT is the 
event associated with that interval. 
 
The return period is also related to the distribution function by 
 

F (XT, α1, α2, ... , αp ) = 
T
1

        (2.8)

  
The quantile x(F) can also be determined where p is given as a return period (by 
substituting the inverse distribution or quantile function into equation 2.8.) and in this 
case is termed xT. This can then be used to generate a frequency curve, otherwise 
referred to as the xT-T relationship.   
 

F (xT) = p = 
T
1

            (2.9) 
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Note that the probability of an event being exceeded, termed F ‘(x), is given by 1-p. The 
quantile function of that event is the value satisfying Pr[X>x] = F’(x) =1- p, so that , in this 
case, xT and T are related as follows 
 

F’ (xT) =1- p = 1-
T
1

          (2.10) 

 
The goal of frequency analysis is to obtain useful estimates of xT for return period of 
scientific interest. To be useful an estimate should not only be close to the true quantile, 
but should also come with an assessment of how accurate it is likely to be. Usually it is 
assumed that xT can only be reliably estimated where T is less than or equal to the number 
of years in the sample. 
 
2.2.6 Confidence intervals for quantiles 
The accuracy of the quantile estimators can be quantified using the variance, standard 
error or using confidence intervals (for large sample sizes quantile estimators tend to be 
normally distributed). Confidence intervals are usually based upon the standard error of 
the quantile estimator and it is possible to calculate confidence intervals relating to 
quantile values for some of the simpler distributions. Where the statistical distribution is 
very complex, confidence intervals can be estimated by resampling methods (Section 
5.4).  
 
2.2.7 Probability relationships for annual minima distributions 
Equations 2.1 to 2.10, which describe the features of the probability distribution for the 
general case, can also be stated for the case where the distribution of annual minima 
values is of interest. In this case the p.d.f., FQ(q), gives for any value, q, the probability 
that Q will be below or equal to q .  
 
FQ(q) = Pr{ Q ≤ q }          (2.11) 
 
Note that as Q cannot take negative values, the corresponding distribution function must be 
such that F(0-)=0, where F(0-) denotes the limiting value of F(q) as q approaches zero 
from below. If F(0-)=0, then F(0) is the probability that the random variable is exactly 
equal to zero. 
 
Similarly the density function is given by f(q), whilst the return period represents the 
interval between two consecutive low-flow events of size qT or smaller.  The quantile 
function now gives the magnitude of the annual minima corresponding to a particular 
probability of non-exceedance, and is denoted by q(F).  
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2.3 Evaluating Observed Low Flow Series 
 
2.3.1 Introduction  
A number of assumptions are central to expositions of statistical theory relating to 
distribution fitting. Most importantly the data must be independent and must originate 
from the same statistical population. The later assumption implies that the observed data 
must be stationary (i.e. show no trends over time) and homogeneous, and there must be 
no outliers amongst the sample data. This section discusses methods by which the 
applicability of these assumptions to annual minima series can be evaluated.  
 
2.3.2 Statistical independence 
 
Validity of the assumption of statistical independence  
The assumption of statistical independence requires that the observed data-values {q1,q2, ... 
,qN} are realisations of random variables {Q1,Q2, ... ,QN}. Sample data possessing serial 
elements cannot be thought of representing a population of random variables. Whereas 
flood events can essentially be thought of as stochastically independent, in the case of low 
flow frequency analysis the assumption of statistical independence seems untenable 
because of the serial correlation between data: low flows tend to follow low flows. 
Catchment storage processes increase the degree of dependence, or auto-covariance, of 
low-flow data; hydrographs for catchments with high storage capacity usually show only 
one recession period each year. Carry-over of base flow conditions from one year to the 
next might also be expected to occur in some years (Round & Young, 2001). The auto-
covariance will be more pronounced for longer duration minima where adjacent samples 
will share d-1 common components, where d is the number of days in the duration.  
 
Statistical dependence has an important effect on the interpretation of the results from low 
flow frequency analyses. Suppose, for example, that the analysis suggests that an annual 
minimum flow will be below a given level with a probability, p. Then, under the 
assumption of independence between years, the probability that minimum flows for two 
adjacent years will both be below the chosen level is given by p2. In contrast, if there were 
strong positive dependence, the probability would be close to p. It is clear that ignoring 
statistical dependence may lead to substantial underestimation of the risks of sequences of 
years with low flows. 
 
Testing for dependency within time series 
A pair of random variables are only truly stochastically independent if their joint density 
is equal to the product of their marginal densities. This and other criteria can be used to 
test for auto-correlation in data. Provided the data is stationary the degree of 
independence can be characterised by determining the autocorrelation function of the 
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observed data, or by constructing an auto-correlogram from the data. There are a 
number of methods and statistics for testing for the presence of autocorrelation. Some of 
the more widely used include the Durbin-Watson statistic, Anderson’s Test and the 
Wald-Wolfowitz Test; these are described in most statistical texts (e.g. Shahin et al., 
1993). However, as low flow frequency analysis usually has to be performed on a very 
limited data, these tests cannot always be expected to perform well and it may be difficult 
to quantify the level of statistical dependence in the data.  
 
Where a time series is found to be statistically dependent, there are three possible actions: 
filter the time series to remove autocorrelation effects (requires expert judgement), allow 
for dependence in the distribution function models or take account of independence when 
quantifying the model uncertainty. It is difficult to formulate and to fit statistical models 
incorporating dependence so as to create new procedures for estimating the distribution 
function of annual minimum flow. Therefore unless linear stochastic models are used 
(Sen, 1980; Chung & Salas, 2000) it can be more useful simply to be aware of the 
effects of dependence on the usual procedures that happen to have been derived on the 
assumption of statistical independence between sample values. While parameter 
estimation will be correct (i.e. then the estimates will converge to the correct answer: to 
the true value of the distribution function or to the true value of the parameter of the 
distribution), serial persistence will effect: 
i)  Assessment of the uncertainty in parameter estimation 
ii) Goodness of fit tests.  
 
Where the serial persistence is strong, the assessment of uncertainty will probably be 
incorrect. In fact, it is likely that the true uncertainty with which the parameters of the 
distribution can be estimated will be underestimated. Thus in this situation an estimated 
sampling variance for an estimate provides only a lower bound for the true variance of the 
estimate (i.e. the quantile estimates will become more biased and there will be larger 
standard error in the quantile estimates).  
 
Non-independence can also influence the results of a formal test of fit of a statistical 
distribution. Again it is difficult to account for statistical dependence explicitly in revised 
testing procedures. The effect of using tests devised for statistically independent data in the 
presence of positive statistical dependence is that the test statistics employed will be more 
variable than the underlying theory suggests. This means that the null hypothesis that the 
sample data arise from the given family of distributions will be rejected too frequently 
when it is actually true. Thus the results of tests of fit would need to be treated with some 
distrust. While it seems possible that a procedure that looks at the relative values of test-of-
fit statistics across a number of trial families of distributions would be less affected by 
statistical dependence, this is at best speculative. 
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2.3.3  Homogeneity, stationarity and outliers 
 
Homogeneity 
As discussed in Section 1.2.2, low flow frequency analysis is based on the assumption that 
the all the observed data-values derive from a single population that can be described by a 
particular distribution function. This restriction of homogeneity ensures that the 
distribution function is also able to describe all future values of Q. Low flow data might 
not be homogeneous if the flow regime changes over time (i.e. the time series is non-
stationary) or if low-flow events have different origins. An example of the latter case 
occurs in snow and ice regions, where rainfall being stored as snow in the winter period 
results in low-flow events unrelated to those that occur in summer as a result of dry 
weather. It is essential to test for non-homogeneity prior to frequency analysis.  
 

Non-stationary behaviour 
A data series is said to be non-stationary of the underlying properties of the data change 
over time (i.e. displays a trend or fluctuations). Causes of non-stationarity include 
problems with the recording process, such as changes in rating equations, relocation of 
stations or changes in recording methods, changes in the catchment, such as changes in 
land use, and climatic variability or climate change. Short records are particularly 
vulnerable to the effects of short-term trends, which might average out over the long-
term. A number of statistical tests can be used to test for non-stationarity, such as 
Spearman’s Rank correlation test and the Mann-Kendall test. These are usually based 
on finding a relationship between the flow variable and time, and are described in detail 
in most statistical texts (e.g. Shahin et al., 1993).  

 

Outliers 
Outliers maybe caused by artificial influences in the catchment, such as the effects of 
over-abstraction, and in this case may be removed by naturalising the data. Also, where 
the period of record is short, and the range of magnitudes of low flow events small, 
extremely rare flow events may appear as outliers. The subject of outliers in the analysis 
of extreme events is tricky, as random samples drawn from statistical populations can 
produce outliers in hydrological samples (Cunnane, 1989). If apparent outliers are 
removed from the sample could this influence the resulting parameter estimation? One 
method for accounting for outliers is to use discordancy tests specially adapted to each 
distribution. Alternatively outlying events may be justified by seeing if they occurred on 
a regional basis, for example by comparing records obtained at nearby sites, or by using 
local knowledge or records. 
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2.3.4 Record length 
It is very important to consider record length in frequency analysis. It will affect not only 
the sample size, but also the performance of tests for stationarity, and homogeneity. Most 
importantly, it is very unlikely that the frequency distribution will be determined 
adequately where the record length is short. Different techniques need to be adopted where 
the record length is inadequate, or it is possible to augment a record with data from a donor 
or analogue station. A scoping study for short records is presented in Chapter 6. This 
includes some discussion of the criteria for determining the suitability of analogue stations 
and the methods by which data or information about the frequency curve may be 
borrowed. Other approaches include regionalisation methods or the adoption of partial 
duration data. However these are beyond the scope of this review. 
 
 
2.4 Non Parametric Methods 
 
2.4.1 Empirical distribution functions 
If a sample of data contains a large number of data-points it is not necessary to make use of 
a parametric family of distributions in order to provide an estimate of the underlying 
distribution function. Instead, one could use the empirical distribution function of the data. 
This is defined as the function whose value, for any x, is the proportion of the values {x1, 
x2, ... , xN} which satisfy xi ≤ x: this is the direct analogy of the underlying distribution 
function. Formally, the empirical distribution function, denoted FN(x), is defined by 
 
FN(x) = N-1 Σi I(xi ≤ x)        (2.12)    
 
where I is an indicator function which has the value 1 if the condition in brackets is true, 
and 0 otherwise, and N is the number of data points. 
 
There is a considerable amount of statistical theory relating to the empirical distribution 
function, and in fact many formal tests of the fit of a given family of distributions are based 
upon it. Empirical distribution functions have two advantageous features. Firstly FN(x) is 
always an unbiased estimator of F(x), regardless of statistical dependence amongst the 
random variables. Secondly, given the assumption of statistical independence, for any 
fixed x, the distribution of the estimator FN(x) is completely known in a simple form: in 
particular N×FN(x) is a Binomial random variable corresponding to a sample size N and a 
"probability of success" p = F(x).  
 
Unfortunately the empirical distribution function is always a step-function, as is the 
corresponding estimated quantile function. Thus, the estimated flows of a given 
probability, p, take sudden jumps in value as p varies. This feature is unrealistic and 
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best avoided (this is one reason why parametric methods are preferred over empirical 
techniques). In order to avoid the step-wise jumps in the empirical distribution function, 
some form of smoothing could be contemplated. Alternatively, the problem could be 
viewed as one of finding a reasonably smooth curve passing near the plotting positions. 
While a range of techniques based on smoothing are available for estimating density 
functions (Silverman, 1986), and hence distribution functions, these are not often used 
in the analysis of hydrological extremes. This is because estimates are usually required 
for values in the tails of the distributions, often beyond the range of the observed data. 
Kernel-based smoothing techniques, however, have the advantage of not requiring the 
specification of a particular family of distributions to be fitted, but would not be 
expected to perform well beyond the range of the data, unless the kernel chosen is 
specifically adapted to the underlying `true' distribution. 
 
2.4.2 Probability and plotting positions of sample data 
In hydrology, the empirical distribution method it is not often applied for graphical 
purposes. Instead the idea of a set of plotting positions is used to produce probability plots. 
A probability plot depicts the variation in the annual minimum flow with probability. 
However as the observed data is only a sample from the true population of flows, the true 
probability of each data point is unknown. The probability at which each data point x(i) 
should be plotted may be estimated; typically estimation follows the procedure outline 
below, and in this case the estimated value is called the plotting position pi.  
 
Plotting positions are calculated according to the position or rank of the data point within 
the data set. For this, the set of data-values is reordered according to size, with the largest 
value being assigned a rank of 1 and smallest value being assigned a rank of N. The new 
set is denoted by {q(1), q(2), ... , q(N)} in which q(i) ≥ q(i+1), thus q(i) denotes the i'th largest 
observation. An estimated value of pi is then assigned to each rank, i. Various formulae for 
assigning values of pi have been proposed, each evaluating the distribution function at q(i) 
in one sense or another. Cunnane (1978) and Stedinger et al. (1992) have discussed the 
rationale behind the use of different plotting position formulas. The plotting position 
should be a distribution free estimate of the probability: most plotting positions formulas 
try to ensure the resulting quantile estimates are unbiased for different distributions. Thus 
plotting positions of i/N and i-1/N, which were used in early frequency plots, have been 
replaced by more robust formulas. Some of most widely applied plotting positions are the 
Gringorten, Hazen, Weibull and Blom formulae as shown in equations 2.13 to 2.16.  
 
pi = (i - 0.44)/(N + 0.12) (Gringorten plotting positions)  (2.13) 
  
pi = (i - ½)/N         (Hazen plotting positions) (2.14) 
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pi =  i/(N+1)  (Weibull plotting positions) (2.15) 
 
pi = (i – 3/8)/(N + 1/4)       (Blom plotting positions)  (2.16) 
 
Certain formulae are optimised for particular distributions. For instance the Gringorten 
formula is optimised for the EV1 distribution, but is also a good choice for many others 
including the EVIII (Weibull) and exponential distributions. The Hazen formula is a 
traditional choice, and assumes that the probability scale is divided into N equal intervals, 
with pi the midpoint of each interval. The Weibull formula provides unbiased estimates of 
the exceedance probability associated with each data point, rather than for the quantiles of 
the distribution, and for this reason, it is best used with a uniform probability scale. The 
Blom formula works best with data sets that are normally or log-normally distributed. 
 
Typically, probability plots consist of displaying q(i) vertically against [qS(pi)] for some 
standard distribution function F(q)S with quantile function qFS. By using a probability 
scale along the ordinate axis the data points can be made to plot approximately along a 
straight line. The probability scale may be expressed in terms of the reduced variate for 
any particular distribution (for example, the general case reduced variate for the EVI or 
Gumbel distribution is (-ln(-lnF))). If the probability scale used corresponds to the true 
distribution underlying the sampled data, then the data is more likely to plot linearly. If the 
standard distribution used matches the true distribution then 
 
q(i) = qS(pi)            (2.17) 
 
so that a line of unit slope should arise in the plot. If the true distribution is such that it is a 
shifted and scaled version of standard one, then  
 
q(i) ≈ a + b qS(pi) 

 (2.18) 
 
and hence the plot of q(i) against qS(pi) will still be a straight line. Relationship (2.18) may 
then be used to estimate the parameters a and b. 
 
By employing a variety of reduced variate scales, this simple method can be used to 
indicate which of well-known distribution families best represents the sampled data. 
Probability plots are therefore extremely useful for visually revealing the character of a 
data set, without the laborious task of fitting a distribution to the data. 
 
Plotting positions are also the usually means of providing estimates of the probabilities for 
each of the sample flows, for use in parametric estimation of the probability distribution. It 
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is therefore important to note that the plotting positions are predominantly influenced by 
the number of observations in the sample set. This means that plotting positions will be 
equally spaced along the probability axis, regardless of how the magnitudes of the 
observed flows are distributed. 
 
 
2.5 Parametric Methods 
 
2.5.1 Choice of family of distributions 
 
General considerations  
Parametric methods require an appropriate family of distributions to be identified. The 
choice of family can be based on a number of different considerations: some of the 
general points to be considered are described in sections a to e below. Although the 
same kinds of considerations are made in flood frequency analysis, the general 
conclusions about distribution fitting from floods may not be appropriate when 
transferred to low-flows because the shapes of distributions likely to arise are different. 
In particular, for droughts the possibility of the distribution having a discrete component 
at zero needs to be considered. The role of discretization and zero flows are discussed in 
sections 2.5.1.2 and 2.5.1.3 respectively.  
 
a) The specific set of data 
Formal and informal tests of fit can be applied to decide which of a number of alternative 
families of distributions is most appropriate. Certain pre-fitting analyses may also be 
useful. These include (i) graphical techniques, in which plots of the data-values against 
certain transformations of the plotting positions would be expected to produce straight-
lines if the corresponding family of distributions was "correct", and (ii) examination of the 
sample moments of the data (e.g. judging kurtosis and skewness, or corresponding L-
moments, in comparison with the theoretical moments for various families of 
distributions).  
 
b) Use of similar data-sets 
A specific data-set, particularly if it contains few data values, provides little information to 
discriminate between families of distributions. It can be reasonable to assume that, if there 
are other similar sets of data of the same type these can be used to help to find an 
appropriate family of distributions. If there are longer series of annual minimum flows for 
other nearby sites for which particular families of distributions have been found useful: 
then the same families might be expected to work well for the target site. Typically, a large 
number of sites might be analysed simultaneously and, for general use, those distributions 
that are judged to provide acceptable of goodness-of-fits statistics for the most number of 
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sites are chosen. The question of what other sites provide data that are ‘similar’ to a given 
site is an ill-defined one: although droughts are. by  definition are strongly spatially 
correlated, geographical considerations other than just distance have to be accounted for 
(e.g. see Acreman & Sinclair, 1986). 
 
c) Applicability of Extreme Value Theory 
"Extreme Value Theory" is a subset of statistical theory relating specifically to the 
statistical behaviour of maxima and minima of large collections of (not necessarily 
independent) random variables. This theory strongly suggests that the Generalised 
Extreme Value (GEV) family of distributions is appropriate for describing such data 
sets. Some statistical aspects of extreme value theory are outlined in Appendix 1.1: a 
full treatise can be found in most textbooks on statistical frequency analysis.  In 
practice, however, a relatively short series of annual minima flows is unlikely to behave 
like a “true” extreme value data set. Therefore there are doubts about the applicability of 
extreme value theory to low flow frequency analysis. Furthermore, while this theory 
may be relevant to the independent data, it is not effective where data is serially 
correlated. In addition, the theory requires that the probability of a zero flow occurring 
is not positive, a condition that cannot be guaranteed for many sites.  
 
d) Empirical considerations (optimising the number of parameters) 
Particular families of distributions are "more flexible" than others in the sense that they are 
able to provide matches for a wide range of shapes of the underlying distribution. 
However, it is unlikely that the "true" distribution of annual minimum flows will coincide 
exactly with any member of a particular distribution family. To increase their flexibility, 
families of distributions can, in principle, be constructed in such a way that any possible 
distribution can be matched by some family member or other. This essentially involves 
using increasing the number of parameters that index the family. A large number of 
parameters may be required in a family of distributions in order for it to adequately 
represent the underlying distribution. Unfortunately the more parameters that are estimated 
in fitting the distribution, the more variability there is in the final estimates. Therefore the 
need for flexibility in the chosen family of distributions has to be balanced carefully 
against the need to restrict the number of parameters fitted. Such considerations obviously 
need to take into account the amount of data available for fitting the distribution and also 
the range of return periods of interest. Furthermore, any conclusions will also depend on 
the methods of fitting assumed to be used, especially with regard to the statistical 
efficiency of the method, its robustness to outliers and, more generally, its behaviour when 
the underlying distribution is not that assumed in the fitting procedure. 
 
The evaluation of these effects may best be achieved by stochastic simulation studies 
where pseudo-random samples representing typical sets of data are generated from known 
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population distributions and a variety of combinations of distributions and fitting 
procedures are applied to them. Such studies have been done in the case of floods - a 
summary is given by Cunnane (1989). Cunnane (op cit.) concluded that, generally, unless 
there are more than 20 to 30 years of data for a site, it is best to fit a two parameter 
distribution rather than one having more parameters. He also emphasised that, even for 
larger sample sizes, consideration has to be given to balancing the effects of bias, arising 
from lack of fit to the unknown underlying distribution, with those of sampling variability.  
 
e) Applicability across different events of different duration 
Several low flow frequency analyses may be carried out on the same data set, with annual 
minima derived using a different duration, D, in each case. Although each analysis has to 
be conducted separately, it might sometimes be preferable to use the same family of 
distributions to characterise low flow events for all durations of interest. This consideration 
may help to choose between candidate families if one appears to fit adequately well for a 
range of durations, while others do not. This, of course, leads on to the question of fitting 
distributions for different durations as part of the same analysis. Note that the question of 
treating different durations has less prominence in studies of floods, so that there is no 
experience of this problem on which to draw. 
 
Modelling the recording process: discretization  
In choosing a family of distributions to attempt to represent a set of data, it is important to 
take account of the way in which the individual data values recorded relate to the flows 
that actually occurred. One aspect of this relates to measurement error, which may occur, 
for example, due to a not-quite-correct rating curve or from observer-derived random 
errors. Such measurement errors should be small and the usual approach would be, 
effectively, to ignore them, on the understanding that the results of analyses apply to the 
distribution of measurements likely to arise, rather than to the distribution of the actual 
flow values. For streams where low flow values are very small or close to zero, the 
question of discretization, or rounding error, takes on rather more importance. For example 
if the precision of the gauging process is 0.01, it is readily apparent that all the values 
recorded will be multiples of 0.01 Cumecs, with the effect that the data-values to be 
modelled will have a discrete distribution. While it would be possible to attempt to model 
these data with a discrete distribution selected from one of the standard sets of families of 
discrete distributions (e.g. Poisson, Binomial, negative Binomial etc.), this is not the 
approach generally taken. 
 



 

R&D TECHNICAL REPORT W6-064/TR2   24

Instead, as for sites where minimum flows are typically larger, continuously-valued 
distributions are used. In effect the continuously-valued distribution is assumed to reflect 
the distribution of the "true" annual minimum flow and the discretization is modelled 
explicitly. Thus if the minimum flow, Q, has an underlying distribution function of F0(q), 
the probability that the observed value Q = q arises by rounding to the nearest multiple of δ 
is given by 
Pr (Q = q ) = Pr ( q - ½δ < X ≤ q + ½δ )  = F0(q + ½δ) - F0(q - ½δ). (2.19) 
 
In this way, the discrete distribution for the observations is implicitly defined within Eqn. 
2.19. The advantage of using a continuously-valued underlying distribution is that it 
provides a means of dealing with cases where the rounding interval is different in different 
portions of the record: for example, on the change from imperial to metric units. However, 
the algorithmic procedures for fitting the underlying continuous distribution cannot simply 
be carried over to the discretized case. Where the discretization effect is large, new 
procedures that are able to account for this effect need to be employed: the method of 
maximum likelihood applied to the discretized distribution would usually provide a 
reasonable estimation procedure. 
 
The above approach is appropriate when the discretization effects are such that it is as if 
the annual minimum values being analysed are the direct outcome of a discretization 
process. Thus, for daily flows one has that: 
 
discretized minimum daily average flow = minimum discretized daily average flow 
 
However, when longer durations are used, the values extracted for a particular D-day 
duration are averages of discretized values. In this case the minimum D -day average 
discretized flow is not identically the same as the discretized value of the minimum of the 
D -day averages. Hence, although it may still be useful as a way of allowing for the 
measurement uncertainty arising from discretization, it is not exactly correct to employ 
relation (2.19) for longer durations. Note that, while the data-values for minima of D-day 
averages of values (originally recorded at a spacing of δ) would have an effective spacing 
of δ/D, it seems appropriate to use the uncertainty range of ±½δ, as in equation (2.19). 
Some consideration should always be given to the question of discretization, even when its 
effects are not apparent in the data, since neglecting it when it exists will lead to incorrect 
answers. When the range of variation between values in the annual minimum data-set is 
considerably larger than the discretization error, it may be possible to ignore discretization 
entirely. However, it is important to at least consider giving special treatment to the 
smallest observation of annual minima in a data-set and determining what range of values 
this observation might reasonably represent. One reason for this is that, when estimating an 
unknown lower bound to possible values of annual minimum flow, one of the standard 
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statistical estimation procedures (maximum likelihood) is known to perform poorly if 
applied to "exact" data.  This problem is overcome if the smallest observation is explicitly 
treated as representing a range of values. 
 
Treatment of zero flows 
Zero flows lie on the boundary of admissible values, as all observed flows must take 
non-negative values. In this sense occurrences of zero flow require some sort of 
"special" treatment. Even if zero values do not occur in the data-set to be analysed, there 
is still the question of how the possible occurrence of zero values should be treated in 
the formal description of the statistical distribution to be fitted.  The consequences of 
treating zero flows in a particular way, therefore, need to be considered in any 
procedure for fitting the distribution. If zero values do occur in a data-set, some thought 
needs to be given to whether these are "real" zero flows, whether they represent values 
which are actually positive but are below some discretization threshold (as in Section 
2.5.1), or whether they may represent a mixture of both types. Depending on the care 
with which the original data were recorded, it may be possible to distinguish between 
real zero values and small positive flows, in the same way that manually recorded daily 
rainfalls distinguish between zero and "trace" amounts. 
 
Suppose that a data-set contains no "exact" zeroes and no discretization. It is possible that, 
if a statistical distribution is selected and fitted without taking into account the important 
role of zero as a lower bound, the fitted distribution may be such that positive probability is 
assigned to negative flow values. This would mean that some estimates of flows 
corresponding to given return periods might turn out to be negative. Some families of 
distributions do have zero as a fixed lower bound. However it may be necessary to 
consider more general families with the aim of achieving an improved fit. Suppose that an 
initial candidate family of distributions is such that the distributions either have no lower 
bound or the lower bound is non-zero, or negative (the particular location of the bounds 
depends on the parameters of the particular family). Let F0(x; θ) denote one of the initial 
families of distributions, with parameter vector equal to θ, and let x(0; θ) be the quantile 
function evaluated at probability zero: i.e., the lower bound of the distribution.  
 
Four ways of proceeding are as follows. 
 
(i) Ignore possible negative values. 
It may be the case that fitting the initial family of distributions, without taking any specific 
action about negative values, yields a fitted distribution for which the probability assigned 
to negative values is very small, say of the order of 10-10. It is arguable that such small 
probabilities are irrelevant to the question of estimating quantiles at more moderate return 
periods, for example in estimating events occurring once in 1000 years or equivalently at a 
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probability point of 10-3. For comparison with other approaches this approach can be 
described as being to fit the family of distributions F(q; θ), where 
 
F(q; θ) = F0(q; θ).  (2.20) 
 
While this approach may be tenable where analyses are done in detail on a case-by-case 
basis, so that the probabilities of negative values can be properly examined, it would be 
dangerous to adopt it as a fully automatic estimation procedure. 
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(ii) Treat as a censored distribution. 
There are two standard ways of modifying the initial family of distributions to create 
families in which the probability assigned to the occurrence of negative values is zero. In 
the first of these, the new family is derived by assuming that the recorded data represent 
values arising from one of the initial family of distributions, but that any negative values 
would be recorded as zero. These might be thought of, for example, as water levels falling 
below the river bed level.  
 
This rationale effectively creates a new family of distribution functions F(q; θ), defined by 
 
F(q; θ) = 0   if x < 0, 
F0(q; θ)   if x ≥ 0.  (2.21) 
 
Thus the new model incorporates a discrete component at zero: the model says that the 
probability of recording zero is F0(0; θ). Here, even though the observed data include no 
"exact" zeroes, the statistical model does allow for their occurrence. Note that, if no zero 
values are observed, the estimated parameter values for this model may or may not 
coincide with those obtained for the model in Eqn. 2.20, depending on the method of 
estimation used. For example, maximum- likelihood estimates would remain unchanged, 
while estimates derived by the method of moments would change, essentially because the 
formulae for the population moments of the distribution defined by Eqn. 2.21 differ from 
those of the distribution defined by Eqn. 2.20. However, the estimated quantiles would 
never be negative. 
 
(iii) Treat as a truncated distribution. 
The second standard way of modifying the initial family of distributions is that of 
truncation, which may be considered rather more artificial in the present context than that 
in (ii). In the truncation model the final recorded value for a data-item is said to arise from 
a process in which a sequence of values is generated according to a particular distribution 
(family), but which stops at the first non-negative value. This effectively creates a new 
family of distribution functions F(q; θ), defined by 
   
F(q; θ) = 0         if q < 0, 
F(q; θ) = {F0(q; θ) - F0(0; θ)}/{1 - F0(0; θ)}  if q ≥ 0.  (2.22) 
 
Here it is assumed that the initial distribution does not have a discrete component at zero. 
Then, in contrast to case (ii), the new model also does not incorporate a discrete 
component at zero. Instead, the unwanted probability of negative values is effectively 
spread over the positive values by scaling up their probabilities of occurrence by an  
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appropriate factor. The estimated parameter values for this model would generally not 
coincide with those obtained for either of the two models above. Again, as for case (ii), the 
estimated quantiles would never be negative. 
 
(iv) Constraining the lower bound. 
The fourth possible approach is to devise an estimation scheme that will force the 
parameters estimated to be such that the corresponding lower bound of the fitted 
distribution will always be non-negative. This of course assumes that the initial family of 
distributions contains distributions that do have non-negative lower bounds. Thus the 
estimation problem can be stated as fitting the following constrained family of 
distributions, which coincides with the original family except that the range of acceptable 
parameter values is restricted: 
 
F(q; θ) = F0(q; θ), with θ satisfying q(0; θ) ≥ 0. (2.23) 
 
The point here is that estimation procedures for fitting this family of distributions would 
need to be specifically tailored to this problem and would not be identical to those for the 
initial family in Eqn. 5.21. Note that a different family of distributions would be 
constructed by using an alternative constraint specifying that the lower bound should be 
exactly zero. 
 
Suppose now that a data-set does contain some "exact" zeroes, but that there are no other 
discretization effects. In the first instance, suppose that a family of distributions for 
positively-valued quantities has been found useful elsewhere – the next obvious step is to 
extend it to cope with the discrete component at zero. Then main approach is to construct 
an augmented family of distributions, which contains distribution functions F(x; β, θ) of 
the following form 
 
F(q; β, θ) = 0      if q < 0, 
β + (1-β)F0(q; θ)     if q ≥ 0.  (2.24) 
 
where it is assumed that the initial distribution functions, F0, satisfy F0(0; θ) = 0. Then the 
new parameter β represents the probability that a zero value will be recorded. If instead, 
the initial family of distributions does contain members that allow negative values to 
occur, then one possibility is to treat the observed zero values as arising from a censored 
version of one of the underlying distributions, as in case (ii) above and Eqn. 2.20. In this 
case the number of zero values recorded, as well as the other data-values, would be taken 
into account in procedures to estimate θ. This provides, albeit by a roundabout route, the 
corresponding value of F0(0; θ) as an estimate of the probability that a zero value will be  
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recorded. A second possibility is to augment the truncated version of the underlying 
distribution with "exact" zeroes (as in Eqn. 2.24 above). This approach may be favoured if 
the proportion of data-values that are recorded as exact zeroes is large, and gives the 
revised distribution function F(q; β, θ) of the form 
 
F(q; β, θ) = 0            if q < 0, 
F(q; β, θ) = β + (1-β){F0(q; θ) - F0(0; θ)}/{1 - F0(0; θ)}  if q ≥ 0. (2.25) 
 
Note that while it is also possible to augment the censored version of the underlying 
distribution, this yields a similar result to the family of distributions obtained by truncation. 
However, the probability given to zero values would be constrained to be above F0(0; θ) if, 
as formally required by the derivation, the augmentation probability were forced to be non-
negative. In the form Eqn. 2.25, the probability of recording a zero value is treated as a 
separate parameter, β, which can lie anywhere in the range 0 to 1. 
 
Finally, suppose that a data set is affected by discretization, as in Section 2.5.1. The 
number of values recorded as zero could be modelled by augmenting an existing family 
of distributions, where this family formally allows the possibility of negative values. Let 
δ represent the discretization interval, so that a recorded value of zero represents 
underlying values of up to ½δ, a recorded value of "δ" represents values between ½δ 
and 1½δ, and so on. Then, one way of proceeding is to augment the underlying 
distribution once it has been truncated at ½δ. For the discretely-valued observations: 
this gives: 
 
Pr( Q = jδ ) = β,            j = 0, 
Pr( Q = jδ ) = (1-β)[F0{(j+½)δ; θ} - F0{(j-½)δ; θ}]/{1 - F0(½δ; θ)}, j = 1,2,3,... (2.26) 
 
This may be compared with Eqn. 2.18, which omits both the augmentation at zero and the 
truncation. 
 
2.5.2  Methods of fitting distributions 
 
Introduction  
Two types of parametric estimation are available for low flow frequency estimation: fixed-
estimate substitution and Bayesian estimation. Nearly all of this report is concerned with 
estimation by fixed-estimate substitution, because this is the approach usually taken in 
practice. Fixed estimate substitution is described in more detail in Section 2.5.2. 
Bayesian inference techniques provide an alternative approach, which is able to take full 
account of all the uncertainties involved in a problem, including those arising from only  
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having a limited amount of data on which to base a decision. In particular, Bayesian 
inference provides a complete and self-consistent approach to decision making is in 
contrast to non-Bayesian estimation, where new and modified ways of estimating 
parameters are often created on an ad hoc basis. There are, however, several problems 
related to applying Bayesian methods computationally. Although a full description of 
Bayesian inference techniques is beyond the scope of this report, a good introduction to 
the topic is given by Box and Tiao (1973), whilst the Bayesian approach to decision 
making is described in DeGroot (1970).  
 
Fixed substitution methods 
Assuming that a family of distribution functions {F(q; α)} has already been chosen, in 
fixed-estimate substitution the data are used to construct an estimate α̂ of α. The 
parameter estimate is then used to estimate the form of the distribution function and the 
quantile function (i.e. α̂  is substituted into the formulae for the distribution and quantile 
functions providing F(q; α̂ ) and q(p; α̂ ) respectively. Estimates of other quantities can 
then be derived in simple ways from these. For example, under the assumption of 
independence between yearly minima, the probability that the annual minima in K 
consecutive years will all be above a value x is 
 
Pr(Q1 > x, Q2 > x, ... , QK > x) = {1 - F(x; α)}K,   (2.27) 
 
and the estimated value of this quantity is provided by {1 - F(x; α̂ )}K. 
 
Methods of parameter estimation can be divided broadly into five types, which may be 
described as follows: 
 
(i)  Graphical techniques  
It may be possible to devise a way of plotting the recorded data-values against values 
derived from the "plotting positions" (Section 2.4.2) so that a straight line should be 
seen if the assumption about the form of the distribution is correct. The intercept and 
slope of this line can then be used to estimate the parameters of the distribution. Fitting 
of the straight line might be done by eye, but might also be done by formulae, for 
example, based on a least-squares fit for the line. The use of graphical techniques is 
described further in Section 2.5.2.3. 
 
(ii)  Likelihood based techniques 
Estimation methods based on the idea of maximising the "likelihood function" of the data 
are well-established in statistical theory and practice and, under certain conditions, they are 
known to have certain optimality properties, at least for large samples of data. Bayesian 
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parameter estimation might be thought of as a variant of this approach. The use of 
likelihood based techniques is described in more detail in Section 2.5.2.4. 
 
(iii) Exact matching techniques. 
A variety of different methods can be categorised as ‘exact matching’ techniques, because 
they are based on the same rationale. In this rationale, the parameter estimates used are 
those for which theoretical values of certain statistics calculated from the assumed 
distribution, exactly match the values of the same statistics, as calculated from the data. An 
example of this approach is the "method of moments". This type of approach has certain 
advantages over likelihood methods and has been popular within hydrology. However 
there are also some disadvantages associated with this methodology. For example, 
although the number of statistics used is always the same as the number of parameters 
estimated, there might be no set of parameter values for which an exact match is achieved. 
Further details regarding exact matching techniques are given in Section 2.5.2. 
 
(iv) Close matching techniques. 
In those methods that can be classed as ‘close-matching’ techniques, the estimated values 
for the parameters are specified to be those which provide the best match between certain 
properties of the theoretical distribution and the corresponding properties as measured for 
the data-values. This, is in a sense, a simple extension of the set of exact matching 
techniques but, rather than just allowing the number of different statistics used for fitting to 
increase, it does allow more direct ideas about measuring the closeness of distributions (of 
the theoretical population and of the data) to be used in estimating the parameters. 
 
(v) Optimal estimation techniques. 
Statistical theory can be used to construct "best possible" estimators. This approach 
typically only leads to practicable estimation procedures in a limited range of cases. It is 
usual to restrict the search to estimators that are "optimal" in the sense of being unbiased 
and of minimum variance. The optimality of an estimator produced by these techniques, of 
course, only applies if the assumptions made (either about the distributional form or about 
statistical independence of the observations) actually do hold. 
 
There are four criteria that are relevant to the selection of a method for parameter 
estimation or distribution fitting: these are as follows. 
 
(a) Reproducibility. 
It is desirable that if different people apply the same estimation method to the same set of 
data, then they should obtain the same estimates. Similarly, if computer programs are used 
to execute the estimation method, programs constructed separately should also provide the 
same estimates. This is clearly not the case for methods relying on graphical procedures 
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and on lines fitted by eye. Other methods may also fall short of fully meeting this criterion. 
For example, both likelihood-based and close-matching methods of estimation may 
involve numerical search techniques for locating the maximum or minimum of certain 
functions of the parameters. The results achieved will depend on the search method used, 
the initial values used for the parameters and the rules used for stopping the search. 
 
(b) Simple formulae. 
There may be a preference for estimation methods that involve application of simple 
formulae for various reasons, including ease of understanding, ease of programming and 
speed of execution. 
 
(c) Universality and uniqueness. 
In principle an estimation procedure should always provide a set of estimated values for 
the parameters. Certain basic estimation methods may sometimes fail to do this. For 
example, a set of equations in a moment-matching method may not have a solution, or a 
numerical search procedure may be faced with a function that is continually improving in 
certain directions of the parameter space. A related difficulty might occur where more than 
one set of estimates could be produced by certain methods. Thus a set of moment 
equations might have more than one solution or, in an optimisation problem, there may be 
two local optima of the same size. These different answers may or may not be such that 
they correspond to essentially different estimated distribution functions. A basic estimation 
procedure may need to be modified, possibly by adopting a second procedure as a fall-
back, in order to ensure that a single answer is always produced. 
 
(d) Accuracy and robustness. 
Different estimation methods will have different statistical properties. Methods that 
provide better performance than others in terms of estimation accuracy, as measured by the 
sampling variability of the estimates, will be favoured. However there is the competing 
issue of robustness, which relates to the question of how well the method works in cases 
where the modelling assumptions do not hold. Measures of performance could be based on 
the estimation of the parameters, the distribution function or the quantile function. 
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No one type of estimation technique always does well under all of these criteria. In the 
context of low flow frequency estimation, it is arguable that the last criterion (accuracy and 
robustness) is most important, while simplicity and speed of execution are irrelevant. 
While there are certain theoretical results that suggest that likelihood-based methods are 
"good" in terms of accuracy, these apply only for large sample sizes. Thus comparisons of 
estimation methods for reasonable sample sizes, for both accuracy and robustness, must 
rely on the results of computer simulation experiments. While such computer experiments 
have been done with some success for flood frequency estimation, this seems not to be the 
case for low flow frequency estimation. The major question is the construction of suitable 
sets of "true" distribution functions for the present context: these would have to take 
account of the considerations of boundedness, "exact" zeroes and discretization which 
were discussed in Section 2.5.1. 
 
Graphical techniques 
Graphical estimation techniques are mainly useful for problems involving only location 
and scale parameters. Note that graphical procedures for assessing the fit of a distribution 
are applicable to all methods of estimation and to all families of distributions. In order to 
obtain a little extra generality for the technique, it is assumed that the set of values of 
annual minimum flow, {qi}, may first be subjected to a known mathematical 
transformation to create a corresponding set of transformed values, {xi}. For example a 
logarithmic transformation might be used in fitting the two-parameter lognormal 
distribution. 
 
Let FS be a standard distribution function (that is, one for which there are no parameters to 
be estimated) and let xS be its (known) quantile function. A location-shift model for the 
observed data, which are represented by the typical random variable X, can be created by 
assuming that 
 
X = α + βXS,  (2.28) 
 
where XS represents a random variable from the standard distribution. Here α and β will be 
parameters the distribution function F of X, and there is an assumption that β > 0. The 
model implies that F is given by 
 
F(x; α,β) = FS{ (x-α)/β }, (2.29) 
 
and that the quantile function corresponding to F is given by 
 
x(p; α,β) = α + β xS(p). (2.30) 
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The graphical estimation technique is then essentially the same procedure used for plotting 
data: the transformed annual minimum flow data are ranked in ascending order and a 
plotting position is assigned to each point. The plotting position, pi, is defined according to 
the rank, i, of the data point xs, using the Hazen or Gringorten formulae as follows:  
 
pi = (i - ½)/N     (Hazen plotting positions) (2.31) 
 
pi = (i - 0.44)/(N + 0.12) (Gringorten plotting positions) (2.32) 
 
The general rationale for this procedure and for the specification of the plotting positions 
was discussed in Section 2.4.2. A scatter plot is created by plotting the N pairs of values 
{xS(pi), x(i)} for all ranks. The slope and intercept parameters of a relationship of the form 
 
x(i) ≈ α + β xS(pi) (2.33) 
 
are then estimated by eye. A straightforward way of avoiding the subjective quality of the 
estimation procedure which is inherent in fitting by eye is to specify that the values of α 
and β should be determined by a least-squares fit of the "estimated values" {α + β xS(pi)} 
to the "target values" {x(i)}; the standard formulae for this apply. However, such a 
procedure would not necessarily reproduce the behaviour of estimates created by fitting by 
eye. There would be some scope for tailoring the weights in a weighted least-squares 
procedure to the distribution being fitted, to reflect the idea that the largest and smallest 
values in the ordered sequence {X(i)} are subject to different sampling variability than 
those closer to the centre. It is also possible to extend the graphical estimation procedure to 
distributions that have more than two parameters. The methodology for this is briefly 
summarised in Appendix 1.2.    
 
Likelihood based techniques 
This section provides a brief introduction to likelihood-based estimation techniques, 
focussing on the Method of Maximum Likelihood, its advantages and disadvantages. For a 
more detailed description of the method, the reader is referred to Appendix 1.3 of this 
review. Maximum likelihood estimation is also discussed is most statistical textbooks, 
although this is often in the context of particular standard types of distributions. General 
discussions are provided by Cox and Hinkley (1974) and Hinkley and Reid (1991). 
 
Likelihood theory deals with the probability of occurrence of a particular sample of data. 
Likelihood based estimation techniques can possibly best be thought of as providing the 
main general purpose set of estimation techniques within the framework of classical 
statistics. When a new estimation problem arises, likelihood theory can usually be relied 
upon to lead to the construction of a reasonably practicable procedure for parameter 
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estimation. Usually the parameter values for which the probability of occurrence of the 
sample at hand is maximised (i.e. at the point of maximum likelihood) are used as the 
parameter estimates. Methods for finding maximum likelihood estimates include graphical 
or tabulation methods, numerical procedures for optimisation, numerical procedures for 
root-finding, algebraic solutions. It is also possible to use a mix of these approaches.  
 
The advantages of being able to derive estimators of the parameters of a distribution via 
likelihood theory are as follows: 
 
(a) The approach provides a single well-defined procedure for estimation on a firm 

theoretical basis, in contrast to other general procedures for which there may be a 
range of choices of detail that are either dealt with arbitrarily or demand specific 
investigation. 

 
(b) It is applicable in a wide range of circumstances, including non-identically 

distributed observations and dependence between observations. 
 
(c) The estimators are known to have certain optimal properties in the sense that, once 

the sample size is large enough, no other estimators have better properties.  
 
(d) The encompassing likelihood theory provides methods for formally testing for the 

inclusion or exclusion of subsets of parameters within a model and hence, 
implicitly, for testing the fit of a model by seeing whether a more complicated 
model does better. 

 
(e) Likelihood theory provides ways of assessing uncertainty both for model-

parameters and for derived quantities such as quantiles. 
 
Despite these many advantages, for the purposes of flood and drought analysis 
likelihood methods have often been passed over in favour of methods that use "non-
optimal" estimating equations. This is because likelihood theory has a major 
disadvantage in that it does not always produce an estimation method that “works” in an 
acceptable sense. Likelihood theory works well provided certain conditions hold: 
unfortunately these conditions fail to hold for some of the distribution-fitting problems 
commonly encountered in analysing annual maxima and minima. Various problems can 
arise when attempting to apply maximum likelihood estimation in practice: the non-
existence of a maximum, the existence of several local maxima, the presence of several 
equal-valued maxima, and the problem of non-distinct maxima. In some cases 
maximum likelihood estimators can only be derived by iterative numerical solutions.  It 
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should also be kept in mind that maximum likelihood estimators have asymptotic 
properties (for large N), and are not as applicable when the sample size is small. 
 
Exact matching techniques 
Well-known examples of exact matching techniques include estimation methods such as 
the "method of moments" and "probability weighted moments". It is convenient to group 
these moment or generalised-moment methods together with certain other techniques that 
would not typically be thought of as estimation via moments. The basis of this general 
class of procedures is to use the available sample of data to provide estimates of certain 
properties of the underlying population, and then to select the member of the family of 
distributions which has exactly the same properties as those estimated from the sample. 
Suppose that S denotes a vector of sample-derived estimates of statistical properties of the 
underlying population and s(θ) denotes the vector-function describing how the values of 
these properties for the family of distributions vary with θ, the vector of parameters 
indexing the family of distributions. The estimated parameter values are thus defined to be 
equal to the solution to the set of estimating equations: 
 
S = s(θ).  (2.34) 
 
Here, it is understood that the solution sought is one that lies within an allowable set of 
parameter values. The term "exact matching techniques" refers to the fact that an exact 
identity is sought in Eqn. 2.34. "Close matching techniques" can be thought of as 
seeking an approximate solution to equations of the same form as Eqn. 2.34, but where 
the equations cannot be solved simultaneously. 
 
There are many different ways of arriving at a set of estimating equations appropriate to a 
particular problem. In some approaches one would start with a set of sample statistics in 
the vector S, and then deduce a corresponding vector of "population-values", s(θ). In other 
approaches one can appear to be moving in the opposite direction, by starting with s(θ) and 
then seeking a reasonable set of sample statistics, S, which in some sense measure the 
same sort of properties as measured by s(θ). These approaches are discussed in more detail 
in Appendix 1.4. For certain purposes it can be helpful to slightly extend the notion of 
estimating equations to encompass estimating functions - this procedure is also outlined in 
Appendix 1.4.  
 
To a considerable extent the choice of which statistical properties are used to construct the 
estimating equations is rather arbitrary. The choice for S or s(θ) represents a set of statistics 
which will be "reproduced" by the estimation technique: for example, samples generated 
from the fitted family of distributions would have properties exactly matching those of the 
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observed data sample, in either a large-sample sense, or in an expectation sense. Hence it 
can be argued that the statistics used should be "important" ones to be reproduced in some 
practical sense, reflecting what the fitted distribution will be used for. However, in 
practice, this type of argument does not tend to be helpful in choosing statistics for use in 
the estimating equations. It is possible to try to set out certain general theoretically-based 
principles or procedures that can be used to define estimating functions or estimating 
equations. Some of these are as follows. 
 
Moments 
Estimation by the "method of moments" is well-known and is based on using the ordinary 
moments of a distribution as measures of location, scale and shape. Note that it is possible 
to use moments of a transformation of the original data (such as the logarithm) and that in 
various circumstances "mixed-moments" (combinations of moments of original and 
transformed data) have been employed. 
 
L-moments 
Recent developments in flood frequency estimation have led to the suggestion that L-
moments should always be used in preference to ordinary moments on the grounds that 
these provide measures of location, scale and shape which are more reliably estimated than 
are ordinary moments (Hosking, 1990; Hosking and Wallis, 1997). However, these studies 
have been principally concerned with floods rather than low flows, and the suitability of L-
moments for low flows seems to require further investigation. Note that using L-moments 
is equivalent to using "probability weighted moments", but with the advantage that they 
are more easily interpreted as measures of shape. 
 
Distribution function values 
A direct approach to constructing estimating equations is to use as the target values, s(θ), 
the values of the theoretical distribution function evaluated at a number of points (equal to 
the number of parameters). While it is better, theoretically, to use a fixed set of points on 
the data-value scale (which not related to the actually observed values), it is also possible 
to define these points in terms of the ranked observations in order to ensure that points are 
always chosen reasonably spaced within the range of the observed values. In this type of 
approach, the standard empirical distribution function (or some reasonable revision of it) 
would provide the set of sample statistics, S. 
 
Quantile function values 
An alternative direct approach to finding estimating equations can be based on using the 
theoretical quantile function of the distribution, evaluated at a set of fixed percentage 
points to form the target values, s(θ). Interpolating between the ranked observations in 
some standard way would provide the sample estimates of these quantiles. A different 
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version would allow the percentage points used for evaluating the quantile function to vary 
slightly with the number of observations in order to avoid the problem of interpolation. 
 
Maximum entropy 
According to the principle of maximum entropy, a family of distribution functions can be 
characterised by a set of constraints, which in the present application are equivalent to the 
estimating equations, together with the condition that the family is precisely that set of 
distribution functions for which the entropy is maximised subject to the given constraints. 
Thus the constraints or estimating equations arise in a supposedly clear-cut way from the 
set of distributions being fitted. Singh & Guo (1995) provide an example of derivation of 
estimating equations via this approach. This approach seems to be extremely difficult to 
apply from scratch, and comparisons with other estimation methods via simulations 
indicate that it provides improved estimates only in exceptional cases. 
 
Optimal estimating equations 
While it is possible to develop a theoretically based approach to constructing an "optimal" 
set of estimating functions, it turns out (Godambe; 1960, 1976) that these are more or less 
the same as the likelihood equations. Thus use of optimal estimating equations is therefore 
essentially identical to maximum likelihood estimation.  
 
Exact matching techniques have many advantages. In particular, it is possible to construct 
estimating-equation methods that provide estimates with good properties in cases where 
maximum likelihood estimation fails to provide an estimate at all. Estimating-equation 
methods can also have considerable advantages over maximum-likelihood estimation in 
terms of simplicity. Indeed, one possible criterion for the choice of a set of estimating 
equations is whether, or not, simple explicit expressions for the parameter estimates can be 
found.  
 
The practical problems involved in implementing an exact-matching or estimating 
equation approach to parameter estimation are rather similar to those encountered for 
maximum-likelihood, once a set of equations to be solved has been settled upon. The 
problem is to find a solution to a set of equations under the condition that the solution must 
be in some allowable region of the parameter space. However, there may be no such 
solution, or there may be more than one. It might be possible to solve all of the equations 
algebraically to provide an explicit solution, or it might be possible to employ a mixed 
approach in which explicit solutions to a subset of the equations are substituted into the 
others, leaving a reduced number to be solved by numerical procedures for root-finding. 
There is clearly scope for alternative sets of estimating equations for the same problem to 
have rather different degrees of ease in finding a solution. The selection of a set of 
estimating equations can be rather arbitrary, particularly when a new problem is being 
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dealt with, and also when improvements to existing procedures are being sought. However, 
guidance in suggesting suitable structures can often be gained from successful methods 
applied to other similar problems. Here "success" would typically have been judged from 
the results of simulation experiments. Similarly, it would be good practice to use 
simulation experiments to check out any new exact-matching estimation procedure and to 
compare it with any other competitors. For example in attempting to construct an exact-
matching estimation technique for a new problem, which may typically involve modelling 
an observed data-set via a truncated and/or discretized version of a standard family of 
distributions, it is important to take into account this truncation or discretization in forming 
the estimation equations.  
 
2.5.3 Assessing parameter and distribution estimates 
 
Introduction 
Although the form of the distribution function can be estimated by fitting methods, it is 
extremely rare that the estimated form is equal to the ‘true’ form of the distribution. In 
assessing whether the fitted distribution is acceptable, the bias, variability and accuracy 
of parameter estimates are taken into account.  
 
The parameter α is estimated by α̂ , which is itself a random variable having a 
probability distribution. Ideally α̂ should be noted as α̂ (X1,…..,XN) to emphasise that 
its value depends on the observed samples { X1,…..,XN}. The estimate α̂ is thus a 
realisation of the estimator, α̂ . Probability theory can be used to describe the behaviour 

of the estimator, α̂ . If the estimation procedure produces as systematic error, the 

estimator is said to be biased. The bias associated with the parameter α, B(α), is defined 
statically as follows: 
 
B(α) = Ε[α̂ ] -α   (2.35) 

 
There will be no bias if Ε[α̂ ] = 0, and in this case the estimator is said to be unbiased: 

that is, each time the estimation procedure is performed the estimate may differ from the 
true unknown value, α, but will, on average, produce the correct result.  
 
It is also desirable to have an estimator that has a small sample-to-sample variability, or 
variance, Var [α̂ ]. An estimator is said to be the most efficient if it is unbiased and if its 

variance is at least as small as that of any other unbiased estimator. The mean square 
error is one measure of accuracy that combines both bias and variance (Stedinger, 
1993). The mean square error, MSE, is usually defined as follows: 
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MSE = {B(α)}2 + Var [α̂ ] (2.36) 

 
An unbiased estimator will thus have a mean square error equal to its variance.  
 
It is usually fair to assume that the estimates of the distribution parameters are in the 
‘neighbourhood’ of the correct values. It is possible, then, to define a range, or 
confidence interval, that will nearly always contain the correct or ‘true’ value of the 
parameter, even if that value is still unknown. Similarly, when two or more parameters 
are involved it is possible to describe a confidence region. The construction of 
confidence intervals is described in most statistical texts. A useful step-by-step guide, 
with examples based on hydrological data, can be found in Shahin et al. (1993). 
 
Screening distributions  
Screening techniques are used to identify those distributions that do not fit the data well 
(rather than choosing the option with the ‘best’ parameter estimates). Several screening 
techniques are available including:  
 
a) Graphical procedures   
Physical inspection of the data on a probability plot is the most basic and traditional 
method for assessing the goodness-of-fit of a distribution. Confidence intervals can be 
drawn about the line or curve of the fitted distribution in order to help demonstrate its 
suitability or otherwise. However graphical procedures should only be used as a first step 
or in conjunction with other methods.  
 
b) Goodness of fit tests 
Goodness of Fit tests are the main method of testing that sample data are derived from a 
particular distribution. There are several different goodness of fit criterion including the 
Chi-squared test and the Kolmogorov-Smirnov statistics.  
 
c) Least Squares Criterion 
In the least squares method the sum of squares of the differences between predicted and 
observed flows at different return periods are determined and used to assess the 
applicability of the choice of distribution. The least squares method is dependent on the 
plotting position used to determine the return period, and is also computationally 
demanding. 
 
d) Tests based on skew 
Tests based on skew are generally used when the method of moments has been used to 
determine the parameter estimates. Skew can be identified visually, from moment-ratio 
diagrams.  
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e) Split Sample Test 
In a split sample tests distributions are fitted first to half of each record. The second half of 
the record are used to test expected numbers of exceedance, or non-exceedances of 
specified magnitudes given the distribution in question. 
 
Classical goodness of fit tests 
There are two main types of goodness of fit tests suitable for testing the fit of a distribution 
to a particular sample.  The Chi-Squared test assumes the observed data is drawn randomly 
from the population described by a particular distribution function. The Kolmogorov-
Smirnov test is a similar test, but is only valid for continuous distributions. The 
Kolmogorov- Smirnov test has the added advantage that it can be used for a small sample 
size, and can be used even where the parameters of the distribution have not been 
specified. In this case the parameters are estimated from the mean and variance of the 
sample data set. Note that goodness of fit tests assume that the data is independent, so that 
where data is serially correlated the results of these tests are less reliable.  
 
Resampling methods 
Resampling methods are applied in order to assess or reduce bias in a biased estimator, 
and are used when statistical models become so complicated that it is impossible to used 
‘standard’ statistical techniques to analyse them. Resampling methods, such 
‘bootstrapping’ and ‘jack-knifing’ are used for constructing confidence intervals for any 
complicated situation. Techniques such as Synthetic Population Assessment also fulfil a 
similar role (Round & Young, 2001). As an alternative to resampling methods Bayesian 
analysis may also be used to choose the best distribution out of a number of 
distributions.   
 
Bootstrapping techniques 
Bootstrap methods are statistical procedures used for statistical testing or for assessing 
the variability of a point estimate where the underlying statistical population is 
unknown. In order to apply this method it must be assumed that the low flow events in 
each year are independent of the flows observed in the preceding years and that the 
range of annual low flow events in the observed data is the same as in the underlying 
population. Bootstrapping would typically involve determining period of record flow 
statistics for the observed period, randomly generating resamples, and yielding 
confidence intervals for these flow statistics. The key assumption for deriving bootstrap 
confidence intervals is that the bootstrap residuals are assumed to be representative of 
values drawn from the same distribution as the actual unknown residual. Unfortunately 
whilst the bootstrap method provides an estimate of the confidence intervals for the 
period of record statistics, full rank re-samples have to be drawn from the sample used 
to calculate the period of record statistic (Round & Young, 2001). 
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2.6 Families of Distributions 
 
A number of families of statistical distributions are commonly used to represent 
hydrological data. This chapter discusses some of the distributions found useful in flood 
frequency and low-flow analysis. It is important to note that those distribution useful for 
flood frequency analysis, may not have good properties when "reversed" for low-flow 
analysis, because of the restriction of flows to be positive. It is also important to note that 
distributions with two or three parameters are more appropriate than higher-order 
distributions. 
 
2.6.1 Generalised Extreme Value (GEV) 
The GEV distribution is the general three-parameter case of the range of extreme value 
distributions (including EV1, EVII and EVIII distributions). It is itself a special case of 
the Kappa distribution. The three parameters are location, ξ, scale α and shape, k.  
 
The distribution and density functions are given respectively by: 
 

)exp()( yexF −−=  (2.37) 
 

))1(exp()( 1 yeykxf −− −−−= α     (2.38) 

 
where the quantity y is determined as follows: 
 










=
−

≠





 −−−

=

−

0k
x

0k
x

k1lnk
y

1

  where

  where

α
ξ

α
ξ

 
)40.2(
)39.2(
 

The distribution is bounded above where k > 0 and is bounded below where 0<k , i.e. 

the range is 
k

x
α

ξ +≤<∞−   if k > 0, ∞<≤+ x
k
α

ξ   if k < 0, and ∞<<∞− x   where 

k = 0. 
 
Therefore the GEV is bounded above where k > 0 and this is a Type II GEV distribution. 
Where k < 0, the distribution is known as a Type III GEV and is closely related to the 
Weibull distribution. In the special case where the third parameter, k is zero, GEV 
distribution reduces to the EV1 (Gumbel) distribution. As suggested by extreme value 
theory, the GEV should give a reasonable fit for independent data. Indeed the GEV 
distribution has been found to work well with flood data and has been recommended for 
flood frequency analysis by many authors (e.g. NERC, 1975). As discussed earlier, the 
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GEV distribution is less appropriate for low-flow frequency analysis because of the issue 
of serial correlation in low flow data.  
 
2.6.2 Gumbel (EV1) 
The Gumbel, or EV1 distribution is a special case of the Generalised Extreme Value 
distribution, and is possibly the most widely used distribution for flood frequency 
estimation (see Cunnane, 1989). The Gumbel, is a two-parameter distribution with scale 
parameter, α, and location parameter, ξ, and its p.d.f. is given by: 
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The Gumbel distribution is unbounded at both ends of the distribution (i.e. - 8  = x = 8 ), so 
its use in low-flow analysis is much less common. Krokli (1989) and Pearson (1995) 
consider fitting EV1 distributions for low flow data.  
 
2.6.3  Weibull (EVIII) 
The Weibull distribution is a three-parameter distribution given by  
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where the parameters δ, β and ζ are defined by 
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The Weibull distribution is the equivalent to the Extreme Value Type III (EVIII) for 
minimum values. As it is bounded by zero on the left hand tail ( i.e. ∞<≤ xζ )., the 

Weibull distribution is a popular choice for low flow frequency estimation (e.g. Deninger 
et al., 1996; Durrans, 1996; Guo et al.,1996),  especially for those using graphical 
approaches e.g. Gustard et al. (1992). 
 
2.6.4 Lognormal distribution 
The lognormal distribution can be described using three parameters, in which case it can 
be defined by the following probability density functions: 
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If defined using two parameters, the parameter m is set equal to zero in Equation 2.40.  
 
The use of log-distributions is difficult when dealing with low flows because a zero in a set 
of data that is being logarithmically transformed requires special handling. However the 
log-normal distribution has been a population choice when dealing with lowflow data (e.g. 
Vogel & Kroll, 1990): an un-reversed log-Normal distribution has no upper bound and a 
lower bound at zero.  
 
2.6.5 Generalised Logistic 
The Generalised Logistic (GL) distribution is a generalisation of the 2-parameter Logistic 
distribution and is also a special case of the Kappa distribution (Robson, 1999). It has been 
recommended for use in flood frequency analysis (Institute of Hydrology, 1999) as it is 
unbounded above unless the L-skewness is negative. The distribution can be defined by  
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In the special case where ?=0 the GL distribution reduces to the 2-parameter Logistic 

distribution. The range of possible values for the GL distribution is 
k

x
α

ξ +≤<∞−  if 

0>k  and  ξ + α  / k ≤  x < ∞   if 0<k .  
 
Thus the GL is bounded above for k > 0 and below for k < 0, and so is fairly good 
candidate for low-flow analysis. As the generalised logistic distribution is a fairly ‘new’, 
there are few references to it in flood frequency analysis, and has yet to be applied to low-
flow data.   
 
2.6.6 Pearson Type III 
The Pearson Type III distribution is a popular distribution for fitting hydrological data. It 
can be described by the following probability density function 
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Where ?  is the Gamma Function as defined by Bobee & Ashkar (1991).  
 
The range of possible values for the Pearson Type III are m = x if a>0 and x = 0 if a <0. 
The Gamma distribution is a special case Pearson Type III with m equal to zero. The Log 
Pearson distribution is another variant, but generally is only appropriate for hydrological 
analyses when its parameters fall within a small range of values. 
 
2.6.7  Generalised Pareto distribution 
The Generalised Pareto (GP) distribution is a three parameter distribution that may be 
described by  
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The GP distribution is useful for describing events that exceed a specified lower bound, 
such as low-flow events bounded by zero - it is actually bounded at both tails (i.e the range 

of x is given by 
k

x
α

ξξ +≤< , where 0>k  and by ∞<≤ xξ , where 0≤k . 

 
 
2.7 Recommendations and Concluding Remarks 
 
2.7.1 Applicability of flood estimation techniques 
This review has aimed to provide an introductory overview of the principles and 
techniques of low flow frequency analysis. The main elements of low flow analysis have 
been described and the advantages and disadvantages of some of the possible methods and 
distribution families have been outlined.  
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Although consistent methods for frequency analysis of flood events are widely 
disseminated with the hydrology and engineering communities (for instance, a thorough 
description of the recommended method of flood frequency analysis in the UK is given by 
the Institute of Hydrology (1999)), the same cannot be said about low-flow frequency 
analysis. The subject of low-flow frequency might at first appear to be analogous to that of 
flood frequency. However there are several key differences between the two, and 
therefore, although the concepts and general techniques may be transferred between flood 
and drought analysis, the ‘nuts and bolts’ of the methods have to be different. The main 
differences can be summarised as: 
1) The need for a lower bound at zero (representing the possibility of observing a zero 

flow). 
2) Due to a lack of precision in recording variables at low flows, a series of low flow 

observations can essentially be considered as a discrete distribution, rather than a 
continuous one.  

3) The data may be serially correlated, especially where longer durations are considered. 
There are two main implications of these nuances. Firstly a methodology for dealing with 
dependent data is required. Secondly there must be adequate treatment of zeros; a 
distribution with a lower bounded tail is required taking into account that the bound cannot 
be negative. The data may require treatment as if censored. The problem of low frequency 
analysis also needs to be approached differently for long and short flow records. Where 
records are sufficiently long (e.g. at least 20 to 30 years), it is appropriate to use annual 
minima series, whereas where the data covers a much shorter time period, partial duration 
techniques must be employed or at-site analysis must be supplemented by some kind of 
regionalisation method. 
 
2.7.2 General recommendations 
 
Non independence 
In the one-day duration case it is fair to assume that the data is independent. However 
where longer durations are considered it is important to assess the level of independence. 
Therefore pre-processing of data is advocated with checks being made for correlation, 
homogeneity non-stationarity. There is no appropriate means for adjusting the fitting 
procedures to allow for dependent data. Instead it is suggested that a more consideration is 
given to the uncertainties involved. The uncertainty and bias in the quantile estimators will 
be higher, while classical goodness-of-fit tests will be less reliable.  
 
Zero flows and discretization 
The possibility of the occurrence of zero flows is a central factor in low flow frequency 
analysis. Ignoring observed zero flows may lead to a positive probabilities being 
assigned to negative streamflow values (such results have no physical basis), but even if 
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they are unlikely to be observed in practice, some consideration of zero flows is 
required. Similarly it is important to be aware of the effect of discretization within the 
observed data. Several possible methods for dealing with zero flows have been outlined 
in this report, including treating the observed data as if it represents a censored or 
truncated distribution, and augmenting the distribution to cope with the discrete 
component at zero. There is little evidence from the low-flow literature to show which 
of these might, in practice, give the best results. Durrans et al. (1999) advocate 
censorship of all zero values, regardless of whether they are real or result from the 
effects of discretization. Conversely Stedinger et al. (1993) used a conditional 
probability adjustment procedure, where the probability of encountering a zero flow is 
represented by including an additional parameter in the distribution so that the non-zero 
data can be considered as continuously-valued (the adjustment procedure is used to 
adjust the results to the full sample). Again, taking a different approach Bulu (1997) 
outlined the possible use of the theorem of total probability to handle the occurrence of 
zero flows.  
 
Outliers 
A subjective approach is advocated for dealing with outliers. As there is a lower bound on 
low flows, outliers are not as important as in flood estimation, and therefore a rigorous or 
automatic treatment of outliers is not required. Outliers maybe caused by artificial 
influences in the catchment, such as the effects of over-abstraction, and in this case may be 
removed by naturalising the data, but may also occur naturally, representing extremely rare 
flow events. Attempts should be made to verify natural outliers, for example by comparing 
flow records obtained at nearby sites, from local knowledge or ‘folklore’ or from other 
types of environmental data where available.   
 
Family of distributions 
Table 1 gives details of a selection of low-flow studies, including the methods applied and 
the distributions tested. Despite the fairly large number of studies, there is no clear 
guidance in the literature as to which distributions (or families of distributions) are most 
favourable. The frequency estimation literature contains many examples where particular 
combinations of statistical and estimation method are examined, and ‘good’ or ‘bad 
groupings suggested. In each case different criteria for assessing suitability of 
combinations have been used, ranging from convenience of formulae for parameter 
estimation (computation convenience) to the statistical performance of the estimators. 
There have been few objective tests where the same treatment has been applied to a range 
of distributions using the same method, papers usually focus on fitting one specific 
distribution, or comparing the relative performance of two methods. Also the range of 
different ways in which the lower bound issue and data quality have been treated also 
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makes it difficult to make an outright comparison between results presented by different 
authors. 
 
Different forms of the Weibull, EV1, Person Type-III and lognormal distributions are 
among those commonly referred to in the literature. Flood studies in the UK and US tend 
to advocated GEV or Generalised logistic distributions, whereas the Log Pearson type III 
is commonly used in mainland Europe. The considerations of Section 2.5.1 indicate, 
however, that although the GEV distribution might be useful for particular sites, its 
acceptance would need to be purely based on the results of tests of fit, rather than relying 
on extreme-value theory. In a review of low flow frequency analysis, Smakhtin (2001) 
concluded that a universally distribution for low flows is unlikely to exist or to ever be 
identified. Here it is concluded that the Weibull and Generalised Logistic distributions are 
probably amongst the most appropriate choices for low flow data.  
 
Fitting techniques  
The two most widely used techniques for parametric estimation are the method of 
maximum likelihood and the method of moments. The use of the two methods in some 
reported low-flow analyses is shown in Table 2.1. Likelihood techniques are well-
established and theoretically sound, for example, in an evaluation of seven different 
methods for estimating parameters Arora & Singh (1987) found that the maximum 
likelihood technique produced the most efficient quantile estimates. However likelihood 
methods have been found to be difficult to apply in practice and because of this the method 
of moments, which is simplistic in comparison, is often preferred. The technique of using 
linear combinations of moments (L-Moments) became widely used during the 1980’s and 
has since become a well-respected method for fitting distributions. L-moments were 
recently applied in the Flood Estimation Handbook (Institute of Hydrology, 1999) and 
have been preferred by Nordic researchers (e.g. Tallaksen et al. 1994). Furthermore 
moment-ratio diagrams are useful in assessing which types of families are appropriate and 
for assessing the goodness of fit of distributions. However it is important to consider the 
need to fit multiple durations, and to ensure these bear a sensible relationship to one 
another: this problem is better approached using the maximum likelihood method.  
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Table 2.1: Recent low-flow frequency studies 

Study Specific Topic Families/ Methods Tests of Fit  

Caffey et al. (1980) Example of variation of low-flow 
quantile along a river. Discussion 
of estimation at ungauged sites. 

Graphical (non parametric) 
fitting procedure. 

None 

Deninger, et al. (1969) Comparison of distribution fitting 
methods, focusing on the estimate 
of the lower bound. 

Weibull-3: MOM, 
MOMC, MOMS, GOS. 

None. 

Durrans  Suggests fitting to the lowest 25% 
of observations.  

Weibull-2 ML, (MOM, 
PWM) 

none 

Gumbel (1963) Graphical displays based on 
logarithm of (flow minus bound) 
versus Gumbel-reduced variate 
that should be linear if data is from 
Weibull distribution. 

Weibull-2: MOM  
Weibull-3: MOMS 

Graphical 
assessment of 
fit. 

Guo et al. (1996) Simulation comparison of kernel 
estimate for fitting Weibull 
distributions. Kernel estimator 
uses an EV1 kernel. 

Weibull-2:MOM, ML, 
PWM  
Weibull-3:MOM, ML, 
PWM 

Graphical 
assessment of 
fit. 

Gustard, et al. (1992) Regionalisation, based on "curve 
types" and catchment 
characteristics. Different durations 
treated via estimates of a 
relationship of mean annual 
minimum flow of a given duration 
to the duration. 

Non-parametric graphical 
approach, using Weibull 
scale. 

No formal 
fitting 

Gustard & Gross (1989) Forming catchments into groups 
on the basis of mean and CV of 
annual minima 

Non-parametric graphical 
approach, using Weibull 
scale. 

No formal 
fitting. 

Joseph  (1970) Moment-ratio plots to aid choice 
of distribution. Gamma 
distribution preferred in results of 
tests. 

Gamma: ML  
Log-Normal: ML 
Sqrt-Normal: ML 
Normal:  ML 
Weibull-2: ML 

χ2 

Kobold & Brilly (1993) Relation of low flow 
characteristics to catchment 
characteristics. 

Non-parametric graphical 
approach, using Weibull 
scale. 

No formal 
fitting. 

Krokli (1989) Derive estimated quantiles for use 
as dependent variable in 
regression on catchment 
characteristics. 

EV1: not stated. Mention of χ2 
tests applied in 
same region. 

Kumar & Devi (1982) Comment on paper by Prakash 
(1981). For details of BC-G-
Normal see Chander et al. (1978). 

SMEMAX: unspecified 
BC-Normal: MOM 
BC-G-Normal: MOM 

Assessment of 
moments after 
transformation. 

Lawal et al Looks at relationship of estimated 
lower bounds to sample skewness. 

Weibull-3 ML none 
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Study Specific Topic Families/ Methods Tests of Fit  

Leppäjärvi (1989) Tests for trend. Note: formulae 
given imply EV1 was used, not 
EV1min. 

EV1:        MOM 
Log-Normal: MOM, ML 
Gamma:       MOM, ML 

KS 

Loganathan et al.(1985) Treatment of exact zeroes by 
conditional probability. Treatment 
of zeroes by adding constant to 
flows before analysis and 
subtracting it from results (avoids 
log of zero). Notes possibility of 
estimated lower bound being 
either negative or greater than 
smallest observation. 

BC-Normal:ML, 
SMEMAX:unspecified 
Weibull-2: MOM 
Weibull-3:ML,MOM (S) 
Log-Pearson III:MOM, 
MOML 
Log-Boughton:     GOS 

KS 

Loganathan et al. (1986) Treatment of exact zeroes by 
conditional probability. Treatment 
of zeroes by adding constant to 
flows before analysis and 
subtracting it from results (avoids 
log of zero). Also estimation 
methods based on Partial Duration 
data and on a serially dependent 
stochastic model for recession 
minima. 

Log-Pearson III:   MOML 
DB P.D.F.:   ML (upper 
bound fixed) 

KS 

Matalas (1963) Theoretically-based comparison of 
variances of MOM and ML 
estimates. suggests distributions 
should have no more than 3 
parameters. Graphical relationship 
of skewness and lower bound. 
Moment-ratio plots. 

Weibull-3: MOM, 
ML Log-Normal-3:
 MOM, ML 
Pearson III: MOM, 
ML Pearson V: MOM, 
ML 

Assessment 
via moment-
ratio plot. 

Nathan & McMahon 
(1990) 

Treatment of minima below a cut-
off value only and of  exact zeroes 
by conditional probability. 
Comparison of use of hydrological 
and calendar years. Treatment of 
negative estimated quantiles by 
fixing estimated lower bound to 
zero. Failure of methods to 
provide acceptable estimates. 

Weibull-2:  ML, 
MOM, PWM 
Weibull-3:  ML, 
MOM, PWM 

None 

Pearson (1995) Regionalisation. Relation of 
probability of zero flow to 
catchment characteristics. L-
moment tests for regional 
homogeneity. Text clearly states 
that EV1 and GEV are preferred 
to EV1min and Weibull-3 
(GEVmin). 

Gen-Logistic: PWM 
GEV:  PWM 
Gen-Normal: PWM 
Pearson III: PWM 
Gen-Pareto: PWM 
Kappa:  PWM 
EV1:  PWM 
Weibull-3: PWM 

L-moment 
tests of fit on 
regional basis. 
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Study Specific Topic Families/ Methods Tests of Fit  

Perzyna & Gottschalk 
(1995) 

Compound distributions, with no 
simple final form, based on an 
exponential decay over a random 
time period from a random initial 
flow. 

Compound  From 
statistics of dry period 
lengths and fitted recession 
constant. 

Graphical 
assessment 

Pilon (1990) Regionalisation based on using the 
median as the index of low flow. 
Features a test of homogeneity of 
a region 

Weibull-2:
 Regional fit 
based on scaled order 
statistics 

Suggests but 
does not use L-
moment ratio 
diagrams. 

Polarski (1989) Joint estimation of flow frequency 
curves for averages of different  
durations. 

Weibull-3: ML Graphical 
assessment of 
fit. 

Prakash (1981) Paper advocates SMEMAX Log-Normal:unspecified 
Log-Pearson III:  
Weibuull-3: unspecified 
SMEMAX: unspecified 

KS 

Rao (1980) Discussion and illustration of 
shapes of distributions as 
parameters vary. 

Log-Pearson III:       MOM None 

Riggs (1965) Mentions importance of including 
most critical periods in analysis. 
Adjustment of estimated return 
periods (for probability plots) 
using related longer data series. 
Example of correlation across 
years. Effects of several different 
sources of water contributing to 
low flows. 

Graphical estimation None 

Tasker (1987) Treatment of zeroes by 
conditional probability. Uses 
bootstrap procedure to compare 
performances of the different 
estimates of quantiles. 

Log-Pearson III:   MOM 
Weibull-3: mixed 
ML/MOMS/MOM (zeroes 
not excluded) 
BC-Normal: EOS 
Log-Boughton:  GOS 

None 

Vogel & Kroll (1990) Summary of previous studies 
assessing fit of distributions to real 
data. 

Log-Normal: MOML 
Log-Normal-3: MOM, 
QLB-MOML 
Weibull-3: MOM, 
ML, MOMS 
Log-Pearson III:   MOML 

PPCC 

Vogel & Kroll (1990b) Regression of estimated 
parameters and quantiles on 
catchment characteristics. 

Log-Normal: MOML PPCC 

Wang & Singh (1995) Treatment of exact zeroes by 
conditional probability 

Gamma: ML, MOM, 
PWM, EOS.  

Graphical 
assessment of 
fit. 
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3. ANNUAL MINIMA DATA  
 
3.1 Gauging Station Selection 
 
Only those UK gauging stations with natural flow regimes and good hydrometric 
quality were selected for inclusion in the study. Firstly, the classification of UK gauging 
stations undertaken as part of the Low Flow Studies Report (Gustard et al., 1992) was 
used to identify potentially suitable flow records. The Low Flow Studies classification 
graded stations according to hydrometric quality and the level of artificial influence. 
Here only those stations receiving an AA grading were considered, that is, those that 
met the following criteria: 
 
i) A gauged Q95/MF ratio differing from the estimated natural Q95/MF ratio by less 

than 20%, 
ii) A gauge sensitivity of less than 20% 
iii) No obvious deterioration of the gauging station due to siltation, weed growth or 

vandalism.  
 
Two further criteria were imposed: 
 
iv) The net artificial influence at mean flow should be less than 7% of the naturalised 

mean flow. 
v) The net artificial influence at the Q95 flow should be less than 20% of the 

naturalised Q95.  
 
A total of 123 stations met the imposed criteria. Details of these are given in Appendix 
2. The relevant measuring authorities were asked to comment whether, on the basis of 
possible artificial influences and hydrometric errors at low flows, the ‘AA’ 
classification was appropriate. Comments were received for 64 stations, 37 of which 
were deemed suitably natural for the purposes of study. From this group, 20 gauging 
stations of minimum record length of 30 years were finally selected for inclusion in the 
study. Unfortunately this set was dominated by impermeable catchments (many of 
which located in Northeast Scotland), and therefore five lowland catchments in southern 
England were also included (two with AA grading, the remaining three suggested by the 
Environment Agency). A complete list of the selected catchments is given in Table 3.1, 
a table of catchment characteristics is given in Appendix 2, whilst Figure 3.1 shows the 
spatial locations of the catchments. 
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 Table 3.1:  Flow records selected for use in the study 

Station  River Site Years 
    

9001 Deveron Avochie 38 
  9002 † Deveron Muiresk 38 
14001 Eden Kemback 31 
19002 Almond Almond Weir 37 
19004 North Esk Dalmore Weir 38 
20001 Tyne East Linton 38 
20003 Tyne Splimersford 34 
20005 Birns Water Saltoun Hall 34 

  21006 † Tweed Boleside 38 
21012 Teviot Hawick 36 
21013 Gala Water Galashiels 35 
21015 Leader Water Earlston 33 
21017 Ettrick Water Brockhoperig 34 
28031  Manifold Iiam 31 

   34003  * Bure Ingworth 39 
  39016 † Kennet Theale 38 

39028 Dun Hungerford 31 
   43005 * Upper Avon Amesbury 33 
   43006 * Nadder Wilton 33 
   48010 * Seaton Trebrown Bridge 31 
   51001 * Doniford Stream  Swill Bridge 32 

55016 Ithon Disserth 31 
  55026 † Wye Ddol Farm 61 

60002 Cothi Felin Mynachdy 38 
  72004 † Lune Caton 38 

  
*  Indicates the five ‘south of England’ catchments 
†  Indicates the five ‘example’ catchments  
 
 
Five gauging stations (9002, 21006, 39016, 55026, and 72004) were selected for 
investigation in more detail, and are used to illustrate the general findings of the study. 
These were the stations with the longest records but, with the exception of 55026, all 
represent flow records from fairly big catchments. The five catchments represent a 
range of regime types, as indicated in Table 3.1. 
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Figure 3.1:  Location of selected gauging stations  
 
 
The subset of five gauging stations (9002, 21006, 39016, 55026, and 72004) were also 
chosen to represent a range of geographical locations. Their locations in Figure 3.1 are 
highlighted in black. 
 
 
3.2 Derivation of Annual Minima 
 
3.2.1 General methodology 
Annual minima series were derived for each flow record based on D-day running averages 
with the duration, D, taking values of 1, 7, 30, 60, 90, 180 and 365 days. Each annual 
minima was expressed as a percentage of the long-term average daily flow for the entire 
record, in order to allow direct comparisons between the catchments of different sizes. The 
annual minima series for the 25 catchments are listed in Appendix 3. 
 
The computation of D-day running averages is based on a window of length D moved 
sequentially through the entire record using an increment of one-day. For each year, the  
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lowest D-day average occurring within that year is taken as the annual minimum value. 
Whilst the calculation is straightforward, there are several issues to consider while dealing 
with data, the most important being how to deal with ‘averages’ that span two distinct 
years and the problem of missing data. These issues are discussed in the following 
sections. 
 
3.2.2 Defining years 
Where the duration is large assigning particular ‘averages’ to particular years becomes 
more complex, because the daily flow values that are included in each average may come 
from two distinct calendar years. Calendar years, rather than water years, are used to avoid 
the change from one year to the next occurring during a period in which the annual minima 
potentially might occur, and the following convention is applied. 
 
Suppose that the duration, D, is 7 days. The average flow over this 7-day interval is 
indexed to the middle or central day of the interval, which in this case is the 4th day of the 
interval. For any interval of length, D, the middle or index day will be the mth day, where m 
is defined as follows: 
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    (3.1) 

 
For example, the 7-day average determined using daily flow data from 3rd September 1983 
to 9th September 1983 inclusive would be indexed to the 4th day, the 6th September, 1983. 
As a running average method is utilised with an increment on one day, 365 (366) 
running average D-day flows can be determined for each calendar year, providing that 
there is no missing data.  
 
3.2.3  Missing data 
Missing data arises when the mean flow for a particular day is not recorded for some 
reason (e.g. equipment failure, the gauging structure drowned out or damaged, and loss 
of electronic data). Missing data often occur in blocks, and in extreme cases data for a 
whole year may be lost. If there are missing data within a particular year the level of 
uncertainty associated with its annual minima increases. The greatest uncertainty occurs 
if the missing data is from the time period during which the annual minimum is most 
likely to occur (for many stations in the UK this will be during the summer). On the other 
hand, data missing from periods of relatively high-flow are unlikely to have much 
influence on the calculated annual minima, and need not be treated as rigorously. It is also 
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important to bear in mind that, particularly where the duration considered is large, data  
missing from one year may also affect the annual minima for the proceeding or 
following year because some running averages will incorporate daily flow values from 
two consecutive calendar years. 
 
Generally, missing data is dealt with in one of two ways: missing values may be estimated 
by interpolation (this is viable only where a short period of data is missing) or years with 
missing data are excluded from the analysis. Here, to avoid filling in large gaps by 
interpolation whilst also avoiding rejecting years unnecessarily, an objective criterion for 
excluding years with too much missing data was applied to each year in turn. The criterion 
was applied as a 2-step procedure, the first part being to filter out data poor years, the 
second to ensure that years with too much missing data within the low flow period were 
excluded as follows: 
 
1) 30-day Criterion  
The number of missing data allowed per calendar year was constrained to 30 days, i.e. a 
year was rejected outright if it contained 30 or more days with missing values.  This test 
was used to filter out years with large amounts of missing data. 
 
2) Missing data criteria for the ‘low flow period’ 
A second test was applied to all years passing the ‘30-day criterion’. This procedure 
involved delineating a ‘low flow period’ for the year, which was calculated by ranking the 
daily flows within the specified year in ascending order, and taking the lowest 30% (110 
days) as a subset, and looking where these occurred during the year. The ‘low flow period’ 
was taken as the longest continuous period covered by this subset of days (if two or more 
periods of equal length occurred, the one with the lowest rank sum was selected). The year 
was discarded if the maximum number of consecutive missing values within the ‘low flow 
period’ exceeded 7 days.. However if there were less than seven consecutive missing days, 
the year was only discarded if the aggregate number of missing data during the ‘low flow 
period’ was greater than 10 days, otherwise missing data were filled by interpolation. 
 
Although strictly not missing data, particular problems occur at the beginning and end 
of the flow record. The first (D-m) days at the start of a record and the last (m-1) values at 
the end of the flow record cannot be used as index days. For instance to derive a value for 
1st January 1968 requires (m-1) extra days from the previous year 1967, yet if 1st January 
1968 is the first day in the record, these extra data do not exist. A similar situation arises at 
the end of the flow record and results in a reduced number of running-averages being 
computed for years at the end and beginning of the record.  
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To avoid having to reject these years from the analysis a number of methods for extending 
the flow record were considered (e.g. modelling/extrapolation). A more simplistic 
approach of ‘borrow’ data from elsewhere in the time series was also considered. The 
beginning of the record was supplemented by data from the last year of the record, whilst 
the data from the first year was used to extend the end of the record by (D-m). It was found 
that data for up to 75 days could be ‘borrowed’ for a year without altering (to within +/- 
1%) its annual minima estimate. Therefore a special criterion was applied to the first and 
last years of record, in which the year was not rejected if less than 75 days were borrowed.  
 
 
3.3  Time Series Analysis 
 
3.3.1 Temporal variation in annual minima  
Figure 3.2 contrasts the time series of d-day annual minima for the two different 
catchment types. The series for the Deveron at Muiresk (9002) is shown in Figure 3.2a, 
while Figure 3.2b shows the time series for the Kennet at Theale (39016). In both cases 
the annual minima varies from year to year, and on visual inspection no long-term 
trends are apparent. The droughts of 1973, 1976, 1989/90 and 1984 (9002 only) appear 
as well defined troughs in the annual minima series.  
 
Some statistics regarding the D-day annual minima series of the Deveron and Kennet 
are given in Tables 3.2 and 3.3 respectively. The Deveron is a responsive catchment 
with little contribution from base flow. When a one-day duration flow is considered the 
annual minima mostly range between 15 and 30% of the mean flow. For the Kennet, a 
lowland chalk stream with a high base flow component, the annual minima generally 
ranges between 30 and 60% of the mean flow at D=1. 

 

As longer durations are considered the contrast between the two time series becomes 
less apparent. For example, whereas the mean annual minimum for D=1 is 22.6% and 
42% of the mean flow for 9002 and 39016 respectively, this changes to 80.9% and 
84.2% in the case where D=365 (Tables 3.2 and 3.3). These observations agree with 
previous work (Institute of Hydrology, 1980) which illustrated a relationship between 
annual minima and catchment characteristics. The statistical properties of the annual 
minima series for all 25 stations are summarised in Appendix 4.1. 
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Figure 3.2: Time series of D-day annual minima for a) the Deveron at Muiresk 

(9002) and b) the Kennet at Theale (39016) 
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Table 3.2: Properties of annual minima series for the Deveron at Muiresk (9002) 

D=1 D=7 D=30 D=60 D=90 D=180 D=365 
N of cases 38 38 38 38 36 36 35 
Minimum 12.37 12.80 14.67 15.55 16.92 25.72 33.02 
Maximum 43.71 44.82 57.02 92.32 106.90 113.20 122.70 
Median 20.20 21.16 24.50 27.53 33.55 49.82 84.85 
Mean 22.61 23.77 28.11 33.45 39.67 54.56 80.95 
Standard Deviation 6.69 7.19 10.05 14.96 19.54 22.12 22.76 
Variance 44.80 51.76 101.02 223.69 381.94 489.35 517.82 
C.V. 0.29 0.30 0.36 0.45 0.49 0.40 0.28 
Skewness 1.15 1.01 1.23 1.93 1.69 0.93 -0.38 
Kurtosis 1.37 0.72 1.16 5.36 3.40 0.24 -0.40 

(All values are expressed as a percentage of the mean flow) 

 
Table 3.3: Properties of annual minima series for the Kennet at Theale (39016) 

 D=1 D=7 D=30 D=60 D=90 D=180 D=365 
N of cases 38 38 38 38 38 38 37 
Minimum 9.82 10.84  13.35 15.41 17.43 24.07 36.31 
Maximum 61.02 63.11  69.41 73.57 78.10 105.40 122.00 
Median 41.80  43.23  46.87 49.85 53.57 63.05 88.94 
Mean 42.04  43.73  47.14 50.39 52.79 63.16 84.29 
Standard Deviation 9.99  10.21  10.98 11.84 12.66 16.59 23.24 
Variance 99.95  104.19  120.62 140.25 160.23 275.51 539.91 
C.V. 0.24  0.23  0.23 0.23 0.24 0.26 0.28 
Skewness(G1) -0.59  -0.56  -0.44 -0.36 -0.23 0.08 -0.45 
Kurtosis(G2) 1.80  1.73  1.32 0.89 0.54 0.11 -0.84 

(All values are expressed as a percentage of the mean flow) 

 
3.3.2 Statistical requirements 
For the results of a frequency analysis to be theoretically valid, the data used must meet 
certain statistical criteria. In particular the data must be stationary, homogeneous and 
independent. To be stationary the characteristics of the flow series must not change over 
time (excluding random fluctuations). Non-stationarity may manifest as step changes, 
which are likely to be associated with anthropogenic or data collection factors, or 
monotone (gradual) change.  Long term cyclic variation is typically related to 
climatically driven changes. A data series can be thought of as independent if no 
observation in the data series has any influence on any observations following it, whilst 
homogeneity implies that all the elements of the data series originate from a single 
population. For example an annual minimum series where low flows occurred due to 
over abstraction as well as due to low rainfall, would not be a homogeneous series.  
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3.3.3 Tests for stationarity 
Non-stationarity can be difficult to detect especially where the trend is weak. However, 
where the trend is strong, statistical tests may be used to identify non-stationary time 
series. In addition to visual examination of the data, two statistical methods were used 
to look at monotone or linear trend in the data: linear regression and Spearman’s Rank 
Test.  
 
1) Linear Regression 
Linear regression is a commonly used statistical method for describing relationships 
between two or more variables (in this case ‘year’ and ‘annual minimum flow’). The 
strength of the regression is given by the coefficient of determination, R2, which tends 
to the value of 1 if there is linear relation between the two variables.  
Linear regression showed that there were no relationships with annual minimum flow 
and chronological year, for any of the 25 stations considered, regardless of the duration 
considered In most cases the R2 value was, in fact, less than 0.1. The results of the 
regression tests for the sample set are documented in Appendix 4.2. 
 
2)  Spearman’s Rank Correlation Test.  
Spearman’s Rank Correlation Test is a standard non-parametric (distribution-free) test 
that determines whether the correlation between two variables is significant. The null 
hypothesis is that there is no association between the rank pairs. Spearman’s test is 
appropriate in this case because it is robust to the effect of extreme values (i.e. to highly 
skewed hydrological data) and to deviation from a linear relationship.  

 

The test statistic is the correlation coefficient, which is obtained in the same way as the 
usual sample correlation coefficient but using ranks: 

 

ρs = 
yq

qy

SS

S
 (3.2)  

 
where  
ρs is the Spearman Correlation Coefficient, q represents the annual minimum flow, y 
represents the year variable, Sq is the standard deviation of the sample of annual minima 
[= ∑ (qi – qmean)2], Sy is the sample standard deviation of the years [= ∑ (yi – ymean)2 ], 
Sqy is the sample covariance [= ∑ (qi – qmean)(qi – qmean)], and qi, qmean, yi, ymean refer to 
the ranks of the ith q value, the mean q, the ith y, the mean y respectively.   
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When ρs takes the value of 1, or –1, the correlation is perfect and a linear relation 
between the two variables exists, but if ρs = 0, there is no correlation between the two 
variables. Significance levels for the test are looked up from tables, such as those given 
by Neave (1988). For a data set with 38 values the critical value for the test, at 95% 
confidence level is 0.3209. Table 3.4 gives details of the variation in the Spearman 
Correlation Coefficient between d-day annual minima and chronological year when 
different durations are considered, illustrated by the results for stations 9002 and 39016. 
The coefficients for all 25 stations are given in Appendix 4.3. As shown by Table 3.4 
and Figures 3.3a and b, the Spearman’s Rank test indicated little correlation with annual 
minima and time. 
 
Table 3.4: Spearman’s Rank Test - correlation coefficients for 9002 and 39016 

Station D=1 D=7 D=30 D=60 D=90 D=180 D=365 
        
9002 -0.185 -0.182 -0.199 -0.164 -0.120 -0.138 -0.217 
39016 -0.294 -0.299 -0.261 -0.223 -0.210 -0.200 -0.073 
        
        

 
a) 

 
 
b)  

 
 
Figure 3.3: Relationship between rank ordered year and minima for a) 9002 and 

 b) 39016. 
 

3.3.4  Tests for homogeneity  
Ensuring homogeneity means that the distribution function will be able to describe all 
future values of flow that might occur. Low flow data might not be homogeneous if the 
flow regime changes over time (i.e. the time series is non-stationary) or if low-flow 
events have different origins. An example of the latter case occurs in snow and ice 
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regions, where rainfall being stored as snow in the winter period results in low-flow 
events unrelated to those that occur in summer as a result of dry weather. 
 
The Mann-Whitney test (Mann-Whitney, 1947) was applied to test the data for 
homogeneity. In the Mann-Whitney test the sample, N, is arbitrarily split into two sets, 
p and q (where p < q). Here the two sets were defined on the basis of the time of year of 
occurrence of the minimum i.e. whether the low flow occurred in summer or in winter 
(for this reason the test was applied only to durations of 90 days and less). The null 
hypothesis is that the two samples come from the same population. As a trial the Mann-
Whitney test was applied to the annual minima series from stations 9002 and 39016. 
However, the results of these tests were inconclusive, and therefore the test was not 
applied further.  
 
In the UK short duration annual minima are unlikely to occur outside the summer 
period, although minima for permeable catchments usually occur later in the season 
than those for impermeable catchments. This variation is illustrated in Bullock et al. 
(1994).  As a result, inhomogeneity can be considered of minor importance where 
LFFA is to be applied to UK flow data.   
 
3.3.5 Tests for independence  
Provided that the data is stationary, the degree of independence can be characterised by 
determining the autocorrelation function of the observed data, or by constructing an 
autocorrelogram from the data. The results of the Spearman’s Rank Test can also be 
interpreted in terms of the independence of the data (in which case the results suggest 
that the data are mainly independent).  
 
The autocorrelation function of each time series was calculated in order to quantify the 
extent of the correlation (dependence). Autocorrelation measures of the correlation of 
the series, with itself shifted by a time lag. Autocorrelation can be calculated for a lag of 
any length, and if autocorrelation is present at one or more lags then the data is not 
independent. Partial autocorrelation tests were also conducted. Partial autocorrelation 
plots show the relationship of points in a series to preceding points after ‘partialing’ out 
the influence of intervening points, and thus give a more conservative / better 
perspective of autocorrelation. Partial autocorrelation plots for durations of 1, 7, 30, 60, 
90, 180 and 365 days for each of the stations are documented in Appendix 4.4. 

 
Figures 3.4 and 3.5 show the partial autocorrelation plots for stations 9002 and 39016 
respectively based on durations of D=1 and D=90, whilst Figures 3.6a and 3.6b show 
the autocorrelation in the data for stations 9002 and 39016 respectively, in the case  
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where D=365. Values that lie above the dotted (red) line indicate that there is a 
significant correlation in the data at the lag (in years) indicated. Therefore if most 
correlation values lie between the dotted lines the data values are to be independent. 
 
 
      D= 1         D= 90 

 
Figure 3.4: Partial autocorrelation functions for durations of 1-day and 90-days 
  for 9002  
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      D= 1         D =90 
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Figure 3.5: Partial autocorrelation functions for durations of 1-day and 90-days 
  for 39016 
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Figure 3.6: Partial autocorrelation for a) 9002 and b) 39016, where D = 365. 
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In the examples shown in Figure 3.4 and Figure 3.5 there is little or no dependence with 
the data series. This was typical of most of the time series tested. However Figures 3.6a 
and 3.6b indicate that where a duration of 365 days is considered the level of 
autocorrelation and partial auto-correlation is much higher, particularly for lag times of 
one to three years. This is because consecutive annual minima are each based on 
average flow over a D-day period, of which ‘x’ days are common to both periods. The 
number of common days increases as the duration increases, so that dependence is more 
likely where higher durations are considered. 
 
Although the annual minima for D=365 were found to be dependent no further action 
was taken. This is because it is beyond the scope of this project to incorporate the 
problem of dependence into the formulation of the distribution function model to 
describe each data set. Sen (1980) and Chung & Salas (2000) report it can be more 
useful simply to be aware of the effects of dependence on the usual procedures that 
happen to have been derived on the assumption of statistical independence between 
sample values. While dependence will not influence the process of parameter estimation 
it will influence the assessment of the uncertainty associated with the resulting quantile 
(i.e. the quantile estimates will become more biased and there will be larger standard 
error in the quantile estimates).  
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4. ENUMERATING DISTRIBUTIONS 
 
4.1 Introduction 
 
This chapter describes the technical details of the methodology employed. Firstly 
several candidate distribution families are described, and the relationships between F(x), 
x(F), p, xT and T are given in each case (section 4.2). The use of plotting positions to 
estimate p is discussed in sections 4.3 and different plotting position formulae are 
evaluated. The two methods of parameter estimation used in the study, Maximum 
Likelihood Estimation and L-Moments are described and assessed in Section 4.4. The 
effects caused by hydrometric errors are considered in Section 4.5, whilst in Section 4.6, 
a method for dealing with zero flows and discretization, that of treating the data as a 
censored sample, is evaluated.    
 
 
4.2  Candidate Distributions 
 
4.2.1 Choice of candidate distributions 
Due to the increased flexibility of 3-parameter distributions it was decided to 
concentrate on three parameter distributions including Generalised Extreme Value 
(GEV) of which the Weibull and Gumbel distributions are special cases, Generalised 
Logistic (GL), Pearson Type III (PE3) and Generalised Pareto (GPA).  
 
As it has been a fairly popular choice in low flow analysis (e.g. Vogel & Kroll, 1990) 
the log-normal distribution was also considered, particularly as it has no upper bound 
and a lower bound at zero.  However problems with coding prevented this from being 
implemented. In addition, a zero in a set of data that is being logarithmically 
transformed requires special handling. However this could have been avoided by adding 
an incremental amount (e.g. 1) to all the data. 
 
The following sections give the forms of the distributions for the general case. The 
equations F(x), f(x) and x(F) are those given by Hosking and Wallis (1997) whilst the 
equations describing the xT-T relationships were derived by substituting for F(x) in the 
x(F) derivation. It should also be noted here that F(x) is the non exceedance distribution 
and that the exceedance distribution is given by 1-F(x), denoted by F’(x). 
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4.2.2 Generalised Extreme Value (GEV) distribution 
The GEV distribution is the general three-parameter case of the range of extreme value 
distributions (including EV1, EVII and EVIII distributions). The three parameters are 
location, ξ, scale α and shape, k.  
 
The distribution is bounded above where k > 0 and is bounded below where 0<k , i.e. 

the range is 
k

x
α

ξ +≤<∞−   if k > 0, ∞<≤+ x
k
α

ξ   if k < 0, and ∞<<∞− x   where 

k = 0. 
The distribution and density functions are given respectively by: 
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where the quantity y is determined as follows: 
 










=
−

≠





 −−−

=

−

0k
x

0k
x

k1lnk
y

1

  where

  where

α
ξ

α
ξ

 
)4.4(
)3.4(

 

 
 
Similarly the quantile function is given by  
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The xT-T relationship is given by   
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The GEV is often classified into three types according to the value of k as follows:  
 

EVI  xe)x(F −= ∞<<∞− x  where  0=k  (4.8) 

EVII  )xexp()x(F
1

k−−= ∞<≤ x0  where 0<k   (4.9) 

EVIII )xexp()x(F
1

k−−= 0≤<∞ x  where 0>k  (4.10) 

 
The special case that k = 1 is equivalent to a reverse exponential distribution, whilst if k = 0 
the GEV distribution reduces to the Gumbel or EVI. The Gumbel, is a two-parameter 
distribution with scale parameter α and location parameter, ξ, and is unbounded at both 
ends (i.e. ∞≤≤∞− x ). The distribution, density and quantile functions are given 
respectively by: 
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))ln(ln()( FFx −−= αξ  (4.13) 

 
 
The Weibull distribution is a reverse generalised extreme value distribution, and so is 
equivalent to the EVIII for minimum values.  The Weibull distribution has parameters δ, β 
and ζ where  
 

δ
1
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δ
β
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and is bounded on the left hand tail, i.e. ∞<≤ xζ ). 

 
The distribution function is given by  
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4.2.3 Generalised Logistic 
The Generalised Logistic (GL) is 3-parameter Logistic Distribution having location, ξ, 
scale α and shape, k parameters. In the special case where k=0 the GL distribution reduces 
to the 2-parameter Logistic distribution, which is unbound for all values of x.  
 

It is bounded above where 0>k  (i.e. the range of x is given by 
k

x
α

ξ +≤<∞−  if 

0>k ) and below where 0<k  (i.e. ξ + α  / k ≤  x < ∞   if 0<k ).  
 
The cumulative frequency and density functions of the Generalised Logistic Distribution  
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Finally the flow-return period relationship is written as follows.  
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4.2.4 Generalised Pareto distribution 
The Generalised Pareto (GP) distribution is another three-parameter distribution, having 
location, ξ, scale α and shape, k.  It is bounded at both tails where 0>k  (i.e. the range of 

x is given by 
k

x
α

ξξ +≤< , if 0>k ) and below where k is less than or equal to 0 (i.e. 

∞<≤ xξ , if 0≤k ).  
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The xT-T relationship is given by   
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In the special case where k = 1 it reduces to the uniform distribution in the interval, ? = x = 
? + a and where k = 0 the Generalised Pareto distribution reduces to the exponential 
distribution, a two parameter distribution having scale, α and location (lower endpoint of 
the distribution) parameters.  
 
The exponential distribution is bounded below with x having the range, ∞<≤ xξ  
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4.2.5 Pearson Type III 
The Pearson Type III distribution is a popular distribution for fitting hydrological data. If 
its three parameters are a (scale), ? (location) and k (shape). Where k>0, It can be described 
by the following density and cumulative functions  
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Similarly where k<0, the range of x is 8 = x =  ? and the the distribution the density and 
cumulative functions are as follows: 
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The quantile function, X(F), has no explicit form for the Pearson Type 3 distribution, but 
can be approximated by use of the Gamma Function. The XT-T relationship also, therefore, 
has no explicit form: Hosking and Wallis (1997) give further details regarding its 
derivation. The Gamma distribution is a special case Pearson Type 3. The Log Pearson 
distribution is another variant, but generally is only appropriate for hydrological analyses 
when its parameters fall within a small range of values. 
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4.3  Selection of Plotting Position Formula 
 
Plotting positions are empirical formulas for estimating the probabilities (F(q)) associated 
with the sampled data (as discussed in Section 2.5). Ideally, a plotting position should 
provide a distribution-free means of estimating probability (i.e. be suitable for use with 
data sets representing different distribution types). However certain formulae are known to 
produce biased quantile estimates when used with particular distributions. To ensure that 
the method applied was as consistent as possible, a single plotting position formula, the 
Gringorten (Eqn. 2.13), was selected for use in the study. Several authors (e.g. Stedinger, 
1992) have advocated the Gringorten formula as it is thought to provide robust results for 
many different distributions and performs particularly well with the family of extreme 
value distributions.  
 
To evaluate the uncertainties that might arise from using different plotting position 
formulae, the results obtained using the Gringorten formula were compared with those 
obtained using two other popular plotting positions, the Hazen (Eqn. 2.14) and the Weibull 
(Eqn 2.15). For this test annual minima for durations of 1 day, 30 days and 180 days for 
gauging stations 9002 and 39016 were used (stations 9002 and 39016 have contrasting 
flow regimes, the former being flashy, impermeable system, whilst the latter is a 
permeable catchment). Using the GEV and GL distributions, the flow - return period (QT-
T) relationship was derived for each time series using the L-moment method to predict the 
parameters of the distribution.  
 
The results for the GEV distribution are shown in Figures 4.1 and 4.2 for the two stations 
respectively. In both cases the Hazen and Gringorten formulas produced very similar flow 
- return period relationships, whilst the Weibull formula predicted lower flows for higher 
return periods, especially when longer durations were considered. This effect was most 
pronounced for station 39016. Similar results were observed when using the GL 
distribution as the parent family.  
 
The results suggest that there is little sensitivity to choice of plotting position for return 
periods less than or equal to the record length. As longer return periods and/or more 
permeable systems are considered, the variability between the estimates increases. The 
greatest difference is between the estimates based on the Weibull formula with those based 
on the Gringorten and Hazen plotting positions. However as there is no benchmark to 
which the results may be compared it is not possible to identify which plotting position is 
providing the correct results. As a result of its reported superiority, the Gringorten plotting 
position was therefore used as the default for further analyses.  
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Figure 4.1: Flow-return period relationships derived using different plotting 

positions to estimate the probabilities of the sample data points 
(Station 9002) 
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Figure 4.2: Flow-return period relationships derived using different plotting 

positions to estimate the probabilities of the sample data points 
(Station 39016). 
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4.4 Evaluation of Fitting Techniques 
 
4.4.1  Introduction 
Two methods of parameter estimation were considered for the study; L-Moments and 
Maximum Likelihood. As the equations for deriving L-moments for several distribution 
families are well known, it was thought that employing this estimation technique would 
allow for greater versatility the analysis (e.g. no restrictions on the distributions 
considered). In contrast, the equations for Maximum Likelihood estimation are only 
readily available for the GEV distribution (they could be developed for other distribution, 
but this would be very time consuming). However, it is important to consider the need 
to fit different durations simultaneously, making sure that all the solutions are within a 
particular tolerance of one another. In this case the term ‘tolerance’ can mean simply 
that all durations should be fitted with the same distribution, or that, in addition, the 
parameter values must all fall within a particular range: this problem is probably better 
approached using the Maximum Likelihood method. After some consideration, the L-
Moments method was chosen as the main method for fitting distributions as it can be 
used with several different distributions. However for the GEV distribution L-Moments 
and Maximum Likelihood were both used for parameter estimation, to allow a 
comparison of the two methods and evaluate which gave the best results. 
 
4.4.2 Technical specification of the Maximum Likelihood Method 
The Maximum Likelihood Method requires the resolution of complex equations or the 
use of numerical optimisation schemes. The principle of this method is to choose values 
of the distribution parameters that maximise the chance of an observation falling within 
a small range around the data value. The following methodology is taken from Hosking 
(1985) based on Prescot and Walden (1983). 
 
If a distribution ),,,( Κbaxfy = with parameters Κ,, ba  is considered, then 

dxbaxf ),,,( Κ is the chance of an observation falling in the range dx . In a sample of n  

data, the chance that there will be 1n  of them in the range 1dx , 2n  in the range 2dx , and so 

on is: 
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Thus, to maximise this chance, the value of the parameters must be chosen in order to 
maximise: 
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which is called the log likelihood function 
 

Considering a sample data t
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likelihood function is then: 
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For a generalised extreme value distribution, with the data t
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The maximum-likelihood parameter estimates will then be calculated via the likelihood 
equations that are defined by: 
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These likelihood equations have to be solved iteratively. The method used was the 
Newton-Raphson method, which solves the likelihood equations by the following iteration: 
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The derivatives u and H (Hessian matrix) were calculated analytically using the formulae 
given by Prescott and Walden (1983). The fact that this is an iterative method implies that 
a good initial parameter estimates greatly increases the speed of the algorithm. The choice  
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where x  and s  are the sample and standard deviation and 57721566.0=γ  is Euler’s 

constant, usually gives rapid convergence; these values are moment estimators of ? and a 
for the generalised extreme-value distribution with 0=k , which corresponds to a Gumbel 
distribution. 
 
4.4.3 Technical specification for L-Moments  
 
General case 
The L-Moments method is a variant of the method of moments, which involves fitting a 
distribution so that the distribution mean and variance, and so on, match the sample mean 
and variance, and so on. The parameters are estimated by equating the L-Moments of the 
distribution to those of the sample. The following description is based on that of Hosking 
and Wallis (1997). 
 
For a distribution that has a quantile function of x(u), the L-Moments, ?1, ?2, ?3 and ?4 are 
given by: 
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and in general         
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As it is more convenient to deal with dimensionless variables the L-Moments ratios 
have been used:  
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Expression for the Generalised Logistic Distribution 
Once a distribution has been chosen it is then possible to express L-Moments and L-
Moments ratios in terms of the distribution parameters. As an example the expression 
for a Generalised Logistic Distribution is presented in this section. The expressions, for 
the GEV, Generalised Pareto and Pearson Type-III distributions are given in Appendix 
5.  
 
The four L-Moments ( ?1: ?2, t 3, t 4) are given by 
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Accordingly the distribution parameters, a, ? and k are given by 
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Once the L-Moments have been defined for each distribution, they may be calculated 
from the sample data and used to estimate parameter values. Consider a sample of size n 
arranged in ascending order nnnn xxx ::2:1 ≤≤≤ Κ . An unbiased of the probability 

weighted moment rβ  is then given by: 
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which may also be written as: 
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The sample L-moments λr, unbiased estimator of rλ , are then equal to: 
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Analogously, the sample L-moment ratios (which are the natural estimators of rτ ) are 

given by: 
 
tr = λr / λ2  (4.51) 
 
4.4.4 Comparison of maximum likelihood and L-moments 
The performance of the maximum likelihood and L-moments were compared using the 
annual minima time series derived for stations 9002 and 39016 for durations of 1day, 30 
days and 180 days. Starting with a GEV parent family, parameters were estimated using 
both the maximum likelihood and L-moment methods, and subsequently used to derive 
Q-T relationships for each combination. The estimated parameters and associated 
estimates of goodness of fit are given in Table 4.1 (a more detailed discussion of 
goodness of fit measures is given later in Chapter 5).  
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Table 4.1: Comparison of parameter estimation methods 

 Maximum Likelihood Test L-Moments Test 
 D=1 D=30 D= 180 D=1 D=30 D= 180 
       
9002       
a 4.634 6.486 14.880 4.794 6.642 16.640 
? 19.430 23.260 43.270 19.530 23.380 44.350 
k -0.101 -0.156 -0.172 -0.063 -0.122 -0.036 
?2  1.089 4.225 8.326 1.688 6.795 10.270 
RMSE 0.807 1.997 4.498 0.822 1.949 3.057 
       
39016       
a 5.265 8.998 15.52 5.03 7.82 16.70 
? 23.66 29.02 50.89 23.50 28.50 51.50 
k -0.08794 0.04015 -0.0142 -0.14 -0.07 0.06 
? 2 1.926 5.535 3.049 1.74 3.84 3.13 
RMSE 1.82 2.192 2.163 1.12 1.96 1.96 

 
 
Table 4.1 shows that there are some differences between the two sets of estimates. Both 
methods produce acceptable fits to the data; the L-moments method seems to produce 
the best goodness of fit estimates for 39016, whilst the maximum likelihood estimates 
are ‘better’ in the case of 9002. One important result is that, for station 39016, the 
Maximum Likelihood parameter estimates suggest that the 30-day duration curve 
conforms to an EVII distribution (i.e. k > 0), whilst the parameters derived using the L-
moment method suggest an EVIII distribution (k < 0). Similarly, using L-moments an 
EVII distribution is produced for the 180-day series, whereas an EVIII distribution is 
produced applying the Maximum Likelihood method. Figure 4.3 and 4.4 illustrate the 
QT-T relationships for 9002 and 39016 respectively.  
 
The QT-T plots illustrate that the prescriptive performance of the methods is similar 
when short durations are used, but that the difference between the two becomes 
important when longer durations are used, in which case the L-moments seem to 
produce the best results. 
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Figure 4.3:  Flow–return period relationships for station 9002  
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Figure 4.4: Flow-return period relationships for 39016  
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4.5  Assessment of the Effects of Hydrometric Error 
 
4.5.1 Sources of hydrometric error 
In frequency analysis it is important to bear in mind that the recorded flow values may 
be slightly different to the flows that actually occurred. Such differences are mainly due 
to measurement errors and may manifest in the flow record as a systematic bias (e.g. via 
a not-quite-correct rating curve), or as random errors. A second source of error arises 
due to the effect of external influences in the stream, such as weed growth around the 
gauging structure. Granularity within the annual minima series can be considered as a 
third cause of error. This arises when the annual minima fall into discrete ranges, 
resulting in the curve having a step-like shape, and is due to the measurement precision 
of the recording process (i.e. flows are rounded-up). The effect of granularity on the 
frequency curves is considered in section 4.5.3. Poor measurement at flows close to 
zero means that some flows are recorded as zero flows. A method for adjusting for zero 
flows is discussed in section 4.5.4. The step-like shape observed in many frequency 
curves may also be a result of the relatively small sample sizes involved, which, when 
the plotting position method is applied, result in similar flow values being assigned 
different probabilities. This is a separate issue to that of measurement precision and is 
thus discussed in section 4.6. Errors may also be introduced if the time series of interest 
is one that has been naturalised.  However the application of LFFA to naturalised data is 
not described further in this report. 
 
4.5.2 Random hydrometric errors 
 
Representation of random errors in the data  
As a full assessment of the effects of different error structures was beyond the scope of 
the project, the investigation was focussed on characterising the influence of random 
errors on the flow / probability relationship. Artificial random errors were introduced to 
the flow records of stations 39016 and 72004, being applied both to the annual minima 
flow series and the daily mean flow time series. 
 
Three levels of error were added to the annual minima: errors up to ±5% of the annual 
minima, errors up to ±10% of the annual minima, and errors up to ±20%. However 
where errors were added directly to the flow record, new series of annual minima had to 
be generated. To apply errors of realistic size, the magnitude of the synthetic errors 
were constrained by the observed range of annual minima flows. As before, three 
different levels of error were considered. In the first case random errors of a maximum 
size of ±5% of the range of minima were applied, in the second case errors to within 
±10% were applied, and in the third case a errors of up to ±20% were added to the data. 
To illustrate the method, the annual minimum series for a duration of D=1 at station 
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39016 is presented in Table 4.2, the corresponding values for errors of 5, 10 and 20% 
are 0.245 m3s-1, 0.485 m3s-1and 0.97 m3s-1 respectively. 
 

Table 4.2:  Annual minima flow values (m3s-1) for d=1 at station 39016 for the original 
data set 

Ranking  
position 

Annual minimum 
flow(m³/s) 

Ranking  
position 

Annual minimum 
flow(m³/s) 

1 5.78 20 3.89 

2 5.64 21 3.81 

3 5.49 22 3.8 

4 5.24 23 3.74 

5 5.1 24 3.71 

6 4.93 25 3.7 

7 4.9 26 3.68 

8 4.8 27 3.57 

9 4.79 28 3.53 

10 4.55 29 3.49 

11 4.43 30 3.43 

12 4.38 31 3.25 

13 4.37 32 3.17 

14 4.22 33 3.1 

15 4.2 34 3.08 

16 4.11 35 3.07 

17 4.09 36 2.92 

18 4.08 37 2.34 

19 4.03 38 0.93 

Annual minimum flow range = 4.85 m3s-1 

 
 
 
Modification of the annual minima series 
Figure 4.5 illustrates the adjusted probability plots when errors are introduced to the 
annual minima series for a duration of D=1, at station 39016.  
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Figure 4.5: Probability plot showing the influence of hydrometric errors 
      introduced within the 1-day annual minima series at Stations 39016, 

fitted with a GEV distribution 
 
As shown in Figure 4.5 introducing errors to the annual minima series causes some 
changes in the flow-exceedance probability relationships  with the largest changes 
occurring at the extremes of the curve (0.92 < p < 0.1). At the upper end of the 
probability scale a small change in flow can result in a large change in return period, 
and therefore the results illustrate that it is critical to have an understanding of 
hydrometric errors affecting recorded flows in this range. 
 
Modification of the daily flow record 
Figures 4.6, 4.7 and 4.8 illustrate adjusted probability plots for station 39016, for 
durations of D=1 and D=60 respectively. Here errors have been introduced directly in to 
the daily flow series from which the annual minima series is later derived. In the latter 
two cases the curves shown are flow-return period plots, using a linear scale to represent 
return period.  
 

 
 
 
 



 

R&D TECHNICAL REPORT W6-064/TR2   84

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6: Probability plot showing the influence of hydrometric errors added to 

daily flows at Stations 39016, fitted with a GEV distribution, D= 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7: Flow- return period plot showing the influence of hydrometric errors 

added to daily flows at Stations 39016, D= 7 
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Figure 4.8: Flow- return period plot showing the influence of hydrometric errors 

added to daily flows at Stations 39016, considering duration D= 60 
 

 
Modifying the daily flow values has an impact on both the position and shape of the 
curves. In the examples shown the curve is shifted further along the y-axis as the error 
added is increased. The impact of hydrometric errors is smallest where D=60, as the 
effect of each error is averaged out over 60 flow values.  
 
Figures 4.5 to 4.8 indicate that, in general, hydrometric errors below ±10% have little 
influence on the shape of the flow-probability relationship. This is equally applicable 
whether the errors occur in the daily mean flow series or in the annual minima series. 
However where larger errors are considered (±20 %) there can be some considerable 
change in the flow-return period relationship (giving more than a 20-year uncertainty in 
return period), particularly where the duration considered is shorter than 30 days. At 
longer durations the effects of hydrometric errors in the original flow series are small. 
 
4.5.3 Discretization effects due to granularity 
Discretization of daily flow records may occur where the variation between flows on 
two consecutive days is lower than the measurement precision of the gauging 
instrumentation, causing a series of flows to be rounded up to the same value. 
Discretization is therefore more likely during low flow periods where there is little 
change in the flow from day to day. For example if the precision of the gauging process 
is 0.01, it is readily apparent that all the values recorded will be multiples of 0.01 
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cumecs, with the effect that the data-values to be modelled will have a discrete 
distribution. Discretization is discussed in more detail in Chapter 2. 
 
In some cases, observations that are extremely low, but still above zero, are rounded to 
or reported as zero (the flow at which this occurs is usually a function of the 
measurement precision and is termed the ‘perception threshold’). Such data sets may be 
treated as censored samples. Zero flows may also, of course, appear naturally within the 
data set. However without circumstantial evidence, it is difficult to determine whether 
zeros are ‘real’ or not from the flow record alone (a more detailed discussion is given in 
Chapter 2). The next section investigates a method for adjusting the frequency curve to 
take into account zero flows. The impact on the fitted flow-frequency curves where 
records are subject to discretization is discussed in Section 4.6. 
 
4.5.4 Treatment of zero flows as censored data 
 
A specialised plotting position formula for censored data 
Stedinger et al. (1992) proposed a specialised plotting position formula for use with 
censored data. Their argument for using a specialised formula supposed that among n 
flow records a perception threshold would be exceeded r times. The natural estimator of 
the exceedance probability, ep , of this threshold is r/N. If the r values which exceeded 

the threshold were indexed by i=1… r , reasonable plotting positions approximating the 
exceedance probabilities within the interval (0, pe) would then be: 
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where a is the plotting-position parameter. 
 
Comparing results from censored data method and normal method 
In order to assess the effects of applying the Stedinger Plotting Position Formula, the 
behaviour of two flow records known to contain zero flow values were investigated. For 
the first catchment, the Enrick at Mull of Tor (6008) annual minima values of zero 
occur for durations of 1 and 7 days. The annual minima series for the second catchment, 
the Enwenny at Keepers Lodge, contains zeros where D=1 (note that neither of these 
catchments are included in the list of 25 study catchments detailed in Chapter 3). In 
each case plotting positions were assigned using Stedinger’s formula, and parameter 
estimation carried out using L-Moments.  
 
Figure 4.9 shows the resulting frequency curves in the case where D=1 for 6008. The 
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curves derived using the Gringorten plotting position formula are also shown for 
comparison (zero flows are given the same rank (1)). Table 4.3 compares the parameter 
values for based on the censored and non-censored methods for durations of D=1 and 
D=7.  
 
 

 
 

Figure 4.9:  Frequency curve for 9008, where D=1 
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Table 4.3: Comparison of parameter values for 6008  
GEV GL PE3 Duration 

(days) 
Parameter 

Non Cens.1 Censored Non Cens. Censored Non Cens. Censored 
1 a 0.99 0.96 0.81 0.80 2.57 2.61 
1 ? 1.01 1.11 1.42 1.52 2.21 2.33 
1 k -0.40 -0.42 -0.45 -0.47 2.75 2.85 
7 a 1.16 1.14 0.95 0.94 3.02 3.07 
7 ? 1.12 1.24 1.61 1.72 2.53 2.67 
7 k -0.40 -0.41 -0.45 -0.46 2.75 2.83 

1 Non Cens. Refers to non-censored  

 
Similarly Figure 4.10 shows the resulting frequency curves in the case where D=1 for 
58009, whilst Table 4.4 compare the parameter values for based on the censored and 
non-censored methods where D=1. Although the curve shape changes slightly due to the 
revised plotting positions for zero flows, this causes little change in the form of the 
fitted p.d.f.’s for the different distributions considered. The main influence seems to be 
on the the location parameter, ?. 

 
 

 
 
Figure 4.10:  Frequency curve for 58009 where D=1 
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Table 4.4: Comparison of parameter values for 59008, D= 1 

GEV GL PE3 Parameter 
Non Cens. 1 Censored Non Cens. Censored Non Cens.  Censored 

         A 7.41 6.14 4.13 3.68 7.32 6.58 
         ?  16.94 17.51 19.52 19.75 19.40 20.12 
         K 0.32 0.18 0.02 -0.06 -0.11 0.37 
1 refers to non-censored data 

 
 
4.6  Discretization effects due to sampling error 
 
4.6.1  Stepped probability plots  
Discretization occurs when several of the annual minima have the same or very similar 
values resulting in the formation of steps within the frequency-curve. The probability 
plots for annual minima flows observed at stations 14001, and 72004, shown in Figure 
4.11a and b, do not have a smooth curve. Rather, they have a stepped form. 
 
Whilst the examples shown in Figures 4.11a and b are rather extreme cases, few of the 
flow records examined have completely smooth probability curves. Some other 
examples are presented within Section 5.2. The occurrence of steps may be explained in 
a number of ways. Granularity caused by measurement precision could result in 
discretization where short durations are considered (D=1 7, 30 days). However 
granularity is unlikely to have an effect for long durations, where each annual minima is 
an average value of many daily flows, and is unlikely to explain why annual minima 
frequency curves often show stepped features. 
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a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4.11b: Probability plots for annual minima flows observed at a) Station 
14001 and b) Station 72004 
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Having excluded the possibility of discretization at near-zero flows, other ways to 
explain these steps must be sought. Sampling error where the record length is short may 
explain the occurrence of steps. For the station 14001, 31 years of data are available, 
and for station 72004, 38 years of data are available. Although we consider these as 
“long records”, they reflect only a short part of the climate cycle and a limited range of 
flow extremes (i.e. years of similar drought behaviour are being sampled). This effect is 
exaggerated by the way exceedance probabilities are assigned according to rank order, 
so that the probability intervals are equally spaced whilst flow values are not. A longer 
record length will represent a bigger part of the climate cycle and a wider, more 
representative range of flow extremes and thus, the shape of the probability curve (for 
annual minima flows) will be smoothed. In light of these findings, further research was 
conducted, to determine whether the presence of stepped discrete data can influence the 
parameters and accuracy of fit of the distribution. 
 
4.6.2  Influence of a step shape on the fitted distribution 
In order to study the influence of a stepped curve on the fitted distribution (and hence 
the return period / flow relationship) two flow records were considered: those of stations 
14001 and 72004. Two different types of distribution: a GEV distribution and a general 
logistic distribution are considered. Since the process of fitting a curve to the annual 
minima series is independent of the duration, only one duration, D=1, was considered. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.12: Probability plots for original and modified annual minima flows at 

Stations 14001 and 72004 
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Figure 4.12 shows the flow frequency curves (labelled “original”) for each station. That 
of station 14001 has a stepped form, whereas that for station 72004 is a good example 
of a smooth curve. For each station a modified daily data set was created: the 
probability plot for station 14001 was smoothed whilst that for station 72004 (Figure 
4.12) was given some artificial steps. These modifications were carried out by adjusting 
the curves “by eye”. Each of these series was fitted using the generalised extreme value 
(GEV) and generalised logistic (GL) distributions: Figures 4.13a and b illustrates the 
resulting flow, and indicate that there is little difference in the goodness of fit for the 
original and artificial data. 
 
a) 

 
 
 
 
 

 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.13: Effect of a step shape on the flow - return period relationship for 
stations 14001 and 72004 for a period of d=1, fitted with the a) GEV 
and b) GL distribution 
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Generalising the results presented within Figure 14.13, suggests that in the case of 
natural streams within the UK, a stepped probability curve does not result in a worse fit 
or poorer parameterisation. 
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5. EVALUATION 
 
5.1 Introduction 
 
This chapter presents the results of the modelling of the observed low flow frequency 
distribution, in which the parameters of three candidate distributions (Generalised 
Extreme Value, Generalised Logistic, and Pearson Type-III) and one ‘control’ 
distribution (Generalised Pareto) have been estimated using L-Moments. Parameters 
were derived for each of the catchments as detailed in Chapter 4.2. For illustrative 
purposes the results are illustrated using five flow records; the Deveron at Muiresk  
(9002), the Tweed at Boleside (21006), the Kennet at Theale (39016), the Wye at Ddol 
Farm (55026) and the Lune at Caton (72004), which represent a range of catchment 
types. The reader is referred to Chapter 3 for more details regarding these catchments. 
 
Firstly, the observed probability distributions are presented in Section 5.2, in the form 
of frequency curves using the Gringorten plotting position method on a Weibull reduced 
variate plot. The results of fitting four different distributions to the curves are presented 
in Section 5.3. The suitability of each of the four distribution families for describing the 
annual minima frequency curves is then evaluated. The goodness of fit between the 
modelled and observed probability curves (i.e. descriptive ability of the distribution) is 
discussed in Section 5.4, whilst the robustness of the flow-return period relationship 
(i.e. prescriptive properties) is described in Section 5.5. The applicability of the 
distribution for different durations, and adequate representation of flows beyond the 
observed range (e.g. flows at or close to zero) were also considered in the assessment.  
The relationship between catchment characteristics and low flow frequency behaviour 
for the 25 catchments is developed and discussed in Section 5.6. These results are 
closely related to the methods and findings of the Low Flow Studies Report (Institute of 
Hydrology, 1980), and are important with regard to choosing which distribution to use 
with data from different catchment types. 
 
 
5.2 Observed Low Flow Distributions 
 
5.2.1 Form of observed frequency curves 
The following probability plots (Figures 5.1 to 5.5) show flow-probability relationships 
for annual minima series of the five main gauging stations. In each case probabilities of 
non-exceedance have been derived using the Gringorten plotting position formula (note 
that here the probability of exceedance is plotted (i.e. 1-p) so that the lowest flows 
appear at the upper end of the x-axis). To linearise each plot, probability is expressed 
using a reduced variate scale, in this case the Weibull reduced variate. In each case, the 
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curves for a range of durations (1, 7, 30, 60, 90, 180 and 365 days) are shown. To 
facilitate comparison between catchments, whilst maintaining differentiation between 
different durations, the curves are standardised by mean flow.  
 

 
 

 
Figure 5.1:  Probability plot for annual minima flows observed at Station 9002 
 
 

 
 
Figure 5.2:  Probability plot for annual minima flows observed at Station 21006 
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Figure 5.3:  Probability plot for annual minima flows observed at Station 39016 
 
 
 
 

 
 
 
Figure 5.4:  Probability plot for annual minima flows observed at Station 55026 
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Figure 5.5:  Probability plot for annual minima flows observed at Station 72004 
 
Figures 5.1 to 5.5 illustrate that, for a given duration, the flow decreases as higher return 
periods are considered. Note that the appearance of a (semi)-linear decrease in flow 
results from the use of the reduced variate scale along the probability axis (x-axis). 
However, in some cases, there are changes in gradient along the curve, particularly 
within the central part of the curve (e.g. as shown in Figure 5.3).  
 
In some cases distinct steps are seen in the frequency curve: a good example is that of 
station 19002 (Figure 5.6). These steps occur when several annual minima have the 
same value. In the case of 19002, the sampled annual minima conform to a discrete 
distribution, rather than a continuous one. Possible explanations for this include years of 
similar drought behaviour being sampled in the flow record (this is more likely where 
the record length is shorter) or, for longer durations, where the annual minima 
represents the average flow over a long period. It may also occur due to the effect of 
measurement precision at low flows (i.e. flows are rounded up), which is also more 
likely at short durations. An analysis and discussion of the effect of stepped curves on 
distribution fitting was given in Section 4.6. The presence of steps within the data was 
demonstrated to have little effect on the curve-fitting process.  
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Figure 5.6:  Probability curve for 19002, showing granular frequency curves 
 
 
5.2.2  Variation of annual minima with duration 
For a given station the gradient and form of the curves change as the duration, D, 
becomes longer. Where short durations are considered the annual minima are smaller, 
and occupy a much narrower range of values than where longer durations are 
considered. For example the curves for the case where D=1 have very shallow 
gradients, whilst the steepest curves are obtained where D=365. This was illustrated by 
the Institute of Hydrology (1980) and is a consequence of averaging within the longer 
durations (the effect of extreme low flows are averaged out causing higher values of the 
annual minima to become more frequent). The dominant influence is on location rather 
than shape of the curve (i.e. for longer durations the annual minima represent a larger 
proportion of the long-term mean flow, thus the curves begin at higher positions along 
the y-axis). This influence can be normalised by expressing the flow relative to the 
mean annual minima value for the particular duration, MAM(D), as shown in Figures 
5.7a and 5.7b, and is discussed in more detail in Section 5.6. The curves for different 
durations are coincident along the central part of the curve (particularly at a return 
period of 2 years, which is where the MAM(D) value usually occurs), but deviate at the 
extremes. This is possibly a function of the increased uncertainty associated with the 
curve position at extreme flows resulting from extreme events being inadequately 
represented in the flow records.  
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 a)  

 
 

b) 

 
 
Figure 5.7:  Probability plots for a) 9002 and b) 39016 where flow is expressed as a 

standardised value (i.e. relative to the mean annual minima value) 
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5.3 Modelling and Parameterisation of Frequency Distributions 
 
5.3.1 The choice of distribution 
Following the recommendations given in Chapter 4, the method of L-Moments was 
used to estimate the parameters of the different ‘model’ distributions. Four model 
distributions were used: the Generalised Extreme Value (GEV) distribution, the 
Generalised Logistic (GL) distribution, the Generalised Pareto Distribution (GP) and the 
Pearson Type-III (PE3) distribution. Parameters were derived for each of the 25 stations 
based on the annual minima series in units of cumecs. The results are illustrated using 
the five catchments, 9002, 21006, 39016, 55026, and 72004, however the full set of 
parameter values is given in Appendix 6.1.  
 
5.3.2  Use of probability plots for distribution evaluation 
Probability plots can be useful pre-fitting tests when deciding which of a number of 
alternative families of distributions is most appropriate. In this method probability plots 
are generated based on different reduced variate scales: the probability curves would be 
expected to produce straight lines if the distribution family on which the reduced variate 
was based is the ‘correct’ one.  
 
Figures 5.1 to 5.7 used the Weibull reduced variate scale to express probability, that is 
the relationship between the probability p and QT is based on the Weibull distribution 
with arbitrary values for the parameters α, ξ and k. Similarly it is possible to use other 
distributions for the basis of this relationship. Figure 5.8 demonstrates probability 
curves for the five stations, for a duration (chosen arbitrarily) of 30 days. In Figure 5.8a 
a Weibull reduced variate scale is used, in Figure 5.8b a logistic reduced variate is used, 
in Figure 5.8c an exponential reduced variate scale in used whilst Figure 5.8d shows the 
use of a Gumbel reduced variate scale. 
 
The Weibull reduced variate (EVIII distribution) and the logistic reduced variate (GL 
distribution) both produced relatively linear curves. The Gumbel reduced variate scale 
(representing the EVI distribution) is less successful (i.e. the resulting curve is not 
linear), whilst use of the exponential reduced variate (representing the GP distribution) 
produced very poor results. These results suggest that the EVIII and GL are better 
candidate families than the EVI or GP.  
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Figure 5.8a: Probability plots using the Weibull reduced variate for the five 

catchments for D=30 
 
 
 

 
 
 
Figure 5.8b:  Probability plots using the Logistic reduced variate for the five 

catchments where D=30 
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Figure 5.8c:  Probability plots using the Exponential reduced variate for the five 

catchments for D=30 
 
 
 

 
 
 
Figure 5.8d:  Probability plots using the Gumbel reduced variate for the five 

catchments where D=30 



 

R&D TECHNICAL REPORT W6-064/TR2   103

5.3.3 Comparison of parameter values for different distributions 
Figures 5.9 to 5.12 show the parameter values derived for each of the four distributions 
(the GEV, GL, GP and PE3, respectively. The computations were based on annual 
minima expressed in terms of the percentage mean flow of the flow record so that the 
curves for different durations plot as distinct curves. In each case the variation of the 
three parameters a (scale), ? (location) and k (shape) is shown. 
  
The parameter magnitudes are similar for the GEV and GL families. In both cases α 
takes values of 20 or less, ξ takes values up to 80 and k varies between 0.8 and –0.4. 
However it is the correspondence in variation in parameter values with duration 
between the two sets, rather than the range, that is most striking. For both distributions 
the α parameter is very low where D=1, but increases as D increases, levelling off 
somewhat where D is above 200 days, whilst the ξ parameter increases steadily with 
duration. The behaviour of the k parameter is more complex: k becomes increasingly 
negative as D increases, until D=60, then rises steadily as D increases thereafter. In the 
case of the GEV distribution, this means that an EVII/III is generally favoured when the 
duration considered is between 7 and 90 days.  
 
When the GP distribution is compared to the GEV and GL some differences in α and k 
parameters are apparent. The α parameter is generally much higher, and increases with 
increasing duration but tends not to level out at at high durations. The k parameter is 
always positive and, for the stations considered, takes values in the range 0 to 2.5. The 
PE3 distribution differs most in the behaviour of the k parameter. Although k takes both 
positive and negative values in the range, -1.5 to 2.0. in contrast to the other 
distributions the value of k increases with duration, reaching a point of inflection 
between the durations of D=60 and D=90, whereafter it decreases steadily with 
duration.  
 
In each of the graphs the permeable catchment (39016) stands out from those of the 
other catchments which have moderate to low permeabilities. There is much less 
variation with duration, the curves being much flatter. In particular the value of k never 
drops below zero, i.e. an EVI/III distribution is always fitted. Potential contrasts 
between the behaviour of different catchment types are discussed further in Section 5.6 
using MAM(D) to normalise for the effect of duration. 
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Figure 5.9:  Variation in parameter values (GEV distribution) 
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Figure 5.10:  Variation in parameter values (GL distribution) 
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Figure 5.11:  Variation in parameter values (GP distribution) 
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Figure 5.12:  Variation in parameter values (PE3 distribution) 
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5.3.4 Visual comparison of observed and modelled frequency curves 
Visual comparison is often the most straightforward way of determining whether the 
modelled curve is a good representation of the observed data! Figures 5.13 to 5.16 
illustrate, as example, fitted and modelled curves for a variety of durations. The GEV 
distribution is shown by the green line, the GP model is described by the red line, the 
GL model is shown in black, whilst the blue line indicates the PE3 model. 
 
The figures indicate that, whilst the GP distribution is generally not a good model to 
describe low flows, there is little to differential between the GEV, GL and PE3 
distributions, which all describe the main body of the data very well. 
 
 
 

 
 
Figure 5.13:  Observed and modelled curves for the Deveron (9002) in the case 

where D=1 (GEV-green, GP-red, GL-black, PE3-blue) 
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Figure 5.14:  Observed and modelled curves for the the Tweed (21006) in the case 

where D=180 (GEV-green, GP-red, GL-black, PE3-blue) 
 
 
 

 
 
 
Figure 5.15:  Observed and modelled curves for the Kennet (39016) in the case 

where D=30 (GEV-green, GP-red, GL-black, PE3-blue) 
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Figure 5.16:  Observed and modelled curves for the Wye (55026) in the case where 

D=30 (GEV-green, GP-red, GL-black, PE3-blue) 
 
  
 
5.4 Evaluation of the p.d.f. Models  
 
5.4.1  Tests to assess the fit of the frequency curve 
The parameterised distributions were evaluated in terms of how well they modelled the 
observed frequency curves using goodness-of-fit tests, and by examining the root-mean-
square errors (RMSE) between the observed and fitted frequency curves. 
 
Tests of goodness of fit tests can be used to verify whether the match between the 
modelled and observed frequency curves is satisfactory. These tests work by 
determining the extent by which the distribution function (p.d.f.) of the modelled curve 
represents the observations. Two goodness of fit tests were applied to the data: the Chi-
square (χ2) test and the Kolmogorov Smirnov test. The χ2 goodness of fit index is 
defined as follows: 
 

∑
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χ  (5.1) 

where io  is the observed frequency and ie  is the expected frequency. 
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The Kolmogorov-Smirnov goodness of fit index is given by  
 

( )iiiN EOD −= max  (5.2) 

 
where iO  is the observed cumulative frequency and iE  is the expected cumulative 

frequency. 
 
A disadvantage of goodness-of-fit tests is that they are dependent on the plotting positions 
used and, theoretically, the p.d.f. should be hypothetical rather than being estimated from 
the sample (Ashkar & Bobée, 1991). As a second verification of the match of the two 
curves, the root mean square errors between observed and modelled curves were also 
derived. The following formula was used:  
 

N

xx
RMSE op

2)( −
=  (5.3) 

 
where px  is the predicted value, ox  is the observed value and N  is the number of data 

in the examined sample. 
  
The χ2, Kolmogorov-Smirnov Values and the RMSE errors were derived for each 
model produced. Critical values of the test statistics were taken from Neave (1988) 
based on a confidence level of 95%.  
 
 
5.4.2 Results of the goodness of fit tests 
The results of the Kolmogorov-Smirnov Test were not useful for differentiating 
between distributions, as they indicated a satisfactory fit between all modelled and 
observed curves. Instead the size of the χ2 value was used to rank the four distributions 
in order of goodness of fit. Again few distributions could be rejected outright based on 
the χ2 value. This is due to the sample sizes (which are relatively small) – at small 
sample sizes these kinds of test are usually not powerful enough to discriminate 
between distributions. The results of the Chi-Square Test applied at durations of D=1, 7, 
30, 60, 90, 180 and 365 for all 25 stations are also given in Appendix 6.2. Τable 5.1 
summarises the results of the Chi-Square test, indicating the distribution with the lowest 
χ2 values for durations of D=7 and D=90, the distribution that most frequently has the 
lowest χ2 when all durations are considered and the distribution that most frequency has 
the lowest χ2 when all durations lower than D=90 are considered. The results shown for 
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each catchment in Table 5.1 are translated to their geographic locations in Figures 5.17a 
to d. 
 
Table 5.1:  Summary of Chi-Square Test  

Distribution with lowest ?2 value 
Station 

D=7 D=90 Most frequent 
(Overall) Most frequent (D=90) 

9001 PE3 GEV PE3 PE3 
9002 GP GEV GEV/GP GEV/PE3/GP 

14001 GEV PE3 PE3 PE3 
19002 GEV PE3 GEV GEV 
19004 GEV PE3 GL/GEV/GP GEV/GL 
20001 PE3 GP PE3 PE3 
20003 GEV GP GEV GEV 
20005 GP PE3 GEV GEV/PE3 
21006 GL GL GL GL 
21012 PE3 GPA GP GP/PE3 
21013 GEV PE3 GEV GEV 
21015 PE3 PE3 GEV/PE3/GP GEV/PE3 
21017 PE3 PE3 GPA PE3 
28031 PE3 GP GEV/PE3 PE3 
34003 GEV GEV GEV GEV 
39016 GL GL GL GL 
39028 GEV GEV GEV GEV 
43005 GL GL GL GL 
43006 GL GL GL GL 
48010 GEV GL GL GL 
51001 GEV GL GEV GEV/GL 
55016 PE3 GP PE3 PE3 
55026 GL GEV GEV GEV 
60002 PE3 GEV GEV GEV/PE3 
72004 GP GEV GP GP 
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Figure 5.17:  Distributions with lowest χ2 values under different criteria 
 
 
The results of the Chi-Square Test are quite complex. Based on the critical ?2 for a 
sample of given size, all four parameterised distributions nearly always model the 
observed data adequately giving an acceptable goodness of fit. Using the size of ?2 
value to discriminate between distributions (i.e. that with the lowest value is considered 
as the one having the ‘best fit’) produces different results when different durations are 
considered. However several patterns are evident. Firstly, there seems to be a distinct 
difference in the ‘best distribution’ for durations of 90 days or less and those of 180/365 
days. For example, for short durations the PE3 or GEV distributions tend to be 
favoured, whilst the GP distribution is often better when longer durations are 
considered. Secondly for permeable catchments (e.g. 39016, 43005 etc) the GL 
distribution is applicable across a wide range of durations probably as a consequence of 
the much lower variation in minima between different durations. 
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5.4.3 Results of the RMSE analysis 
Root mean square errors between the modelled and the observed data points were 
calculated for each of the 25 stations for durations of D=1, 7, 30, 60, 90, 180 and 365 
days. The full results are given in Appendix 6.2. However Τable 5.2 summarises the 
RMSE errors for the 25 catchments, indicating the distribution with the lowest RMSE 
values for durations of D=7 and D=90, the distribution that most frequently has the 
lowest RMSE (when all durations are considered) and the distribution that most 
frequently has the lowest RMSE when only the results for durations lower than D=90 
are considered. The results shown for each catchment in Table 5.2 are translated to their 
geographic locations in Figure 5.18. 
 
Table 5.2: Summary of RMSE results 

Distribution with lowest RMSE value 
Station D=7 D=90 Most frequent 

(Overall) Most frequent (D=90) 

     
9001 PE3 GEV GEV/PE3 GEV/PE3 
9002 PE3 GEV GEV/PE3 PE3 
14001 GEV GEV/PE3 GEV GEV 
19002 PE3 GEV GEV/PE GEV/PE3 
19004 PE3 GEV GL GL 
20001 GEV/PE3 GP PE3 PE3 
20003 GEV/PE3 GP/PE3 PE3 PE3 
20005 GP PE3 GPA PE3 
21006 GEV/PE3 GL GEV/GL GL 
21012 PE33 GL GP PE3 
21013 GEV/PE GP GP GEV 
21015 GP/GL PE3 GP PE3 
21017 GEV/PE3 GEV PE3/GEV PE3/GEV 
28031 GEV/PE3 GP GEV GEV/PE3 
34003 GEV GEV GEV GEV 
39016 GL GL GL GL 
39028 GEV/PE3 GEV/PE3 GEV/PE3 PE3 
43005 GL GL GL GL 
43006 GL GL GL GL 
48010 GEV/GL GL GL GL: 
51001 GEV GL GEV GEV 
55016 PE3 GP PE3 PE3 
55026 GEV GEV/PE3 GEV/PE GEV/PE3 
60002 GEV/PE3 GEV GEV PE3 
72004 GP GP GP/PE3 GP 
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Figure 5.18: ‘Best’ distributions indicated by RMSE values under different criteria 
 
 
As observed with the results of the ?2 test, for a given catchment, there is little to 
differentiate between the performance of the four distributions. All give similar values 
for RMSE, with the exception of the GP models, which tends to produce larger errors. 
Using the size of the RMSE to discriminate between distributions (i.e. that with the 
lowest value is considered as the one having the ‘best fit’) as shown in Table 5.2 
indicates that different distributions are favoured for different catchments and for 
different durations. The PE3 performs better at short durations, but tends to be replaced 
by the GEV as longer durations are considered. Permeable catchments, such as 39016 
and 43005 located in southern England, which have a damped flow signature for both 
short and long durations tend to be best represented by the GL distribution, whilst, with 
a couple of exceptions, the GP distribution gives the biggest errors, particularly at short 
durations. These trends are discussed further in Section 5.6. 
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As well as calculating a single RMSE value for the whole sample, it is possible to 
determine the RMSE for observations occurring in different portions of the curve. 
RMSE values were also therefore determined for different portions of the curve. Figure 
5.19 shows how the RMSE error varies for different probability intervals for stations 
9002, 21006 and 39016, with the model fitting based on the GEV distribution. Figure 
5.19 illustrates that in general, observations in the probability range 7.03.0 ≤≤ P will 
be fitted better than those outside this range, i.e. the modelled curves do not represent 
the extremes of the observed frequency distribution very well. This is a common 
problem in modelling (i.e. identifying a model that can explain the fill variance of the 
observed data set is difficult). 
 
 

 
Figure 5.19: Variation in RMSE for different probability intervals 
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5.4.4 Selection of the ‘best’ distribution 
The previous two subsections described how the size of the χ2 value and the RMSE 
were used to discriminate between distributions, in each case the distribution with the 
smallest χ2 or RMSE value being chosen. Unfortunately the ‘best distribution’ identified 
by the χ2 and RMSE tests are not always identical. For instance Table 5.3 shows the 
favoured distribution according to the two tests for five flow records. In each case the 
assessment is based on average χ2 and RMSE values (see Appendix 5.2) for durations of 
1, 7, 30, 60, 90,180 and 365 days. 
 
Table 5.3: ‘Best’ distributions as suggested by χ2 and RMSE tests 

Station ? 2 RMSE 
   

9002 GEV PE3 
55026 GEV GEV 
72004 PE3 PE3 
39016 GL PE/GL 
21006 GEV GEV 

 
 
Table 5.3 shows that, for 9002, the GEV is the best distribution according to the χ2 
values, whilst the RMSE test indicates that the PE3 is the better. A similar situation 
occurs for 39016. Figures 5.20 and 5.21 illustrate how the χ2 and RMSE errors vary 
according to duration, for 9002 and 39016 respectively.   
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Figure 5.20: Variation in a) RMSE and b) χ2 values with duration for 9002 
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Figure 5.21: Variation in a) RMSE and b) χ2 values for gauging station 39016 
 
 
The best distribution was based on assigning a rank to each of the distributions based on 
its χ2 value (i.e 1 for the lowest χ2 value and 4 for the highest χ2 value). The ranking 
exercise was repeated based on the RMSE data. In each case the distribution with the 
lowest rank sum was considered the ‘best’. Table 5.4 summarises the ‘best’ 
distributions for the 25 stations, when both values are taken into account for durations 
of 7, 90 and 365 days.  
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Table 5.4: Summary of distribution types resulting in CDF models with lowest 
errors for AMS based on durations of 7, 90 and 365 days, considering 
both RMSE and χ2 test results 

Station D=7 D=90 D=365 

9001 PE3 GEV GEV 
9002 GP & PE3 GEV GEV 

14001 GEV PE3 GEV 
19002 GEV & PE3 GEV & PE3 GEV 
19004 GEV & PE3 GEV & PE3 GP 
20001 PE3 GP GP & PE3 
20003 GEV GP GEV 
20005 GP & PE3 PE3 GEV & GP 
21006 All Equal GL GP 
21012 PE3 GP & GL  
21013 GEV GA & PE3 GEV 
21015 All equal PE3 GP 
21017 PE3 GEV & PE3 GP 
28031  PE3 GP GEV 
34003 GEV GEV GP 
39016 GL GL GP 
39028 GEV GEV GP & PE3 
43005  GL GL GEV 
43006  GL GL GEV & PE3 
48010  GEV GEV GPA 
51001  GEV GL PE3 
55016 PE3 GP PE3 
55026 GEV GEV PE3 
60002 PE3 GEV GP 
 72004 GP GEV & GP GL 

 

Table 5.4 indicates that, for a given station, different distributions produced the best 
results when different durations were considered. For many catchments the PE3 or GEV 
were favoured for short durations, whilst the GP was often the better model where 
longer durations, such as 365 days, were considered. These results agree with the a-
priori expectation that the GP would not perform well (at short durations the GP 
distribution only produced the ‘best’ results for the Lune at Caton (72004)). The GP 
performs better when longer durations are considered because those series are less 
likely to have extreme value-like properties. This does not necessarily suggest that the 
GP distribution should be applied preferentially when minima of interest are of longer 
durations, rather, it can be said that the GEV, GL and PE3 are less suitable for 
describing long duration minima than they are for short records. 
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As four parameterised distributions nearly always model the observed data adequately, 
there is no clear indication that a single distribution forms the best model of low flow 
behaviour. However Figures 5.17 to 5.20, together with Tables 5.1 to 5.4, reveal some 
broad trends related to catchment properties (see Table 3.1 or Appendix 2 for details of 
catchment characteristics). For the subset of permeable catchments included in the 
study, the GL distribution gave the ‘best’ models across all durations (note however that 
it is important to recognise that only five permeable lowland catchments were included 
in the study). For the remaining low storage catchments, the PE3 or GEV distributions 
gave the best results particularly at short durations. This relationship between ‘best 
distribution’ and catchment characteristics is explored further in section 5.6. The 
Institute of Hydrology (1980) investigated relationships between low flow frequency 
curve form and catchment characteristics. This subsequently formed the basis of the 
regionalisation method published by Institute of Hydrology, (1980) and Gustard et al. 
(1992).  
 
 
5.5 The Flow-Return Period Relationship 
 
5.5.1 Prescriptive ability of the modelled curves 
In addition to the goodness of the curve fit, the behaviour of the flow-return period 
relationship was also considered when evaluating the performance of each distribution 
family. A modelled curve may fit the observed data well, but it may be unsatisfactory in 
terms of the uncertainty of the flow estimates it prescribes for high return periods i.e. it 
may not be robust. This section examines the errors associated with quantile estimates 
at high return periods and errors in return period when extreme low flow quantiles are 
considered. To do this the estimated distribution parameters were used to calculate F(q) 
and q(F) and hence develop flow-return period curves for each series of annual minima. 
 
Figure 5.22 illustrates the flow-return period relationships for 9002, for the duration of 
D=1, derived using fitted parameters for the GEV, GP and PE3 distributions (that for 
the GL is not shown but closely follows that of the GEV). Similarly Figure 5.23 
illustrates the flow return period relationships for 39016, for the duration of D=30, 
derived using fitted parameters for the GEV, GP and PE 3 distributions. Figures 5.22 
and 5.23 represent return period on a linear scale as the behaviour at high return periods 
(> 30 years) is of interest. 
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Figure 5.22: Flow – return period relationship for Station 9002 where D=1 

 
 
Figure 5.23: Flow – return period relationship for 39016 where D=30 
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There are two main reasons why estimates for high return periods may be poor. Firstly 
there is greater uncertainty at the extremes of the frequency curve. The level of 
uncertainty depends upon the number and the values of the sample minima for extreme 
years. Figures 5.22 and 5.23 are particularly good illustrations of this point: as both 
have the same number of data points (38), the lowest ranking flow in each case is 
assigned the same plotting position and will have the same return period (in this case 68 
years). The size of this single flow value strongly influences the shape and gradient of 
the curve at high return periods (25 to 70 years range). Note that this effect should be 
minimised if unbiased plotting positions have been used (i.e. the resulting quartile 
estimates will have smaller error) – for further explanation the reader should refer back 
to Chapter 2). Secondly the differing characteristics of the different distribution families 
means that although the forms of the corresponding QT -T relationships are very similar 
around the median they differ at the tails of the distribution (e.g. at high return periods). 
Again this is illustrated well in Figures 5.22 and 5.23. These differences may be 
magnified when the relationship is extrapolated beyond the observed range. 
 
5.5.2 Uncertainty in quantile estimates  
As the 25 flow records considered in the study have a range of different lengths and the 
observed range of return period is different for each. Table 5.5 gives details of the range 
of flow (QT), probability (p) and return period (T) values for each station.  
 
Table 5.5: Range of return periods values observed for each station 

Maximum Observed Values Minimum Observed Values Station 
T p QT T p QT 

9001 71.64 0.986 14.95 1.01 0.014 51.33 
9002 68.07 0.985 12.37 1.01 0.015 43.71 

14001 57.36 0.983 14.73 1.02 0.017 37.72 
19002 68.07 0.985 7.46 1.01 0.015 28.76 
19004 71.64 0.986 6.52 1.01 0.014 39.74 
20001 68.07 0.985 11.98 1.01 0.015 42.85 
20003 62.71 0.984 10.15 1.02 0.016 39.89 
20005 62.71 0.984 7.41 1.02 0.016 30.68 
21006 68.07 0.985 9.35 1.01 0.015 29.03 
21012 64.50 0.984 5.00 1.02 0.016 18.97 
21013 62.71 0.984 6.59 1.02 0.016 30.74 
21015 59.14 0.983 7.25 1.02 0.017 30.76 
21017 60.93 0.984 3.70 1.02 0.016 16.92 
28031 55.57 0.982 8.97 1.02 0.018 36.44 
34003 71.64 0.986 34.91 1.01 0.014 77.17 
39016 68.07 0.985 9.82 1.01 0.015 61.02 
39028 55.57 0.982 26.72 1.02 0.018 59.06 
43005 60.93 0.984 5.00 1.02 0.016 49.66 
43006 60.93 0.984 17.28 1.02 0.016 50.44 
48010 53.79 0.981 11.88 1.02 0.019 39.61 
51001 55.57 0.982 7.51 1.02 0.018 33.89 
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Maximum Observed Values Minimum Observed Values Station 
T p QT T p QT 

55016 53.79 0.981 0.49 1.02 0.019 13.24 
55026 109.14 0.991 1.19 1.01 0.009 16.84 
60002 68.07 0.985 1.90 1.01 0.015 18.44 
72004 71.64 0.986 3.27 1.01 0.014 14.39 

 
 
A shown by Table 5.5 the maximum observed return periods range from T=53 to 
T=109. Similarly the flow values (as %MF) of the observed values of lowest probability 
of non-exceedance range from as little as 13% to 77%. These differences illustrate that 
some models will be more prescriptive in the extrapolated upper tail of the probability 
distribution, whilst others will perform better in the extrapolated lower tail of the 
distribution.  
 
The flow–return period relationships in the range 1=T=200 were derived for each of the 
25 catchments. Those where D= 1 are illustrated in Figure 5.24.  
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Figure 5.24: Flow-retun period relationships for D=1. 
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Table 5.6:  Flows (expressed as %MF) corresponding to a 50-year event  

Station D=1 D=7 D=30 D=60 D=90 D=180 D=365 

 Generalised Extreme Value  
9002 13.26 13.43 15.03 15.73 16.08 22.20 27.59 

21006 8.71 9.18 11.73 13.22 14.76 21.05 41.71 
39016 21.54 23.07 24.57 26.05 26.95 29.60 28.15 
55026 2.15 2.12 3.08 4.85 6.99 17.22 53.49 
72004 3.30 3.65 3.36 4.24 8.31 15.64 45.58 

 
Generalised Logistic 

9002 12.71 12.79 14.35 14.92 14.98 20.15 22.48 
21006 8.03 8.35 11.03 12.25 13.38 18.38 38.59 
39016 N/A 21.00 22.45 23.70 24.46 26.50 22.53 
55026 1.41 1.52 2.53 3.84 5.34 14.77 50.86 
72004 2.99 3.29 2.80 3.18 6.69 20.37 41.94 

 Pearson – Type III  
9002 13.766 13.979 16.077 17.51 18.325 23.748 26.135 

21006 8.664 9.102 12.323 14.167 15.228 20.578 41.292 
39016 20.951 22.415 23.877 25.282 26.317 28.848 26.553 
55026 1.89 2.073 3.477 5.664 7.28 16.855 53.047 
72004 3.394 3.86 4.184 5.27 9.128 4.365 44.576 

        

 
 
Table 5.7: Flows (expressed as %MF)  corresponding to a 100-year event  

Station D=1 D=7 D=30 D=60 D=90 D=180 D=365 

 Generalised Extreme Value 

9002 12.55 12.62 14.12 14.59 14.55 19.63 19.30 
21006 7.92 8.22 10.83 12.01 13.11 17.56 33.24 
39016 18.77 20.33 21.57 22.82 23.59 25.37 19.02 
55026 1.89 1.75 2.37 3.62 4.99 14.14 50.25 
72004 2.89 3.21 2.50 2.84 6.32 11.10 39.70 

 Generalised Logistic 

9002 11.77 11.71 13.21 13.53 13.12 16.67 8.16 
21006 6.82 6.85 9.80 10.67 11.05 12.85 23.69 
39016 N/A 16.41 17.46 18.33 18.91 19.58 6.59 
55026 0.92 0.92 1.58 2.19 2.41 9.93 45.77 
72004 2.42 2.69 1.70 1.32 3.92 14.44 31.78 

 Pearson Type III 

9002 13.358 13.48 15.7 17.149 17.832 22.117 16.566 
21006 7.879 8.106 11.753 13.512 13.954 16.823 32.151 
39016 17.771 19.256 20.428 21.571 22.498 24.075 16.071 
55026 1.66 1.773 3.032 4.919 5.523 13.596 49.617 
72004 

 
3.062 3.57 3.754 4.463 7.657 9.588 37.808 

Tables 5.6 and 5.7 give the flows corresponding to the 50-year and 100-year low flow 
events for the five catchments, over a range of annual minima durations. The values are 
derived from the p.d.f. for each of the modelled curves, applying Eqns 2.3 and 2.4 to 
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determine the QT-F(q) and hence the QT-T relationships (equally, they could have been 
read off the appropriate flow-return period plot, such as that shown in Figure 5.24 for 
D=1). Note that for stations 9002, 21006, 39016 and 72004, which all have 38 years of 
data, the maxmium return period for observed annual minima is about 68 to 70 years. 
For these stations the 50-year event should be predicted fairly accurately as it is within 
the observed range. In contrast the 100-year event is beyond the observed range for 
these records, but can be calculated using the modelled p.d.f.s. The accuracy of the 
predicted quantile for the 100-year event depends on the degree of robustness of the 
modelled p.d.f.. For station 55026, the lowest rank value occurs at a return period of 
about 105 years, and therefore both the 50 and the 100-year events are within the 
observed range. The p.d.f.s should be more constrained to the observed data at this 
range, and the quantile estimates for the four distributions should be comparable.  
 
For the 50-year event, the quantile estimates vary by less that 1% MF at D=1 to about 
4%MF at D=365. This variability is probably acceptable to the end-user. For the 100-
year event the quantiles predicted using the different p.d.f. forms for 55026 vary from 
about 1%MF at D=1 to about 4% MF at D=365. In constrast the quantile estimates for 
the remaining four catchments vary by 2%MF at D=1 to about 10% of the MF at 
D=365. However the size of the error does vary depending on the catchment. This 
suggests that particular catchment – p.d.f. combinations are more likely to produce more 
robust quantile estimates at higher return periods than others. However, in the absence 
of a ‘bench mark’ observed flow with which to compare these quantile estimates, it is 
difficult to discriminate between the performance of different distributions in this 
respect. 
 
5.5.3 Uncertainty in return period estimates 
In the same way as it is important to obtain robust quantile estimates for a particular 
return period, it is also important to assess the error asssociated with return periods for 
prescribed flows. Table 5.8a details return periods for a prescribed flow level of 
15%MF, estimated by fitting a GEV distribution. Table 5.8b gives the absolute error 
between return period estimates derived from fitting GEV and GL distributions 
respectively, whilst Table 5.8c compares the estimates for the GEV and Pearson Type-
III distributions. The values given are the difference, in years, between the return period 
estimates for the stated distributions, given a flow equal to 15% of the mean flow. 
 
Table 5.8 indicates that in terms of quantile estimates, and for short durations, the three 
distributions give similar results. Differences between distributions are largest when 
longer durations are considered. Clearly, in addition to catchment type, the duration 
considered has some control over the return periods and their corresponding flows.  
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Table 5.8:  Comparison of return periods. 

Station D=1 D=7 D=30 D=60 D=90 D=180  
 

  
 a) Estimates based on fitting a GEV distribution  
 

9002 13.64 15.93 34.99 48.96 48.68 144.27  
21006 2.46 3.64 8.84 21.55 45.53 176.69  
39016 98.85 124.06 139.92 151.90 162.63 157.81  
55026 1.02 1.03 1.32 3.04 7.80 48.78  
72004 1.03 1.06 1.68 3.42 10.01 39.02  

  
 b)  Difference between GEV and GL distributions  
 

9002 -0.42 -1.83 -14.34 -28.25 21.65 -350.07  
21006 -0.10 -0.32 -0.25 2.84 12.89 100.94  
39016 -196.63 -330.97 -472.31 -573.15 -685.12 -622.37  
55026 0.00 -0.02 -0.02 0.14 0.38 -34.17  
72004 1.03 1.06 1.68 3.42 10.01 39.02  

        
 c) Difference between GEV and PE distributions 

 
9002 1.18 N/A -77.21 -27.03 -494.34 -37.35  

21006 -0.27 -0.85 8.04 23.51 69.17 233.99  
39016 -180.06 -257.50 -340.70 -393.84 -337.98 343.90  
55026 -0.03 -0.31 -0.10 -0.23 -5.76      N/A  
72004 0.00 0.01 -0.14 -0.23 -5.42 -2100.78  

 
 
In the example given in Table 5.8 an annual minima equivalent to 15%MF represents a 
more extreme event for catchment 39016 than for the others, and has a very long return 
period. In fact a 15%MF event is not within the observed range of annual minima 
values. This has resulted in the difference between the estimates for different 
distributions being much higher: running into 100’s of years, even where D=1. In 
contrast, the estimates for 55026 at D=1 differ by less than a year. The difference 
between estimates is also dependent on the duration considered. The increase in the 
difference between estimates with duration occurs because a 15%MF event becomes 
progressively more extreme, and at some point falls beyond the observed range.   
The duration at which a 15%MF event falls beyond the observed range depends on the 
catchment in question. It is unlikely that a good estimate of the return period for an 
annual minima equal to 15% of the mean flow could ever be obtained for permeable 
catchments, where daily flows hardly ever drop below 20% of the mean flow. In highly 
permeable catchments, with extremely flashy regimes, daily flows may drop to less than 
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5% of the mean flow. However for durations of 30 days or more, where the annual 
minima represents an averaged value such flows are unlikely to occur except during 
exceptionally prolonged droughts.  
 
Table 5.9 indicates whether sensible estimates of return period can be obtained for 
annual minima flows equivalent to 10% (representing a fairly low annual minima) and 
40% (representing quite a large annual minima) of the long-term mean flow.  
 
Table 5.9: Sensible return period estimates, for flow level at 10%MF 

 Flow = 10%  Flow = 40% 
 Duration, D (days)  Duration, D (days) 
 1 7 30 60 90 180 365  1 7 30 60 90 180 365 

9001 X X X X X X X  Y Y Y Y Y Y Y 

9002 X X X X X X X  Y Y Y Y Y Y Y 

14001 Y Y X X X X X  X Y Y Y Y Y Y 

19002 Y Y Y Y Y X X  X X Y Y Y Y Y 

19004 Y Y X X X X X  X Y Y Y Y Y Y 

20001 Y Y X X X X X  X Y Y Y Y Y Y 

20003 Y Y X X X X X  Y Y Y Y Y Y Y 

20005 Y Y X X X X X  X X Y Y Y Y Y 

21006 Y Y Y X X X X  X X Y Y X X X 

21012 Y Y Y Y Y Y X  X X Y Y Y Y Y 

21013 Y Y Y Y Y Y X  X X Y Y Y Y Y 

21015 Y Y Y Y Y Y Y  Y Y Y Y Y Y Y 

21017 Y Y Y Y Y X X  X X X Y Y Y Y 

28031 Y Y Y Y Y Y X  X X Y Y Y Y Y 

34003 X X X X X X X  Y Y Y Y Y X X 

39016 X X X X X X X  Y Y Y Y Y Y Y 

39028 X X X X X X X  Y Y Y Y Y Y Y 

43005 Y Y Y X X X X  Y Y Y Y Y Y Y 

43006 X X X X X X X  Y Y Y Y Y Y Y 

48010 Y X X X X X X  Y Y Y Y Y Y X 

51001 Y Y Y Y Y X X  X X Y Y Y Y Y 

55016 Y Y Y Y Y Y X  X X X Y Y Y Y 

55026 Y Y Y Y Y X X  X X X Y Y Y X 

60002 Y Y Y Y Y Y X  X X X Y Y Y X 

72004 Y Y Y Y Y Y X  X X X Y Y Y X 

 Y indicates a sensible estimate is obtained 
 X indicates that a sensible estimate cannot be obtained 

 
In general, sensible estimates are obtained for D=1 and D=7 where the prescribed flow 
is 10%MF, and for D=30 or more where the prescribed flow is 40% MF. The pattern is, 
of course, more complex than this as there is a strong influence with the catchment type. 
For example return period estimates for chalk catchments such as 39016 and 39028 are 
not robust at 10%MF, whilst for flashy catchments, such as 60002, return period 
estimates at 40% MF are not robust for short durations because all of the observed 
minima are much lower than 40% MF.  
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5.6  Relationship Between Probability Distribution & Catchment Caracteristics 
 
5.6.1 Introduction 
The results presented in Sections 5.4 and 5.5 indicated a geographical control on the 
observed form of the frequency curves and on the distribution family found to best 
match this curve. For example the results of the goodness-of-fit and error tests (Figures 
5.17/5.18) indicated a geographical control on the form of the curve best describing the 
observed probability distribution. The two most likely geographical controls are the 
amount of rainfall, and the storage behaviour of the catchment, which usually depends 
on the catchment geology. Here the 1961-1990 standardised annual average rainfall 
(SAAR) is used to characterise the catchment rainfall, whilst catchment storage 
behaviour is represented numerically, by the baseflow index (BFI).  
 
As mentioned previously, the Institute of Hydrology (1980) and Gustard et al. (1992) 
developed relationships between frequency behaviour and catchment characteristics for 
British catchments with the aim of providing a mechanism for predicting the frequency 
behaviour of rivers that are ungauged or that have short records unsuitable for frequency 
analysis. These studies used the MAM10 and MAM7 values respectively (under the 
assumption that a good estimate of MAM7 or MAM10 can be determined from most 
hydrometric records) as an indicator of frequency behaviour, given known catchment 
characteristics. The methodology of Gustard et al. (1992), based on flows given in units 
of %MF, applied the following: 
 
1. A regression relationship between MAM7 and catchment characteristics 
2. A regression-derived relationship between MAM7, rainfall (SAAR) and the rate of 

change of MAM(d)/MAM7 with D (the latter usually termed ‘GRADMAM’). This 
relationship, referred to as the ‘External Relationship’, is used to predict 
GRADMAM for any catchment provided MAM7 and SAAR values are known. 

3. The theoretical linear relationship between MAM(D), MAM7 and GRADMAM, 
known as the ‘Internal Duration Relationship, which can be used to predict 
MAM(D) provided GRADMAM and MAM7 are known. 

4. Flow Frequency Type Curves, based on categorising the frequency curves of British 
Rivers Given an estimate of MAM(D) these curves allow the Annual minima at a 
particular return period for duration D, AMP(D), to be estimated. This relationship 
is referred to as the ‘Internal Frequency Relationship’. 

 
Here a slightly different approach is taken, in which catchment characteristics are linked 
directly to the p.d.f. form which best represents the observed data.  
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5.6.2  Observed curves  
Figures 5.25 to 5.29 illustrate the frequency curves for the catchments 9002, 21006, 
39016, 55026 and 72004 respectively. In each case a range of durations (D= 1, 7, 30 
and 90) are shown, and the flows are standardised by the relevant MAM(D) value.  
 
 
 

 
 
Figure 5.25:  Frequency curve for 9002 
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Figure 5.26:  Frequency curve for 21006 
 
 

 
 
Figure 5.27:  Frequency curve for 39016  
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Figure 5.28:  Frequency curve for 55026 
 
 

 
 
Figure 5.29:  Frequency curve for 72004 
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Figures 5.25 to 5.29 illustrate a very strong relationship between the form of the 
probability curve and catchment type. The Kennet (39016), which has a BFI of 0.87 is 
very distinct in form, having a fairly steep gradient, and dropping off very suddenly at 
the end of the curve. There is good agreement between the normalised forms for the 
different durations shown, whilst values for the flow-MAM(D) ratio vary from 0.2 to 
1.5 (i.e. the MAM(D) is quite big relative to the observed flows). The Deveron (9002), 
which is moderately permeable (BFI=0.59) has similar behaviour. Conversely the 
curves for the impermeable catchments (the Lune having a BFI of 0.32, the Wye having 
a BFI of 0.37, and the Tweed having a BFI of 0.52) are represented by curves that have 
fairly steep gradients, with the data points representing a different wider range of annual 
minima-MAM(D) ratios (for example the annual minima-MAM(D) ratio for the Lune at 
Caton varies between 0.4 and 2.4). This is probably a result of the flashy behaviour of 
these catchments (i.e. more extreme events are observed) which causes the distribution 
of annual minima to be skewed. This causes the MAM(D) to be small compared to 
range of the observed flows giving larger AM(D)/MAM(D) ratios, particularly where D 
is short. This also explains where there is also poorer agreement between the normalised 
curves for different durations than observed in the permeable catchments: the flashy 
nature of low BFI stations is averaged out more at longer durations so that extreme 
events have less influence on the MAM(D).  
 
5.6.3 Relationship between ‘best’ distribution & catchment characteristics 
The results of the goodness of fit and errors test (Figures 5.18/19) indicated a 
geographical or catchment characteristics control on the form of the curve best 
describing the observed probability distribution. The histograms shown in Figure 5.30 
illustrate the variation in ‘best’ distribution with catchment storage. The best 
distribution is determined taking into account both RMSE and the Chi-Square value of 
each p.d.f. model. The storage is represented by the BFI, with permeable catchments 
having high BFI values. Figure 5.30 shows that when the 180 and 365 day curves are 
ignored the PE3 distribution is strongly favoured at low to mid BFI values, whereas 
there are fewer stations that can be described by the GP or GEV distributions. Figure 
5.30 also shows that the GL distribution seems to perform most well for permeable 
catchments, whereas more responsive catchments seem to be best described using the 
PE3 or GEV distributions. Note that a bias is introduced because few highly permeable 
catchments were included in the study. 
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Figure 5.30:  Distributions obtained when considering durations of a) 1, 7, 30, 60, 
90, 180 and 365 days, b) 1, 7, 30, 60, 90 days only 

 
The histograms shown in Figure 5.31 illustrate how the best distribution varies with 
catchment rainfall, represented by the 1961-90 SAAR . Figure 5.31 suggests that PE3 
and GL distributions are favoured by catchments with low SAAR, whilst there is a trend 
towards the GEV distribution for catchments with high rainfall. When long durations 
are considered the GP distribution becomes more common at low SAAR. 
 
 

 
 
Figure 5.31:  Distributions obtained when considering durations of a) 1, 7, 30, 60, 

90, 180 and 365 days, b) 1, 7, 30, 60, 90 days only 
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5.6.4 Parameter values 
If similar catchment types have similar low flow frequency responses they should also 
have similar parameter values (provided these are determined using flow data 
normalised by the MAM(D)). Thus it may be possible to determine type curves for 
parameter values, so that once a particular distribution family has been selected, suitable 
parameter values might be determined without having to use a formal method of 
parameter estimation such as L-Moments or Maximum Likelihood. Unfortunately such 
an investigation is beyond the scope of this study, but could be a subject for further 
work. However the next section 5.6.5 investigates how the form of a fitted p.d.f. varies 
according to the catchment properties. 
 
5.6.5 The flow-return period relationship 
In this section the behaviour of the flow-return period relationship for different 
catchments is investigated. The results are based on the p.d.f. derived by fitting a 
Generalised Extreme Value distribution to the observed data. The estimated distribution 
parameters were used to calculate F(Q) and Q(F) and hence develop flow-return period 
curves for each series of annual minima. In order to compare the curves for different 
regimes, the annual minima are standardised by the corresponding MAM(D) values. 
Figure 5.32 illustrates the flow return period relationships for all 25 catchments where 
D=30 (as normalising by MAM(D) removes the effect of duration the relationships for 
the other durations will be very similar to this are therefore not shown). The catchments 
are coloured according to their Base Flow Index value. Similarly Figure 5.33 illustrates 
the same flow-return period relationships with the catchments classified according to 
the average annual rainfall, SAAR.  
 

 
 

Figure 5.32:  Flow-return period relationships classified by BFI 
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Figure 5.33:  Flow – return period relationship classified by SAAR 
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Figures 5.32 and 5.33 illustrate that there are strong trends with in the form of the 
quantile-return period relationships. The forms may be classified into two groups: those 
for  high rainfall, low storage catchments and those for high storage, low rainfall 
catchments. Without further work it is difficult to differentiate whether storage or 
rainfall is the dominant catchment characteristic due to the strong negative correlation 
between baseflow and SAAR for British catchments).  

 
5.6.6 Summary 
These initial investigations have shown some trends in the ‘best distribution’ with both 
BFI and SAAR (i.e. the PE3 and GEV are more suited to upland catchments, with the 
GL preforming better for lowland catchments). In the UK there is a strong negative 
correlation between BFI and SAAR as the highly permeable catchments are found 
mainly in the southeast where rainfall levels are comparitively low, whilst wet regions 
such as the north west are main dominated by impermeable geologies. As a result, 
without, further work, it is difficult to make any firm conclusions regarding which of 
these catchment characteristics has the dominant effect on distribution shape.  
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6. PROTOTYPE METHODOLOGY FOR SHORT RECORDS 
 
6.1 Introduction 
 
6.1.1 Potential methodologies for frequency analysis of Short Records 
In an at-site analysis of low flow frequencies it is unrealistic to expect to accurately 
predict the probability distribution and flow – return period relationship when the 
number of data observation is restrained, i.e. the flow record is short. A series of annual 
minima derived from a short flow record has a number of features which increases the 
inherent uncertainty in any probability distribution derived from it including: 
 

• The range of flow values obtained may be unrepresentative of the long-term low 
flow behaviour of the site. The range of observed flow values will be highly 
dependent on the period during which the observations were made (e.g. a 15 year 
record from 1970-1984) may contain more extreme annual minima than a record 
running from 1978-1991 etc.). This means that the distribution of annual minima 
is more likely to be biased or skewed as the full range of conditions characteristic 
of the site will not be sampled.  

• The plotting position formulae, which are used to estimate the probability of each 
point in the annual minima series, produce highly biased results for short periods. 
This occurs because the plotting position formulae are not robust for small sample 
sizes (Cunnane, 1978), as they are based on a rank-order system. In other words, 
plotting positions are assigned regardless of the range or skew of the sampled 
flows resulting in similar low flow events values being assigned very different 
exceedance probabilities. 

• Where flows of longer duration are considered, even fewer annual minima values 
will be generated due to the imposition of missing data criteria. This is especially 
problematic for discontinuous records with several short gaps.  

 
Frequency estimation techniques have to be adapted to deal with such problems at sites 
where the flow record is short. Three main approaches may be considered; (i) 
generalised estimation where frequency relationships are estimated from catchment 
descriptors, (ii) estimation of flow frequency based on rainfall frequency, or (iii) the 
uncertainty of the derived frequency relationships can be lessened by incorporating low 
flow data from analogue sites.  
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i) Generalised estimation  
In this approach key variables describing frequency behaviour at the subject site are 
estimated from catchment descriptors. This was the basis of the method presented by 
the Institute of Hydrology (1980) and later developed by Gustard et al. (1992), in which 
relationships between key variables MAM7 and GRADMAM, and catchment descriptor 
SAAR were established using regional regression techniques with data from 865 gauged 
sites in Britain. Other potential catchment descriptors include soil drainage type, storage 
attenuation, and baseflow index. Such methods have the advantage that once catchment 
descriptors have been established the flow behaviour of a site can be estimated quickly. 
Generalised estimation methods are most commonly used for flow estimation at the 
ungauged site, but are also applicable where the flow record at the subject site is 
extremely short or unreliable.  
 
ii) Estimation based on rainfall frequency 
In this approach the flow frequency behaviour at the subject site is estimated from 
rainfall frequency. This is a complex method requiring the use of rainfall-runoff model 
to describe the temporal characteristics of the runoff response to rainfall. This model 
must take into account streamflow recession and catchment storage as well as any 
spatial variation in runoff-generating mechanisms within the catchment, including base 
flow. Good rainfall records are also required and some consideration must be given to 
how rainfall is spatially distributed across a catchment. This approach is most useful 
where the catchment has unusual features (these can be considered explicitly in the 
model) and in small, impermeable catchments where runoff is primarily generated by 
rainfall.  
 
iii) Data transfer methods  
Data transfer is the traditional method of improving frequency analyses for short 
records. Transferring data involves taking into account flow data from analogue 
catchments (analogue catchments have similar hydrological behaviour) during statistical 
frequency analysis of the flow record at the subject site. This could involve the flow 
record being extrapolated in some way or assumptions about characteristics of the 
frequency curve being made. Data transfer allows more information to be incorporated 
into the analysis, which not only reduces sampling uncertainty, but also generally 
results in a reduction of model uncertainty by facilitating the choice of distribution. 
 
In general there are two approaches to data transfer. In the first, the regionalisation 
approach, data from a group of analogue catchments is pooled with that from the subject 
site, whilst the second method involves the transposition of data from a single long-
record analogue site. These methods are detailed below.  
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a)  Regionalisation approach 
The regionalisation approach works on the basis that a ‘region’ or group of catchments 
can all have similar distributions, or particular aspects of distributions, and that 
estimation of these aspects jointly across sites leads to improved estimation at 
individual sites. Regions are defined in terms of data space (i.e. regions consist of 
catchments with similar hydrological behaviour regardless of their spatial distribution). 
Such regional pooling methods are common practice for flood frequency analysis in the 
UK (e.g. Institute of Hydrology, 1999), where data from several sites (roughly between 
5 and 50 sites) are used to estimate event frequencies at the short record site.  
 
b)  Geographically-restrained regionalisation approach 
As droughts tend to behave in a spatially coherent manner, a geographical restraint may 
be placed on catchments forming a pooling group. This means the region consists only 
of nearby analogue catchments, and thus the number of catchments included in the 
group will probably be smaller. Four possible ways of using nearby analogue sites to 
give an indication as to ‘how bad’ the low flow or drought condition is in the vicinity of 
the station of interest were considered: 
 
i) Annual minimum analysis may be applied to the sum of flows across a group of 

nearby analogue sites (i.e. the ‘regional’ total flow). The resulting estimated 
quantiles would be meaningful with respect to the site in question. Problems 
might include identifying enough representative analogue catchments of suitable 
length.  

ii) Scale the flows at each analogue site by some appropriate quantity, (such as 
mean annual flow, mean annual minimum flow etc.) and form an average of 
these scaled values. Finally calculate the annual minima of these values. This 
gives an index of the severity of the drought or low flow situation in the vicinity 
of the station of interest.  

iii) As in (ii), but use regional minima of scaled values (i.e. for a given time step 
base the group minima on that at the ‘worse’ analogue site). Unfortunately if a 
particular site experiences zero flows, this is likely to dominate the group.  

iv) Scale the flows at each analogue site, but do this in a probabilistic sense, where 
each flow-value is replaced by the probability of point on some appropriate 
distribution. This leaves the overall distribution of flows or the distribution of 
annual minimum flows (for each site separately). At each time point the 
minimum probability across the group of nearby analogues would be found and 
finally the annual minima of these would be calculated. In this case the effect of 
sites at which positive values occur has less impact, since these zero-flows 
would be assigned some positive probability, and a lower probability might be 
assigned to the value at another site.  

c) Transfer of data from a donor (analogue) site.  
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A donor site is an analogue site that is sufficiently close to the subject site to make its 
gauged flow data during the low flow period of special relevance. An upstream or 
downstream site on the same river would usually be an ideal donor catchment, although 
a catchment on an adjacent tributary might also be a good donor catchment provided 
that the catchment characteristics, such as the storage behaviour, are broadly similar. 
Again this relies on the fact that droughts tend to be spatially coherent entities, and that 
two nearby sites are likely to experience the same severity of drought at the same time 
(and is in fact a special case of b) where region size is restricted to a single site). A 
number of ways in which data transfer may take place were considered: 
 
i) The daily flow record at the donor site may be used to extend the shorter daily 

flow record using regression or modelling techniques. This would require a 
sufficient period of overlap between the two sets of records.   

 
ii) The flows at the donor site are scaled by some appropriate quantity, (such as 

mean annual flow or mean annual minimum flow). The probability distribution 
at the donor site provides, when appropriately re-scaled, an estimate of the 
probability distribution at the short-record site. This is the most commonly used 
method of data transfer. 

 
iii) Re-scale the flows at each site, but do this in a probabilistic sense, where each 

flow-value is replaced by the probability of point on some appropriate 
distribution. In other words, for each year within the short record, the probability 
of the corresponding annual minima at the donor site is used to estimate the 
probability of the corresponding annual minima at the short record. This method 
relies on the assumption that the selected distribution is applicable to both 
records. 

 
iv) Re-scale the flows at each site, but do this based on the plotting positions. In 

other words, for each year within the short record, the plotting position of the 
corresponding annual minima at the donor site is used to estimate the plotting 
position of the corresponding annual minima at the short record. The resulting 
probability plot would then be used as the basis for distribution fitting in the 
usual manner. The number of plotting positions ‘borrowed’ would be dependent 
on length of short record, which may influence the error associated with 
distribution fitting. 

 
6.1.2 Selected methods for prototyping  
Comparison of all the methods outlined in Section 6.1.1 is beyond the scope of this 
study. Therefore only the two approaches based on data transfer from a donor 
catchment (as detailed in points c-ii and c-iv) were implemented. These were thought to 
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be the most relevant methods, given the length of the short records of interest (between 
10 and 20 years) and the remit of the study, since they are theoretically robust and 
relatively straightforward to implement. 
 
The two methods, transposing the p.d.f. from the donor catchment to the subject site and 
transposing exceedance probabilities of flows in individual years from the donor to the 
subject site, were tested using flow event durations of up to 90 days. In each case the 
approach adopted was to: 
a) select suitable pairs of analogue catchments, one of which is used as the donor site 

(usually that with the longer record), and the other as the subject site. 
b) resample the flow record of the subject site to make ‘short records’ of 10 and 15 

years in length. 
c) determine annual minima series from the flow records at the donor site and subject 

site where applicable. 
d) apply the data transfer technique. 
e) assess the performance of the data transfer technique (the frequency curve based on 

the complete flow record at the sample site was used as a reference curve, by which 
the performance of the two data transfer methods was assessed).  

 
The study did not specifically consider records less than 10 years in length. Although 
the results may be applicable to short records of, say, five years in length, a more robust 
investigation is required to provide definitive answers where record lengths are so short. 
Although beyond the scope of this prototyping study, such investigation could form the 
basis of further work.   
 
Section 6.2 demonstrates how pairs of analogue catchments were identified based on a 
comparison of hydrological and geological characteristics. The analogue pairs were 
selected from the good quality long flow records identified in Section 3.1. The 
application of the two methods (transposing the distribution function from the donor 
catchment to the subject site and transposing exceedance probabilities of flows in 
individual years from the donor to the subject site) to each pair of analogues (points b to 
e above), are described in Sections 6.3 and 6.4 respectively. According to the findings 
in Chapter 4, in application of the data transfer methods and assessment of their results 
the Gringorten Plotting Position formula, the L-Moment method and the GEV 
distribution are used throughout.  
 
6.2 Selection of Donor/Short Record Catchment Pairs 
 
6.2.1 Definition of analogue catchments 
Catchments are said to be analogous if they have similar flow regimes. Catchment 
characteristics are given in Table A2.2. In this study particular importance is placed on 
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the similarity in hydrological behaviour during the low-flow period. Hydrological 
regimes may be compared in a number of ways, including looking at flow frequency 
curves and flow duration curves. However this may become time-consuming if a large 
number of catchments are to be compared. The relation between flow regime and 
catchment characteristics is well established in hydrology and it is thus fairly reasonable 
to assume that catchments having similar characteristics might be good analogue. Here 
pairs of analogous catchments were identified based on similarity of their 
hydrogeological properties.  
 
6.2.2 Selection criteria 
A set of quantitative criteria were applied to the set of 37 long flow records identified as 
suitable for use in the study (see Table 3.1) in order to identify pairs of analogue 
catchments. The 37 catchments all received AA grading (i.e. good hydrometric quality 
and low artificial influence on both the Q95 and mean flow values (details are given in 
Appendix 2). The following criteria were applied:  
 

• Analogues should receive similar (± 10%) rainfall volumes.  
Streamflow drought occurrence is strongly linked to rainfall occurrence. The 
standard average annual rainfall (SAAR) from 1941 to 1970 was used to describe 
catchment rainfall.  

• Catchments should have similar storage properties. 
As baseflow often sustains flows in high-storage catchments during the low flow 
period, catchments should have similar storage properties The Baseflow Index (BFI) 
values derived both from streamflow using the IH Method (Gustard et al., 1992) and 
from the representation of different HOST (Hydrology of Soil Types Method) 
classes were used as quantitative assessments of catchment storage. In each case a 
difference of less than 10% was required for a pair of catchments to qualify as 
analogues.  
• Catchments should be located within the same hydrometric area. 
As there is strong spatial coherence during droughts, it is also important to restrain 
the geographical location of analogue catchments. A further condition was therefore 
imposed: analogue pairs have to be located in the same hydrometric area. 

 
6.2.3 Suitable analogue pairs  
Table 6.1 details the station pairs that met the applied criteria. From these three pairs of 
analogue stations (9001 / 9002; 19004 / 21013; 39019 / 39028) were selected for 
investigation in more detail, and are used to illustrate the general findings of the study. 
The three sets were selected to represent three different scenarios: the 9001/9002 pair 
represents an upstream – downstream pair, the 39019/39028 pair are located on adjacent 
tributaries within permeable systems, whilst the 19004 / 21013 pair are actually located 
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on different rivers within the same hydrometric region. In each case one of the pair was 
used as the subject site, whilst the other was used as the donor catchment.  
 
 

Table 6.1:  Suitable pairs of analogue catchments (differences in values between 
the pair are shown) 

Station Record Length 

Subject  Donor Subject Donor 
% BFI % HOSTBFI % SAAR 

9001  9002 38 38 1.7 -1.2 6.1 
19004 21013 38 35 5.6 4.8 2.1 
20001  20003 38 34 5.7 -6.0 -1.5 
20001 20005 38 34 7.5 -8.6 -6.7 
20003 20005 34 34 2.0 -2.5 -5.1 
21013 21015 35 33 2.0 -6.0 8.2 
39028  39019 38 31 6.2 8.3 -6.8 

 
 
6.2.4 Comparison of the flow-return period relationship for analogue catchments 
Analogue pairs were further assessed by comparing their frequency curves. For each 
station the distribution parameters were estimated based on standardised flow data and 
the flow-return period curves for different series of annual minima were then developed. 
This standardisation was used to remove the various complications associated with 
minima derived for different durations.  
 
Figure 6.1 illustrates the flow return period relationships at the analogue stations 9001 
and 9002 for durations D=7 and D=180 days. Similarly, Figures 6.2 and 6.3 illustrate 
the flow-return period relationships at the analogue stations 19004 and 21013, and 
39019 and 39028.  
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Figure 6.1: Flow- return period plots for Stations 9001 and 9002 
 
 

 
 
Figure 6.2: Flow- return period plots for Stations 19004 and 21013 
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Figure 6.3: Flow- return period plots for Stations 39016 and 39028. 
 
Figures 6.1 to 6.3 illustrate that, even when flows are expressed as standardised values, 
there are still some differences in the flow – return period relationships for the selected 
analogue pairs, but that these differences are generally smaller in the case where D=7 
than where D=180 days. 
 
As the aim is to use one catchment as a donor to the other, it is important to quantify the 
difference in flow estimates derived from analogue curves and to assess how this error 
varies according to the duration and the return period range considered and vice versa. 
The error, with respect to flow EQ, is given by the following equation 
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where )T(Q1  is the annual minimum flow at the subject site for a return period of T 

years and )T(Q2  the flow at the donor station for the same return period T. 

 
Similarly the error with respect to return period, ET, is defined by: 
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where )Q(T1  is the flow at the subject site for a return period of T years and )Q(T2  the 

flow at the donor station for the same annual minima flow Q. 
 
Figure 6.4 shows how the errors between flow estimates for the three pairs of analogue 
sites vary with return period, in each case durations of 7 and 180 days are considered. 
Small errors are observed for the 9001/9002 pair, whilst errors are highest for the 
19004/21013 (e.g. the error is above 10% for return periods of 3 years and more, for a 
duration of 180 days). This reflects the fact that 19004 and 21013 are located on 
different river systems, whilst 9001 and 9002 are nested catchments. 
 

 
 
Figure 6.4:  Error for the standardised flow-return period relationships for the 

analogue pairs 
 
Assuming an acceptable range of error of between 0 and 10%, the range in which 
suitable estimates of return period can be made is 2 years to 25 years. If only short 
duration events are considered (e.g. D = 7) the acceptable range is wider, between 2 
years and 40 years. The varying range of validity probably occurs because the annual 
minima series for longer durations tend to reflect the intrinsic geological characteristics 
of the catchments whereas the minima for shorter durations tend to reflect variations in 
rainfall.  
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6.3 Transposition of Flow-Frequency Characteristics  
 
6.3.1 Rationale 
In the first of the methods considered, the probability density function of the donor 
catchment is transposed to the subject site. This method assumes that, for a given 
duration (where D=90), the flow-return period relationships of the pair should be similar 
(within a 10% tolerance – see 6.2) provided that the scale of the flows are taken into 
consideration. Here an appropriate scaling is to standardise by the mean annual minima 
flow or MAM(D). Then the flow – return period relationship for the long record (based 
on standardised data) can be used to estimate that at the subject site, by re-scaling it by 
the short record MAM(D).  
 
This method is dependent upon the sampling error for MAM(D) being insensitive to 
record length i.e. the estimate of MAM(D) for the short record should be representative 
of the long-term MAM(D) value for the site. The Institute of Hydrology (1980) 
suggested, as the mean value of the annual minima usually occurs at a return period in 
the range of 1.9 – 2.5 years, it is possible to estimate mean annual minima robustly for 
relatively short records. To confirm this observation the stability of MAM(D) with 
record length was investigated, as presented in 6.3.2.  
 
6.3.2 Stability of the mean annual minima flow 
As the basis of this method is the standardisation of the flow by the mean annual 
minima, it is vital to have a very good estimate of the MAM(D) for the subject site. It is 
therefore crucial to determine whether good estimates of MAM(D) can, in fact, be 
estimated at sites where the record length is reduced. In the interests of time, the 
stability of the mean annual minima was examined only for two stations, 9001 (38 years 
in length) and 55026 (61 years in length). The longer record (55026) was included to 
examine whether the level of error is higher where the initial MAM(D) is more certain 
(i.e. derived from more years). A more comprehensive study would also consider a 
larger number of stations. 
 
Firstly the ‘true’ MAM(D) value for the subject site was determined. Then, the flow 
record the subject site was artificially shortened by removing data from the time-series. 
A series of artificial short records were created for each station. These were generated 
by removing a number of years, x, from each record, where x was such that the total 
record length varied from 8 to 20 years. For each value of x considered, ten different 
‘short’ records were generated (with data being removed randomly in each case), their 
MAM(D) values were compared to the ‘true’ MAM(D) and the average difference 
across the ten was calculated. The results for D=7 and D= 180 are shown in Table 6.2.  
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Table 6.2: Errors associated to the estimation of the mean annual minima  
 

 D=7 D=180 
Station Length of record 

(years) 
Average 
% Error 

Length of record 
(years) 

Average 
% Error 

9001 20 1.53   
9001 15 3.11 15 4.08 
9001 10 5.82   
9001 8 8.14   
55026 15 3.80 15 7.86 
55026 10 10.64   

 
 
Table 6.2 indicates that the percentage of error of the MAM(D) estimate increases as 
duration increases and as the record length decreases. Note that as the record length 
decreases the error becomes more highly dependent on the distribution of flows used to 
derive the MAM(D). However generally observed errors were less than 10%, and the 
MAM(D) appears to be relatively stable for records of length 10-20 years. Therefore it 
is applicable to derive the flow-return period relationship of a short record station from 
the relationship obtained at a donor catchment possessing a relevant record length (at 
least 30 years worth data) 
 
 
6.3.3 Methodology 
 
Calculation of the mean annual minima 
Having ascertained that good estimates of MAM(D) can be derived for short records, 
the validity of transferring the standardised frequency curve from donor site to subject 
site was investigated. This methodology is illustrated with the analogue pair 9001 / 
9002. In this case the ‘short record’ for 9001 consists only of flow data between 
01/01/76 and 31/12/90. The method was applied using four different durations, D = 1, 7, 
30 and 60 days, using the following methodology. 
 
Firstly the annual minima flow series were derived for the artificial short record 9001 
and the long record 9002, from which MAM(D) values were derived. These data are 
shown in Tables 6.3 and 6.4 respectively. 
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Table 6.3: Annual minima flow series at station 9001 (short record)) 

Flow (% MF) 

D = 1 D = 7 D = 30 D = 60 
49.54  54.54 63.58 101.0 
39.36 41.22 46.77 61.83 
37.58 40.44 46.09 50.77 
34.44 37.29 43.82 47.08 
34.22 35.13 40.60 46.98 
30.19 31.65 39.03 44.66 
29.64 31.41 38.55 43.46 
28.41 29.51 32.64 38.96 
22.48 23.05 26.97 31.86 
21.25 21.70 26.29 29.93 
20.69 21.55 25.10 29.86 
20.35 21.47 25.01 28.60 
20.02 20.64 24.13 27.34 
19.01 19.67 22.10 22.60 
14.43 14.94 17.22 18.43 

Mean Annual Minima Values (%MF) 
28.11 29.61 34.53 41.56 

 
 
Table 6.4: Annual minima flow series at station 9002(long record) 

Flow (% MF) 

D = 1 D = 7 D = 30 D = 60 
43.71 44.82 57.02 92.32 
35.67 37.81 51.23 60.64 
34.23 37.72 51.09 58.61 
33.2 34.45 38.62 53.29 
30.68 32.91 38.58 48.36 
29.36 29.82 38.5 43.44 
27.68 29.76 38.24 41.36 
27.56 29.54 35.19 41.09 
27.26 29.44 34.07 41 
26.96 29.12 33.64 40.74 
25.82 27.54 33.51 40.56 
25.64 27.45 33.32 39.38 
25.1 26.55 32.52 39.06 
24.5 26.27 32.08 38.99 
23.78 24.72 27.43 37.7 
22.1 23.03 25.94 30.94 

22.04 22.76 25.77 29.84 
20.42 22.61 25.42 28.28 
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Flow (% MF) 

D = 1 D = 7 D = 30 D = 60 

20.42 22.03 25.36 27.72 
19.99 20.3 23.64 27.35 
19.51 20.25 23.47 26.69 
18.97 20.09 22.74 26.19 
18.97 20.08 21.86 26.18 
18.97 19.8 21.79 25.41 
18.79 19.63 21.56 24.87 
18.79 19.27 21.42 24.48 
18.61 18.91 21.28 24.35 
18.49 18.85 21.2 24.26 
18.07 18.52 21.19 23.44 
18.01 18.31 21.11 23.42 
17.41 18.17 20.96 23.41 
16.69 17.34 20.85 22.52 
16.33 17.12 20.1 22.06 
16.21 16.93 19.61 21.62 
16.15 16.58 19.32 19.81 
15.61 16.44 17.76 19.8 
15.25 15.52 16.2 16.45 
12.37 12.8 14.67 15.55 

Mean Annual Minima Values (%MF) 
22.61 23.77 28.11 33.45 

 
 
 
Transposition of the p.d.f. 
The flow – return period relationship for the donor catchment 9002, expressed in terms 
of standardised flow, was calculated. The methodology for deriving this relationship 
remains the same whatever fitting distribution is considered, in this case all samples 
were fitted with a Generalised Extreme Value distribution (more details are given in 
Chapter 4.2) The quantile function for the GEV distribution is defined by the equation: 
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where ξ is the location parameter, α is the scale parameter and k the shape parameter.  
Table 6.5 details the parameter values for the GEV distribution at (9002) based on flow 
values in cumecs.  
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Table 6.5:  Parameter values at Station 9002 (long record) for the flow – return 
period relationship in cumecs 

 D=1 D=7 D=30 D=60 

α 4.79 5.31 6.64 8.90 

ξ 19.5 20.051 23.4 26.6 
k -0.0626 -0.0446 -0.012 -0.164 

 
 
By substituting these parameters, Eqn. 6.3 becomes: 
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By re-scaling using the MAM(D) values for the subject site(Tables 6.3 / 6.4), Eqn. 6.4 
then becomes  
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6.3.4 Results 
The resulting re-scaled flow – return period relationships for station 9001 at durations of 
1, 7, 30 and 60 days are shown in Figure 6.5, whilst Figure 6.6 illustrates the differences 
between these curves and those generated using the full record from station 9001.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.5:  Estimated flow–return period relationship for Station 9001  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.6:  Error in estimation of the flow–return period relationship for 9001 
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Figure 6.6 shows that, in this case, the smallest errors are obtained where D=60. The 
level of error is higher where shorter durations are considered (between 15% and 25%). 
In this case the worst errors are obtained for a duration of 30 days. In general higher 
errors are observed at short return periods (i.e. at the least extreme flows). This suggests 
that while extreme events occur at similar frequencies of occurrence at the two 
catchments, the annual minima in ‘wet’ years may be quite different. This may reflect 
the fact that in wet years the spatial distribution of precipitation will influence the 
spatial distribution of standardised minima. In dry years, when rainfall is very low, this 
influence will be minimal; hence there will be a greater degree of homogeneity driven 
by release of water from storage. 
 
 
6.4  Transfer of Plotting Positions 
 
6.4.1 Rationale 
In a short record, as the range of data available is reduced, the plotting positions derived 
from the ranks of the observed data points do not return accurate probabilities due to 
sampling error. The method developed within this sub-chapter consists of “borrowing” 
the plotting position for a specific year, regardless of the magnitude of the annual 
minima for that year, from the annual minima flow series of the donor catchment. The 
borrowed plotting positions are used when constructing the probability plot for the 
subject site, to which the distribution of interest can then be fitted in the usual way. This 
method assumes that for a pair of analogue catchments the chronological order of 
severity of droughts will be the same. For example, if the worst drought for the long-
record donor occurred in 1976 it is reasonable to expect that 1976 was also the worst 
drought for the subject site. Hence, the major constraint of this method is that the flow 
record of the donor catchment must include the period of record of the short record. 
Furthermore, as more hydrological information is retained from the subject site there is 
thus an immediate benefit of this method over the p.d.f. method described in Section 
6.3. 
 
The assumption of a strong correlation between the annual minima series of the donor 
and subject site was tested prior to application of the method as described in the next 
section. The methodology was then tested using a series of artificial short records 
derived by sampling the flow record for the subject sites.  
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6.4.2 Methodology 
 
Generation of artificial short records 
As when investigating the stability of the MAM(D) value, the flow record of the subject 
site was artificially shortened by removing a number of years, x, from the record. For 
each analogue pair included in the study three ‘short records’ were created: two records 
with 15 years and one record with 10 years. For the first of these, Short Record 1 (SR1), 
years were removed randomly giving rise to a discontinuous record. In the remaining 
two cases, years were removed randomly in such a ways as to leave a continuous block 
of data 15 and 10 years in length respectively. Table 6.6 shows the selected pairs and 
identifies the long and the short record detailing the years contained within each 
artificial record created. 
 
Table 6.6: Characteristics of the short records artificially generated 

Years Included 
Subject 

Site 
Donor 
Station Donor 

Short Record 1 
(15-years ) 

Short  Record 2 
(15-years) 

Short Record 3 
(10-years ) 

9001 9002 1961 - 1999 

1964; 1971, 1972, 1973, 
1974; 1975; 1978, 1979; 
1980; 1986; 1988; 1991; 

1995;  1998; 1999 

1976 -1990 1974 - 1983 

39028 39019 1960 - 1999 

1970; 1971; 1972; 1975; 
1977; 1980; 1983; 1986; 
1987; 1989; 1991; 1994; 

1995; 1996; 1997 

1970 - 1984 1987 - 1996 

21013 19004 1963 - 2000 

1968; 1969l 1970; 1971; 
1973; 1976; 1977; 1979; 
1981; 1982; 1986; 1989; 

1990; 1994; 1995 

1971 - 1985 1977 - 1986 

 
 
Generation of annual minima series  
The study considered all the short records generated artificially, as detailed in Table 6.6. 
However to illustrate the methodology only the results for 39028 (subject site and 
39019 (donor site) are presented. The annual minima flows were calculated according to 
the general rules applied (detailed in Chapter 3). Table 6.7 shows the annual minima 
flow series for Short Record 3 for four different durations: D=1, 7, 30, 60 and 90 days. 
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Table 6.7: Annual minima flows in percentage mean flow - Short Record 3 

 Annual Minima 

Year D=1 D=7 D=30 D=60 D=90 

1987 47.78 47.99 52.21 55.27 59.17 
1988 53.75 55.88 57.23 58.45 62.04 
1989 35.83 36.26 37.33 38.2 39.57 
1990 32.85 33.7 34.74 35.73 36.11 
1991 37.33 39.03 40.01 41.13 41.66 
1992 43.3 45.43 47.38 48.87 49.24 
1993 49.27 51.19 53.35 55.59 59.82 
1994 46.28 47.35 49.62 50.56 51.79 
1995 41.8 44.58 45.89 49.2 50.86 
1996 37.33 37.97 39.27 39.54 40.15 

 
 
Table 6.8 shows the annual minima series and corresponding plotting positions for the 
donor site 39019. Note that only the years contained within the short record are relevant 
for the purpose of this method (as shown). 
 
Table 6.8: Annual minima flows (%MF) at Station 390191 

Year D=1 D=7 D=30 D=60 D=90 

 PP Flow PP Flow PP Flow PP Flow PP Flow 

1987 0.49 53.9 0.36 57.5 0.28 61.0 0.28 63.5 0.33 64.7 
1988 0.46 53.9 0.49 55.2 0.54 56.0 0.59 56.4 0.59 56.5 
1989 0.88 34.9 0.85 41.2 0.83 44.2 0.83 45.2 0.83 49.2 
1990 0.96 29.8 0.91 35.4 0.88 39.1 0.88 44.1 0.85 47.1 
1991 0.77 41.2 0.83 42.3 0.85 44.1 0.85 44.5 0.88 45.3 
1992 0.91 32.1 0.96 32.6 0.93 36.0 0.93 37.1 0.93 37.8 
1993 0.70 46.4 0.67 48.3 0.59 52.9 0.51 60.6 0.38 63.1 
1994 0.28 57.3 0.22 60.9 0.20 63.9 0.17 67.7 0.15 70.5 
1995 0.43 53.9 0.43 56.6 0.49 58.8 0.38 61.3 0.36 63.5 
1996 0.83 36.7 0.78 45.7 0.75 48.0 0.75 49.5 0.75 51.1 

 
1NB plotting positions are based upon the long record for 39019 
 
Correlation tests  
The plotting position method relies on “borrowing” probabilities from one set of data to 
another, and therefore the two sets of data need to be fairly well correlated to ensure 
relevant results. This section examines the level of correlation between the annual 
minima series derived from donor and short records. The process of transferring plotting 
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position probabilities from donor catchment to short record is explained within section 
6.4.2.4, and illustrated with the 39019 / 39028 analogue pair. 
 
The level of correlation between the annual minima series of the short and long records 
was assessed by two types of correlation test: Spearman’s Rank Correlation Test and the 
Pearson Correlation test (Tables 6.9 and 6.10). 
 
Table 6.9: Spearman correlation coefficients 

Station Record Years D=1 D=7 D=30 D=60 D=90 

SR 1 15 0.85 0.91 0.93 0.99 1.00 
SR 2 15 0.79 0.92 0.95 0.96 0.99 9001 
SR 3 10 0.90 0.88 0.92 0.90 0.94 
SR 1 15 0.61 0.74 0.79 0.83 1.00 
SR 2 15 0.69 0.83 0.84 0.94 0.91 21013 
SR 3 10 0.33 0.55 0.72 0.94 0.83 
SR 1 15 0.87 0.86 0.85 0.72 1.00 
SR 2 15 0.80 0.77 0.77 0.81 0.80 39028 
SR 3 10 0.69 0.59 0.56 0.63 0.60 

 
Table 6.10: Pearson correlation coefficients 

Station Record Years D=1 D=7 D=30 D=60 D=90 

SR 1 15 0.93 0.95 0.98 0.99 0.99 
SR 2 15 0.92 0.97 0.99 0.99 0.99 9001 
SR 3 10 0.94 0.95 0.97 0.98 0.98 
SR 1 15 0.58 0.74 0.79 0.97 1.00 
SR 2 15 0.69 0.77 0.85 0.96 0.93 21013 
SR 3 10 0.41 0.56 0.78 0.93 0.92 
SR 1 15 0.86 0.89 0.88 0.85 0.98 
SR 2 15 0.87 0.88 0.88 0.90 0.90 39028 
SR 3 10 0.74 0.61 0.63 0.63 0.60 

 
 
In the Spearman Test the rank order of the values in the two series are compared 
(further details can be found in Section 5.5), whereas the Pearson test compares the 
magnitude of corresponding values (i.e. assesses whether flows for year Y are similar). 
For the two sets to be considered correlated the correlation coefficients must exceed a 
critical value (governed by the sample size). Thereafter a larger coefficient indicates a 
better correlation. Critical values for sample sizes of 15 and 10 years are 0.4464 and 
0.5636 respectively for a 10% significance level (Neave, 1981).  
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The correlation tests showed that the more years contained within the short record the 
better the correlation. Furthermore the correlation is increased if the years selected 
within the short record form a continuous period. The degree of correlation also 
depends on the duration considered, as in general, the higher the duration is the better 
the correlation. The results of the correlation test show that, in general, there is 
satisfactory correlation (most of the results are above 0.8). The 21013/21015 pair has 
the worst correlation being below the critical values for Short Record 3. 
 
Transposing plotting positions 
Having ensured a sufficient degree of correlation between the annual minima flow 
series of donor and subject catchments, it is then possible to “borrow” the plotting 
position from the donor. For each year considered at the subject site, the plotting 
position associated with that year is taken from the corresponding year in the donor. 
Table 6.11 illustrates the implementation of this method, using 39028 SR3 as the 
subject site (see Table 6.7) and 39019 as the donor site (see Table 6.8).  
 
Table 6.11: Annual minima flow series at Station 39028 Short Record 3 
 

D=1 D=7 D=30 D=60 D=90 

Plotting 
Position 

Flow 
(%MF) 

Plotting 
Position 

Flow 
(%MF) 

Plotting 
Position 

Flow 
(%MF) 

Plotting 
Position 

Flow 
(%MF) 

Plotting 
Position 

Flow 
(%MF) 

0.46 53.75 0.49 55.88 0.54 57.23 0.59 58.45 0.59 62.04 
0.70 49.27 0.67 51.19 0.59 53.35 0.51 55.59 0.38 59.82 
0.49 47.78 0.36 47.99 0.28 52.21 0.28 55.27 0.33 59.17 
0.28 46.28 0.22 47.35 0.20 49.62 0.17 50.56 0.15 51.79 
0.91 43.30 0.96 45.43 0.93 47.38 0.38 49.2 0.36 50.86 
0.43 41.80 0.43 44.58 0.49 45.89 0.93 48.87 0.93 49.24 
0.83 37.33 0.83 39.03 0.85 40.01 0.85 41.13 0.88 41.66 
0.77 37.33 0.78 37.97 0.75 39.27 0.75 39.54 0.75 40.15 
0.88 35.83 0.85 36.26 0.83 37.33 0.83 38.2 0.83 39.57 
0.96 32.85 0.91 33.7 0.88 34.74 0.88 35.73 0.85 36.11 

 
 
The major issue arising from “borrowing” plotting positions is that the borrowed 
plotting positions do not necessarily decrease in the same order than the flow. This issue 
is inherent to this method, and has little influence on the fitting procedure provided the 
number of outlying points is small (Figure 6.7a). The problem is to quantify whether 
this phenomenon has an impact on the fitting of the annual minima curve where the 
number of outlying points is relatively large (Figure 6.7b). 
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Figure 6.7: Outlying plotting positions with a) little effect on the curve shape and 

b) a large effect on the curve shape. 
 
Two methods by which the same decreasing order for both variables could be re-
established were considered. The first option involves erasing outlying data points from 
the series. However, removing outlying data points is not acceptable, as this would 
leave too few points on which to model the probability behaviour and thus increasing 
the uncertainty. The second option, which requires the modification of borrowed 
plotting positions to guarantee the same decreasing order for the plotting positions and 
the flow, is preferable. The advantage of this procedure is to keep the same decreasing 
order between flows and plotting positions without discarding much of the available 
data.  
 
Modifying the annual minima flow series 
The problem of wrongly ordered plotting positions may occur because the donor 
catchment behaves differently to the catchment of interest and experiences extreme 
annual minima in different years. It may also occur because when plotting positions are 
assigned according to the rank of the annual minima flow, i.e. the contrast in annual 
minima between two adjacent ranks is not considered. This means that the flows 
corresponding to consecutive ranks/plotting position could actually be very similar. For 
example, the annual minima for a particular year, say 1981, may have a rank of 8 and a 
value of 25%MF, whilst that of 1994 may have a rank of 9, and a value of 25.2%. In a 
donor catchment 1981 may have a flow of 28%MF, and have a rank of 9, whilst 1994 
may have a rank of 8 and a value of 27.4 %MF. At both stations the flows for 1994 and 
1981 are very close, yet for each, the two years are assigned different plotting positions.  
 
Here the idea is to swap the “borrowed” plotting position for that of a different year, 
provided that the annual minimum flows recorded on the new and original vary by less 

p 

Q 

p 

Q 

a) b) 
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than 10%. To illustrate this method Table 6.12 presents the rearranged annual minima 
flow series for 39028 SR 3. 
 
Table 6.12: Modified plotting positions - Station 39028 SR3 

D=1 D=7 D=30 D=60 D=90 

Plotting 
Position 

Flow 
(%MF) 

Plotting 
Position 

Flow 
(%MF) 

Plotting 
Position 

Flow 
(%MF) 

Plotting 
Position 

Flow 
(%MF) 

Plotting 
Position 

Flow 
(%MF) 

0.28 53.75 0.22 55.88 0.28 57.23 0.17 55.27 0.15 59.82 
0.46 47.78 0.36 47.99 0.49 53.35 0.28 50.56 0.33 59.17 
0.49 46.28 0.49 47.35 0.54 52.21 0.59 49.2 0.36 51.79 
0.78 37.33 0.78 39.03 0.59 45.89 0.75 41.13 0.38 50.86 
0.83 37.33 0.83 37.97 0.75 39.27 0.83 39.54 0.75 41.66 
0.88 35.83 0.85 36.26 0.83 37.33 0.85 38.2 0.83 40.15 
0.96 32.85 0.91 33.7 0.88 34.74 0.88 35.73 0.85 39.57 
        0.88 36.11 

 
 
6.4.3 Results 
Figure 6.8 compares the estimated flow-return period plot for SR3 at D=90 days based 
on the borrowing of plotting positions with the reference curve derived from the annual 
minimum series based on the full record for 39028. The curve derived by modifying the 
probabilities using the method outlined in 6.4.2.4 is also shown.  
 

 
Figure 6.8: Flow – return period relationships at Station 39028 for D=90. 
 
Figure 6.8 shows that there is a very good agreement between the reference curve and that 
derived by borrowing plotting positions. In this example modifying the plotting positions 
has resulted in a curve with even better fit, but this was the exception to the rule. For the 
other analogue pairs the modified curves did not provide a better estimation of the flow – 
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return period relationship. Therefore as rearranging the flows does not always improve 
the accuracy of the predictions and is an arbitrary process that is time consuming, it is 
better to stick to the original values even if the flows and plotting positions do not 
increase in the same order. Although not shown, equally good agreement between the 
short record and reference curve were also observed when the method was applied to the 
other analogue pairs, and seems to be valid for all durations. 
 
 
6.5 Comparison of the Data Transfer Methods  
 
6.5.1 General observations 
This section examines the relative ability of the two data transfer methods in predicting 
the flow-return period relationship at the subject site. A selection of results from the 
three subject sites considered as part of the study are shown in Figures 6.9 through 6.12. 
In each case three different flow-return period curves are shown:  
 

• That based on the original full record (reference curve). 
• That based on borrowing of the plotting positions from the donor site. 
• That based on transfer of the standardised probability function from the donor site. 

 
The root mean square error (RMSE) between the predicted curves and the reference 
curve is indicated in each case. 
 

 
 

 
Figure 6.9:  Flow – return period relationship at Station 39028, SR3, for D=1. 
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Figure 6.10:  Flow – return period relationship at Station 39028, SR2, for D=1. 
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Figure 6.11:  Flow – return period relationship at Station 21013, SR2, for D=1 
 

 
 
Figure 6.12:  Flow – return period relationship at Station 9001, SR1, for D=1. 
 
 
These figures show that, although the p.d.f. method gave good results in many cases, in 
general, the transfer of plotting positions provides a better estimation of the flow – 
return period relationship than the transposition of the standardised p.d.f. from donor to 
subject site. This reflects the fact that the plotting position method utilises more 
information from the short record, whereas the standardised flow method uses only the 
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MAM(D) value of the short record, and thus is highly dependent on the choice of donor 
station. 
 
Having established that the transfer of plotting positions provides the better estimation, 
the next logical step is to assess whether there are further controls on the estimation 
procedure, such as the influence of record length or catchment type. It is particularly 
important to assess whether a higher degree of correlation between the annual minima 
series of the subject site and its chosen donor results in improved estimation of the 
probability distribution. 
 
6.5.2 Influence of record length and catchment type 
Figure 6.13 shows the flow – return period plots for the three ‘short records’ generated 
from the flow record for 39028. As shown, each short record represents a different set 
of ‘observed’ annual minima values; the range of flow values in the observed set may 
influence the curve-fitting process. Here SR3 (10 years) contains few values below 34% 
of the mean flow, whilst SR2 contains more extreme values. As a result of these biases 
the curve derived for SR3 overestimates the flow for a given return period, whilst that 
for SR2 produces estimates of flow that are too low. The greatest level of accuracy 
occurs in the range 0 – 15 years; this range contains the MAM(D) and most of the 
observed flow values. 
 

 
Figure 6.13:  Flow – return period relationship at Station 39028 for D=1, using the 

short records SR1 (15 years), SR2 (15 years) and SR3 (10 years) 
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Figure 6.14 examines the level of error for each of the short records artificially 
generated for all catchments. The percentage error in the predicted flow values at 
different return periods are shown, in the case where D=1.  
 
Figure 6.14 indicates that the lowest errors are observed in the range 2-10 years, i.e. 
good estimates can be obtained for short return periods. Thereafter the error increases as 
the return period of interest increases. Note that this is still an improvement on the 
results obtained by re-scaling/ standardisation method.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.14:  Error for the flow – return period relationship for all artificial short  

record generated for D=1  
 
 
As only three analogue pairs have been considered it is impossible to make any 
statements regarding the influence of catchment type on the estimation procedure. 
However in Figure 6.14 the errors for the analogue pair 9001/9002 are the highest, 
despite being located on the same river, and showing the highest levels of correlation 
between the AMS of the donor catchment and the short records. This may reflect the 
flashy nature of the flow regimes in these catchments.  
 
 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1 10 100

Return Period (Years)

%
 E

rr
o

r

39028 SR1
39028 SR2
39028 SR3
21013 SR1
21013 SR2
21013 SR3
9001 SR1
9001 SR2
9001 SR3



 

R&D TECHNICAL REPORT W6-064/TR2   166

6.5.3: Influence of correlation between analogues 
The correlation between the annual minima series of the analogue pairs was discussed. 
The aim of this section is to establish whether there is a relation between the correlation 
and the error associated with the estimated probability distribution. Table 6.13 
compared the Spearman Rank correlation coefficients with the RMSE error for each of 
the short-record – donor site combinations.  
 
 
Table 6.13:  Comparison of correlation and RMSE 

Subject Site Short 
Record 

Donor Site Spearman 
Coefficient 

RMSE 

39028 SR2 39019 0.8 1.0 
39028 SR3 39019 0.69 1.3 
9001 SR1 9002 0.85 2.5 
21013 SR2 21015 0.69 0.8 
     
 
The results shown in Table 6.13 do not indicate a clear relationship between correlation 
coefficient and root mean square error. For instance if the plotting position derived QT-
T curves for 39028 SR2 and 9001 SR1 are compared (Figures 6.10 and 6.12) it is clear 
that greater accuracy is achieved by 39028. However of the two, 9001 shows the 
greatest level of correlation with its donor catchment. These inconsistencies indicate 
that the correlation value cannot be used to predict the level of accuracy that might be 
obtained in the predicted flow return period relationship. 
 
 
6.6 Concluding Remarks 
 
Of the two methods considered the transfer of plotting positions proved to be the most 
accurate at predicting the low flow frequency behaviour of the ‘short record’.  
 
The transposition of the standardised probability distribution from donor to subject site 
performed well where the donor record was that of an upstream (or downstream) 
gauging station. The error associated with the predicted curves varied according to the 
duration considered. For short durations (e.g. D=1, 7, and 30 days) the method was 
fairly accurate (no greater than ±10%) for return periods between 2 and 40 years. For 
higher durations of D=60 and 90 days the method was fairly accurate for a return period 
range between 2 and 25 years.  
The method based on transfer of plotting positions generally provided better predictions 
of the flow frequency curves for the ‘short record’. The main constraint of the method is 
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that the flow record of the donor catchment selected must overlap the data provided 
within the short record. However the accuracy of the method is highly dependent on the 
range of flows observed in the short record, and the period over which the short record 
was collected. This may result in the plotting positions for some annual minima being 
over or underestimated, which may influence the ability to accurately reproduce the 
flow-return period relationship at longer return periods.  
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7. SUMMARY AND CONCLUSIONS 
 
7.1 Methodology for Long Records 
 
7.1.1 Overview  
Models of the probability distribution functions of annual minima flows have been 
determined for 25 British Rivers. Based on theoretical considerations and previous work 
these models have been based on parameterising four candidate distributions: the 
Generalised Extreme Value distribution (GEV), the Generalised Logistic distribution 
(GL), the Generalised Pareto distribution (GP) and the Pearson Type III distribution 
(PE3).  
 
In each case the following methodology has been applied: 
 
i) Derive annual minima series for each flow record, based on D-day running 

averages with the duration, D, taking values of 1, 7,30,60,90,180 and 365 days. 
ii) Determine the degree of independence and the level of stationarity in the annual 

minima series.  
iii) Determine the probability of non-exceedance of each annual minimum using a 

Plotting Position formula 
iv) Determine the parameters of the four candidate distributions based on the flows 

and probabilities of the observed data 
v) Assess the descriptive ability of models by assessing the goodness of fit method 

between model and observed data  
vi) Assess the predictive ability of the models by deriving the corresponding flow-

return period relationship for each. 
 
Each element of the methodology was scrutinised as reported in Chapters 3 to 5. 
 
 
7.1.2 Time series analysis 
The results of the time series tests showed that the flow records can be assumed to be 
stationary, as no strong trends were observed in the data sets. The level of dependency 
in the data was also small, although plots of the partial auto-correlation function showed 
that annual minima values were correlated for a lag time of 2 years. The level of 
correlation increased as annual minima for periods of increased duration were 
considered.  
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7.1.3 Evaluation of plotting position formulae 
An evaluation of the different plotting position formulae that may be used to estimate 
the probability of non-exceedance of each observed flow was reported in Section 4.3. 
The Gringorten Plotting Position Formula and Hazen Formulae produced similar results 
whilst the Weibull plotting formula was found to be less robust. Accordingly, the 
Gringorten plotting position formula was chosen as the default for the analysis. 
 
A special plotting position for data series containing zero values (that advocated by 
Stedinger et al.,1993) was investigated. However, applying this formula for annual 
minima series containing observations of zero did little to improve the curve fitting 
procedure. 
 
 
7.1.4 Evaluation of fitting technique  
Two curve fitting techniques, L-Moments and Maximum Likelihood Estimation, were 
compared. For this test each was fitted to observed data using the GEV distribution. The 
descriptive and prescriptive abilities of each method were considered in this 
comparison. Both methods modelled the observed data to within acceptable goodness of 
fit parameters. However, although the prescriptive performance of the two methods was 
similar when short durations are considered, they became quite different when longer 
durations are considered.  Given that the Maximum Likelihood method does not provide 
‘better parameters’, whilst L-Moments codes are readily available for a number of 
distribution families, the L-Moment technique was chosen as the default for the study. 
 
 
7.1.5 Assessment of hydrometric errors 
 
Hydrometric errors 
The influence of hydrometric errors on annual minima series was studied by adding 
random errors to both the annual minima flow series and the original gauged daily flow 
records. Errors added to the annual minimum series have greatest influence on the shape 
of the tails of the probability distribution, where 0.92< p < 0.1. Errors in the gauged 
daily flow record have negligible effect on the flow – return period relationships, except 
where the duration considered is 1 or 7 days. Given that in the context of low flows, 
typical hydrometric errors are within a range of ±10%, it can be assumed that the 
influence of true hydrometric errors on low flow frequency estimation is generally 
negligible.  
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Discretization 
The effect of discretization of values within the annual minima series, which manifests 
in the form of steps in the probability plots and may result from poor measurement 
precision at low flows, was examined. Although annual minima frequency curves often 
show stepped features, the study has demonstrated that these are unlikely to be caused 
by discretization, and have little impact on the curve-fitting procedure. 
 
 
7.1.6 Evaluation of distribution families 
 
General approach 
Two approaches were used to evaluate which of the four distribution families is most 
suitable for representing the low flow probability behaviour of British rivers. In order to 
apply these methods, the parameters of each of the candidate distributions were 
estimated using the L-Moments method of parameter estimation, having used the 
Gringorten Plotting Position formula to estimate probabilities of the observed annual 
minima flow series.  
 
Firstly, goodness-of-fit tests were used to determine the level of agreement between the 
modelled and observed probability plots. The root mean square error was also 
considered. Secondly, the robustness of the flow-return period relationship derived from 
the modelled probability distribution function was also considered (i.e. whether sensible 
and accurate estimates of return period can be determined for flows levels in the 
extrapolated tail of the distribution, and vice versa). Unfortunately, as there are few 
benchmarks against which to assess the predictive ability of the flow-return period 
relationships, this latter method provides little opportunity to discriminate between the 
different distributions. 
 
Goodness of fit results 
The results of the Chi-square tests indicated that there was a satisfactory fit between all 
modelled and observed curves. In order to differentiate between distributions the size of 
the Chi-Square Statistic and RMSE were considered – the distribution giving the lowest 
Chi-Square and RMSE values was assumed to be the most appropriate. This showed 
that, for a given flow record, the most applicable distribution was dependent on the 
period of duration over which the annual minima were calculated. In general, the GEV 
and PE3 distributions performed better when short durations were considered, whilst the 
GP distribution performed better at longer durations (of 180 days or more). The 
catchment type also influenced which distribution was most applicable. High 
permeability catchments, such as Chalk catchments, were best represented by the GL 
distribution. Moderately permeable catchments (i.e. BFI between 0.4 and 0.7) were best 
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represented by the PE3 very short durations, by the GEV distribution at durations of 30 
and 60 days, and by the GP distribution at long durations. These differences are caused 
by averaging out of extremes when longer durations are considered. In impermeable 
catchments, many of the extreme events are lost when the duration considered is greater 
than 7 days. For such catchments the annual minima for a period of duration of 365 
days would reflect the range of variation of mean flow at the site rather than low flow 
behaviour. Thus whereas the GEV is better for short durations, at long durations a 
Pareto-like distribution is slightly more appropriate. In permeable catchments, extreme 
behaviour is always damped by the input of base flow into the river system.  
 
Flow – return period relationships 
Here the goal was to evaluate the level of the uncertainty of the flow estimates 
prescribed by the modelled curve for high return periods i.e. the robustness of the 
model. The errors associated with quantile estimates at high return periods and errors in 
return period atextreme low flow quantiles were considered. The ability to make 
sensible predictions regarding quantiles at high return periods was found to depend on 
the number of observations – for those series with more data points the observed range 
of return periods is wider, and therefore there is less uncertainty when extrapolating 
beyond the observed range. However, the differing characteristics of the different 
distribution families means that, although the forms of the corresponding flow – return 
period relationships are very similar around the median, they differ at the tails of the 
distribution (i.e. at high return periods). The size of the observed flows may also 
influence the shape of the curves. Models for some catchments (usually the low 
permeability catchments) were more prescriptive in the extrapolated upper tail of the 
probability distribution, whilst others (most permeable catchments) performed better in 
the extrapolated lower tail of the distribution.  
 
 
7.1.7  Low flow frequency and catchment characteristics 
The two factors most likely to influence the shape of the probability distribution are 
rainfall and catchment storage. The relationships between standardised annual average 
rainfall (SAAR) and Baseflow Index (BFI) and distribution form were examined. 
However SAAR and BFI are correlated for British catchments. This means that whilst it 
is possible to identify some trends, it is difficult to make any firm conclusions regarding 
them without conducting more detailed research.   
 
The form of the probability curve was found to depend on catchment type. The results 
of the goodness of fit and errors test showed that for low to mid BFI values, the PE and 
GEV distributions were favoured, whereas for catchments with high BFI rating the GL 
was favoured. PE3 and GL distributions are favoured by catchments with low SAAR, 
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whilst there is a trend towards the GEV distribution for catchments with high rainfall. 
When long durations are considered the GP distribution becomes more common at low 
SAAR. 
 
There are also strong trends within the form of the quantile-return period relationships. 
When expressed in terms of the AM/MAM(d) ratio the forms may be classified into two 
groups: those for high rainfall, low storage catchments (having steep gradients) and 
those for high storage, low rainfall catchments (having shallow gradients). 
 
  
7.2 Prototyping a Methodology for Short Records 
  
7.2.1 Methodology 
 
Possible methods for short records 
In an at-site analysis of low flow frequencies, it is unrealistic to expect to accurately 
predict the flow – return period relationship when the number of data observation is 
restrained, i.e. the flow record is short. Although a number of different regionalisation 
techniques were considered, given the project budget, a simple approach was adopted in 
which the probability plot at the subject site was derived from that at a donor station. 
Two variations of this method were considered: transposition of the standardised 
distribution function from the donor to the subject site, and transfer of plotting positions 
from donor to subject site. Both were applied to three analogue pairs. 
 
Transposition of standardised probability distribution 
This method was based on assuming that analogue pairs having very similar 
hydrological behaviour should have similar probability distributions, provided the flow 
values are standardised. The annual minima for the donor site were standardised by 
expressing them as a ratio of the MAM(D) value at the donor site. The flow - return 
period relationship for the subject site was derived by re-scaling that derived for the 
donor catchment using the MAM(D) value from the short record at the subject site.  
 
Transfer of plotting positions 
Assuming a similar hydrological behaviour, it is possible to calculate the probability of 
occurrence a flow minima occurring in any particular year by matching it with the 
plotting position of the corresponding year in the longer series derived for the donor 
catchment. Hence, the major constraint of this method is that the flow record of the 
selected donor catchment must overlap the data provided within the short record. 
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7.2.2 Evaluation of applied methodologies  
Of the two methods investigated the transfer of plotting positions proved to be the most 
accurate at predicting the low flow frequency behaviour of the ‘short record’.  
 
The standardised p.d.f. method performed well where the donor record was that of an 
upstream (or downstream) gauging station. The error associated with the predicted 
curves varied according to the duration considered. For short durations (e.g. D=1, 7, and 
30 days) the method was fairly accurate (no greater than ±10%) for return periods 
between 2 and 40 years. For longer durations, of between 60 and 90 days, the method 
was fairly accurate for a return period range between 2 and 25 years.  
 
The method based on transfer of plotting positions generally provided better predictions 
of the flow frequency curves for the ‘short record’. The main constraint of the method is 
that the flow record of the donor catchment selected must overlap with the short record. 
However, the accuracy of the method is highly dependent on the range of flows 
observed in the short record, and the period over which the short record was collected. 
This may result in the plotting positions for some annual minima being over or 
underestimated, which may influence the ability to accurately reproduce the flow-return 
period relationship at longer return periods. Fixing the plotting positions to deal with 
outliers did not improve the prediction of the frequency for the short record. 
 
 
7.3  Guidance Document 
 
The recommendations for the analysis of long records are summarised in the 
accompanying guidance document (Zaidman et al., 2002). In order to encourage a 
greater level of consistency in probability estimates for low flow events in the UK, a 
single parametric approach for low flow frequency analysis of annual minimum flows is 
advocated, based on the use of the Pearson Type III distribution. Emphasis is also 
placed on the uncertainties associated with frequency analysis, both in general, and in 
respect to the methodology outlined here.  
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APPENDIX 1:   
THEORETICAL ASPECTS 
 
1.1 Extreme Value Theory 
 
The subset of statistical theory, known as "extreme value theory relates to the statistical 
behaviour of maxima and minima of large collections of (not necessarily independent) 
random variables. This theory strongly suggests that the GEV (Generalised Extreme 
Value) family of distributions will be appropriate for this type of data. The following 
discussion, given in terms of maxima (since this is the case usually treated in the theory), 
outlines the main points of extreme value theory.  
 
Suppose ZM is defined for a sample size M, by 
  ZM =max(X1, ... ,XM), (A1.1) 
 
where {X1, ... ,XM} is a collection of random variables such that the notion of an increasing 
sample size is appropriately defined. The distribution function FM(z) of ZM is then such 
that there are sequences of constants aM and bM , for which the re-scaled random variable 
YM has a distribution function that is arbitrarily close to one of the standardised GEV 
distributions. The random variable YM is defined by:  
 
  YM = (ZM-aM)/bM, 
 
where  
  Pr{ YM ≤ y } = Pr{ ZM ≤ bMy +aM } = FM( bMy +aM ), 
      → exp{ - (1- ky)+

1/k } as M → ∞. (A1.2) 
 
Here k is the shape parameter of the GEV distribution and the case k = 0 is interpreted via 
the limit as k → 0: 
  (1- ky)1/k = exp{ (1/k) log(1 - ky) }, 
     = exp[ -(1/k) { ky + (ky)2/2 + ...} ], 
     = exp[ -y - ½ky2 - ...], 
     → exp(-y) as k → 0. 
Note also that the subscript "+" in expression (A1.2) has the following interpretation: 
  x+ = x, if x ≥ 0, 
   = 0, if x < 0. 
 
The result (A1.2) holds given certain conditions on the basic random variables {X1, ... 
,XM}. The random variable need not be independent and identically distributed. However  
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they must satisfy conditions which ensure that the variables approach being independent as 
the distance between them in the sequence grows and which ensures that the maximum 
value is not dominated by one random variable (or a finite subset of random variables) in 
the sequence. In addition, conditions are required on the distribution functions. These 
condition are, firstly, to ensure that there is no discrete component at the upper bound of 
the random variables which would lead to the limiting distribution being concentrated at 
that point and, secondly, to ensure that the distribution function is not 'log-tailed'.  
Thus equation (A1.3) is acceptable while (A1.4) is not.  
  FX(x) ~ 1 - x-p    as x → ∞  (p>0)   
 (A1.4) 
  FX(x) ~ 1 - (log x)-p as x → ∞  (p>0) (A1.5) 
 
One aspect of the statistical theory mentioned above is that if the properties of the basic 
random variables {X1, ... ,XM} are known, then appropriate values for the sequences of 
constants aM and bM can be found (these are not uniquely determined), and the value of the 
shape parameter k can be fixed. This aspect of the theory is of little use since the required 
properties are not known. However, the result implies that a single random variable Y, 
which is constructed as the maximum of an effectively large number of underlying data-
values, should be such that there will be constants a and b for which (Z-a)/b is close to 
being a standard GEV distribution. This means that  that Z can be modelled as having a 
GEV distribution with three unknown parameters a,b and k. 
 
A second set of theoretical results, derived by Cohen (1982), indicates that, even if the 
shape parameter of the asymptotic distribution can be determined theoretically, it may still 
be best to treat it as being unknown when actually fitting distributions in applications. 
These theoretical results imply that a better sequence of approximations to the distribution 
function can be obtained by allowing the shape parameter k in expression (A1.2) to vary 
with M, as well as the scaling parameters a and b: thus, when fitting a distribution, k 
should not be set to its asymptotic value. 
 
For random variables related to minima, the above discussion can be applied to minus one 
times the required random variables. This leads to the conclusion that if Z is constructed as 
the minimum of an effectively large number of underlying data-values, then there should 
be values a and b such that 
  FZ(a+bz) ≈ 1 - exp{ - (1+ kz)+

1/k }   (A1.6) 
 
where the right hand side of this expression is the distribution function of the standardised 
GEV distribution for minima.  
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1.2 Graphical Estimation with 2 or more Parameters.  
 
Graphical techniques can also be applied for more general types of distribution beyond 
those in the location-scale class. For example, suppose that the idea of the standard 
distribution FS, above, is extended to allow it to have a "shape" parameter γ. Then the 
distribution and quantile functions are FS(x; γ) and xS(p; γ), respectively. The idea is to 
form an initial estimate of the extra parameter γ and then to proceed as with the one-
parameter case to estimate the parameters α and β, substituting the estimated value of γ 
where required. One approach is to create a statistic whose distribution does not depend 
upon α and β, but only upon γ and to use this to specify the estimate for γ. In particular, let 
i,j and k be any three integers satisfying 1≤i<j<k≤N: then, with the location-scale 
assumption: 
 
 {x(k)-x(j)}/{x(j)-x(i)} ≈ {xS(pk; γ)-xS(pj; γ)}/{xS(pj; γ)-xS(pi; γ)}. (A1.7) 
 
Then the estimate of γ is specified to be the value at which exact equality occurs in 
equation (A1.7): this value may be found either graphically, by plotting the right hand side 
of (A1.7) as a function of γ, or by a simple root-finding search procedure. The values 
chosen for i,j and k should be such that x(j) is close to the middle of the ranked values and 
x(i) and x(k) are close to, but not right at the lower and upper ends of the range: a possible 
choice would be to take them to be near the 20% and 80% points of the ordered sample. 
 
 
1.3 The Method of  Maximum Likelihood  
 
The first step in defining the maximum likelihood estimator for a problem is to define the 
likelihood function for the recorded observations. This arises directly from the statistical 
model being fitted, and can be determined for independent or dependent data. If the 
observations are of essentially continuous random variables the likelihood function is 
given by the probability density function evaluated at the observations: thus 
   l(θ) = f (x1, x2, ... , xM). (A1.8) 
 
Where the model has been modified to take into account discretization effects or to 
represent the presence of zero flows, the likelihood function adopted should also relate to 
the modified model. For example, for a model with parameters denoted by θ applied to 
observations of random variables (X1, X2, ..., XM), which happen to have taken the 
essentially discrete values (x1, x2, ... , xM) the likelihood function l(θ) is given by 
  l(θ) = Pr( X1 = x1, X2 = x2, ... , XM=xM). (A1.9) 
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While it may seem that the definitions in Equations (A1.8) and (A1.9) are on 
incommensurate scales, since the first involves a probability density and the second an 
ordinary probability, they are similar since in both cases they represent the derivative of 
the probability measure with respect to its supporting measure. Similarly if, for a particular 
estimation problem, there are grounds for restricting the parameters to obey certain 
constraints, then such constraints should be used to restrict the range of parameters over 
which the likelihood function is considered. 
 
It is usual to work with the logarithm of the likelihood function, the log-likelihood 
function L(θ), given by 
  L(θ) = log{ l(θ) }. (A1.10)  
There are in fact arbitrary factors involved in the definition in Equation (A1.10), related to 
the possibility of changing the units of measurement in which each observation is 
recorded: these factors appear as additive constants in Equation (A1.10) and are 
unimportant. In fact, it is possible to drop any collection of terms that do not depend upon 
the unknown parameters from an expression for the log-likelihood. In writing down an 
expression for the log-likelihood function of a model, it is important to keep track of the 
range of validity of the expressions. For example, if the model is such that the observations 
{xi} are bounded below by a parameter, b, then the likelihood function will be zero for 
values of b greater than the smallest observation. In this case, the interesting range for the 
likelihood or log-likelihood functions would be b < min {xi}. If, for a particular estimation 
problem, there are grounds for restricting the parameters to obey certain constraints, then 
such constraints should be used to restrict the range of parameters over which the 
likelihood function is considered. 
 
The maximum likelihood estimate for a particular problem is defined to be the value that 
maximises the likelihood function, or equivalently, the log-likelihood function. Here the 
maximisation of the log-likelihood function is restricted to the region of the set of 
parameters defined by any constraints on the parameter values derived from either 
modelling or more general considerations. The most directly interpretable justification for 
maximum likelihood estimation as a general estimation method can be framed as follows. 
Varying the parameters of the model can be thought of as shifting and changing the 
horizontal scale of the probability density function that is derived from the model. A 
"good" model should be one which has a high density function in regions of the 
observation space where there many observed data points and a low density where there 
are few data points. The objective function used to define maximum likelihood estimation, 
in a sense, measures the merit of a given set of model parameters as a match to the 
observed data. This merit value can be thought of as having two effects: to reward models 
which have a high density function at most of the observed data points and to penalise 
models which have an extremely low, or zero, density function at any of the observed data 



 

R&D TECHNICAL REPORT W6-064/TR2   186

points. In contrast to other objective-function based methods of estimation, the objective 
function to be optimised for maximum-likelihood estimation is not based on constructing a 
distance between a set of model-related quantities and a "target" set derived from the 
observed data, for which a zero-distance would represent a "perfect fit". 
 
In some circumstances, it is convenient to treat maximum likelihood estimation as being 
equivalent to solution of the likelihood equations. For this approach to be applicable, it is 
necessary that the likelihood function should be differentiable with respect to the 
parameters. If this applies, then the maximum likelihood estimate is potentially defined as 
the solution to the likelihood equations: 
  L′() = 0, (A1.11) 
where L′(θ) denotes the (vector of) derivatives of the log-likelihood function. While this 
looks relatively simple, in order to use the likelihood equations to define the maximum 
likelihood estimate, it is strictly necessary to ensure: 
(i) that a given solution of Equation (A1.11) corresponds to a maximum and not to a 

minimum or other turning point of the function; 
(ii) that the given solution lies inside the allowable range of parameters; 
(iii) that there are no points on the boundary of the range of parameters with a larger 

value of the likelihood function. 
However the likelihood equations are useful because, in certain cases, they can be 
manipulated so as to provide a simple, explicit expression for the maximum likelihood 
estimate. 
 
Various problems can arise when attempting to apply maximum likelihood estimation in 
practice. These can be categorised as follows: 
 
Non-existence of maximum.  
Here the allowable region of the parameter space is not closed and, for any parameter 
vector within the set, it is always possible to find another vector (still in the set) for which 
the likelihood function is higher. In cases where a numerical search procedure was being 
applied to maximise the likelihood function, this problem might lead to trial values of the 
parameters drifting off to infinity in one or more dimensions. There can also be situations 
in which the likelihood function continues to grow as the parameter vector approaches a 
finite boundary point of the allowable parameter region. In some instances the problem can 
be overcome by effectively forming the allowable parameter region into a closed set: this 
involves extending the formulation of the model so that points on the boundary of the 
parameter region can be represented within the model, possibly as special forms of the 
model. There are many well-known cases in which a particular distributional form is a 
special limiting case of a more general distribution that has an apparently rather different 
structure: for example, the exponential distribution (which has a finite non-zero density at 
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zero) occurs as the limiting form of two classes of gamma distributions - those with zero 
density at the origin and those with infinite density at the origin.  
  
Several local maxima. 
Here, cases in which the objective function takes identical values at different local maxima 
are excluded, being dealt with in the next paragraph. Excluding such cases means that the 
maximum likelihood estimate is well defined (as the global maximum), so that from a 
theoretical stand point no problem arises. There can however be practical problems 
relating to finding the maximum likelihood estimate. If a numerical search procedure is 
used, a strategy designed to overcome this possible problem may need to be devised 
whereas, if an algebraic derivation of the maximum likelihood estimate is attempted, this 
would lead to several candidate solutions for which further tests would need to be made. 
 
Several equal-valued maxima. 
The problem of having several local maxima at which the likelihood function takes the 
same value is commonly associated with the problem of parameter identifiability and this 
can usually be avoided by placing suitable restrictions on the parameters. For example, 
suppose that the model is that observations are independent and identically distributed 
from a two component mixture model, based on a known standardised density function g, 
and with an unknown mixing proportion p. Then the modelled density for an individual 
observation would be 
  f(x) = p b-1 g{ (x-a)b-1} + (1-p) d-1 g{ (x-c)d-1}. (A1.12) 
 
It is clear that, for any parameter vector θ0 = (p0, a0, b0, c0, d0)T, the model with parameter 
vector θ1 = (p1, a1, b1, c1, d1)T will have the same likelihood value as that for  θ0 if  
  p1 = (1-p0) ; a1=c0 ; b1=d0 ; c1=a0 ; d1=b0. 
 
This problem can be overcome by imposing an appropriate constraint on the parameters, 
for example, a ≤ c. Note that this constraint does not entirely overcome all problems in this 
example, since the density is identical for all values of p if a =c and b=d. 
 
Non-distinct maxima. 
A problem related to that in the last paragraph can arise if the likelihood function does not 
have distinct maxima: there may be a set, with dimension larger than zero, of points which 
share the same likelihood value and for which no point can be found having a larger 
likelihood. Such a problem is again related to parameter identifiability. It can arise if there 
are insufficient data to estimate the full set of model parameters. Typically, one requires 
there to be at least one data point for each separate model parameter, and there is an 
implication that the problem will be overcome once enough data are accumulated. 
However, as in the example at the end of the previous paragraph, there can be cases in 
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which a particular structure of model is not identifiable and no amount of extra data will 
make it so. Thus, in the case of the mixture model in which the sub-populations are 
identical, Equation (A3.5) with a=c and b=d, the parameter p is not identifiable: the 
likelihood function would be constant for all values of p. 
 
Methods for finding maximum likelihood estimates can be categorised as follows: 
 
(a) Graphical or tabulation methods. 
If the dimension of the parameter space to be explored is only one or two dimensional, it 
can be convenient to effect the optimisation by constructing a plot of the function, either as 
a line-plot or as a contour plot, and then judging visually the  location of the optimum. 
Underlying this approach is the evaluation of the likelihood function on a regular grid 
effectively covering a reasonable part of the parameter space, so that the possibility of 
there being multiple optima, or other problems, is being considered at the same time. 
While such "non-technical" approaches are not often adopted (more fully automatic 
methods are preferred), plots of the likelihood function can be extremely useful since they 
implicitly contain information about the uncertainty associated with the estimates of the 
parameters. In particular, a good confidence region for the parameters can be constructed 
as the region of parameters for which the values of the log-likelihood function L(θ), satisfy 
the following closeness bound with respect to the value at maximum likelihood estimate: 
  L(θ) > L() - ½ χ2(p;d), (A1.13) 
 
where χ2(p;d) denotes the quantile function at probability p of the chi-squared distribution 
with d degrees of freedom and where d is the dimension of the parameter space being 
optimised (i.e. d = 1 or 2 for line-plots or contour plots respectively). A 95% confidence 
region is therefore given by L(θ) > L() - 1.92, or by L(θ) > L() - 3.00, for the 1- or 2-
dimensional cases, respectively. If a line-plot or contour-plot of the objective function has 
already been prepared, it is clearly easy to read-off from this the interval covered by the 
confidence region. 
 
(b) Numerical procedures for optimisation. 
Various widely available subroutine-libraries contain procedures for searching for the 
optimum of a objective function. The more sophisticated of these can deal with the 
imposition of bounds on the parameter values as part of the optimisation problem. The 
requirements of these procedures for problem-specific programming can range from 
supplying just the function-value at any given set a parameters, to supplying the function-
value together with first and second derivatives. Certain routines may automatically 
provide for a search for a global optimum. Where a procedure implements a search 
procedure based on a limited local search for the optimum, it would be best to adopt a 



 

R&D TECHNICAL REPORT W6-064/TR2   189

scheme in which the local search is started at a number of different locations, unless 
experience with similar problems has shown this to be unnecessary. 
 
(c) Numerical procedures for root-finding. 
As for numerical optimisation, standard subroutine-libraries often contain procedures for 
root-finding: these could be applied to the likelihood equations as a means of finding the 
maximum-likelihood estimates. However, as a general strategy, this course is to be 
avoided since, in order to check whether a root corresponds to a local maximum, or to 
check which of a number of potential solutions gives the largest likelihood, values of the 
log-likelihood function need to be evaluated. One of the apparent benefits of the root-
finding approach is that, after a certain amount of algebraic manipulation, the likelihood 
equations can often be put into a form considerably simpler than the log-likelihood 
function, and thus less programming effort may be required. This benefit is eliminated if 
the log-likelihood must be evaluated for checking purposes. 
 
(d) Algebraic solutions. 
For various standard distributing-fitting problems it is possible to manipulate the likelihood 
equations in order to derive a set of explicit expressions for the maximum likelihood 
estimates. While this is, of course, extremely convenient, such explicit solutions are 
typically not available for less standard problems. However, it would be sensible, when 
faced with a new problem, to attempt to find such a solution since, even if unsuccessful 
overall, the work involved can contribute to reducing the computational complexity of the 
work required in applying other methods (for example, by reducing the dimension of the 
parameter space to be searched by numerical optimisation): see the next paragraph. 
 
(e) Mixed approaches. 
As noted above, it is common to manipulate the likelihood equations in order to arrive at a 
partial solution to the overall problem. Thus various steps involving combination and 
cross-substitution between the individual likelihood equations are attempted, with the 
intention of reducing the number of "free" parameters. Then, either a numerical 
optimisation or a numerical root-finding procedure is applied. The steps of combination 
and cross-substitution between the equations can be rather uncontrolled, and it may be 
better practice to adopt the following more formal procedure. It is convenient to introduce 
the idea of a profile likelihood here. Suppose that the overall parameter vector, θ, can be 
divided into two parts, α and β. Suppose that the likelihood function is such that, taking α 
as having a fixed value, it is easy to find the value of β which maximises the likelihood 
function: this would yield the function (α), representing the maximum likelihood estimate 
of β for the given value of α. If the overall log-likelihood function is denoted by L(α, β), 
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 the profile log-likelihood function for α, LP(α), is given by 
  LP(α) = L(α,(α)). (A1.14) 
 
Thus the idea is to substitute, into the log-likelihood function, the expression for β which 
would maximise the log-likelihood for a fixed value of α, and then to maximise the result 
as a function of α. The advantage of the approach via profile likelihoods is that these 
functions can be treated in much the same way as the ordinary likelihood function. In 
particular, the approach to obtaining confidence regions outlined under (a) above can be 
applied to the profile likelihood: in this case it would provide a confidence region for α. In 
this case, when Equation (A1.14) is applied, the value for the degrees of freedom, d, is the 
dimension of the reduced parameter vector α. If the profile likelihood approach can be 
applied to reduce the number of free parameters to only one or two, then plotting the 
profile likelihood as a line-plot or contour-plot can provide a convenient way of checking 
from possible multiple local optima, or others of the problems described above. 
 
As mentioned at the beginning of this sub-section, results are available from the statistical 
theory of maximum likelihood estimation which deal with the properties of these 
estimates. These results show that, provided that certain conditions hold and provided that 
the sample size is large enough, and assuming also that the model being fitted actually 
does hold, the maximum likelihood estimates will be close to the notional true values of 
the parameters, θ0. Furthermore, the errors in these estimates, -θ0, can be treated as if this 
vector were (multivariate) Normally distributed with zero mean and covariance matrix 
equal to the inverse of the observed precision matrix j(), where 
  j(θ) = - L′′(θ)        (A1.15) 
 
and where L′′(θ) denotes the matrix of second derivatives of the log-likelihood function 
and where, specifically, j(θ) is evaluated at the maximum likelihood estimate . This result 
can be used to create confidence regions for the parameter vector and for subsets of them, 
and these can be extended to deal with non-linear functions of the parameters. Although 
such regions are undoubtedly convenient, better statistical performance can be obtained by 
making use of the result that  
  { L() - L(θ0) } ~  ½ χ2(d), (A1.16) 
 
where "~" means "is distributed as" and where χ2(d) denotes a random variable from the 
chi-squared distribution with d degrees of freedom. This result is the basis of the 
confidence region suggested in Equation (A3.6) and it can be applied also to the profile 
log-likelihood function to derive confidence regions for subsets of the parameter vector, as 
noted following Equation (A1.14). The distributional results quoted here are at best 
approximate, where the approximation error will be reduced as the sample size becomes 
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larger. As noted, various conditions are needed to justify these results, among which are 
the requirement that the number of parameters in the model should not increase as the 
sample size increases and that the true parameter value, θ0, should not lie on the boundary 
of the parameter space being searched. While other conditions are also required for a full 
theoretically-based justification, it is usually assumed that the results can be applied 
provided that the maximum-likelihood estimates can be found without problems of the 
kind outlined above related to solving the optimisation problem numerically. 
 
 
1.4 Approaches for Estimating Equations 
 
Estimating equations are used in the range of techniques that can be broadly classed as 
‘exact –matching ‘ techniques. Suppose S denotes a vector of sample-derived estimates of 
statistical properties of the underlying population, and θ is the vector of parameters 
indexing the family of distributions.  If s(θ) denotes the vector-function describing how the 
values of these properties for the family of distributions vary with θ, the estimated 
parameter values are defined to be equal to the solution to the set of estimating equations: 
  S = s(θ). (A1.17) 
 
Here, it is understood that the solution sought is one that lies within an allowable set of 
parameter values. There are two main ways of arriving at a set of estimating equations 
appropriate to a particular problem. Either a set of sample statistics in the vector S, 
would be used to deduce a corresponding vector of "population-values", s(θ), or given 
the vector s(θ), a reasonable set of sample statistics, S, would be sought, which in some 
sense measure the same sort of properties as measured by s(θ).  
 
In the first type of approach, starting with S, the function s(θ) can be given a formal 
specification in the following ways. One can consider the sample statistic in the vector S as 
a function of the sample size, N say, and of the vector of observed data X=(X1, X2, ... , 
XN)T. In this sense, S is a function of the sample size N and the data-values X: S = SN(X). 
One can consider evaluating the vector of statistics S for a sample of data Z(θ) which 
arises from a given member, indexed by θ, of the family of distribution being fitted: the 
value of S in this case would be S = SN{Z(θ)}. Here, N is again a sample size, but this need 
not be the same as that for the original sample. In one variant of the approach, it is 
convenient to consider larger and larger samples sizes in order to define the "population 
value" of the sample statistics for the selected member of the family of distributions. Thus, 
  s(θ) = limN → ∞  SN{Z(θ)}, (A1.18) 
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where the limit is assumed to exist in an appropriate probabilistic sense. In some situations 
it may be necessary to introduce a scaling factor, as a function of the sample size N, in 
order to ensure that the limit in Equation (A1.18) has a non-trivial value. A second variant 
of the approach defines s(θ) by replacing the definition in Equation (A1.18) with one 
which considers only a fixed sample size and which uses a measure of central location to 
define the "population value": for example, 
  s(θ) = sN(θ) = E [ SN{Z(θ)} ]. (A1.19) 
 
Although alternative measures of location (such as the median) might be used, these are 
considerably more difficult to work with than the expectation, and hence are not much 
used in the present context. As made explicit in Equation (A1.19), this approach leads to 
the right hand side of Equation (A4.1) being formally a function of the sample size. Both 
of these variants rely on the argument that S is "a good estimate" of s(θ) for their intuitive 
justification. Hence, if one believes that the "unbiased" derivation via Equation (A1.19) 
means that S is a better estimate of sN(θ), from that equation, than it is of s(θ) from 
Equation (A1.17), one might hope that the parameter estimates obtained from the 
"unbiased" estimating equations would be correspondingly better. However, this is not 
necessarily true, and the parameter estimates would, in general, not themselves be 
unbiased. Where several variants of similar sets of estimating equations are available, these 
would usually need to be compared on the basis of simulation experiments. 
 
The second type of approach, starting with s(θ), can arise in two ways. The first of these 
occurs as a follow-up to the first type of approach, in which one has an initial S and s(θ) 
and seeks an improved version of S, S* say, with "better" properties as an estimate of s(θ). 
Such improved versions of S can sometimes be constructed in straightforward ways. For 
example, one might set S*= kS and choose the factor k according to some requirement: that 
S* should be unbiased, or that S* should have minimum mean square error. Alternatively, 
if S is unbiased, one might construct S* as a U-statistic derived from S (Cox & Hinkley, 
1974). This leaves the case where one starts with s(θ) and requires to form an estimate S 
for this vector. If this were always easy to achieve, one would just start with s(θ)=θ. 
Instead, the vector s(θ) is often specified as a functional of the candidate distribution 
function: 
  s(θ) = s[ F( . ; θ) ].      (A1.20) 
 
For example, vector s(θ) might contain as individual elements, measure of location, spread 
and shape (e.g. mean, variance and skewness). Then one possible sample statistic can be 
derived by applying this functional to the sample distribution function: 
  SN  = s[ FN( . ) ].      (A1.21) 
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Where the functional can be expressed in the form of an expectation of some function of 
the data-values, this can lead to a direct sample-average expression for the corresponding 
sample statistic. Once an initial estimate is available, it might be possible to improve it in 
the ways indicated at the beginning of this paragraph. However, it should be remembered 
that, as indicated elsewhere in this section, "optimal" properties of the sample estimates S 
are not necessarily carried over into "optimal" properties for the parameter estimates, nor 
into "optimal" properties for other quantities being estimated. 
 
For certain purposes it can be helpful to slightly extend the notion of estimating equations, 
as described above, to encompass estimating functions. In the notation used above, the 
estimating equations can be written in the form 
  S(X) = s(θ), (A1.22) 
which makes explicit the data-dependence of the left-hand-side and the parameter-
dependence of the right-hand-side. The slightly extended version of this is to consider a 
vector-valued estimating function g(x,θ) and to define the parameter estimates as being the 
solution of the equations 
  g(X, θ) = 0. (A1.23) 
Equations of this form can be called estimating equations without too much confusion. 
 
It is clear that a necessary condition for the estimating equation approach to provide a 
reasonable estimation procedure is that the number of different statistical properties used in 
the procedure, which in turn specifies both the dimension of S and the number of separate 
equations in an element-by-element expansion of Equation (A1.20), must be the same as 
the number of parameters being estimated. Of course, this condition is not enough to 
ensure that the set of equations does have a solution or that, if it does, the solution is 
unique. Similar conclusions apply to estimating functions. 
 
To a considerable extent the choice of which statistical properties are used to construct 
the estimating equations is rather arbitrary. The choice for S or s(θ) represents a set of 
statistics which will be "reproduced" by the estimation technique: for example, samples 
generated from the fitted family of distributions would have properties exactly matching 
those of the observed data sample, in either a large-sample sense (if the approach via 
Equation (A1.18) is used), or in an expectation sense (if the approach via Equation 
(A1.19)) is used). Hence it can be argued that the statistics used should be "important" 
ones to be reproduced in some practical sense, reflecting what the fitted distribution will 
be used for. However, in practice, this type of argument does not tend to be helpful in 
choosing statistics for use in the estimating equations. 
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APPENDIX 2:  
SUMMARY OF GAUGING STATION AND CATCHMENT 
CHARACTERISTICS 

 
Table A2.1: Suitability of ‘AA’ graded stations 

Station River Gauge Name 
Measuring 
Authority 

Suitability 
Measuring Authority’s  
Comment (if received) 

      

6008 Enrick Mill of Tore SEPA-North   

7001 Findhorn Shenachie SEPA-North   

7002 Findhorn Forres SEPA-North   

8006 Spey Boat o' Brig SEPA-North Suitable Artificial influence by major upper catchment transfer 
estimated at 15 m3/s over the year (Q95 18.75). 

8009 Dulnain Balnaan Bridge SEPA-North   

9001 Deveron Avochie SEPA-North Suitable Influence 0% of MF and 2% of Q95 

9002 Deveron Muiresk SEPA-North Suitable Influence 0% of MF and 1% of Q95 

9003 Isla Grange SEPA-North Suitable Artificial influence (discharge from wastewater plant) would 
be 1% of MF and 3% of Q95. 

11002 Don Haughton SEPA-North   

11003 Don Bridge of Alford SEPA-North   

12001 Dee Woodend SEPA-North   

12003 Dee Polhollick SEPA-North   

12005 Muick Invermuick SEPA-North   

12006 Gairn Invergairn SEPA-North Suitable Artificial Influence by small upstream abstraction (15l/s) 
would be o% MF and 2% Q95 

14001 Eden Kemback SEPA-North Suitable CEH assessment is reasonable,  support grade A assessment 

17005 Avon Polmonthill SEPA-East Suitable Support grade A classification, influence 12% MF, 14% 
Q95 

18001 Allan Water Kinbuck SEPA-East Suitable Support grade A classification 

18005 Allan Water Bridge of Allan SEPA-East Suitable Support grade A classification 

18008 Leny Anie SEPA-East Suitable Support grade A classification 

19002 Almond Almond Weir SEPA-East Suitable Support grade A classification 

19004 North Esk Dalmore Weir SEPA-East Suitable Support grade A classification 

19011 North Esk Dalkeith Palace SEPA-East Unsuitable Actually grade B, due to control being a natural rock, gravel 
bar which is insensitive at low flows  

20001 Tyne East Linton SEPA-East Suitable Support grade A classification 

20003 Tyne Spilmersford SEPA-East Suitable Support grade A classification 

20005 Birns Water Saltoun Hall SEPA-East Suitable Support grade A classification 

20007 Gifford Water Lennoxlove SEPA-East Suitable Support grade A classification 

21006 Tweed Boleside SEPA-East Suitable Suitable for use 

21012 Teviot Hawick SEPA-East Suitable Suitable for use 

21013 Gala Water Galashiels SEPA-East Suitable Suitable for use 

21015 Leader Water Earlston SEPA-East Suitable Suitable for use 

21017 Ettrick Water Brockhoperig SEPA-East Suitable Suitable for use 

21018 Lyne Water Lyne Station SEPA-East Unsuitable Unsuitable, compensation discharges used to augment low 
flows 

21022 Whiteadder 
Water 

Hutton Castle SEPA-East Unsuitable Unsuitable, compensation discharges used to augment low 
flows 

21023 Leet Water Coldstream SEPA-East Unsuitable Algal growth occurs in periods of low flow, resulting in 
marked diurnal variation in river levels.  

21024 Jed Water Jedburgh SEPA-East Suitable Suitable for use  
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Station River Gauge Name 
Measuring 
Authority 

Suitability 
Measuring Authority’s  
Comment (if received) 

21027 Blackadder 
Water 

Mouth Bridge SEPA-East Suitable Suitable for use 

22001 Coquet Morwick EA –North East   

22009 Coquet Rothbury EA –North East   

23004 South Tyne Haydon Bridge EA –North East   

23006 South Tyne Featherstone EA –North East   

23008 Rede Rede Bridge EA –North East   

23011 Kielder Burn Kielder EA –North East   

24004 Bedburn Beck Bedburn EA –North East   

25006 Greta Rutherford Bridge EA –North East   

27034 Ure Kilgram Bridge EA –North East   

27041 Derwent Buttercrambe EA –North East   

27049 Rye Ness EA –North East   

27050 Esk Sleights EA –North East   

27054 Hodge Beck Cherry Farm EA –North East   

27055 Rye Broadway Foot EA –North East   

27057 Seven Normansby EA –North East   

28008 Dove Rocester Weir EA -Midlands Suitable Suitable for use 

28031 Manifold Ilam EA -Midlands Suitable Suitable for use 

33014 Lark Temple Anglian   

33019 Thet Melford Bridge EA- Anglian   

34002 Tas Shotesham EA- Anglian   

34003 Bure Ingworth EA- Anglian   

34006 Waveney Needham Mill EA- Anglian   

34007 Dove Oakley Park EA- Anglian   

36002 Glem Glemsford EA- Anglian   

36005 Brett Hadleigh EA- Anglian   

36007 Belchamp 
Brook 

Bardfield Bridge EA- Anglian   

38022 Pymmes Brook Silver St, 
Edmonton 

EA -Thames Unsuitable Not suitable, < 80% urban, baseflow rising steadily due to 
artificial influences 

39016 Kennet Theale EA -Thames Suitable Very consistent low flow behaviour 

39028 Dun Hungerford EA -Thames Suitable Consistent low flow behaviour 

39054 Mole Gatwick Airport EA -Thames Unsuitable Not suitable, current rating is underestimating flows and a 
side weir was built in 1984. 

42010 Itchen Highbridge + 
Allbrook 

EA -Southern Unsuitable Drowns out in summer due to weed growth 

43008 Wylye South Newton EA – South 
West 

Unsuitable  Significantly impact by abstraction, impact > 10%. 

47008 Thrushel Tinhay EA – South 
West 

  

47009 Tiddy Tideford EA – South 
West 

  

48010 Seaton Trebrownbridge EA – South 
West 

  

51001 Doniford 
Stream 

Swill Bridge EA – South 
West 

  

52003 Halse Water Bishops Hull EA – South 
West 

Unsuitable Wide flumes so probably insensitive at low flows  

52004 Isle Ashford Mill EA – South 
West 

Unsuitable Weed growth resulting in uncertainty about the calculated 
flows 

52010 Brue Lovington EA – South 
West 

Unsuitable Weed growth resulting in uncertainty about the calculated 
flows 
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Station River Gauge Name 
Measuring 
Authority 

Suitability 
Measuring Authority’s  
Comment (if received) 

53005 Midford Brook Midford EA – South 
West 

Unsuitable Weed growth resulting in uncertainty about the calculated 
flows 

53006 Frome 
(Bristol) 

Frenchay EA – South 
West 

Unsuitable Possible weed growth 

53013 Marden Stanley EA – South 
West 

Unsuitable Possible weed growth 

53026 Frome 
(Bristol) 

Frampton 
Cotterell 

EA – South 
West 

Unsuitable Wide flume for size of low flow so probably insensitive at 
low flows 

54025 Dulas Rhos-Y-Pentref EA -Midlands Unsuitable Unsuitable – gravel buildup! 

54034 Dowles Brook Dowles EA -Midlands Suitable Suitable for use 

55013 Arrow Titley Mill EA - Wales Unsuitable Unsuitable, large PWS abstraction with high daily rate 
which can take up to 52 days per year. Large influence at 
medium-low flows. 

55014 Lugg Byton EA – Wales Suitable Influence about 16% if licensed rates used, but suitable for 
use as actual abstractions are much less than licensed 

55016 Ithon Disserth EA – Wales Suitable Natural upland catchment – minimal artificial influence 

55026 Wye Ddol Farm EA - Wales Suitable Natural mountain upland catchment – minimal artificial 
influence 

55028 Frome Bishops Frome EA - Wales Unsuitable Unsuitable, impact between 3.5% (current annual rates) and 
15% maximum licensed daily rates. 

55029 Monnow Grosmont EA – Wales Unsuitable Unsuitable, large PWS boreholes and SI in lowland part.  

56013 Yscir Pontaryscir EA – Wales Suitable Natural catchment – minimal artificial influence 

56015 Olway Brook Olway Inn EA – Wales Unsuitable Too much artificial influence at low flows.  

58005 Ogmore Brynmenyn EA – Wales Unsuitable Trend due to cessation of mining? Silt build up at low flows 

58006 Mellte Pontneddfechan EA - Wales Unsuitable Ystradfellte Reservoir intercepts about 20% of the flow, 
which have significant impact on flow regimes during 
autumn refill. 

58009 Ewenny Keepers Lodge EA – Wales Suitable Minimal influence, but changes at high flows due to 
urbanisation, road projects etc. 

60002 Cothi Felin Mynachdy EA – Wales Suitable Support  CEH classification 

60006 Gwili Glangwili EA – Wales Suitable Support  CEH comments 

66011 Conwy Cwm Llanerch EA - Wales Unsuitable Unsuitable, not considered a good station at low flows. 

68005 Weaver Audlem EA – NW Unsuitable Actually quality Grade B, due to weed growth in summer 

71011 Ribble Arnford EA – NW Suitable Suitable for use 

72004 Lune Caton EA – NW Suitable Suitable for use 

72005 Lune Killington New 
Bridge 

EA – NW Suitable Suitable for use 

73008 Bela Beetham EA – NW Unsuitable Heavy weed growth in summer, otherwise OK 

76014 Eden Kirkby Stephen EA – NW Unsuitable Deterioration between 1979-1989, OK thence onward. 

77002 Esk Canonbie SEPA-West   

77003 Liddel Water Rowanburnfoot SEPA-West   

78003 Annan Brydekirk SEPA-West   

78004 Kinnel Water Redhall SEPA-West   

78005 Kinnel Water Bridgemuir SEPA-West   

79003 Nith Hall Bridge SEPA-West   

79004 Scar Water Capenoch SEPA-West   

79005 Cluden Water Fiddlers Ford SEPA-West   

79006 Nith Drumlanrig SEPA-West   

80001 Urr Dalbeattie SEPA-West   

83004 Lugar Langholm SEPA-West   

83005 Irvine Shewalton SEPA-West   

83010 Irvine Newmilns SEPA-West   

84003 Clyde Hazelbank SEPA-West   
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Station River Gauge Name 
Measuring 
Authority 

Suitability 
Measuring Authority’s  
Comment (if received) 

84004 Clyde Sills SEPA-West   

84005 Clyde Blairston SEPA-West   

84012 White Cart  Hawkhead SEPA-West   

84014 Avon Water Fairholm SEPA-West   

84015 Kelvin Dryfield SEPA-West   

84018 Clyde Tulliford Mill SEPA-West   

84020 Glazert Water Milton of Campsie SEPA-West   

85004 Luss Water Luss SEPA-West   

 
 
Table A2.2: Characteristics of the 25 selected catchments 

Station River Site Area  N 
years 

Start 
Date 

End 
Date 

Period of 
Record 

Mean Flow 

SAAR 
(61-90) 

BFI 

   km2    m3/s mm  
9001 Deveron Avochie 441.6 38 01/10/59 31/12/99 8.56 – 8.63 988 0.59 
9002 Deveron Muiresk 954.9 38 01/10/60 31/12/99 16.3 – 16.65 928 0.58 
14001 Eden Kemback 307.4 31 01/10/67 31/12/99 3.86 799 0.62 
19002 Almond Almond Weir 43.8 37 01/01/62 31/12/99 0.94 1017 0.34 
19004 North Esk Dalmore Weir 81.6 38 01/01/60 31/12/99 1.53 951 0.54 
20001 Tyne East Linton 307 38 01/01/61 31/12/99 2.75 713 0.52 
20003 Tyne Splimersford 161 34 01/01/65 31/12/99 1.37 725 0.49 
20005 Birns Water Saltoun Hall 93 34 01/01/65 31/12/99 0.94 759 0.49 
21006 Tweed Boleside 1500 38 01/10/61 31/12/99 36.5 – 36.99 1166 0.51 
21012 Teviot Hawick 323 36 01/10/63 31/12/99 8.69 – 8.8 1151 0.44 
21013 Gala Water Galashiels 207 35 01/10/64 31/12/99 3.61 – 3.64 930 0.52 
21015 Leader Water Earlston 239 33 01/10/66 31/12/99 3.37 – 3.44 853 0.49 
21017 Ettrick Water Brockhoperig 37.5 34 01/10/65 31/12/99 1.88 1733 0.34 
28031 Manifold Iiam 148.5 31 01/05/68 31/12/99 3.48 1096 0.54 
34003  * Bure Ingworth 164.7 39 01/01/59 01/01/00 1.09 669 0.83 
39016 Kennet Theale 1033 38 01/10/61 31/12/99 9.53 – 9.47 759 0.87 
39028 Dun Hungerford 101.3 31 01/04/68 31/12/99 0.71 786 0.95 
43005 * Upper Avon Amesbury 323.7 33 01/01/65 31/12/99 3.41 745 0.91 
43006 * Nadder Witton 220.6 33 01/01/66 31/12/99 2.84 875 0.82 
48010 * Seaton Trebrown Bridge 39.1 31 01/01/57 31/12/99 1.02 1328 0.73 
51001 * Doniford Strm Swill Bridge 75.8 32 01/01/67 31/12/00 1.06 908 0.64 
55016 Ithon Disserth 358 31 01/10/68 01/03/00 8.05 – 8.24 1066 0.38 
55026 Wye Ddol Farm 174 61 01/10/37 01/03/00 6.65 – 6.71 1637 0.36 
60002 Cothi Felin Mynachdy 297.8 38 01/10/61 01/05/00 11.3 – 11.55 1551 0.43 
72004 Lune Caton 983 38 01/01/59 31/05/01 35.51 1523 0.32 
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APPENDIX 3: 
ANNUAL MINIMA SERIES  
 
Table A3.1:  Annual Minima Series - Station 9001 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1960 24.68 27.84 34.28 38.49 41.83 73.65  
1961 21.9 23.99 28.47 31.84 38.56 48.02 77.91 
1962 34.07 37.48 42.65 50.02 61.59 84.96 108.2 
1963 28.39 34.36 42.66 50.64 65.28 93.31 97.47 
1964 23.87 24.58 28.49 30.24 34.09 58.86 70.23 
1965 27.46 34.2 41.48 46.4 53.21 75.35 82.69 
1966 35.8 36.53 45.22 65.19 74.37 86.78 112.1 
1967 25.26 27.81 29.84 35.66 37.54 60.94 91.27 
1968 29.66 30.19 35.19 41.41 52.45 69.08 103.6 
1969 25.84 26 28.62 29.99 31.32 43.91 96.95 
1970 33.49 34.68 41.27 48.34 57.39 89.52 93.75 
1971 21.44 22.94 24.75 25.5 26.77 37.21 61.16 
1972 21.44 21.68 22.29 22.64 23.35 33.61 40.58 
1973 22.25 22.63 23.88 26.57 30.4 39.14 42.42 
1974 23.64 24.83 25.74 29.21 32.09 39.73 78.72 
1975 24.68 25.33 31.07 34.6 39.16 46.47 62.15 
1976 14.95 15.48 17.84 19.1 21.06 38.1 58.29 
1977 31.28 32.79 42.06 46.27 49.1 60.69 105.4 
1978 40.79 41.9 48.46 52.61 58.96 70.84 103.7 
1979 35.69 38.63 47.76 64.06 68.08 79.74 107.9 
1980 38.93 42.71 45.41 48.68 60.12 68.23 108.5 
1981 20.74 22.25 26.01 29.64 38.35 44.56 100.1 
1982 21.09 21.39 27.94 30.93 35.04 51.54 94.04 
1983 23.29 23.89 25.92 31.01 41.12 44.59 86.22 
1984 21.44 22.33 27.24 28.33 30.52 49.63 91.57 
1985 51.33 56.51 65.87 104.7 111.7 115.1 122.9 
1986 29.43 30.57 33.82 40.37 42.44 53.16 78.14 
1987 35.46 36.4 39.94 48.78 58.9 72.84 88.44 
1988 30.71 32.54 40.43 45.03 48.18 68.65 74.63 
1989 19.7 20.38 22.9 23.41 24.72 29.55 44.43 
1990 22.02 22.48 25 33.01 42.82 44.33 46.37 
1991 21.9 23.59 24.85 26.37 31.25 50.18 64.38 
1992 20.97 22.05 24.78 28.99 33.88 53.41 62.53 
1993 25.84 29.05 38.42 41.06 43.9 54.89 76.95 
1994 19 19.95 20.86 22.96 26.27 38.92 67.34 
1995 21.44 22.43 24.02 30.33 50.02 70.53 75.93 
1996 22.36 22.74 24.48 29.47 29.61 38.25 62.04 
1997 24.8 24.98 28.5 30.28 35.28 64.57 76.35 
1998 47.27 50.01 63.49 75.32 91.17 100.1 96.94 
1999 25.14 26.43 30.72 32.54 41.49 63.18 90.53 
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Table A3.2:  Annual Minima Series - Station 9002 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1961 20.42 22.61 25.36 27.35 31.82 42.09  
1962 27.68 29.44 32.52 39.38 48.11 72.91 102.2 
1963 24.5 27.54 34.07 41.36 52.28 89.7 99.02 
1964 18.01 18.17 21.2 23.41 26.22 51.86 70.49 
1965 25.64 27.45 33.51 41.09 50.34 67.94 84.85 
1966 35.67 37.72 51.23 58.61 80.2 93.76 120.3 
1967 20.42 22.03 25.42 30.94 33.03 56.72 91.5 
1968 25.82 26.55 32.08 38.99 50.03 66.41 105.2 
1969 19.99 20.09 22.74 24.48 26.02 41.75 96.04 
1970 25.1 26.27 33.32 40.56 50.69 89.17 93.7 
1971 18.79 19.27 20.85 21.62 22.89 33.09 57.57 
1972 15.25 15.52 16.2 16.45 17.03 26.07 33.02 
1973 18.49 20.25 21.86 24.87 26.99 33.27 35.66 
1974 22.1 22.76 23.64 26.69 28.52 35 78.68 
1975 18.97 19.8 25.77 28.28 35.61 43.35 63.35 
1976 12.37 12.8 14.67 15.55 16.92 31.15 58.31 
1977 29.36 29.82 38.5 43.44 44.42 53.42 101.6 
1978 33.2 34.45 38.62 48.36 55.6 66.65 93.89 
1979 30.68 32.91 38.58 53.29 56.74 73.87 102 
1980 26.96 29.54 33.64 37.7 50.4 58.06 108.3 
1981 18.07 18.52 20.1 22.52 27.17 35.39 91.46 
1982 17.41 18.31 23.47 26.19 29.83 44.27 86.39 
1983 16.21 16.93 19.32 24.26 34.08 39.54 80.84 
1984 16.33 17.34 21.42 23.44 25.18 41.05 86.48 
1985 43.71 44.82 57.02 92.32 106.9 113.2 122.7 
1986 22.04 23.03 25.94 40.74    
1988 27.56 29.12 35.19 39.06    
1989 15.61 16.58 19.61 19.8 21.5 25.72 42.23 
1990 18.79 18.85 21.56 27.72 36.8 37.51 43.62 
1991 19.51 20.3 20.96 22.06 25.58 45.33 63.49 
1992 18.97 20.08 21.79 24.35 27.89 48.02 61.61 
1993 27.26 29.76 38.24 41 45.06 51.62 80.34 
1994 16.69 17.12 17.76 19.81 22.72 33.35 64.64 
1995 18.97 19.63 21.19 26.18 42.77 64.64 73.2 
1996 18.61 18.91 21.11 25.41 25.75 33.32 64.95 
1997 16.15 16.44 21.28 23.42 29.51 68.56 83.49 
1998 34.23 37.81 51.09 60.64 85.16 100.1 99.49 
1999 23.78 24.72 27.43 29.84 38.59 56.53 92.77 

 
 

Table A3.3:  Annual Minima Series - Station 14001 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1968 27.38 28.45 32.53 34.32 40.61 65.87  
1969 30.23 30.59 33.76 34.28 36 50.25 76.82 
1970 27.38 27.75 32.44 33.74 36.43 52.2 75.2 



 

R&D TECHNICAL REPORT W6-064/TR2   200

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

1971 26.09 27.64 30.33 33.02 40.52 44.09 65.77 
1972 21.7 23.14 24.6 25.14 26.35 32.84 42.79 
1973 16.53 16.72 18.56 19.05 20.38 21.67 36.6 
1974 16.79 17.68 20.83 22.09 23.96 28.06 51.89 
1975 19.12 19.74 21.61 22.93 25.3 34.02 45.58 
1976 17.31 17.46 18.98 21.79 24.5 38.45 55.46 
1977 24.28 25.39 29.05 32.32 34.23 50.09 109.4 
1978 29.45 30.96 32.76 36.7 39.23 44.38 102 
1979 25.32 26.42 28.92 37.13 35.56 46.38 101.1 
1980 35.13 39.08 42.37 47.48 47.44 55.08 95.65 
1981 26.09 26.68 28.27 29.67 30.91 46.66 86.01 
1982 22.22 23.36 24.76 26.62 28.99 39.62 92.44 
1983 28.93 29.38 30.95 33.33 37.4 48.04 98.29 
1984 22.48 23.25 24.47 26.04 28.01 38.27 99.82 
1985 31.26 34.21 40.78 45.45 52.64 94.74 114.8 
1986 27.9 28.86 31.97 33.87 37.11 49.99 100.2 
1987 32.03 33.62 41.87 42.34 44.79 61.28 100.6 
1988 33.58 40.56 43.51 46.95 50.72 73.02 92.86 
1989 14.73 16.28 18.21 22.19 23.11 29.43 61.8 
1990 18.34 19.38 22.05 25.4 28.94 40.45 79.14 
1991 23.25 24.32 25.27 28.04 30.98 39.8 63.34 
1992 18.34 21.52 24.01 27.74 31.25 53.59 69.36 
1993 30.74 31.48 36.96 42.21 45.87 86.45 124.3 
1994 22.99 23.62 25.64 28.15 28.44 36.73 85.04 
1995 16.53 17.23 18.59 23.69 30.7 45.04 87.2 
1996 23.25 24.21 25.76 26.64 26.78 38.93 83.04 
1997 30.48 30.74 33.41 34 34.47 45.73 84.37 
1998 37.72 39.45 50.78 54.07 55.8 69.83 103.1 
1999 28.42 29.67 31.68 32.38 37.76 53.49 88.33 

 
 

Table A3.4: Annual Minima Series - Station 19002 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1962 28.76 33.33 41.65 42.9 44.42   
1963 17.05 17.96 26.63 38.48 60.29 74.6 98.86 
1964 12.78 14.91 17.54 23.51 34.73 55.83 73.4 
1965 20.24 24.5 33.02 48.97 51.88 69.65 104 
1966 15.98 22.37 27.66 61.82 66.5 88.36 106.3 
1967 10.65 14.31 20.84 25.67 43.29 52.24 99.31 
1968 10.65 15.68 23.01 27.61 30.56 70.28 84.3 
1969 11.72 12.02 20.17 31.59 32.21 53.66 69.56 
1970 12.78 14.31 17.12 20.92 25.96 46.25 83.66 
1971 13.85 14.91 19.81 24.52 27.44 49.75 71.11 
1972 12.78 16.13 16.73 17.97 18.18 32.95 53.53 
1973 12.78 15.22 17.86 19.57 22.86 29.75 52.87 
1974 12.78 15.37 19.92 22.42 22.64 32 64.47 
1975 8.523 10.04 14.74 19.87 21.98 30.47 61.55 
1976 12.78 14.31 16.05 19.12 21.44 36.84 72.5 
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Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

1977 17.05 20.39 25.67 26.81 34.65 58.13 89.92 
1978 18.11 21.31 27.27 33.58 34.78 55.09 94.16 
1979 12.78 15.98 18.71 22.64 31.65 40.33 90.22 
1980 7.457 8.827 10.4 13.12 13.94 26.75 78.15 
1981 7.457 11.41 15.13 20.37 21.84 38.01 93.15 
1982 11.72 12.78 17.97 26.72 29.12 40.51 92.73 
1983 9.588 11.11 12.85 15.09 18.43 43.36 88.33 
1984 9.588 10.2 16.9 18.34 20.58 25.83 79.55 
1985 12.78 17.65 22.55 29.05 29.49 62.82 88.17 
1986 14.91 16.44 19.32 40.02 57.82 69.21 110.8 
1987 12.78 16.13 21.09 32.63 33.78 57.3 103.9 
1988 13.85 15.83 20.67 24.96 33.45 61.5 85.7 
1989 11.72 13.54 18.04 21.45 21.97 32 69.86 
1990 9.588 14 20.56 21.95 29.82 32.49 84.12 
1991 9.588 12.33 13.39 18.07 31.52 38.62 86.03 
1992 7.457 10.35 13.92 14.75 19.74 63.33 90.44 
1993 7.457 8.37 12.5 19.3 20.62 39.67 78.05 
1994 8.523 10.81 15.31 19.9 21.55 27.82 106.7 
1995 9.588 10.5 13.1 16.07 16.32 25.12 59.44 
1996 8.523 8.827 10.55 13.17 13.99 25.72 50.13 
1997 9.588 11.72 16.97 25.14 31.01 42.78 72.16 
1998 17.05 19.63 33.7 44.09 57.01 75.91 87.72 
1999 24.5 27.09 31.75 38 49.23 53.24 90.76 

 
 

Table A3.5:  Annual Minima Series - Station 19004 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1960 20.85 20.85 24.15 27.7 30.71   
1961 25.41 26.9 29.19 33.59 35.88 49.59 84.16 
1962 25.41 29.88 31.77 35.68 41.59 73.43 91.12 
1963 29.97 32.02 42.67 50.44 71.33 88.04 99.64 
1964 27.36 28.85 32.49 36.95 42.1 57.55 68.21 
1965 19.55 22.71 50.71 56.28 65.11 80.51 89.88 
1966 25.41 28.2 33.03 38.85 45.22 71.96 94.91 
1967 25.41 29.32 34.77 40.72 48.7 69.36 102.2 
1968 35.83 41.51 50.77 66.99 66.56 99.19 104.5 
1969 20.2 25.04 31.03 32.39 33.92 48.82 75.62 
1970 20.2 22.52 26.34 30.19 41.89 60.6 78.02 
1971 20.85 25.78 31.03 34.62 37.39 52.15 75.35 
1972 14.98 15.36 17.42 19.2 20.7 29.25 45.07 
1973 13.68 14.89 16.83 19 22.97 32.59 44.82 
1974 15.64 16.75 24.02 25.9 26.57 33.43 57.25 
1975 9.121 11.35 15.46 20.97 21.99 37.66 58.22 
1976 15.64 16.66 19.13 20.81 23.19 37.83 61.39 
1977 22.8 23.36 27.08 30.27 36.88 70.96 98.15 
1978 22.8 25.97 27.78 36.14 41.54 59.52 93.25 
1979 20.85 21.87 24.67 27.94 28.82 45 97.8 
1980 23.45 28.67 32.99 35.96 36.25 54.25 98.37 
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Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

1981 25.41 27.27 29.06 32.83 35.52 48.55 95.9 
1982 19.55 22.9 25.93 35.16 40.56 46.21 95.53 
1983 14.33 17.22 20.09 22.88 27.9 53.66 95.01 
1984 9.121 11.26 15.66 17.6 19.88 32.08 74.45 
1985 24.76 26.15 37.79 49.76 50.88 75.75 83.43 
1986 18.89 22.99 28.71 47.67 56.63 66.58 102.1 
1987 24.11 31.09 41.22 54.5 58.98 66.71 96.36 
1988 14.98 17.22 22.98 32.25 48.31 68.43 88.34 
1989 16.94 17.87 19.89 23.01 25.83 32.75 66.72 
1990 18.24 19.27 27.28 35.12 48.1 54.84 98.61 
1991 14.98 16.47 21.52 25.5 30.24 38.99 85.11 
1992 6.515 11.45 18.85 23.03 28.51 60.1 92.13 
1993 26.71 28.57 31.86 38.82 44.23 80.55 103.6 
1994 17.59 20.76 23.63 24.65 27 36.79 100.5 
1995 16.94 17.68 20.52 22.93 24.92 42.74 70.4 
1996 16.94 17.59 19.81 22.24 23.87 34.44 62.68 
1997 22.15 22.8 31.58 34.55 35.06 61.51 98.31 
1998 39.74 41.42 71.97 83.44 93.67 102.6 104.9 
1999 26.06 28.57 34.1 37.64 48.05 59.74 104.6 

 
 
Table A3.6:  Annual Minima Series - Station 20001 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1961 20.68 22.13 28.41 30.75 31.69   
1962 19.59 20.42 23.01 26.65 29.22 43.73 81.3 
1963 27.21 30.95 41 50.43 66.63 97.05 110.1 
1964 17.42 19.59 22.81 25.32 24.96 37.94 65.13 
1965 25.4 28.67 34.36 39.34 46.64 79.78 69.19 
1966 25.4 28.25 32.85 38.89 43.55 75.91 120.3 
1967 21.41 25.04 27.66 33 35.39 65.42 93.59 
1968 33.38 35.4 41.64 48.09 73.35 106 101.2 
1969 11.97 15.03 18.66 21.67 22.88 35.05 77.77 
1970 23.95 24.73 27.55 44.63 57.37 68.55 79.29 
1971 16.33 17.57 18.58 20.99 22.78 31.97 70.78 
1972 14.88 15.71 16.33 16.87 17.54 20.01 23.87 
1973 12.34 15.55 16.63 18.54 19.77 21.19 23.67 
1974 12.34 16.48 20.84 22.27 25.78 31 47.42 
1975 19.23 20.48 22.52 24.41 25.65 47.92 57.03 
1976 12.7 14.1 16.1 16.97 19 30.96 43.01 
1977 22.5 24.42 27.2 30.73 32.27 57.36 94.76 
1978 23.95 28.51 31.56 35.45 38.13 39.8 91.24 
1979 19.59 22.45 23.78 26.8 29.52 46.49 106.1 
1980 25.76 27.27 33.13 39.6 39.91 46.82 101 
1981 16.69 18.19 19.72 22.64 25.4 36.25 87.05 
1982 14.51 18.14 23.08 24.85 27.07 33.98 83.28 
1983 19.96 23.27 28.87 34.56 39.98 48.21 109.6 
1984 14.51 16.12 17.61 19 20.35 33.34 98.79 



 

R&D TECHNICAL REPORT W6-064/TR2   203

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

1985 28.67 30.48 34.25 39 45.39 99.46 102.2 
1986 27.21 28.72 30.77 38.77 46.34 52.75 100.5 
1987 33.38 37.01 45.39 55.86 61.43 78.52 102 
1988 21.05 23.17 27.44 34.7 41.31 47.29 54.7 
1989 19.23 19.49 19.86 21 21.23 23.37 36.89 
1990 19.23 20.53 22.23 24.58 30.05 31.73 49.63 
1991 14.15 16.23 17.88 20.62 22.17 30.1 58.96 
1992 21.05 21.67 23.66 25.45 26.59 39.79 76.39 
1993 27.21 27.58 30.38 32.67 36.42 82.63 97.12 
1994 20.32 21.41 22.78 23.5 24.59 30.46 66.58 
1995 13.43 14.1 15.09 17.95 22.36 29.12 61.49 
1996 16.33 17.83 19.43 20.91 21.22 27.49 61.16 
1997 27.21 28.56 31.21 32.37 34.89 72.27 96.18 
1998 42.82 44.89 55.75 63.23 70.17 86.85 103 
1999 25.4 27.01 30.54 31.95 36.17 44.37 82.83 

 
 
 

Table A3.7:  Annual Minima Series - Station 20003 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1965 36.26 39.78 43.85 47.89 52.03   
1966 31.18 33.05 37.61 43.8 49.54 78.05 117.8 
1967 21.76 25.69 29.25 32.73 36.96 64.54 93.9 
1968 32.63 36.36 40.39 43.51 69.81 104.5 99.74 
1969 16.68 20.31 22.46 26.17 26.05 40.43 67.3 
1970 16.68 18.54 22.12 24.72 27.41 38.19 66.67 
1971 18.13 19.79 22.96 24.38 25.3 33.54 71.44 
1972 17.41 17.41 18.32 19.4 20.26 22.44 25.69 
1973 13.78 16.27 17.16 17.3 18.29 20.01 24.72 
1974 14.5 15.23 16.97 19.13 19.9 25.89 48.67 
1975 13.05 13.05 14.67 17.11 18.7 39.91 56.72 
1976 10.15 10.15 13.2 14.79 16.43 31.02 46.7 
1977 23.21 24.24 26.13 29.58 32.61 54.58 85.68 
1978 23.21 24.14 27.63 31.74 34.64 36.44 80.68 
1979 23.21 24.24 24.73 28.09 29.06 45.02 93.63 
1980 20.31 26.94 32.92 39.56 37.93 42.68 93.85 
1981 18.13 19.17 20.5 22.98 24.08 35.58 85.22 
1982 20.31 20.93 23.21 24.49 28.58 33 88.94 
1983 24.66 26.73 28.4 31.23 40.86 49.58 113 
1984 15.23 16.58 18.71 20.87 22 33.25 95.67 
1985 23.21 24.14 29.66 36.09 43.17 92.29 97.68 
1986 26.11 27.77 32.78 34.44 43.3 76.67 107.6 
1987 31.91 33.05 42.3 53.62 64.35 75.96 108.4 
1988 27.56 30.56 34.47 42.34 48.7 53.28 61.58 
1989 17.41 18.75 20.48 21.68 21.76 22.72 41.51 
1990 14.5 15.54 16.8 18.54 26.88 29.88 60.15 
1991 20.31 20.82 21.59 23.99 25.48 33.01 64.99 
1992 18.13 19.89 21.49 23.87 27.36 46.1 79.23 
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1993 19.58 20.72 23.57 27.76 33.92 76.36 97.96 
1994 18.86 20.1 21.37 22.64 23.49 29.38 74.88 
1995 14.5 15.64 16.29 18.71 22.13 28.31 61.71 
1996 14.5 15.23 16.22 17.66 19.11 25.24 60.03 
1997 23.21 23.72 25.48 29 31.79 78.52 102.1 
1998 39.89 42.37 54.34 66.6 76.76 88.41 107.3 
1999 21.76 23 25.24 27.33 31.98 44.13 78.58 

 

 
Table A3.8: Annual Minima Series - Station 20005 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1965 28.57 29.93 34.28 39.69 45.74   
1966 26.45 32.19 36.33 45.27 50.67 82.15 124 
1967 15.87 21.01 26.06 27.44 29.34 60.72 81.77 
1968 19.04 19.95 23.7 27.72 57.52 84.07 88.65 
1969 7.406 14.06 17.39 21.6 22.78 34.06 69.94 
1970 14.81 17.08 20.07 24.19 27.17 41.19 69.93 
1971 14.81 15.57 21.16 24.56 27.18 34.84 77.71 
1972 14.81 15.11 16.08 17.03 17.43 21.08 28.3 
1973 12.7 13.15 14.07 14.69 17.23 20.06 28.2 
1974 14.81 15.27 17.1 18.69 19.13 26.25 53.62 
1975 13.75 14.36 17.1 20.47 21.15 41.63 58.69 
1976 9.522 12.39 15.73 16.45 16.89 33.49 48.02 
1977 17.99 20.4 22.08 28.5 32.56 57.11 95.17 
1978 21.16 25.39 27.61 31.78 34.5 36.4 89.32 
1979 22.22 23.28 24.12 28.83 29.74 45.01 98.13 
1980 14.81 17.84 26.38 36.08 35.41 45.38 96.21 
1981 17.99 18.89 20.31 22.91 24.96 35.54 88.26 
1982 19.04 20.4 23.35 24.55 29.73 33.08 90.38 
1983 23.28 23.28 26.06 29.82 39.29 52.01 106 
1984 16.93 17.23 18.73 20.49 21.54 30.89 92.04 
1985 24.33 25.85 31.49 36.89 43.17 90.67 98.47 
1986 24.33 25.09 28.6 39.85 44.01 56.8 95.18 
1987 30.68 32.8 44.75 59.92 65.55 75.6 96.49 
1988 27.51 29.02 30.65 35.57 45.25 53.88 69.83 
1989 17.99 17.99 18.48 20.01 19.97 21.46 42.72 
1990 16.93 17.38 18.52 20.47 28.08 28.78 61.67 
1991 20.1 20.25 21.16 23.01 24.33 29.59 64.1 
1992 21.16 22.37 23.81 24.88 27.83 49.79 78.95 
1993 22.22 23.43 24.62 27.84 32.75 76.66 95.64 
1994 16.93 17.99 19.04 20.19 21.33 29.16 72.75 
1995 12.7 13.6 14.57 17.18 19.97 27.07 64.38 
1996 13.75 14.96 16.19 17.44 19.76 25.21 62.86 
1997 23.28 24.94 28.43 30.24 33.56 79.46 100.7 
1998 29.62 30.83 45.46 64.24 73.97 84.93 105.4 
1999 21.16 21.77 25.36 28.78 33.43 46.72 74.55 
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Table A3.9: Annual Minima Series - Station 21006 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1962 13.63 16.12 23.61 25.46 30.11 57.63  
1963 18.68 24.28 27.26 32.14 52.35 86.08 99.63 
1964 14.54 15.62 19.48 24.25 33.43 59.55 70.11 
1965 22.57 25.3 45.79 51.35 53.3 66.43 91.44 
1966 16.54 18.39 26.04 44.61 47.71 67.8 100.7 
1967 17.36 20.44 26.85 40.85 46.64 73.26 97.75 
1968 15.63 17.72 25.07 33.62 34.93 63.16 84.92 
1969 12.22 13.46 22.39 25.55 29.41 45.53 69.12 
1970 11.62 13.12 18.31 24.96 32.93 52.46 73.97 
1971 15.73 16.75 21.72 29.82 33.47 46.43 73.16 
1972 9.354 9.894 10.72 11.71 14.11 32.62 49.5 
1973 13.84 14.27 16.56 18.66 23.97 29.62 47.57 
1974 13.08 13.8 19.17 20.52 21.01 31.48 67.67 
1975 12.46 13.48 15.68 22.38 22.91 34.78 58.32 
1976 9.354 10.12 12.51 16.35 19.57 44.79 61.35 
1977 11.17 11.94 14.63 17.44 28.55 54.44 94.76 
1978 15.19 16.68 21.42 24.18 26.71 43.78 82.21 
1979 19.49 20.68 23 34.22 39.17 52.49 94.84 
1980 17.22 18.63 19.73 26.21 29.29 51.67 93.45 
1981 14.63 15.51 18.39 31.13 34.06 55.09 97.18 
1982 16.92 19.19 22.95 29.27 32.58 37.41 96.84 
1983 16.87 19.9 21.3 22.25 24.89 47.99 83.31 
1984 12.03 13.07 15.01 16.02 17.05 22.66 69.32 
1985 20.82 21.75 28.97 34.88 38.53 64.31 78.07 
1986 18.6 20.24 24.63 41.17 48.63 71.01 96.62 
1987 25.84 27.83 33.2 52.65 55.37 64.53 94.33 
1988 18.49 20.67 23.75 29.43 38.85 65.89 90.65 
1989 11.87 13.82 15.62 18.99 22.53 33.25 77.22 
1990 20.11 23 26.55 28.39 35.28 37.16 99.99 
1991 16.63 18.81 20.73 25.83 30.1 36.01 93.24 
1992 18.9 20.23 21.54 23.47 31.88 69.33 101.3 
1993 22.14 23.79 32.52 35.95 38 62.23 100.7 
1994 17.27 19.08 22.5 24.58 25.75 36.33 104.1 
1995 10.65 12.39 14.27 17.55 20.34 30.74 74.04 
1996 12.03 12.45 14.78 16.51 18.02 35.61 70.81 
1997 19.65 20.88 33 39.09 39.69 53.87 90.99 
1998 29.03 31.76 52.5 72.26 77.06 85.98 97.48 
1999 17.65 22.14 23.95 26.98 32.16 53.2 94.66 

 
 

Table A3.10: Annual Minima Series - Station  21012 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1964 14.77 16.12 22.9 25.13 38.02 56.58  
1965 18.41 20.86 36.76 42.29 53.27 63.36 91.05 
1966 14.54 15.53 21.09 39.74 47.87 69.17 100.5 
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Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

1967 16.7 20.26 27.12 53.66 67.32 89.23 99.39 
1968 9.772 10.52 16.83 22.81 28.8 51.49 78.46 
1969 8.976 9.09 13.77 18.49 28.03 47.36 68.89 
1970 7.954 8.976 12.8 18.71 24.77 40.06 71.51 
1971 8.635 8.96 15.89 18.11 19.04 34.58 67.91 
1972 6.817 7.256 8.48 9.444 10.38 34.24 52.88 
1973 9.544 10.1 11.96 14.5 19.83 25.72 44.49 
1974 7.385 7.889 11.45 12.35 13.87 27.8 67.65 
1975 8.408 8.879 11.73 19.01 19.47 33.88 56.4 
1976 6.817 7.174 8.753 10.19 12.45 32.64 52.98 
1977 8.749 9.268 11.17 14.26 26.95 52.06 82.97 
1978 5.795 6.217 9.79 11.44 14.13 29.75 75.39 
1979 10.79 13.26 14.74 27.41 43.85 54.7 95.02 
1980 12.84 13.18 14.65 21.63 36.92 51.23 94.81 
1981 10.57 11.1 13.52 26.07 30.66 57.44 98.64 
1982 12.84 13.81 17.9 26.64 30.48 34.89 95.75 
1983 6.022 6.785 8.075 11.2 15.12 46.32 81.12 
1984 6.363 6.947 7.848 8.569 9.051 14.51 70.16 
1985 13.07 14.66 24.56 38.41 38.47 72.79 86.22 
1986 12.16 13.94 17.18 39.95 47.2 71.95 102.9 
1987 14.77 16.09 21.19 41.03 46.31 59.19 94.11 
1988 12.5 13.36 17.29 26.6 41.02 73.61 94.6 
1989 4.999 5.259 6.761 9.139 11.32 30.39 81.8 
1990 10.45 11.26 13.38 14.83 21.78 25.14 95.76 
1991 6.817 8.148 9.196 13.2 17.18 25.7 88.27 
1992 9.431 9.999 12.31 14.94 23.25 64.11 97.05 
1993 8.635 9.22 15.23 18.57 22.12 42 93.98 
1994 9.203 10.91 17.27 18.54 18.44 29.72 102 
1995 4.999 5.405 6.2 8.508 10.81 18.88 70.64 
1996 7.272 7.467 8.847 10.96 13.21 35.6 71.27 
1997 12.27 14.79 17.69 26.63 33.01 47.93 86.49 
1998 18.97 21.85 38.07 67.36 73.43 79.23 93.08 
1999 8.976 10.16 12.07 14.46 21.33 42.87 89.28 

 
 

Table A3.11: Annual Minima Series - Station 21013 
Annual Minimum D-Day Duration Flow (as % MF) Year 

D=1 D=7 D=30 D=60 D=90 D=180 D=365 
        

1965 24.42 25.44 34.06 42.47 46.73 82.67  
1966 20.58 21.6 28.25 44.6 45.76 81.31 115.5 
1967 15.64 22.54 26.92 30.15 36.13 71.68 91.42 
1968 18.66 21.17 26.67 56.72 63.05 96.58 99.87 
1969 14 14.7 18.92 20.93 22.73 36.26 72.66 
1970 14 14.74 18.67 23.29 30.21 44.87 72.53 
1971 16.19 16.54 19.55 26.05 31.64 39.55 73.39 
1972 11.25 11.25 12.04 12.41 13.12 18.81 36.58 
1973 10.15 10.74 12.16 13.69 17.4 23.88 36.49 
1974 11.25 11.96 15.25 19.18 18.46 26.52 63.25 
1975 9.331 9.958 12.33 16.85 17.89 37.77 53.91 
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Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

1976 8.507 8.86 10.46 11.99 15.98 39.31 56.15 
1977 10.43 10.98 12.95 17.53 21.15 53.85 94.86 
1978 14.54 16.39 22.48 26.39 28.84 40.61 92.6 
1979 13.72 15.13 16.24 21.5 20.55 36 94.44 
1980 14 16.94 20.22 29.83 33.03 46.26 95.21 
1981 12.35 13.13 14.37 21.44 25.59 41.71 94.86 
1982 14.27 15.56 19.35 24.84 31.96 36.08 90.27 
1983 11.8 12.19 13.46 15.61 23.41 48.86 94.33 
1984 9.605 10.43 11.25 12.51 13.43 21.53 81.56 
1985 19.76 21.09 28.84 34.22 38.93 88.05 93.53 
1986 19.48 20.27 24.99 44.37 55.23 67.79 104 
1987 24.7 26.85 33.41 57.87 62.54 66.62 104 
1988 16.47 17.6 20.85 28.12 42.69 64.24 79.54 
1989 9.605 10.66 11.44 13.79 14.65 18.82 55.71 
1990 12.62 13.05 15.14 17.4 24.15 27.48 75.14 
1991 10.98 11.41 13.14 17.97 21.37 25.42 77.13 
1992 10.7 12.15 13.25 14.55 19.6 49.63 86.46 
1993 13.17 14.03 19.58 23.27 28.03 74.97 103.5 
1994 9.605 10.7 12.04 14.12 16.29 25.69 102.8 
1995 6.586 6.821 8.004 10.13 13.91 24.46 69.89 
1996 9.879 9.958 11.14 12.94 13.07 23.27 69 
1997 12.9 13.6 16.42 17.17 18.68 56.84 89.62 
1998 30.74 33.05 57.64 68.79 73.09 89.96 101.1 
1999 14.27 15.05 17.12 20.23 27.29 46.18 80.87 

 
 

Table A3.12: Annual Minima Series - Station  21015 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1967 17.12 17.45 22.98 28.61 30.73 74.36  
1968 15.96 16.96 21.54 32.13 48.01 80.62 102.2 
1969 11.9 12.15 14.01 16.12 16.71 28.34 83.02 
1970 12.19 12.98 16.38 17.65 22.78 34.66 82.69 
1971 10.74 11.4 15.85 17.85 21.22 35.61 75.08 
1972 10.45 10.7 11.29 11.6 12.84 17.26 28.56 
1973 9.867 9.991 10.63 11.8 14.68 19.1 28.47 
1974 9.867 10.24 12.15 15.68 15.95 25.79 59.96 
1975 9.576 9.991 12.59 14.1 15.01 35.55 50.05 
1976 7.835 8.167 9.538 11.34 13.29 36.4 50.48 
1977 12.19 12.81 14.72 18.27 19.72 41.91 95.78 
1978 15.38 16.87 23.39 30.01 33.46 40.39 107.7 
1979 14.22 14.63 17.24 25.07 26.96 47.56 104.4 
1980 18.28 21.6 24.1 33.52 34.09 38.49 101.3 
1981 11.32 11.57 12.93 16.77 20.18 37.49 89.78 
1982 12.48 13.93 15.47 17.79 23.03 26.69 83.75 
1983 13.93 15.84 18.53 21.98 29.09 43.15 97.46 
1984 9.286 10.12 11.71 13.91 14.74 21.76 88.96 
1985 26.7 28.44 34.97 43.28 48.4 98.75 101.2 
1986 18.57 19.94 25.22 38.1 55.24 64.39 104.1 
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Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

1987 28.73 30.72 39 58.62 61.69 72.49 100.4 
1988 17.12 17.95 20.96 29.96 42.11 62.38 70.91 
1989 11.03 11.98 13.07 14.77 14.88 16.79 42.95 
1990 11.03 11.03 12.18 13.99 20.99 23.86 58.31 
1991 9.867 9.908 11 13.43 15.21 19.14 58.92 
1992 12.19 13.22 14.56 15.17 17.93 42.17 74.26 
1993 12.48 12.81 14.95 17.58 22.15 63.91 92.75 
1994 10.16 10.9 12.04 13 14.29 20.43 74.88 
1995 7.255 7.379 8.367 10.22 12.8 18.14 56.53 
1996 11.03 11.03 11.86 13.39 13.53 21.25 69.09 
1997 13.64 14.01 15.29 16.37 17.6 51.72 85.21 
1998 30.76 32.21 51.06 65.07 77.5 91.32 96.9 
1999 14.8 15.75 19.22 24.67 28.99 44.4 78.42 

 
 

Table A3.13: Annual Minima Series - Station 21017 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1966 9.518 10.35 16.41 36.3 53.98 67.57  
1967 13.75 15.94 22.37 54.45 67.66 81.96 94.72 
1968 6.345 6.949 11.39 19.57 19.21 45.93 74.49 
1969 7.931 8.687 13.5 18.31 25.39 42.72 63.41 
1970 7.403 8.309 14.89 22.83 36.94 54.88 73.92 
1971 10.05 11.48 16.51 32.23 36.21 51.32 74.31 
1972 6.345 6.345 7.72 8.636 15.52 45.39 59.57 
1973 11.1 11.48 16.85 20.45 28.76 34.54 52.58 
1974 7.931 9.895 13.32 15.22 21.53 38.68 71.12 
1975 6.874 8.082 13.13 18.69 24.59 31.79 62.08 
1976 4.759 4.985 6.363 11.56 17.33 47.66 67.4 
1977 4.759 5.514 8.513 10.8 17.11 58.01 88.63 
1978 5.816 6.043 9.606 10.13 14.28 42.06 81.43 
1979 10.58 12.01 16.14 43.9 48.82 73.36 97.32 
1980 7.403 7.856 9.535 17.8 28.17 58.11 99.36 
1981 8.989 10.27 15.65 27.06 28.96 60.55 100 
1982 12.16 13.45 21.06 32.62 32.76 47.72 104.5 
1983 4.759 5.439 6.856 9.791 16.79 51.21 78.86 
1984 3.701 3.777 5.376 5.949 6.95 17.64 64.05 
1985 13.75 16.39 25.24 39.3 40.34 61.86 78.47 
1986 10.05 11.78 13.24 30.1 56.25 79.23 101 
1987 10.58 12.31 22.16 43.87 50.08 65.19 86.55 
1988 8.46 9.14 12.07 20.09 34.58 72.83 98.7 
1989 5.288 5.363 8.372 11.77 14.57 45.72 88.67 
1990 11.1 12.09 20.16 33.89 38.72 47.98 96.82 
1991 7.403 8.007 10.82 22.97 29.16 40.16 93.75 
1992 6.345 6.496 7.879 10.59 27.7 75.09 101.4 
1993 8.989 9.971 25.5 41.29 40.86 50.23 93.74 
1994 8.46 9.82 12.43 24.33 27.21 44.91 100.3 
1995 4.23 4.532 6.61 11.57 13.77 25.67 77.37 
1996 5.816 6.194 7.579 8.592 12.77 45.14 79.05 
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Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

1997 13.22 15.49 25.8 30.23 38.99 56.73 95.47 
1998 16.92 19.19 31.92 70.54 78.58 92.32 102.6 
1999 8.989 11.26 17.33 28.25 32.95 58.26 94.05 

 
 

 
Table A3.14 Annual Minima Series - Station 28031 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1969 17.93 18.92 21.81 22.92 24.26 45.82 84.04 
1970 19.38 20.29 23.91 25.39 30.86 49.37 88.14 
1971 22.27 22.56 25.91 37.02 41.18 60.54 81.54 
1972 20.82 22.27 25.49 29.51 36.45 60.84 78.74 
1973 22.56 23.43 26.83 34.02 44.99 53.99 77.59 
1974 17.93 18.72 21.1 22.2 26.07 44.05 84.93 
1975 13.3 13.39 13.93 14.81 16.85 21.22 54.84 
1976 8.965 9.461 10.46 11.38 12.62 28.07 54.69 
1977 14.17 15.16 17.73 18.08 19.88 35.63 93.35 
1978 21.69 23.34 29.09 40.68 48.04 53.37 92.43 
1979 21.69 22.52 24.94 29 35.5 59.14 103.1 
1980 23.14 24.66 25.8 31.6 34.98 57.32 103.5 
1981 21.69 22.02 27.34 40.05 40.52 80.39 113.2 
1982 23.14 24.75 27.28 29.91 40.24 50.83 100 
1983 18.8 19.62 21.23 25.17 31.46 51.06 97.52 
1984 13.59 13.8 15.95 17.84 18.98 25.12 66.82 
1985 32.97 34.7 43.12 64.5 65.78 79.56 86.01 
1986 21.98 22.76 24.16 29 36.51 54.28 106.9 
1987 36.44 38.84 51.27 67.67 65.37 82.47 113.5 
1988 27.76 29.29 41.33 46.47 56.36 76.09 94.4 
1989 11.28 11.82 12.92 13.97 15.31 27.26 72.91 
1990 12.44 12.85 15.01 16.08 21.51 27.42 73.34 
1991 12.15 12.39 13.2 13.95 15.57 21.7 65.64 
1992 17.35 17.68 21.13 24.81 30.95 49.8 75.06 
1993 23.14 24.09 29.27 40.79 54.44 63.98 81.96 
1994 16.48 16.81 19.06 22.62 24.62 48.37 117.9 
1995 11.86 12.19 13.24 14.69 16.47 20.52 48.96 
1996 10.12 10.37 11.83 13.81 14.39 20.99 48.18 
1997 20.24 20.82 25.27 32.72 33.97 48.56 72.19 
1998 28.05 30.08 37.49 42.51 50.74 66.86 100.7 
1999 17.06 18.43 24.34 27.34 33.02 56.01 88.16 

 
 

Table A3.15 Annual Minima Series - Station 34003  

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1960 41.34 43.18 49.09 52.18 54.85 65.61 82.92 
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Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

1961 58.8 61.55 67.37 72.52 73.43 78.36 104.4 
1962 56.96 59.32 61.06 67.17 71.25 77.63 90.41 
1963 49.61 56.96 63.58 76.15 77.36 82.9 90.64 
1964 39.51 45.02 48.14 49.06 51 60.02 74.56 
1965 53.29 56.7 62.32 63.88 68.31 77.02 74.54 
1966 56.96 58.14 61.19 65.57 68.13 72.3 94.6 
1967 48.69 51.19 54.27 54.43 55.84 67.76 81.22 
1968 49.61 51.32 55.71 60.99 64.43 72.18 81.35 
1969 71.66 74.02 77.33 79.48 84.99 93.78 121.2 
1970 61.55 62.47 66.94 68.08 68.68 74.05 100.2 
1971 54.2 57.09 61.03 67.59 71.41 75.4 99.14 
1972 58.8 60.37 61.71 64.39 64.57 70.31 75.37 
1973 45.94 47.38 49.06 53.96 61.6 65.48 73.26 
1974 41.34 43.18 47.22 49.18 50.5 53.84 70.55 
1975 50.53 52.24 54.73 58.14 60.95 68.93 73.01 
1976 34.91 36.88 39.99 43.46 44.55 53.21 70.31 
1977 56.04 58.27 61.71 66.27 67.58 71.19 93.46 
1978 57.88 59.72 65.08 65.09 67.32 74.28 93.89 
1979 54.2 55.39 58.34 61.36 61.55 68.88 95.57 
1980 59.72 61.16 65.05 69.44 72.52 74.19 96.06 
1981 60.64 62.6 64.98 71.83 79.2 85.88 91.65 
1982 53.29 54.99 57.97 63.53 68.5 74.03 89.38 
1983 61.55 64.05 67.28 71.48 73.9 84.58 104.6 
1984 66.15 67.85 74.51 80.79 82.06 92.67 106.7 
1985 68.9 71.66 79.16 85 88.75 91.19 107.8 
1986 62.47 66.02 69.33 72.21 75.03 84.84 107.1 
1987 72.58 73.37 82.53 87.69 90.57 104.3 109.5 
1988 77.17 78.88 82.32 86.67 90.69 95.04 93.72 
1989 47.77 49.87 59.5 60.19 61.82 65.1 79.9 
1990 39.51 40.16 43.21 47.82 50.39 55.52 69.61 
1991 37.67 38.98 40.79 43.26 45.76 52.86 65.28 
1992 36.75 38.19 45.94 49.08 49.98 53.89 66.9 
1993 41.34 43.18 48.51 53.76 53.51 62.15 79.19 
1994 58.8 60.5 64.22 71.15 75.45 95.61 118.6 
1995 56.04 57.09 59.47 67.63 68.67 74.24 76.44 
1996 36.75 38.72 41.86 43.99 45.6 53.06 70.41 
1997 44.1 44.62 47.59 48.37 51.04 60.56 73.37 
1998 48.69 50.14 55.31 59.4 64.14 75.9 94.73 
1999 56.96 59.06 68.35 81.9 83.57 95.96 100.3 

 

Table A3.16: Annual Minima Series - Station 39016 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1962 38.85 39.87 43.66 47.4 48.12 56.27  
1963 55.32 57.49 60.08 63.66 65.08 79.14 88.94 
1964 39.17 41.22 42.55 43.3 44.6 50.63 56.31 
1965 30.83 34.1 38.3 41.29 41.92 44.06 52.48 
1966 61.02 63.11 69.41 73.57 77.41 105.4 111.3 
1967 51.73 53.58 55.58 59.53 61.84 81.98 103.9 
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Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

1968 57.96 60.85 66.97 68.79 70.59 83.41 103.8 
1969 39.48 41.9 47.4 52.23 54.52 63.78 89.85 
1970 43.39 44.23 45.54 48.15 50.38 59.7 86.05 
1971 59.54 60.52 63.77 67.33 69.46 79.56 109.7 
1972 44.55 46.18 48.29 49.26 51.02 64.59 77.59 
1973 37.69 38.46 41.72 43.91 44.15 49.53 65.4 
1974 41.07 42.2 45.93 49.38 54.26 66.47 89.94 
1975 40.22 42.24 44.86 49.03 50.32 48.52 45.45 
1976 9.818 10.84 13.35 15.41 17.43 24.07 36.31 
1977 53.84 56.13 58.93 60.92 65.95 73.81 108.3 
1978 36.84 38.59 39.65 41.12 42.44 58.45 95.93 
1979 39.06 41.73 46.34 48.88 50.48 64.1 94.96 
1980 40.12 41.56 45.89 50.33 53.3 62.01 86.26 
1981 52.04 53.7 60.24 70.8 78.1 87.66 98.93 
1982 43.07 44.22 48.3 50.75 54.65 69.96 109.1 
1983 42.54 44.65 47.47 52.66 53.85 62.32 93.08 
1984 37.27 37.94 39.66 42.22 44.36 55.24 87.39 
1985 50.57 51.95 54.44 57.4 59.67 70.86 101 
1986 48.03 50.79 57 64.71 68.22 79.68 104.8 
1987 46.77 50.43 53.19 54.71 59.82 78.59 105.1 
1988 46.13 46.63 49.45 52.63 56.36 61.39 77.66 
1989 32.51 34.02 36.67 38.46 39.96 44.86 68.93 
1990 32.73 33.53 34.21 36.61 37.6 41.57 61.47 
1991 34.31 34.94 36.29 38.52 39.8 44 49.23 
1992 32.41 33.83 39.99 41.47 43.08 48.66 48.14 
1993 50.67 52.53 58 62.01 65.73 84.71 121.6 
1994 46.24 48.29 51.52 55.08 56.38 68.54 122 
1995 36.21 36.86 38.99 45.07 47.4 54.9 86.92 
1996 33.46 34.48 36.01 36.61 38.7 47.03 53.31 
1997 24.7 27.15 28.78 30.45 31.7 36.76 50.27 
1998 44.34 46.36 51.96 54.25 56.38 78.75 90.66 
1999 43.18 44.58 50.78 56.77 61.08 69.25 86.93 
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Table A3.17: Annual Minima Series - Station 39028 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1969 45 48.21 49.08 52.05 54.58 63.81 93.23 
1970 30.94 34.35 35.2 36.8 38.75 52.41 85.44 
1971 52.03 54.24 58.08 59.98 61.86 72.41 97.93 
1972 43.59 44.8 45.94 48.42 50.09 63.09 77.62 
1973 40.78 42.99 43.73 44.72 45.97 49.5 65.41 
1974 43.59 47.21 49.13 51.19 55.16 71.06 96.08 
1975 42.19 48.21 51.19 53.72 53.19 52.77 52.39 
1976 26.72 27.52 28.17 28.52 29.7 34.73 42.94 
1977 52.03 54.44 57.47 60.66 64.59 75.72 111 
1978 43.59 44.4 46.83 48.3 50.23 61.47 103.1 
1979 50.63 52.03 53.44 55.99 58.41 74.6 108 
1980 47.81 49.42 52.69 55.78 59.38 70.15 95.84 
1981 59.06 63.48 67.17 73.97 80.16 93.61 108.5 
1982 42.19 43.39 48.09 52.29 55.28 68.61 114.4 
1983 53.44 56.45 58.41 59.88 60.45 69.46 103.2 
1984 40.78 41.79 45 47.06 47.97 56.66 96.46 
1985 50.63 52.03 53.48 56.95 59.55 69.4 103.3 
1986 50.63 52.03 58.27 61.76 62.78 78.37 107.5 
1987 45 45.2 49.17 52.05 55.73 69.3 96.24 
1988 50.63 52.63 53.91 55.05 58.44 63.94 81.2 
1989 33.75 34.15 35.16 35.98 37.27 41.95 70.17 
1990 30.94 31.74 32.72 33.66 34.02 36.37 56.98 
1991 35.16 36.76 37.69 38.74 39.23 44.19 50.28 
1992 40.78 42.79 44.63 46.03 46.38 49 49.96 
1993 46.41 48.21 50.25 52.36 56.34 75.85 112.8 
1994 43.59 44.6 46.73 47.63 48.78 61.81 119.1 
1995 39.38 41.99 43.22 46.34 47.91 53.83 85.29 
1996 35.16 35.76 36.98 37.24 37.81 47.99 57.22 
1997 28.13 28.33 29.3 29.77 30.14 35.11 51.78 
1998 37.97 37.97 39.84 40.9 42.56 56.63 74.45 
1999 37.97 38.57 42.09 44.58 46.14 53.82 75.18 

 

 
 
Table A3.18: Annual Minima Series - Station 43005 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1966 43.79 44.25 49.93 54.48 56.94 82.82 115.4 
1967 48.19 49.58 51.87 54.47 57 74.15 101.9 
1968 49.66 52.31 56.81 60.43 65.06 68.83 99.95 
1969 32.62 33.46 35.28 37.85 39.52 47.31 81.66 
1970 31.15 32.03 33.64 36.95 38.05 47.25 80.03 
1971 39.67 40.64 43.38 45.22 46.98 55.26 93.22 
1972 31.74 32.91 34.9 36.23 37.89 50.9 72 
1973 29.09 29.68 31.66 32.83 32.96 37.38 58.38 
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Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

1974 33.79 35.47 39.15 41.45 45.73 63.26 85.1 
1975 32.91 33.79 35.9 37.88 37.97 36.92 35.56 
1976 4.996 5.374 9.864 12 13.53 19.23 28.11 
1977 49.37 51.43 54.44 63.18 64.01 72.67 118.3 
1978 32.03 34 35.16 36.86 38.48 52.46 95.72 
1979 42.02 43.11 45.57 46.59 47.49 61.33 104.5 
1980 42.9 44.04 45.77 49.17 52.6 61.24 91.36 
1981 42.32 43.03 46.26 52.03 56.68 69.3 95.7 
1982 35.56 36.44 38.53 41.92 46.03 59.88 111.2 
1983 40.55 40.85 42.98 46.43 47.33 55.5 92.03 
1984 29.39 30.1 31.57 34.25 35.43 46.34 86.15 
1985 41.73 42.02 45.83 47.55 48.6 57.21 99.32 
1986 40.85 41.35 43.15 46.8 49.43 65.34 101.2 
1987 39.08 40.18 42 43.2 48.2 62.77 99.83 
1988 39.97 40.89 42.24 44.28 46.36 56.42 78.16 
1989 24.1 25.19 25.67 26.95 28.58 34.62 68.51 
1990 24.68 24.89 25.65 27.41 28.37 32.33 61.41 
1991 32.62 32.7 35.35 37.04 39.45 45.35 52.08 
1992 29.39 29.93 34.06 37.27 39.48 48.81 49.67 
1993 40.55 40.93 44.87 47.6 52.26 75.46 117.5 
1994 40.55 42.78 43.98 46.79 47.24 64.28 126 
1995 28.51 29.6 30.76 35.85 37.12 45.39 89.35 
1996 26.15 27.67 28.69 29.82 31.77 39.34 48.36 
1997 20.57 20.82 23.44 25.12 25.95 30.57 45.06 
1998 37.91 40.22 43.71 46.09 48.43 71.21 87.56 
1999 40.26 41.81 46.64 50.98 54.32 64.26 82.52 

 

 
Table A3.19: Annual Minima Series - Station 43006 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1966 37.74 39.25 41.49 45.66 50.61   
1967 42.32 48.92 50.16 53.79 58.63 76.63 94.14 
1968 42.68 45.65 50.01 52.74 60.89 68.12 94.19 
1969 29.63 31.39 33.64 37.1 38.15 46.35 85.96 
1970 29.63 30.48 32.17 36.32 37.95 46.03 88.14 
1971 31.74 34.11 36.13 37.36 39.57 46.36 80.51 
1972 28.92 30.84 33.28 34.1 35.64 45.04 69.92 
1973 26.1 26.55 28.77 29.03 29.63 33.61 53.47 
1974 29.98 31.94 33.56 36.07 40.58 56.21 80.74 
1975 31.74 32.8 35.42 38.07 39.69 40.77 40.93 
1976 17.28 18.54 20.66 21.88 23.13 28.79 35.75 
1977 50.44 51.64 56.57 64.67 64.77 74.96 127 
1978 35.27 36.63 37.29 39.48 41.04 52.83 105.3 
1979 42.68 43.48 45.93 48.39 50.91 64.58 112.1 
1980 37.03 38.9 40.27 43.56 44.8 57.3 92.43 
1981 41.27 41.57 43.01 48.9 52.48 61.42 96.29 
1982 32.1 34.26 38.5 43.25 49.63 60.65 106.1 
1983 35.62 39.3 40.32 43.35 43.68 52.34 89.61 
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Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

1984 29.63 30.84 31.78 33.3 34.42 43.5 85.42 
1985 35.97 37.79 40.61 41.87 43.96 50.43 90.96 
1986 31.39 32.1 33.56 42.42 44.12 59.56 97.49 
1987 28.92 32.95 35.32 35.6 39.01 53.76 87.29 
1988 33.15 34.01 36.6 38.9 42.09 51.81 67.41 
1989 26.8 27.06 29.84 31.82 33.82 37.42 71.08 
1990 24.34 25.29 27.57 28.13 29.46 32.75 62.94 
1991 25.75 26.91 29.79 31.95 35.32 41.55 48.98 
1992 27.16 27.86 30.53 37.47 38.64 48.03 48.72 
1993 29.63 34.16 38.13 41.68 44.32 63.72 102.4 
1994 38.09 38.44 40.94 44.26 46.8 63.39 126.8 
1995 35.27 36.08 39.42 42.85 42.66 49.56 92.45 
1996 32.8 34.46 35.25 36.14 39.13 47.12 69.72 
1997 28.57 29.27 30.81 33.76 38.08 42.96 69.13 
1998 34.56 35.72 40.09 40.92 43.24 61.05 99.52 
1999 37.74 40.21 44.24 48.58 53.39 69.54 109.8 

 

 
Table A3.20 Annual Minima Series - Station 48010 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1970 26.74 27.58 28.68 30.86 31.86 35.19  
1971 19.8 19.8 20.89 21.64 22.52 27.76 58.27 
1972 22.77 22.77 25.94 27.99 30.5 44.26 75.35 
1973 19.8 21.22 24.39 27.45 28.41 35.69 68.25 
1974 20.79 21.64 27.46 31.62 35.41 58.9 104 
1975 20.79 21.08 25.48 25.91 28.45 35.75 60.98 
1976 12.87 13.16 14.72 17.26 20.17 33.23 64.48 
1977 21.78 21.78 24.16 24.8 25.83 35.38 95.42 
1978 14.85 15.7 15.91 16.69 18.01 24.37 84.75 
1979 23.77 26.88 28.75 32.61 33.62 45.46 88.71 
1980 25.75 27.02 29.64 32.03 33.45 48.09 98.54 
1981 20.79 21.78 23.77 29.19 37.83 70.08 114.3 
1982 20.79 21.5 25.22 28.06 32.31 42.33 111.3 
1983 18.81 19.24 21.26 24.51 26.72 37.8 82.7 
1984 12.87 13.72 14.92 16.32 16.86 23.57 81.05 
1985 24.76 28.01 29.28 34.92 39.14 54.59 89.5 
1986 39.61 41.73 51.26 67.27 70.84 80.75 95.87 
1987 20.79 21.5 23.93 24.57 28.1 44.87 90.34 
1988 28.72 30.27 32.78 38.37 40.75 57.44 80.69 
1989 13.86 14.85 15.94 17.36 18.01 26.19 69.66 
1990 15.84 16.41 17.56 19.95 21.61 25.81 72.19 
1991 23.77 25.04 28.88 33.93 37.65 46.86 64.25 
1992 18.81 20.09 25.32 27.53 31.16 52.35 59.9 
1993 32.68 35.22 42.55 50.65 61.94 75.06 106.1 
1994 20.79 24.33 26.14 26.8 30.74 47.08 118.1 
1995 11.88 13.3 14.33 16.14 17.25 23.57 75.84 
1996 17.82 18.11 20.79 24.41 25.37 39.5 74.61 
1997 23.77 23.91 27.4 31.7 33.38 40.08 74.93 
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Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

1998 37.63 40.17 46.08 51.57 60.3 76.14 112.9 
1999 22.77 24.05 27.2 28.86 32.49 50.72 87.07 

 
 
 

Table A3.21: Annual Minima Series - Station 51001 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1967 22.53 24.01 25.48 26.62 27.82   
1968 27.23 28.84 34.08 36.9 40.7 65.49 86.05 
1969 20.66 21.33 23.1 26.59 31.28 41.23 101.2 
1970 15.96 17.17 18.5 21 26.27 40.48 95.09 
1971 22.53 23.34 24.19 26.38 28.09 39.13 81.98 
1972 20.66 21.33 22.75 23.43 24.04 40.71 60.73 
1973 15.96 17.3 19.87 21.31 23.06 25.61 42.14 
1974 17.84 18.64 21.06 22.58 24.59 37.05 81.6 
1975 13.14 13.55 15.52 16.06 18.32 20.77 29.63 
1976 7.511 8.048 8.638 9.295 10.71 20.47 28.09 
1977 18.78 19.99 23.16 24.19 25.45 32.76 91.33 
1978 14.08 14.89 15.65 17.03 17.97 24.35 79.6 
1979 24.41 24.81 25.79 27.28 28.28 38.76 90.97 
1980 19.72 20.39 21.66 23.52 26.03 39.18 77.98 
1981 15.96 16.1 18.75 22.5 27.04 45.27 83.12 
1982 15.02 15.83 17.71 21.24 23.31 30.17 96.22 
1985 19.25 20.2 21.82 23.73 24.75 28.56 67.45 
1986 21.78 22.87 25.93 29.61 29.52 41.04 78.42 
1987 15.12 16.14 18.31 18.77 21.1 38.39 75.38 
1988 25.07 27.86 30.5 34.94 36.93 41.24 56.86 
1989 13.8 14.15 15.52 16.47 17.25 27.33 53.97 
1990 12.02 12.41 13.45 13.97 14.49 18.8 53.64 
1991 15.3 15.95 16.78 19.37 23.64 38.17 55.04 
1992 12.68 13.69 15.37 16.56 17.39 23.47 48.14 
1993 23.66 25.23 29.36 34.13 38.01 54.99 85.1 
1994 26.2 30.85 32.69 35.51 37.65 55.12 127.9 
1995 18.68 20.37 21.82 25.22 29.73 39.74 99.65 
1996 23.47 24.33 25.8 27.18 29.31 43.99 69.36 
1997 33.89 35.76 40.46 45.98 52.11 77.51 73.85 
1998 29.58 30.47 35.85 38.02 40.77 64.47 118.9 
1999 30.33 31.65 38.03 41.59    
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Table A3.22: Annual Minima Series - Station 55016 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1969 5.581 6.292 10.1 14.47 21.83 43.98 
1970 2.548 2.669 5.221 7.424 13.02 33.84 
1971 4.004 4.229 5.367 9.871 12.04 17.97 
1972 5.217 5.581 11.31 12.91 16.53 44.18 
1973 5.096 6.015 9.549 21.04 34.88 17.97 
1974 4.853 6.639 9.068 10.67 12.23 25.81 
1975 3.276 3.467 4.586 5.363 6.444 15.06 
1976 0.485 0.589 1.116 1.771 2.826 10.41 
1977 2.669 2.877 4.174 7.07 8.427 25.67 
1978 3.883 4.021 5.533 6.516 7.586 10.56 
1979 2.912 3.675 4.845 8.835 8.311 26.37 
1980 5.46 6.188 7.664 23.29 24.96 52.41 
1981 2.063 2.236 3.143 4.73 8.623 48.83 
1982 2.184 2.617 4.688 6.795 16.73 17.63 
1983 1.82 2.323 2.989 5.013 7.784 33.06 
1984 1.092 1.317 2.022 2.688 3.269 10.87 
1985 8.979 11.06 18.63 40.77 41.31 56.68 
1986 2.427 2.756 4.518 5.992 12.37 33.04 
1987 3.761 4.229 5.865 9.288 14.35 25.59 
1988 9.949 11.75 22.12 39.86 40.13 63.97 
1989 0.607 0.953 1.703 2.006 3.083 7.287 
1990 1.092 1.404 2.495 2.983 6.278 11.06 
1991 3.883 4.299 5.86 11.59 13.61 26.52 
1992 7.765 8.285 17.03 19.92 30.54 54.61 
1993 8.372 9.551 17.01 25.08 36.92 53.03 
1994 1.335 2.479 4.93 5.571 8.306 29.99 
1996 2.111 2.467 4.08 5.067 5.715 23.3 
1997 4.186 4.892 8.189 16.21 18.01 39.24 
1998 13.24 14.43 21.03 30.04 39.3 49.97 
1999 1.844 2.363 5.166 9.833 10.18  

 
Table A3.23: Annual Minima Series - Station 55026 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1938 4.768 5.79 10.19 20.36 30.3 44.6  
1939 3.725 4.172 10.3 14.99 27.2 44.31 85.78 
1940 4.768 5.407 10.08 15.9 26.08 34.51 75.28 
1941 5.514 6.152 9.741 15.47 28.26 38.87 70.16 
1942 5.514 5.514 12.11 27.59 33.2 42.54 74.75 
1943 9.388 12.28 18.33 25.52 37.66 43.8 78.35 
1944 8.196 8.6 11.93 23.73 25.42 27.14 69.47 
1945 5.961 6.663 11.27 23.66 30.82 39.77 67.38 
1946 7.004 8.089 13.99 15.1 19.06 42.24 74.11 
1947 5.066 5.066 6.408 11.22 11.86 22.29 70.19 
1948 12.07 14.31 29.15 45.31 50.56 53.95 78.78 
1949 3.427 3.832 6.82 16.69 18.49 27.93 70.22 
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Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

1950 4.768 5.024 8.335 13.41 22.89 52.94 97.06 
1951 5.066 8.025 14.79 15.6 19.89 34.57 85.12 
1952 8.196 8.792 14.75 28.71 34.56 40.5 67.57 
1953 8.494 11.15 15.56 22.83 30.17 57.19 72.61 
1954 6.706 7.515 10.13 25.54 42.51 75.78 83.91 
1955 3.129 3.598 6.12 8.563 16.96 38.84 57.95 
1956 8.196 9.388 12.56 15.58 18.13 39.28 57.47 
1957 5.961 6.919 10.97 19.45 18.87 65.43 90.23 
1958 11.77 11.98 17.72 33.19 43.65 54.29 82.09 
1959 3.129 3.385 3.81 4.975 14.21 27.74 58.62 
1960 3.725 6.046 13.97 17.44 20.35 58.27 96.5 
1961 2.384 2.682 6.8 10.7 19.08 44.08 79.01 
1962 6.11 6.62 9.895 12.13    
1964 9.686 11.07 20.99 27.28 37.43 43.71 54.64 
1965 13.71 16.18 21.9 38.46 39.23 53.34 85.22 
1966 16.84 18.75 31.65 45.15 47.16 60.35 96.24 
1967 7.6 10.39 16.96 27.77 46.34 61.34 95.62 
1968 7.302 9.303 14.47 16.17 42.43 58.84 80.48 
1969 5.812 7.472 11.42 20.52 32.72 49.43 76.46 
1970 5.514 5.939 9.03 17.39 25.7 45.52 93.96 
1971 4.917 5.514 9.279 20.89 25.48 29.94 69.68 
1972 5.215 5.599 7.242 10.9 16.18 41.07 79.98 
1973 5.066 5.663 9.969 27.54 41.06 60.41 77.25 
1974 4.172 6.088 11.13 14.02 19.58 42.23 100.4 
1975 3.129 3.363 4.987 10.15 13.16 28.83 61.4 
1976 1.49 1.597 2.126 4.366 5.417 16.98 57.23 
1977 5.961 7.77 11.35 19.98 23.18 48.15 89.11 
1978 7.898 9.835 13.63 29.33 37.85 39.64 87.86 
1979 6.259 7.259 10.5 19.88 37.66 62.11 102.8 
1980 4.172 4.811 6.676 10.62 29.88 43.38 104.4 
1981 4.768 5.918 11.73 16.67 16.65 43.58 103 
1982 5.961 6.45 8.37 10.34 21.24 30.91 90.32 
1983 1.192 1.618 2.931 6.288 17.23 61.6 97.28 
1984 2.235 2.555 4.664 5.682 7.583 14.65 74.79 
1985 12.96 14.79 27.72 51.23 61.66 83.26 88.94 
1986 4.321 5.088 6.775 22.47 29.25 38.97 79.47 
1987 2.533 3.172 10.54 24.27 28.24 38.28 88.58 
1988 4.172 5.322 17.45 30.66 30.87 56.9 83.62 
1989 3.129 3.491 5.066 9.537 10.02 20.33 69.84 
1990 5.365 5.577 8.678 18.75 25.04 28.65 93.14 
1991 6.706 7.408 12.79 25.57 29.44 42.05 102.5 
1992 5.663 6.812 14.12 20.11 34.7 70.48 106.6 
1993 11.47 13.33 20.42 26.79 51.1 65.3 92.35 
1994 7.153 7.834 9.954 13.57 20.82 38.74 131.1 
1995 3.725 3.96 4.6 7.334 11.12 20.97 60.06 
1996 7.302 7.706 10.27 14.05 19.25 42.63 69.9 
1997 8.643 9.92 17.97 26.73 38.86 53.1 79.09 
1998 6.408 8.92 25.44 62.91 65.75 78.39 113.5 
1999 2.235 2.533 5.504 12.31 14.19   
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Table A3.24: Annual Minima Series - Station 60002 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1962 5.627 7.111 11.32 13.3 31.05 51.11  
1963 13.68 15.87 21.03 30.07 43.85 54.94 64.18 
1964 10.3 11.96 24.12 27.15 27.91 40.04 52.8 
1965 11.6 16.03 22.82 51.36 57.24 62.35 88.47 
1966 13.59 15.16 28.18 37.69 53.94 74.2 101.3 
1967 7.619 8.967 14.62 25.03 49.48 65.75 103.4 
1968 10.13 11.45 18.94 21.11 45.11 66.03 89.63 
1969 8.138 9.882 15.64 18.67 22.76 36.56 73.47 
1970 7.186 8.002 10.94 12.22 19.49 43.32 85.71 
1971 7.705 8.286 12.55 22.7 34.45 37.3 72 
1972 5.541 5.912 7.14 10.81 20.12 55.2 72.35 
1973 5.627 6.134 9.044 13.48 25.88 40.31 57.2 
1974 9.263 12 16.72 22.01 21.85 42.71 92.42 
1975 4.502 4.823 7.067 9.373 10.99 24.5 54.18 
1976 2.164 2.263 2.978 4.013 4.986 14.94 51.8 
1977 3.896 4.527 6.597 8.214 11.75 34.8 92.93 
1978 8.398 9.931 11.6 16.5 23.96 29.63 83.08 
1979 4.588 5.392 8.328 15.27 39.76 58.13 91.68 
1980 7.013 7.816 9.01 12.79 19.67 42.16 88.97 
1981 3.203 3.648 5.867 8.307 12.7 41.97 103.2 
1982 6.839 7.779 10.3 14.56 17.08 23.36 94.95 
1983 3.376 3.451 4.955 8.375 16.04 52.99 70.91 
1984 1.905 2.288 3.345 4.056 4.432 8.388 65.06 
1985 18.44 20.36 29.53 36.49 42.21 75.93 100.8 
1986 7.272 7.408 10.99 26.28 36.19 59.59 90.84 
1987 8.831 10.17 14.85 21.54 32.57 39.52 94.27 
1988 10.04 10.14 18.44 28.45 33.29 61.6 79.19 
1989 3.636 3.871 4.435 5.867 6.514 13.17 64.03 
1990 7.013 7.619 10.22 11.19 18.41 18.71 70.42 
1991 10.22 11.11 14.78 26.57 35.39 42.07 73.19 
1992 9.004 9.845 13.38 17.16 26.26 63.92 71.81 
1993 13.07 15.41 26.13 32.08 33.75 57.63 84.92 
1994 9.696 11.22 20.19 22.86 25.95 36.24 102.6 
1995 2.944 3.216 3.806 6.989 8.409 13.62 60.88 
1996 5.974 6.468 8.536 13.78 19.66 39 69.18 
1997 8.311 8.583 12.23 23.79 31.38 38.48 66.52 
1998 8.484 9.115 16.37 42.95 58.87 65.41 109.1 
1999 4.242 4.724 7.613 16.67 18.74 47.32  

 
 

Table A3.25: Annual Minima Series - Station 72004 

Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

        
1959 5.914 6.184 7.32 7.901 14.1   
1960 7.294 7.596 19.92 23.43 38.17 59.13 93.2 
1961 14.39 16.8 24.73 35.61 59.65 78.03 113.4 
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Annual Minimum D-Day Duration Flow (as % MF) Year 
D=1 D=7 D=30 D=60 D=90 D=180 D=365 

1962 12.14 16.41 29.5 35.68 46.19 70.01 79.52 
1963 8.083 9.507 10.91 14.4 48.28 73.1 81.55 
1964 9.21 11.07 29.14 47.06 46.13 54.44 67.14 
1965 8.308 9.395 18.28 39.25 49.08 56.4 89.86 
1966 13.32 15.49 30.83 59.41 69.51 79.54 99.75 
1967 14.03 16.45 38.24 46.16 62.31 86.81 99.55 
1968 6.59 6.94 10.12 18.41 36.02 60.22 79.56 
1969 8.224 8.839 18.35 21.16 24.56 39.01 56.88 
1970 5.351 6.035 8.039 14.97 27.41 59.02 79.79 
1971 5.689 6.212 12.12 14.26 18.15 44.8 68.75 
1972 5.605 6.212 8.446 9.353 18.48 60.97 75.97 
1973 6.816 8.461 11.37 18.5 26.19 41.21 65.97 
1974 5.407 5.782 6.99 8.326 11.68 37.89 76.29 
1975 4.563 5.166 7.531 10.41 22.53 37.85 74.04 
1976 3.52 4.208 5.242 9.712    
1979 10.34 11.84 17.75 26.68    
1980 6.281 6.743 7.479 11.69 25.7 53.5 108.1 
1981 9.66 10.34 25.24 33.28 31.02 56.5 104 
1982 6.9 8.007 11.02 21.43 27.71 39.89 94.22 
1983 6.196 6.566 10.73 13.43 17.97 47.09 85.26 
1984 3.267 3.508 5.15 6.663 14.4 18.26 73.41 
1985 11.52 12.71 25.99 31.61 37.46 58.48 85.71 
1986 8.111 8.397 10.91 25.58 31.39 48.28 83.82 
1987 10.17 11.41 18.35 36.81 51.97 73.07 101.3 
1988 6.9 7.516 11.11 17.12 25.06 64.79 98.01 
1989 4.253 4.993 6.251 12.02 13.93 19.56 81.47 
1990 6.618 7.17 10.17 14.22 27.3 29.19 77.68 
1991 6.506 7.258 8.627 15.36 28.23 33.12 85.99 
1992 6.449 6.731 7.975 12.17 17.08 51.59 91.49 
1993 11.86 13.22 20.69 29.04 38.11 47.91 78.44 
1994 8.139 9.399 14.18 25.97 24.92 48.52 102.6 
1995 4.506 4.945 5.64 7.264 11.51 18.66 39.37 
1996 5.971 6.204 11.39 20.79 23.49 30.54 43.87 
1997 6.618 7.817 11.23 13.84 14.94 34.88 74.13 
1998 12.22 13.56 26.74 43.09 53.84 73.4 89.84 
1999 11.66 13.62 18.19 22.25 31.72 53.44 99.24 
2000 8.365 9.358 17.7 23.97 34.98 49.38  
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APPENDIX 4.1: 
ANNUAL MINIMA SERIES - STATISTICS 

 
 

Table A4.1.1: Characteristics of Annual Minima, where D = 1 

Station 
No. 

Years 
Min. Max. Median Mean 

Standard 
Deviation 

C.V. Skewness Kurtosis 

9001 40 14.95 51.33 24.74 27.24 7.80 0.29 1.33 1.71 
9002 38 12.37 43.71 20.20 22.61 6.69 0.29 1.15 1.37 
14001 32 14.73 37.72 25.71 25.19 6.01 0.24 0.04 -0.79 
19002 38 7.457 28.76 12.78 12.78 4.62 0.36 1.58 3.29 
19004 40 6.52 39.74 20.53 20.73 6.64 0.32 0.44 1.13 
20001 39 11.97 42.82 20.32 21.24 6.71 0.32 0.94 1.45 
20003 35 10.15 39.89 20.31 21.20 6.83 0.32 0.98 0.74 
20005 35 7.41 30.68 17.99 19.10 5.61 0.29 0.23 -0.36 
21006 38 9.35 29.03 16.59 16.31 4.37 0.27 0.72 0.82 
21012 36 5.00 18.97 9.32 10.20 3.63 0.36 0.74 -0.01 
21013 35 6.59 30.74 13.17 14.18 5.15 0.36 1.40 2.22 
21015 33 7.26 30.76 12.19 13.88 5.56 0.40 1.80 3.13 
21017 34 3.70 16.92 8.20 8.52 3.11 0.36 0.67 0.22 
28031 31 8.97 36.44 19.38 19.37 6.44 0.33 0.64 0.59 
34003   40 34.91 77.17 54.20 53.22 10.57 0.20 0.14 -0.47 
39016 38 9.82 61.02 41.81 42.04 10.00 0.24 -0.59 1.80 
39028 31 26.72 59.06 43.59 42.60 7.89 0.19 -0.16 -0.40 
43005  34 4.99 49.66 36.73 35.25 9.06 0.26 -1.05 2.40 
43006  34 17.28 50.44 31.92 32.99 6.45 0.19 0.35 0.92 
48010  30 11.88 39.61 20.79 21.88 6.56 0.3 0.99 1.43 
51001 31 7.51 33.89 19.25 19.77 6.03 0.30 0.36 -0.14 
55016 30 0.49 13.24 3.52 4.09 3.01 0.74 1.35 1.80 
55026 61 1.19 16.84 5.51 6.13 3.07 0.50 1.20 1.92 
60002 38 1.91 18.44 7.45 7.61 3.57 0.47 0.74 0.97 
72004 40 3.27 14.39 6.90 7.92 2.91 0.37 0.64 -0.41 

 

 
Table A4.1.2: Characteristics of Annual Minima, where D = 7 

Station 
No. 

Years 
Min. Max. Median Mean 

Standard 
Deviation 

C.V. Skewness Kurtosis 

9001 40 15.48 56.51 25.67 28.91 8.63 0.30 1.30 1.79 
9002 38 12.8 44.82 21.16 23.77 7.19 0.30 1.01 0.72 
14001 32 16.28 40.56 26.55 26.53 6.63 0.25 0.35 -0.36 
19002 38 8.37 33.33 14.61 15.28 5.27 0.35 1.44 2.81 
19004 40 11.26 41.51 22.85 23.18 7.10 0.31 0.54 0.53 
20001 39 14.10 44.89 22.13 23.26 6.85 0.29 0.99 1.29 
20003 35 10.15 42.37 20.82 22.85 7.42 0.32 0.91 0.64 
20005 35 12.39 32.80 20.25 20.72 5.66 0.27 0.57 -0.50 
21006 38 9.89 31.76 18.51 18.08 4.93 0.27 0.54 0.28 
21012 36 5.26 21.85 10.13 11.24 4.26 0.38 0.88 0.28 
21013 35 6.82 33.05 14.03 15.33 5.69 0.37 1.24 1.60 
21015 33 7.38 32.21 12.81 14.69 6.04 0.41 1.68 2.58 
21017 34 3.78 19.19 9.48 9.56 3.72 0.39 0.64 0.05 
28031 31 9.46 38.84 20.29 20.26 6.92 0.34 0.69 0.64 
34003   40 36.88 78.88 57.03 55.29 10.60 0.19 0.08 -0.50 
39016 38 10.84 63.11 43.23 43.73 10.21 0.23 -0.56 1.73 
39028 31 27.52 63.48 44.60 44.38 8.49 0.19 -0.10 -0.22 
43005  34 5.37 52.31 38.31 36.28 9.33 0.26 -1.00 2.38 
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Station 
No. 

Years 
Min. Max. Median Mean 

Standard 
Deviation 

C.V. Skewness Kurtosis 

43006  34 18.54 51.64 34.13 34.69 6.84 0.19 0.34 0.68 
48010  30 13.16 41.73 21.71 23.06 7.06 0.31 1.03 1.27 
51001 31 8.05 35.76 20.37 20.89 6.48 0.31 0.38 -0.28 
55016 30 0.59 14.43 3.85 4.72 3.38 0.72 1.33 1.41 
55026 61 1.60 18.75 6.45 7.15 3.56 0.50 1.05 1.29 
60002 38 2.26 20.36 8.14 8.63 4.20 0.49 0.70 0.41 
72004 40 3.51 16.8 7.912 8.95 3.55 0.39 0.80 -0.23 

 
 

Table A4.1.3: Characteristics of Annual Minima, where D = 30 

Station 
No. 

Years 
Min. Max. Median Mean 

Standard 
Deviation 

C.V. Skewness Kurtosis 

9001 40 17.84 65.87 29.23 33.57 10.99 0.33 1.17 1.32 
9002 38 14.67 57.02 24.5 28.11 10.05 0.36 1.23 1.16 
14001 32 18.21 50.78 28.99 29.55 8.13 0.27 0.69 0.15 
19002 38 10.4 41.65 18.38 20.03 6.85 0.34 1.23 1.67 
19004 40 15.46 71.97 27.53 29.14 10.99 0.38 1.81 5.00 
20001 39 15.09 55.75 23.78 26.68 8.82 0.33 1.22 1.96 
20003 35 13.20 54.34 23.21 25.81 9.30 0.36 1.21 1.42 
20005 35 14.07 45.46 23.35 23.97 7.67 0.32 1.24 1.59 
21006 38 10.72 52.50 22.06 23.06 8.33 0.36 1.66 4.10 
21012 36 6.20 38.07 13.65 15.40 7.39 0.48 1.55 2.78 
21013 35 8.00 57.64 16.42 19.10 9.47 0.50 2.22 7.06 
21015 33 8.37 51.06 14.95 17.84 9.07 0.51 2.15 5.29 
21017 34 5.38 31.92 13.28 14.48 6.65 0.46 0.75 -0.01 
28031 31 10.46 51.27 24.16 23.92 9.51 0.40 1.04 1.36 
34003   40 39.99 82.53 61.05 59.59 11.12 0.19 0.15 -0.42 
39016 38 13.35 69.41 46.87 47.14 10.98 0.23 -0.44 1.32 
39028 31 28.17 67.17 46.83 46.55 9.21 0.20 -0.12 -0.21 
43005  34 9.86 56.81 40.58 38.79 9.68 0.25 -0.68 1.12 
43006  34 20.66 56.57 36.36 37.11 7.174 0.19 0.49 0.94 
48010  30 14.33 51.26 25.4 26.02 8.64 0.33 1.24 2.16 
51001 31 8.638 40.46 21.82 23.15 7.54 0.33 0.57 -0.02 
55016 30 1.12 22.12 5.29 7.67 5.83 0.76 1.33 0.79 
55026 61 2.13 31.65 10.54 12.03 6.27 0.52 1.17 1.53 
60002 38 2.98 29.53 11.46 13.02 7.03 0.54 0.70 -0.19 
72004 40 5.15 38.24 11.3 14.99 8.36 0.56 0.96 0.14 

 
 
Table A4.1.4: Characteristics of Annual Minima, where D = 60 

Station 
No. 

Years 
Min. Max. Median Mean 

Standard 
Deviation 

C.V. Skewness Kurtosis 

9001 40 19.10 104.70 32.78 39.25 16.46 0.42 2.00 5.52 
9002 38 15.55 92.32 27.53 33.45 14.96 0.45 1.93 5.36 
14001 32 19.05 54.07 32.35 32.15 8.56 0.27 0.76 0.12 
19002 38 13.12 61.82 23.08 26.32 10.73 0.41 1.40 2.11 
19004 40 17.60 83.44 33.21 34.60 13.67 0.40 1.58 3.35 
20001 39 16.87 63.23 26.80 30.64 11.10 0.36 1.06 0.89 
20003 35 14.79 66.60 26.17 29.25 11.55 0.39 1.38 2.07 
20005 35 14.69 64.24 24.88 28.21 11.26 0.40 1.66 3.17 
21006 38 11.71 72.26 26.02 29.23 11.95 0.41 1.55 3.49 
21012 36 8.51 67.36 18.56 22.63 13.67 0.60 1.49 2.26 
21013 35 10.13 68.79 20.93 25.23 14.38 0.57 1.55 1.93 
21015 33 10.22 65.07 17.58 22.48 13.14 0.58 1.88 3.51 
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Station 
No. 

Years 
Min. Max. Median Mean 

Standard 
Deviation 

C.V. Skewness Kurtosis 

21017 34 5.95 70.54 21.64 24.81 14.69 0.59 1.12 1.47 
28031 31 11.38 67.67 27.34 29.05 13.83 0.48 1.18 1.57 
34003   40 43.26 87.69 64.74 63.85 12.25 0.19 0.10 -0.71 
39016 38 15.41 73.57 49.86 50.39 11.84 0.24 -0.36 0.90 
39028 31 28.52 73.97 48.42 48.66 10.22 0.21 0.00 0.13 
43005           
43006  34 21.88 64.67 39.19 40.10 8.202 0.20 0.60 1.56 
48010  30 16.14 67.27 27.76 29.37 11.16 0.38 1.71 3.94 
51001 31 9.29 45.98 23.73 25.39 8.45 0.33 0.59 0.11 
55016 30 1.77 40.77 9.06 12.42 10.45 0.84 1.50 1.71 
55026 61 4.37 62.91 18.75 20.48 11.24 0.55 1.46 3.08 
60002 38 4.01 51.36 16.92 19.47 11.01 0.57 0.90 0.71 
72004 40 6.66 59.41 19.64 22.46 12.72 0.57 0.99 0.50 
 

 
Table A4.1.5: Characteristics of Annual Minima, where D = 90 

Station 
No. 

Years 
Min. Max. Median Mean 

Standard 
Deviation 

C.V. Skewness Kurtosis 

9001 40 21.06 111.70 41.31 45.33 18.68 0.41 1.56 3.27 
9002 36 16.92 106.9 33.55 39.67 19.54 0.49 1.69 3.4 
14001 32 20.38 55.80 34.35 34.85 9.01 0.26 0.63 -0.21 
19002 38 13.94 66.5 29.66 31.49 13.49 0.43 1.05 0.41 
19004 40 19.88 93.67 36.57 39.69 15.78 0.40 1.31 2.30 
20001 39 17.54 73.35 30.05 34.75 14.67 0.42 1.21 0.82 
20003 35 16.43 76.76 28.58 33.45 14.86 0.44 1.40 1.63 
20005 35 16.89 73.97 29.34 32.37 13.81 0.43 1.34 1.67 
21006 38 14.11 77.06 32.37 33.69 12.60 0.37 1.23 2.51 
21012 36 9.05 73.43 24.01 28.59 15.97 0.56 1.07 0.83 
21013 35 13.07 73.09 24.15 29.33 15.58 0.53 1.29 1.06 
21015 33 12.80 77.50 20.99 26.54 15.89 0.60 1.66 2.46 
21017 34 6.95 78.58 28.86 31.69 16.29 0.51 1.00 1.03 
28031 31 12.62 65.78 33.02 33.48 14.87 0.44 0.56 -0.36 
34003   40 44.55 90.69 67.86 66.49 12.73 0.19 0.08 -0.70 
39016 38 17.43 78.10 53.58 52.79 12.66 0.24 -0.23 0.54 
39028 31 29.70 80.16 50.23 50.61 11.15 0.22 0.13 0.40 
43005  34 13.53 65.06 46.20 43.68 11.09 0.25 -0.39 0.49 
43006  34 23.13 64.77 41.56 42.65 8.88 0.21 0.47 0.63 
48010  30 16.86 70.84 30.95 32.36 12.79 0.39 1.55 2.72 
51001 30 10.71 52.11 26.15 27.19 8.80 0.32 0.73 1.07 
55016 30 2.83 41.31 12.30 16.19 11.96 0.74 1.03 -0.19 
55026 60 5.42 65.75 26.64 28.23 12.83 0.45 0.71 0.45 
60002 38 4.43 58.87 25.92 27.42 14.34 0.52 0.46 -0.36 
72004 38 11.51 69.51 27.56 31.61 15.06 0.48 0.77 -0.11 
 
 
 

Table A4.1.6: Characteristics of Annual Minima, where D = 180 

Station 
No. 

Years 
Min. Max. Median Mean 

Standard 
Deviation 

C.V. Skewness Kurtosis 

9001 40 29.55 115.10 56.88 60.15 19.94 0.33 0.73 0.12 
9002 36 25.72 113.2 49.82 54.56 22.12 0.4 0.93 0.24 
14001 32 21.67 94.74 46.06 48.58 15.95 0.33 1.15 1.70 
19002 37 25.12 88.36 43.36 47.52 16.73 0.35 0.51 -0.61 
19004 39 29.25 102.60 54.84 56.79 18.72 0.33 0.55 -0.15 
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Station 
No. 

Years 
Min. Max. Median Mean 

Standard 
Deviation 

C.V. Skewness Kurtosis 

20001 38 20.01 106.00 44.05 50.29 23.64 0.47 0.88 -0.30 
20003 34 20.01 104.50 40.17 47.91 22.86 0.48 0.93 -0.21 
20005 34 20.06 90.67 41.41 46.79 21.14 0.45 0.74 -0.67 
21006 38 22.66 86.08 52.48 51.49 15.93 0.31 0.27 -0.58 
21012 36 14.51 89.23 44.60 46.28 18.41 0.40 0.43 -0.56 
21013 35 18.81 96.58 41.71 47.82 22.54 0.47 0.64 -0.67 
21015 33 16.79 98.75 37.49 42.31 22.38 0.53 0.97 0.18 
21017 34 17.64 92.32 50.72 53.31 16.26 0.31 0.29 0.20 
28031 31 20.52 82.47 50.83 49.05 18.41 0.38 -0.02 -0.75 
34003   40 52.86 104.30 74.04 73.87 13.56 0.18 0.28 -0.54 
39016 38 24.07 105.40 63.05 63.16 16.60 0.26 0.08 0.11 
39028 31 34.73 93.61 61.81 60.25 14.04 0.23 -0.02 -0.22 
43005  34 19.23 82.82 55.96 54.57 14.74 0.27 -0.34 -0.33 
43006  33 28.79 76.63 51.81 52.37 11.88 0.23 0.11 -0.44 
48010  30 23.57 80.75 43.29 44.63 15.86 0.35 0.74 -0.001 
51001 29 18.80 77.51 39.13 39.11 14.04 0.36 0.91 0.96 
55016 29 7.29 63.97 26.52 31.34 16.38 0.52 0.33 -1.04 
55026 59 14.65 83.26 43.38 45.17 15.10 0.33 0.29 -0.04 
60002 38 8.39 75.93 42.12 44.02 17.56 0.40 -0.22 -0.60 
72004 37 18.26 86.81 51.59 51.04 17.22 0.34 -0.02 -0.41 
 
 

 
Table A4.1.7: Characteristics of Annual Minima, where D = 365 

Station 
No. 

Years 
Min. Max. Median Mean 

Standard 
Deviation 

C.V. Skewness Kurtosis 

9001 39 40.58 122.90 82.69 82.12 20.97 0.26 -0.27 -0.66 
9002 35 33.02 122.7 84.85 80.95 22.76 0.28 -0.38 -0.4 
14001 31 36.60 124.30 86.01 82.98 21.88 0.26 -0.44 -0.42 
19002 37 50.13 110.8 85.70 82.85 15.81 0.19 -0.33 -0.51 
19004 39 44.82 104.90 92.13 85.55 17.08 0.20 -0.91 -0.18 
20001 38 23.67 120.30 82.07 78.56 24.82 0.32 -0.54 -0.50 
20003 34 24.72 117.80 79.96 78.23 24.28 0.31 -0.46 -0.43 
20005 34 28.20 124.00 80.36 78.47 22.32 0.28 -0.50 0.00 
21006 37 47.57 104.10 90.99 84.36 15.42 0.18 -0.78 -0.35 
21012 35 44.49 102.90 86.49 82.67 15.67 0.19 -0.77 -0.28 
21013 34 36.49 115.50 88.04 82.42 19.26 0.23 -0.76 0.17 
21015 32 28.47 107.70 82.86 77.95 22.33 0.29 -0.67 -0.38 
21017 33 52.58 104.50 88.63 84.72 14.78 0.17 -0.49 -0.95 
28031 31 48.18 117.90 84.93 84.52 18.75 0.22 -0.23 -0.52 
34003   40 65.28 121.20 90.53 88.55 14.93 0.17 0.28 -0.85 
39016 37 36.31 122.00 88.94 84.30 23.24 0.28 -0.45 -0.84 
39028 31 42.94 119.10 93.23 85.26 22.80 0.27 -0.40 -1.15 
43005  34 28.11 126.00 88.46 83.91 24.71 0.30 -0.54 -0.35 
43006  33 35.75 127.00 88.14 84.32 22.75 0.27 -0.32 -0.22 
48010  29 58.27 118.10 82.7 84.83 17.51 0.21 0.33 -0.88 
51001 29 28.09 127.90 78.42 75.50 23.75 0.31 -0.05 0.05 
55016          
55026 58 54.64 131.10 80.23 82.40 15.54 0.19 0.47 0.45 
60002 36 51.80 109.10 81.14 80.21 16.22 0.20 -0.05 -1.10 

72004 36 39.37 113.40 82.68 83.31 16.45 0.20 -0.66 0.79 
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APPENDIX 4.2: 
REGRESSION TEST FOR STATIONARITY 

 
Table A4.2.1: Results of Regression Tests 

Regression Coefficients 
Constant Year 

Station Duration No. 
Years 

R2 Std. Error 
Value 

Std. 
Error 

Value 
Std. 

Error 

         
9001 1 40 0 7.90 45.28 214.30 -0.09 0.11 
9001 30 40 0.004 11.11 156.88 301.28 -0.06 0.15 
9001 90 40 0.001 19.92 116.10 512.89 -0.04 0.26 
9001 365 39 0.044 20.79 843.42 585.55 -0.38 0.30 
9002 1 38 0.006 6.77 113.22 191.53 -0.05 0.10 
9002 30 38 0.006 10.16 156.63 287.70 -0.07 0.15 
9002 30 36 0 19.82 109.52 567.65 -0.04 0.29 
9002 30 35 0.04 22.64 867.68 673.34 -0.40 0.34 

14001 1 32 0.018 6.06 -143.1 229.0 0.09 0.12 
14001 30 32 0.026 8.15 -249.8 309.5 0.14 0.16 
14001 90 32 0.032 9.01 -306.1 342.1 0.17 0.17 
14001 365 31 0.162 20.37 -1840.5 811.6 0.97 0.41 
19002 1 38 0.104 4.43 278.2 129.9 -0.13 0.07 
19002 30 38 0.104 6.57 414.2 192.4 -0.20 0.10 
19002 90 38 0.073 13.17 680.5 385.8 -0.33 0.20 
19002 365 37 0.001 16.02 190.9 488.7 -0.06 0.25 
19004 1 40 0.028 6.63 210.2 179.7 -0.10 0.09 
19004 30 40 0.005 11.11 160.8 301.2 -0.07 0.15 
19004 90 40 0.001 15.97 133.6 433.1 -0.05 0.22 
19004 365 40 0.045 16.92 -540.2 476.7 0.32 0.24 
20001 1 39 0.027 6.71 -171.5 188.9 0.10 0.10 
20001 30 39 0.001 8.93 -32.3 -251.7 0.03 0.13 
20001 90 39 0.007 14.81 252.5 417.2 -0.11 0.21 
20001 365 38 0 25.16 158.4 737.1 -0.04 0.37 
20003 1 35 0.001 6.93 61.7 229.8 -0.02 0.12 
20003 30 35 0.004 9.42 132.3 312.5 -0.05 0.16 
20003 90 35 0 15.08 71.6 500.1 -0.02 0.25 
20003 365 34 0.014 24.47 -503.3 848.1 0.29 0.43 
20005 1 35 0.069 5.49 -266.4 182.2 0.14 0.09 
20005 30 35 0.012 7.74 -140.0 256.7 0.08 0.13 
20005 90 35 0.003 14.00 -125.4 464.3 0.08 0.23 
20005 365 35 0.008 22.57 -328.0 782.3 0.21 0.40 
21006 1 38 0.1 4.20 -230.2 123.1 0.12 0.06 
21006 30 38 0.015 8.38 -161.6 245.5 0.09 0.12 
21006 90 38 0 12.78 41.0 374.3 0.00 0.19 
21006 395 37 0.098 14.89 -778.8 454.3 0.44 0.23 
21012 1 36 0.029 3.63 126.8 115.2 -0.06 0.06 
21012 30 36 0.028 7.39 246.4 235.0 -0.12 0.12 
21012 90 36 0.022 16.02 476.7 509.3 -0.23 0.26 
21012 365 35 0.108 15.02 -912.8 498.3 0.50 0.25 

21013 1 35 0.01 5.19 121.80 172.27 -0.05 0.09 
21013 30 35 0.00 9.59 133.67 318.22 -0.06 0.16 
21013 90 35 0.01 15.73 343.66 521.82 -0.16 0.26 
21013 365 34 0.03 19.25 -593.62 667.03 0.34 0.34 
21015 1 33 0.03 5.56 -190.98 201.64 0.10 0.10 
21015 30 33 0.03 9.10 -273.50 329.77 0.15 0.17 
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Regression Coefficients 
Constant Year 

Station Duration No. 
Years 

R2 Std. Error 
Value 

Std. 
Error 

Value 
Std. 

Error 

         
21015 90 33 0.02 16.01 -393.91 580.24 0.21 0.29 
21015 365 32 0.01 22.63 -275.09 859.53 0.18 0.43 
21017 1 34 0.00 16.53 -105.88 572.70 0.07 0.29 
21017 30 34 0.03 6.65 -209.94 230.51 0.11 0.12 
21017 90 34 0.00 16.53 -105.88 572.70 0.07 0.29 
21017 365 33 0.30 12.53 -1585.16 454.29 0.84 0.23 
28031 1 31 0.002 6.55 75.47 260.78 -0.03 0.13 
28031 30 31 0.001 9.67 -42.19 385.16 0.03 0.19 
28031 90 31 0.001 15.12 -50.22 602.44 0.04 0.30 
28031 365 31 0.004 19.03 341.72 758.17 -0.13 0.38 
34003 1 40 0.002 10.70 138.01 290.02 -0.04 0.15 
34003 30 40 0.003 11.25 167.81 305.06 -0.06 0.15 
34003 90 40 0.001 12.90 120.73 349.66 -0.03 0.18 
34003 365 40 0.001 15.12 169.25 409.99 -0.04 0.21 
39016 1 38 0.068 9.78 507.44 286.64 -0.24 0.15 
39016 30 38 0.062 10.78 534.29 315.95 -0.25 0.16 
39016 90 38 0.037 12.60 484.62 369.03 -0.22 0.19 
39016 365 37 0.004 23.52 336.72 717.55 -0.13 0.36 
39028 1 31 0.072 7.73 505.84 307.90 -0.23 0.16 
39028 30 31 0.095 8.91 667.47 355.05 -0.31 0.18 
39028 90 31 0.099 10.76 816.27 478.80 -0.39 0.22 
39028 365 31 0.039 22.74 1061.72 905.90 -0.49 0.46 
43005 1 34 0.05 8.99 426.39 311.39 -0.20 0.16 
43005 30 34 0.05 9.57 478.66 331.61 -0.22 0.17 
43005 90 34 0.04 11.02 503.44 381.76 -0.23 0.19 
43005 365 34 0.02 24.84 788.94 860.70 -0.36 0.43 
43006 1 34 0.03 6.47 234.21 224.06 -0.10 0.11 
43006 30 34 0.02 7.20 256.48 249.49 -0.11 0.13 
43006 90 34 0.02 8.92 305.08 309.11 -0.13 0.16 
43006 365 33 0.00 23.07 -207.21 836.47 0.15 0.42 
48010 1 30 0.02 6.60 -199.91 276.39 0.11 0.14 
48010 30 30 0.04 8.61 -371.95 360.45 0.20 0.18 
48010 90 30 0.06 12.61 -687.66 527.69 0.36 0.27 
48010 365 30 0.03 17.60 -572.36 775.38 0.33 0.39 
50001 1 31 0.09 5.85 -339.88 212.01 0.18 0.11 
50001 30 31 0.11 7.23 -478.42 262.14 0.25 0.13 
50001 90 31 0.07 8.62 -461.50 327.32 0.25 0.17 
50001 365 29 0.02 23.99 -553.16 955.59 0.32 0.48 
55016 1 30 0.026 3.023 -103.31 123.56 0.05 0.06 
55016 30 30 0.049 5.785 -273.20 236.49 0.14 0.12 
55016 90 30 0.025 12.014 -402.52 491.07 0.21 0.26 
55026 1 61 0.01 3.085 39.02 43.13 -0.02 0.02 
55026 30 61 0.002 6.317 41.25 88.33 -0.02 0.05 
55026 90 60 0.001 12.932 -5.41 181.03 0.02 0.09 
55026 365 58 0.161 14.46 -610.28 211.12 0.35 0.11 
60002 1 38 0.02 3.59 97.06 105.05 -0.05 0.05 
60002 30 38 0.045 6.96 279.18 203.99 -0.13 0.10 
60002 90 38 0.05 14.16 600.56 414.97 -0.29 0.21 
60002 365 38 0.003 16.44 -75.06 522.29 0.08 0.26 
72004 1 40 0.01 2.93 61.33 73.86 -0.03 0.04 
72004 30 40 0.06 8.23 329.36 207.44 -0.16 0.11 
72004 90 38 0.12 14.36 816.89 362.54 -0.40 0.18 
72004 365 38 0.01 16.61 366.50 451.38 -0.13 0.23 
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APPENDIX 4.3: 
SPEARMAN’S RANK TEST 
 
Table A4.3.1:  Spearman’s Correlation Coefficients  

 Correlation Coefficient between Annual Minima and Year 
 

Station D= 1 D= 7 D= 30 D= 60 D= 90 D= 180 D= 365 
        

9001 -0.169 -0.211 -0.208 -0.163 -0.107 -0.095 -0.255 

9002 -0.185 -0.182 -0.199 -0.164 -0.120 -0.138 -0.217 

14001 0.159 0.168 0.139 0.177 0.194 0.271 0.336 

19002 -0.334 -0.322 -0.296 -0.263 -0.281 -0.285 -0.038 

19004 -0.236 -0.247 -0.218 -0.156 -0.129 -0.127 0.257 

20001 0.119 0.045 -0.025 -0.105 -0.079 -0.160 -0.035 

20003 0.090 -0.001 -0.040 -0.043 0.048 0.010 0.075 

20005 0.361 0.274 0.171 0.114 0.117 0.014 0.107 

21006 0.285 0.251 0.082 -0.020 -0.086 -0.139 0.278 

21012 -0.097 -0.029 -0.108 -0.161 -0.154 -0.108 0.262 

21013 -0.158 -0.182 -0.174 -0.208 -0.154 -0.048 0.127 

21015 0.169 0.140 0.043 -0.015 0.033 0.121 -0.024 

21017 0.088 0.085 0.079 0.130 0.116 0.147 0.538 

28031 -0.109 -0.111 -0.053 -0.022 -0.032 -0.057 -0.056 

34003 -0.057 -0.098 -0.074 -0.047 -0.037 0.002 -0.036 

39016 -0.294 -0.299 -0.261 -0.223 -0.210 -0.200 -0.073 

39028 -0.322 -0.367 -0.330 -0.342 -0.320 -0.282 -0.166 

43005 -0.295 -0.282 -0.235  -0.194 -0.138 -0.174 

43006 -0.101 -0.061 -0.066 -0.059 -0.017 0.022 0.065 

48010 0.147 0.206 0.185 0.183 0.192 0.247 0.143 

51001 0.167 0.199 0.189 0.229 0.221 0.225 -0.004 

55016 0.0002 0.047 0.069 0.068 0.103 0.215  

55026 -0.083 -0.073 -0.077 -0.022 0.006 0.084 0.390 

60002 -0.149 -0.209 -0.194 -0.084 -0.185 -0.208 0.016 

72004 -0.192 -0.203 -0.27 -0.249 -0.413 -0.484 -0.047 
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APPENDIX 4.4: 
PARTIAL AUTO-CORRELATION PLOTS 
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Figure A4.4.1: – Station 9001 
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Figure A4.4.2: – Station 9002  
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Figure A4.4.3: – Station 14002 
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Figure A4.4.4: – Station 19002 
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Figure A4.4.5: – Station 19004 
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     Figure A4.4.6: – Station 20001 
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Figure A4.4.7: – Station 20003 
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Figure A4.5.8: – Station 20005  
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     Figure A4.4.9: – Station 21006 
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     Figure A4.4.10: – Station 21012 
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Figure A4.4.11: – Station 21013 
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     Figure A4.4.12: – Station 21015 
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Figure A4.4.13: – Station 21017 
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     Figure A4.4.14: – Station 28031 
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Figure A4.4.15: – Station 34003 
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     Figure A4.4.16: – Station 39016. 
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     Figure A4.4.17: – Station 39028  
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Figure A4.4.18: – Station 43005 
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     Figure A4.4.19: – Station 43006 
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     Figure A4.4.20: – Station 48010 
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    Figure A4.4.21: – Station 51001 
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Figure A4.4.22: – Station 55016 
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Figure A4.4.23: – Station 55026 
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Figure A4.4.24: – Station 60002 
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    Figure A4.4.25:- Station 72004 
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APPENDIX 5: 
ESTIMATION OF DISTRIBUTION PARAMETERS VIA THE L-
MOMENTS METHOD 
 
 
5.1 Generalised Extreme Value Distribution 
 
L-Moments: 
 
The four L-Moments, ?1, ?2, t 3 and t 4 are given by the following relationships: 
 

k
)k1(1

1
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where (.)Γ  denotes the gamma function:  

 

∫
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In the particular case of a Gumbel distribution ( 0=k ), for example, the formulas are: 
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where γ  is Euler’s constant and is equal to 0.5772 
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Parameters 
 
To estimate k, equation A5.3, must be solved for k. No explicit solution is possible, but 
the following approximation, given by Hosking et al. (1985b), has accuracy better than 

410*9 −  for 5.05.0 3 ≤≤− τ : 

29554.28590.7 cck +≈ ,     where 
3log
2log

3
2

3

−
+

=
τ

c     A5.6 

 
The other parameters, a and ? are then given by: 
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5.2  Generalised Pareto Distribution 
 

L-moments 
 
The four L-Moments, ?1, ?2, t 3 and t 4 are given by the following relationships: 
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Parameters  

 
If the parameter ξ is known, then α and k are given by: 

2
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−

=
λ

ξλ
k  A5.13 
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)()1( 1 ξλα −+= k  A5.14 

If ξ is unknown, then the three parameters may be calculated from the L-moments as 
follows 
 

3

3
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31
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2)2()1( λα kk ++=  A5.16 

 

21 )2( λλξ k+−=  A5.17 

 
 
5.3 Pearson Type-III Distribution 
 

L-Moments 
 
Expressions for the distribution’s L-Moments in terms of its parameters are simpler 
when using the standard parameters; to represent these results, we therefore use the 
standard parametrisation, assuming 0>γ . The corresponding results for 0<γ  are 

obtained by changing the signs of 1λ , 3τ  and ξ  whenever they occur in the following 

expressions. 
 
L-Moments are defined for all values of α , ∞<< α0 . 
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Here ),( qpI x  denotes the incomplete beta function ratio 

 

∫ −− −
ΓΓ
+Γ

=
x

qp
x dttt

qp
qp

qpI
0

11 )1(
)()(
)(

),(  A5.21 

 



 

R&D TECHNICAL REPORT W6-064/TR2   243

There is no simple expression for 4τ . Rational-function approximation can be used to 

express 3τ  and 4τ  approximately as functions of α . The following approximations are 

accurate to 610 − . If 1≥α , 

2
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if 1<α , 
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Coefficients of the approximations are given in the following table 
 
Table A5.1: Coefficients for parameter estimation for the Pearson Type-III distribution 
 

A0 = 3.2573501*10-1 C0 = 1.2260172*10-1 
A1 = 1.6869150*10-1 C1 = 5.3730130*10-2 
A2 = 7.8327243*10-2 C2 = 4.3384378*10-2 
A3 = - 2.9120539*10-3 C3 = 1.1101277*10-2 
B1 = 4.6697102*10-1 D1 = 1.8324466*10-1 
B2 = 2.4255406*10-1 D2 = 2.0166036*10-1 
E1 = 2.3807576 G1 = 2.1235833 
E2 = 1.5931792 G2 = 4.1670213 
E3 = 1.1618371*101 G3 = 3.1925299 
F1 = 5.1533299 H1 = 9.0551443 
F2 = 7.1425260 H2 = 2.6649995*101 
F3 = 1.9745056 H3 = 2.6193668*101 

 
 
Parameters 
 
To estimate α , the third equation of the previous system must be solved for α , 

replacing 3τ  by 3τ  to enable a solution to be obtained when 3τ  is negative. The 
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following approximation has relative accuracy better than 5105 −×  for all values of α . 

If 
3
1

0 3 << τ , let 2
33 τπ=z  and use: 
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≈α   

 A5.26 
 

if 1
3
1

3 <≤ τ , let 31 τ−=z  and use 

32

32

77045.056096.278861.21
25361.059567.036067.0

zzz
zzz

−+−
+−

≈α  A5.27 

 
Given α , the parameters of our preferred parametrisation may be found from 

)(sign2 3
2/1 ταγ −= ,     







 +Γ

Γ
=

2
1
)(

2

α

α
απλσ ,     1λµ =  A5.28 
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APPENDIX 6: 
 
APPENDIX 6.1: 
PARAMETER VALUES 

 
Table 6.1.1: Parameter Values for the GEV distribution 

Duration, D (days) Station Param
eter 

1 7 30 60 90 180 360 

9001 a 0.434 0.497 0.675 0.822 1.080 1.440 1.920 

 ? 2.030 2.150 2.460 2.730 3.170 4.440 6.600 

 k -0.137 -0.114 -0.067 -0.181 -0.097 0.062 0.447 

9002 a 0.798 0.884 1.110 1.480 1.980 2.770 4.050 

 ? 3.250 3.410 3.890 4.430 5.100 7.390 12.600 

 k -0.063 -0.045 -0.121 -0.164 0.160 -0.036 0.509 

14001 a 0.237 0.244 0.272 0.276 0.301 0.463 0.915 

 ? 0.900 0.933 1.010 1.100 1.700 1.610 3.030 

 k 0.342 0.233 0.111 0.072 0.101 -0.001 0.562 

19002 a 0.029 0.035 0.046 0.066 0.090 0.138 0.159 

 ? 0.100 0.121 0.159 0.200 0.237 0.380 0.741 

 k -0.086 -0.053 -0.049 -0.129 -0.075 0.109 0.493 

19004 a 0.095 0.101 0.114 0.141 0.175 0.256 0.285 

 ? 0.282 0.315 0.373 0.437 0.499 0.754 1.300 

 k 0.246 0.209 -0.067 -0.085 -0.047 0.135 0.858 

20001 a 0.152 0.150 0.180 0.227 0.268 0.452 0.737 

 ? 0.503 0.504 0.622 0.699 0.761 1.060 2.030 

 k 0.665 0.025 -0.338 -0.513 -0.138 -0.103 0.585 

20003 a 0.072 0.080 0.091 0.106 0.106 0.222 0.359 

 ? 0.250 0.270 0.297 0.329 0.329 0.511 0.998 

 k -0.004 0.015 -0.069 -0.113 -0.164 -0.088 0.507 

20005 a 0.050 0.047 0.053 0.067 0.086 0.154 0.226 

 ? 0.160 0.173 0.194 0.218 0.244 0.350 0.697 

 k 0.207 0.100 -0.042 -0.140 -0.120 -0.177 0.559 

21006 a 1.440 1.670 2.160 3.040 0.274 0.558 0.843 

 ? 5.400 5.990 7.210 8.820 0.648 1.100 2.560 

 k 0.154 0.186 -0.035 -0.072 -0.288 -0.066 0.652 

21012 a 0.262 0.295 0.426 0.733 1.020 1.450 1.510 

 ? 0.758 0.821 1.060 1.419 1.860 3.410 7.110 

 k 0.459 0.007 -0.109 -0.173 -0.060 0.132 0.740 

21013 a 0.126 0.144 0.193 0.289 0.356 0.668 0.761 

 ? 0.430 0.463 0.539 0.666 0.740 1.370 2.890 

 k -0.101 -0.084 -0.195 -0.234 -0.165 0.254 0.675 

21015 a 0.104 0.116 0.151 0.215 0.274 0.558 0.843 

 ? 0.385 0.408 0.470 0.559 0.648 1.100 2.560 

 k -0.222 -0.212 -0.280 -0.305 -0.288 -0.066 0.652 

21017 a 0.051 0.061 0.102 0.207 0.239 0.281 0.368 

 ? 0.137 0.151 0.218 0.343 0.463 0.892 1.550 

 k 0.108 0.113 0.036 -0.031 0.007 0.194 0.639 

28031 a 0.201 0.212 0.262 0.356 0.448 0.638 0.681 

 ? 0.586 0.608 0.690 0.792 0.942 1.490 2.740 
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Duration, D (days) Station Param
eter 

1 7 30 60 90 180 360 

 k 0.186 0.165 0.059 -0.018 0.107 0.340 0.433 

34003 a 0.116 0.117 0.121 0.134 0.140 0.142 0.157 

 ? 0.541 0.565 0.609 0.650 0.678 0.750 0.904 

 k 0.322 0.348 0.315 0.311 0.318 0.238 0.234 

39016 a 0.934 0.950 1.030 1.118 1.193 1.560 2.380 

 ? 3.710 3.850 4.152 4.430 4.622 5.463 7.510 

         

39016 k 0.375 0.361 0.362 0.358 0.339 0.314 0.554 

39028 a 0.059 0.063 0.069 0.075 0.081 0.103 0.176 

 ? 0.288 0.299 0.313 0.326 0.337 0.400 0.571 

 k 0.447 0.432 0.441 0.426 0.410 0.418 0.557 

43005 a 0.321 0.329 0.345 0.365 0.389 0.532 0.909 

 ? 1.143 1.174 1.246 1.319 1.386 1.726 2.685 

 k 0.602 0.589 0.527 0.440 0.441 0.463 0.579 

43006 a 0.167 0.179 0.184 0.210 0.224 0.333 0.682 

 ? 0.868 0.913 0.976 1.052 1.113 1.369 2.232 

 k 0.208 0.222 0.196 0.204 0.171 0.290 0.490 

48010 a 0.053 0.056 0.067 0.075 0.087 0.133 0.167 

 ? 0.194 0.203 0.228 0.248 0.271 0.382 0.789 

 k 0.082 0.050 0.056 -0.064 -0.060 0.063 0.211 

51001 a 0.059 0.063 0.069 0.077 0.080 0.122 0.257 

 ? 0.186 0.195 0.213 0.233 0.253 0.356 0.730 

 k 0.185 0.171 0.101 0.109 0.132 0.089 0.392 

55016 a 0.164 0.177 0.274 0.477 0.641 1.230 1.510 

 ? 0.221 0.257 0.400 0.607 0.861 2.040 6.140 

 k -0.119 -0.151 -0.214 -0.234 -0.142 0.160 0.388 

55026 a 0.153 0.183 0.309 0.540 0.732 0.947 0.980 

 ? 0.319 0.372 0.617 1.040 1.530 2.650 5.140 

 k -0.027 -0.121 -0.040 -0.045 0.080 0.204 0.213 

60002 a 0.362 0.418 0.668 1.018 1.483 2.099 1.939 

 ? 0.714 0.796 1.143 1.685 2.489 4.486 8.682 

 k 0.140 0.107 0.039 0.026 0.135 0.394 0.367 

72004 a 0.847 0.971 2.100 3.320 4.260 6.160 6.100 

 ? 2.360 2.600 3.910 5.860 8.810 16.100 28.200 

 k 0.040 -0.020 -0.082 -0.058 0.011 0.328 0.511 

 

 
Table 6.1.2: Parameter Values for the Generalised Logistic distribution 

Duration, D (days) Station Parameter 
1 7 30 60 90 180 360 

9001 a 0.310 0.350 0.463 0.601 0.755 0.920 1.000 

 ? 2.210 2.340 2.720 3.070 3.600 4.990 7.230 

 k -0.261 -0.245 -0.213 0.292 -0.234 -0.131 0.087 

9002 a 0.546 0.599 0.782 1.070 1.430 1.870 2.050 

 ? 3.570 3.750 4.330 5.030 5.890 8.470 13.900 

 k -0.211 -0.199 -0.250 -0.279 -0.277 -0.193 0.118 

14001 a 0.130 0.142 0.169 0.175 0.188 0.306 0.451 

 ? 0.982 1.020 1.120 1.210 1.320 1.790 3.320 
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Duration, D (days) Station Parameter 
1 7 30 60 90 180 360 

 k 0.032 -0.029 -0.100 -0.125 -0.107 -0.171 0.145 

19002 a 0.020 0.024 0.031 0.047 0.062 0.086 0.081 

 ? 0.112 0.135 0.177 0.226 0.272 0.432 0.793 

 k -0.226 -0.205 -0.202 -0.255 -0.219 -0.102 0.110 

19004 a 0.055 0.059 0.078 0.098 0.119 0.157 0.124 

 ? 0.316 0.352 0.418 0.490 0.568 0.849 3.750 

 k -0.214 -0.422 -0.214 -0.226 -0.200 -0.863 0.277 

20001 a 0.097 0.098 0.122 0.155 0.191 0.316 0.370 

 ? 0.560 0.612 0.692 0.789 0.868 1.240 2.260 

 k -0.127 -0.154 -0.192 -0.203 -0.262 -0.238 0.156 

20003 a 0.048 0.053 0.063 0.075 0.093 0.154 0.182 

 ? 0.278 0.301 0.332 0.371 0.415 0.599 1.110 

 k -0.172 -0.160 -0.215 -0.245 -0.278 0.228 0.117 

20005 a 0.029 0.029 0.036 0.048 0.061 0.103 0.112 

 ? 0.178 0.191 0.214 0.244 0.279 0.410 0.769 

 k 0.043 -0.107 -0.197 -0.263 -0.249 -0.181 0.143 

21006 a 0.871 0.997 1.450 2.090 0.213 0.383 0.399 

 ? 5.930 6.600 8.050 10.000 0.762 1.320 2.310 

 k -0.075 -0.056 -0.192 -0.217 -0.369 -0.213 0.187 

21012 a 0.169 0.194 0.299 0.533 0.699 0.891 0.690 

 ? 0.858 0.936 1.290 1.720 2.260 3.943 7.549 

 k -0.141 -0.165 -0.243 -0.286 -0.209 -0.088 0.226 

21013 a 0.088 0.100 0.142 0.218 0.258 0.435 0.357 

 ? 0.480 0.519 0.617 0.785 0.938 1.630 3.120 

 k -0.236 -0.225 -0.302 0.329 -0.280 -0.154 0.197 

21015 a 0.078 0.087 0.117 0.163 0.213 0.383 0.399 

 ? 0.432 0.456 0.533 0.648 0.762 1.320 2.310 

 k -0.320 -0.314 -0.363 -0.382 -0.369 -0.213 0.187 

21017 a 0.032 0.038 0.066 0.139 0.157 0.167 0.147 

 ? 0.156 0.174 0.257 0.424 0.555 0.994 1.650 

 k -0.103 -0.100 -0.147 -0.190 -0.165 -0.051 0.181 

28031 a 0.120 0.128 0.167 0.238 0.279 0.351 0.358 

 ? 0.659 0.686 0.790 0.930 1.110 1.710 2.570 

 k -0.056 -0.068 0.133 -0.182 -0.103 0.031 0.080 

34003 a 0.064 0.064 0.067 0.075 0.078 0.082 0.091 

 ? 0.582 0.606 0.651 0.697 0.726 0.801 0.960 

 k 0.021 0.035 0.017 0.015 0.019 -0.026 -0.028 

39016 a 0.505 0.517 0.561 0.610 0.656 0.870 1.180 

 ? 4.020 4.180 4.500 4.810 5.030 6.007 8.260 

 k 0.050 0.042 0.043 0.040 0.031 0.017 0.140 

39028 a 0.031 0.033 0.036 0.040 0.043 0.055 0.087 

 ? 0.307 0.320 0.336 0.351 0.365 0.435 0.627 

 k 0.087 0.079 0.084 0.077 0.068 0.072 0.142 

43005 a 0.156 0.160 0.173 0.191 0.203 0.275 0.445 

 ? 1.243 1.277 1.357 1.441 1.515 1.901 2.970 

 k 0.164 0.157 0.127 0.084 0.084 0.095 0.153 

43006 a 0.098 0.105 0.109 0.124 0.135 0.188 0.348 

 ? 0.929 0.978 1.043 1.128 1.195 1.486 2.454 

 k -0.118 -0.138 -0.135 -0.211 -0.209 -0.130 -0.041 

48010 a 0.034 0.036 0.043 0.052 0.060 0.085 0.099 

 ? 0.214 0.225 0.253 0.278 0.305 0.432 0.850 
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Duration, D (days) Station Parameter 
1 7 30 60 90 180 360 

 k -0.118 -0.138 -0.135 -0.211 -0.209 -0.130 -0.041 

51001 a 0.035 0.038 0.043 0.048 0.049 0.077 0.138 

 ? 0.207 0.218 0.239 0.262 0.282 0.402 0.817 

 k -0.056 -0.065 -0.106 -0.102 -0.088 -0.114 0.058 

55016 a 0.110 0.127 0.204 0.359 0.458 0.747 0.811 

 ? 0.286 0.328 0.513 0.802 1.120 2.500 6.650 

 k -0.249 -0.270 -0.315 -0.329 -0.264 -0.071 0.057 

55026 a 0.103 0.121 0.208 0.366 0.463 0.559 0.576 

 ? 0.378 0.443 0.737 1.250 1.800 2.990 5.490 

 k -0.187 -0.178 -0.196 -0.199 -0.119 -0.045 -0.040 

60002 a 0.222 0.261 0.432 0.663 0.909 1.124 1.052 

 ? 0.848 0.952 1.398 2.076 3.038 5.196 9.344 

 k -0.830 -0.103 -0.147 -0.154 -0.086 0.060 0.046 

72004 a 0.547 0.649 1.460 2.270 2.800 3.410 3.080 

 ? 2.680 2.980 4.740 7.160 10.500 18.300 30.200 

 k -0.145 -0.183 -0.227 -0.208 -0.163 0.024 0.120 

 
 

        

 

 
 
Table 6.1.3: Parameter Values for the Generalised Pareto distribution 

Duration, D (days) Station Parameter 
1 7 30 60 90 180 360 

9001 a 0.884 1.040 1.490 1.600 2.300 3.690 8.180 

 ? 1.770 2.000 2.290 2.930 3.920 6.320 18.800 

 k 0.871 0.775 0.739 0.716 0.908 1.100 4.590 

9002 a 0.063 0.078 0.104 0.135 0.196 0.375 0.721 

 ? 0.306 0.310 0.251 0.305 0.395 0.718 2.260 

 k 0.391 0.368 0.413 0.510 0.545 0.955 3.930 

14001 a 0.171 0.194 0.200 0.222 0.254 0.477 0.166 

 ? 0.153 0.125 0.120 0.135 0.179 0.360 1.130 

 k 4.120 5.000 4.930 6.660 0.477 1.230 4.840 

19002 a 0.659 0.708 0.895 1.430 2.270 4.050 9.930 

 ? 0.266 0.311 0.369 0.532 0.703 1.640 4.520 

 k 0.194 0.219 0.265 0.368 0.477 1.230 4.840 

19004 a 0.138 0.167 0.254 0.476 0.575 0.850 1.740 

 ? 0.600 0.618 0.669 0.830 1.210 2.340 2.840 

 k 0.413 0.434 0.428 0.472 0.497 0.453 0.498 

20001 a 3.590 3.580 3.890 4.200 4.370 5.520 11.800 

 ? 0.251 0.262 0.289 0.309 0.326 0.422 0.880 

 k 1.710 1.718 1.644 1.537 1.639 2.312 4.681 

20003 a 0.513 0.562 0.558 0.642 0.656 1.142 3.082 

 ? 0.140 0.143 0.171 0.166 0.194 0.340 0.517 

 k 0.177 0.177 0.185 0.210 0.224 0.324 1.012 

20005 a 0.340 0.354 0.515 0.877 1.300 3.570 5.920 

 ? 0.353 0.428 0.701 1.220 1.920 2.900 3.030 

 k 1.023 1.133 1.667 2.493 4.159 8.285 7.380 

21006 a 2.110 2.260 4.520 7.390 10.300 22.200 28.400 
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Duration, D (days) Station Parameter 
1 7 30 60 90 180 360 

 ? 1.600 1.640 1.750 1.930 2.060 2.790 3.660 

 k 2.410 2.460 2.770 2.570 3.140 4.410 6.060 

21012 a 0.567 0.616 0.692 0.785 0.848 1.100 1.500 

 ? 0.070 0.084 0.110 0.133 0.143 0.216 0.489 

 k 0.158 0.187 0.253 0.290 0.312 0.444 0.674 

21013 a 0.328 0.386 0.428 0.458 0.491 0.593 0.727 

 ? 0.171 0.181 0.201 0.220 0.237 0.281 0.421 

 k 0.097 0.118 0.137 0.151 0.157 0.183 0.318 

21015 a 3.640 3.890 4.890 5.640 3.970 0.509 1.030 

 ? 0.460 0.496 0.622 0.699 0.781 1.660 4.140 

 k 0.301 0.313 0.352 0.392 0.443 0.626 1.490 

21017 a 0.290 0.297 0.331 0.364 0.397 0.509 1.030 

 ? 0.076 0.079 0.103 0.120 0.198 0.537 1.000 

 k 0.334 0.346 0.390 0.405 0.412 0.597 1.713 

28031 a 0.381 0.400 0.442 0.466 0.485 0.566 0.701 

 ? 2.360 2.490 2.680 2.840 2.940 3.310 3.530 

 k 0.198 0.204 0.209 0.213 0.217 0.246 0.276 

34003 a 0.585 0.609 0.684 0.764 0.794 0.902 1.134 

 ? 0.656 0.682 0.744 0.786 0.836 0.918 1.153 

 k 0.132 0.139 0.151 0.169 0.179 0.230 0.576 

39016 a 0.112 0.112 0.132 0.142 0.156 0.213 0.354 

 ? 0.547 0.081 0.138 0.155 0.219 0.525 3.930 

 k 0.153 0.173 0.286 0.461 0.675 1.440 3.890 

39028 a 0.275 0.300 0.388 0.547 0.698 1.408 5.896 

 ? 1.400 1.550 1.730 2.340 4.100 7.550 18.400 

 k 0.172 0.212 0.296 0.097 0.242 0.537 1.380 

43005 a 0.304 0.336 0.199 0.126 0.131 0.352 1.540 

 ? 1.130 0.888 0.634 0.557 0.615 0.417 1.690 

 k 0.262 0.320 0.328 0.186 0.281 0.631 1.496 

43006 a 0.916 0.838 0.295 0.263 0.332 0.682 2.530 

 ? 0.546 0.437 0.356 0.324 0.170 0.231 0.174 

 k 0.412 0.447 0.292 0.214 0.130 0.257 0.153 

48010 a 0.834 0.613 0.341 0.167 0.201 0.386 1.670 

 ? 0.722 0.789 0.355 0.287 -0.079 0.297 1.920 

 k 0.506 0.437 0.220 0.110 0.309 0.677 2.170 

51001 a 0.236 0.265 0.073 0.009 0.124 0.467 1.980 

 ? 0.029 0.044 -0.066 -0.106 -0.079 0.297 1.920 

 k 0.628 0.638 0.487 0.362 0.430 0.804 1.880 

55016 a 0.789 0.744 0.532 0.385 0.626 1.130 2.350 

 ? 1.086 1.145 1.069 1.062 1.077 0.899 0.890 

 k 1.210 1.180 1.180 1.170 1.130 1.070 1.650 

55026 a 1.380 1.340 1.370 1.330 1.290 1.310 1.660 

 ? 1.782 1.747 1.584 1.365 1.368 1.421 1.719 

 k 0.835 0.866 0.810 0.827 0.757 1.015 1.489 

60002 a 0.577 0.514 0.526 0.302 0.309 0.541 0.841 

 ? 0.787 0.787 0.615 0.631 0.677 0.590 1.248 

 k 0.203 0.149 0.042 0.009 0.164 0.734 1.240 

72004 a 0.365 0.396 0.345 0.336 0.573 0.827 0.845 

 ? 0.694 0.627 0.495 0.466 0.684 1.253 1.191 

 k 0.495 0.382 0.259 0.312 0.440 1.100 1.540 
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Table 6.1.4: Parameter Values for the Pearson Type III distribution 

Duration, D (days) Station Parameter 
1 7 30 60 90 180 360 

9001 a 0.66 0.73 0.93 1.35 1.56 1.71 1.81 

 ? 2.35 1.49 2.90 3.39 3.91 5.19 1.81 

 k 1.57 1.48 1.29 1.75 1.41 7.97 -0.54 

9002 a 1.10 1.19 1.65 2.37 3.14 3.68 3.78 

 ? 3.77 3.96 4.68 4.68 5.57 0.66 9.09 

 k 1.27 1.20 1.51 0.17 0.17 1.17 -0.72 

14001 a 0.23 0.25 0.31 0.33 0.34 0.59 0.85 

 ? 0.99 1.03 1.14 1.24 1.35 1.88 3.21 

 k -0.20 0.18 0.62 0.76 0.65 1.04 -0.88 

19002 a 0.04 0.05 0.06 0.10 1.56 1.71 1.81 

 ? 0.12 0.14 0.19 0.25 3.91 5.19 7.09 

 k 1.36 1.24 1.22 1.54 1.41 0.18 -0.54 

19004 a 0.10 0.11 0.16 0.20 0.24 0.29 0.27 

 ? 0.32 0.36 0.45 0.53 0.61 0.87 1.31 

 k 0.13 0.26 1.29 0.14 1.21 0.53 -1.66 

20001 a 0.18 0.18 0.24 0.31 0.41 0.66 0.70 

 ? 0.58 0.64 0.73 0.84 0.96 1.37 2.17 

 k 0.78 0.94 1.16 1.23 1.58 0.14 -0.95 

20003 a 0.09 0.10 0.13 0.16 0.20 0.32 0.34 

 ? 0.29 0.32 0.36 0.40 0.46 0.66 1.08 

 k 1.04 0.98 1.30 1.47 1.67 0.14 -0.72 

20005 a 0.05 0.05 0.07 0.10 0.13 0.20 0.21 

 ? 0.18 0.20 0.23 0.27 0.31 0.44 0.74 

 k 0.27 0.66 1.19 1.58 1.50 1.10 -0.87 

21006 a 1.57 1.78 2.85 4.23 0.55 0.77 0.78 

 ? 6.03 6.69 8.53 10.80 0.91 1.46 2.69 

 k 0.46 0.34 1.16 1.31 2.22 1.29 -1.13 

21012 a 0.32 0.37 0.63 1.19 1.40 1.62 1.41 

 ? 0.90 0.99 1.36 1.99 2.52 4.07 7.28 

 k 0.86 1.00 1.46 1.72 1.26 0.54 -1.37 

21013 a 0.18 0.20 0.33 0.52 0.57 0.82 0.71 

 ? 0.52 0.56 0.70 0.92 1.07 1.74 3.00 

 k 1.42 1.36 1.81 1.98 1.68 0.34 -1.19 

21015 a 0.18 0.20 0.30 0.45 0.55 0.77 0.78 

 ? 0.48 0.51 6.15 0.58 0.91 1.46 2.69 

 k 1.92 1.88 2.18 2.30 2.22 1.29 -1.13 

21017 a 0.06 0.07 0.13 0.27 0.30 0.30 0.29 

 ? 0.16 0.18 0.27 0.47 0.60 1.01 1.60 

 k 0.63 0.61 0.90 1.15 1.00 0.32 -0.11 

28031 a 0.21 0.23 0.31 0.46 0.51 0.62 0.65 

 ? 0.67 0.70 0.83 1.00 1.16 1.70 2.92 

 k 0.34 0.42 0.81 1.10 0.63 -0.19 -0.49 

34003 a 0.11 0.11 0.12 0.13 0.14 0.15 0.16 

 ? 0.58 0.60 0.65 0.70 0.72 0.80 0.96 

 k -0.13 -0.21 -0.10 -0.09 -0.12 0.16 0.17 

39016 a 0.90 0.92 1.00 1.08 1.17 1.54 2.21 

 ? 3.98 4.14 4.46 4.77 5.00 5.98 7.98 
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Duration, D (days) Station Parameter 
1 7 30 60 90 180 360 

 k -0.31 -0.26 -0.26 -0.25 -0.19 -0.10 -85.60 

39028 a 0.06 0.06 0.06 0.07 0.08 0.10 0.16 

 ? 0.30 0.32 0.33 0.35 0.36 0.43 0.61 

 k -0.53 -0.49 -0.52 -0.47 -0.42 -0.44 -0.86 

43005 a 0.30 0.30 0.32 0.35 0.37 0.50 0.84 

 ? 1.20 1.24 1.32 1.41 1.49 1.86 2.86 

 k -0.99 -0.96 -0.78 -0.51 -0.52 -0.58 -0.93 

43006 a 0.18 0.19 0.19 0.22 0.24 0.33 0.64 

 ? 0.94 0.98 1.05 1.14 1.21 1.49 2.39 

 k 0.26 0.21 0.31 0.28 0.40 -0.02 -0.67 

48010 a 0.06 0.07 0.08 0.10 0.12 0.16 0.18 

 ? 0.22 0.23 0.26 0.30 0.33 0.45 0.86 

 k 0.72 0.84 0.82 1.28 1.26 0.79 0.25 

51001 a 0.06 0.07 0.08 0.09 0.09 0.14 0.25 

 ? 0.21 0.22 0.25 0.27 0.29 0.42 0.80 

 k 0.35 0.40 0.65 0.62 0.54 0.70 -0.36 

55016 a 0.24 0.28 0.48 0.86 0.99 1.34 1.45 

 ? 0.34 0.39 0.63 1.02 1.32 2.58 6.58 

 k 1.50 1.63 1.89 1.96 1.59 0.44 -0.35 

55026 a 0.20 0.24 0.41 0.73 0.85 1.00 1.03 

 ? 0.41 0.48 0.81 1.37 1.89 3.03 5.53 

 k 1.13 1.08 1.18 1.20 0.73 0.28 0.25 

60002 a 0.40 0.48 0.81 1.26 1.65 2.01 1.88 

 ? 0.88 1.00 1.50 2.25 3.17 5.09 9.27 

 k 0.52 0.63 0.88 0.94 0.53 -0.37 -0.28 

72004 a 1.03 1.26 2.99 4.53 5.34 6.05 5.69 

 ? 2.81 3.18 5.32 7.97 11.20 18.10 29.60 

 k 0.88 1.11 1.37 1.26 0.99 -0.15 -0.73 
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APPENDIX 6.2: 
GOODNESS OF FIT TEST RESULTS 
 
Table 6.2.1: Chi-Square Test Results for Selected Stations 

Chi-Square Error (?2) 
Station  Distn. 

D= 1 D = 7 D = 30 D = 60 D = 90 D = 180 D = 365 Average 
Average 

( D= 1 to 90 ) 
9001 GEV 1.74 1.82 3.84 4.36 2.41 3.13 5.12 3.20 2.83 

 GPA 2.23 2.35 4.93 4.70 3.08 6.36 3.18 3.83 3.46 

 GL 1.96 2.15 3.67 6.91 5.77 2.83 5.19 4.07 4.09 

 PE 1.71 1.78 3.44 5.85 3.05 2.71 6.47 3.57 3.17 

9002 GEV 1.14 1.51 4.20 5.87 6.59 5.60 5.90 4.40 3.86 

 GPA 1.55 2.17 5.25 6.27 7.71 9.51 12.76 6.46 4.59 

 GL 1.49 1.49 3.60 7.95 8.25 2.66 8.16 4.80 4.55 

 PE 1.09 1.32 3.61 6.83 7.01 3.91 7.08 4.41 3.97 

21006 GEV 0.78 0.96 3.11 1.89 2.60 4.87 4.56 2.68 1.87 

 GPA 0.97 1.40 2.52 1.79 2.43 8.88 9.91 3.99 1.82 

 GL 1.68 1.63 6.79 5.58 7.17 4.04 2.58 4.21 4.57 

 PE 0.76 0.96 3.82 2.76 2.91 5.42 5.20 3.12 2.24 

34003 GEV 2.29 2.47 2.13 2.24 2.46 2.73 2.47 2.40 2.32 

 GPA 3.86 4.08 3.43 4.43 4.73 4.51 5.92 4.42 4.11 

 GL 2.75 2.90 3.23 2.16 2.48 3.07 1.90 2.64 2.70 

 PE 2.53 2.73 2.33 2.66 2.90 2.97 3.84 2.85 2.63 

39016 GEV 12.80 12.80 8.70 6.66 4.98 2.99 13.80 8.96 9.19 

 GPA 7.35 7.85 4.70 3.49 2.70 2.99 2.64 4.53 5.22 

 GL 29.30 27.90 22.10 18.90 15.60 10.40 6.54 18.68 22.76 

 PE 7.11 11.30 7.46 5.64 4.22 2.71 16.40 7.83 7.15 

43005 GEV 13.30 13.50 4.57 4.42 3.48 1.26 6.51 6.72 7.85 

 GPA 6.40 6.49 2.14 2.03 1.95 3.22 16.00 5.46 3.80 

 GL 37.80 37.60 15.80 14.80 12.50 6.19 8.93 19.09 23.70 

 PE 11.20 11.30 3.66 3.51 2.81 1.49 8.08 6.01 6.50 

43006 GEV 1.60 1.19 1.28 1.67 1.74 0.74 5.01 1.89 1.50 

 GPA 1.08 0.68 0.79 0.88 1.14 1.56 9.08 2.17 0.92 

 GL 3.98 3.80 3.75 5.01 5.11 2.79 9.87 4.90 4.33 

 PE 1.50 1.08 1.20 1.51 1.69 0.85 5.53 1.91 1.40 

48010 GEV 2.12 1.80 4.90 5.02 6.51 4.03 2.23 3.80 4.07 

 GPA 1.95 1.86 4.57 4.68 6.33 6.15 4.52 4.29 3.88 

 GL 4.12 3.29 7.68 8.07 9.71 3.67 0.93 5.35 6.57 

 PE 2.18 1.85 5.01 5.70 7.13 3.76 2.58 4.03 4.37 

51001 GEV 0.76 0.86 13.60 1.56 2.21 5.64 5.46 4.30 3.80 

 GPA 0.94 1.19 1.54 1.55 1.68 5.89 7.25 2.86 1.38 

 GL 2.37 2.30 3.38 4.36 5.99 9.05 13.30 5.82 3.68 

 PE 0.77 0.89 1.43 1.63 2.22 5.65 5.41 2.57 1.39 

55026 GEV 0.79 0.71 1.95 4.07 1.82 4.50 2.63 2.35 1.87 

 GPA 0.78 1.12 2.39 4.42 5.30 6.20 3.78 3.43 2.80 

 GL 3.99 3.55 7.90 13.90 11.10 17.10 6.26 9.11 8.09 

 PE 1.24 0.92 2.81 5.38 1.75 4.40 2.56 2.72 2.42 

72004 GEV 0.96 1.36 6.52 5.02 5.28 4.36 4.08 3.94 3.83 

 GPA 1.48 2.12 9.23 9.12 9.52 8.39 2.94 6.11 6.29 

 GL 1.04 0.97 3.10 1.26 2.67 9.50 13.90 4.63 1.81 

 PE 0.90 1.13 4.51 2.70 4.04 4.93 3.46 3.10 2.66 
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Table 6.2.2: Chi-Square Test Results for Selected Stations 

Distribution with lowest Chi-Square Error (?2) 
 Station  

D= 1 D = 7 D = 30 D = 60 D = 90 D = 180 D = 365 
9001 gev/pe3 pe3 pe3 pe3 gev pe3 gev 
9002 gev/pe3 gpa gpa pe3 gev gev gpa 

14001 gpa gev pe3 pe3 pe3 glo gev 
19002 gev gev gev pe3 pe3 glo gev 
19004 glo gev glo gev pe3 gpa gpa 
20001 pe3 pe3 pe3 pe3 gpa gpa gpa 
20003 gev gev gev pe3 gpa gpa gev 
20005 gev gpa pe3 gev pe3 gpa gev 
21006 glo glo glo glo glo gpa glo 
21012 pe3 pe3 gev gpa gpa gev gpa 
21013 gev gev gev gpa pe3 gpa gev 
21015 gev pe3 gev pe3 pe3 gpa gpa 
21017 pe3 pe3 gpa gpa pe3 glo gpa 
28031 pe3 pe3 pe3/gev gev gpa gpa gev 
34003 gev gev gev gpa gev gev gpa 
39016 glo glo glo glo glo pe3 gpa 
39028 gev gev gev gev gev gev pe3 
55016 pe3 pe3 pe3 gpa gpa gpa pe3 
60002 pe3 pe3 gpa gev gev gev gpa 
72004 pe3 gpa gpa gpa gpa gev pe3 

 
 

 
Table 6.2.3: Root Mean Square Errors 

Root Mean Square Error (RMSE) 
Station  Distn. 

D= 1 D = 7 D = 30 D = 60 D = 90 D = 180 D = 365 Average 
Average 

( D= 1 to 90 ) 

           

9001 GEV 1.120 1.130 1.960 2.560 2.120 1.960 2.700 1.936 1.778 

 GPA 1.080 1.210 1.980 3.390 3.380 2.350 3.190 2.369 2.208 

 GL 1.310 1.320 2.190 2.550 2.140 2.780 3.990 2.326 1.902 

 PE 1.030 1.080 1.880 3.100 2.530 1.850 2.980 2.064 1.924 

9002 GEV 0.822 0.986 1.949 2.763 3.216 3.057 3.103 2.271 1.947 

 GPA 0.975 0.971 1.730 3.434 3.728 2.168 4.264 2.467 2.168 

 GL 0.966 1.197 2.194 2.733 3.399 3.953 4.095 2.648 2.098 

 PE 0.804 0.911 1.768 3.141 3.425 2.594 3.228 2.267 2.010 

14001 GEV 0.033 0.039 0.044 0.046 0.038 0.094 0.117 0.059 0.040 

 GPA 0.034 0.047 0.055 0.055 0.045 0.143 0.150 0.075 0.047 

 GL 0.045 0.048 0.052 0.055 0.053 0.090 0.155 0.071 0.051 

 PE 0.036 0.046 0.044 0.046 0.038 0.102 0.121 0.062 0.042 

19002 GEV 0.096 0.097 0.165 0.221 0.183 0.169 0.233 0.166 0.153 

 GPA 0.093 0.105 0.171 0.293 0.292 0.203 0.276 0.205 0.191 

 GL 0.113 0.114 0.189 0.220 0.184 0.240 0.344 0.201 0.164 

 PE 0.089 0.093 0.162 0.268 0.218 0.155 0.257 0.177 0.166 

19004 GEV 0.020 0.021 0.032 0.031 0.028 0.036 0.481 0.093 0.026 

 GPA 0.031 0.028 0.046 0.045 0.042 0.041 0.026 0.037 0.038 

 GL 0.016 0.021 0.029 0.030 0.029 0.048 0.074 0.035 0.025 



 

R&D TECHNICAL REPORT W6-064/TR2   254

Root Mean Square Error (RMSE) 
Station  Distn. 

D= 1 D = 7 D = 30 D = 60 D = 90 D = 180 D = 365 Average 
Average 

( D= 1 to 90 ) 

 PE 0.019 0.020 0.037 0.035 0.029 0.036 0.051 0.032 0.028 

20001 GEV 0.039 0.024 0.030 0.038 0.080 0.148 0.093 0.064 0.042 

 GPA 0.048 0.034 0.044 0.034 0.053 0.098 0.089 0.057 0.043 

 GL 0.029 0.026 0.032 0.048 0.095 0.172 0.139 0.077 0.046 

 PE 0.029 0.024 0.032 0.032 0.063 0.124 0.067 0.053 0.036 

20003 GEV 0.012 0.013 0.013 0.016 0.030 0.071 0.036 0.027 0.017 

 GPA 0.015 0.017 0.016 0.019 0.023 0.050 0.053 0.028 0.018 

 GL 0.014 0.015 0.016 0.020 0.036 0.091 0.057 0.036 0.020 

 PE 0.012 0.013 0.013 0.015 0.023 0.061 0.041 0.025 0.015 

20005 GEV 0.006 0.008 0.011 0.017 0.016 0.048 0.031 0.019 0.011 

 GPA 0.009 0.006 0.013 0.020 0.015 0.031 0.016 0.016 0.012 

 GL 0.008 0.011 0.012 0.019 0.020 0.057 0.038 0.023 0.014 

 PE 0.006 0.008 0.010 0.018 0.014 0.044 0.032 0.019 0.011 

21006 GEV 0.628 0.678 1.780 1.560 1.970 2.340 2.850 1.687 1.323 

 GPA 1.000 1.020 2.500 2.540 3.080 2.490 2.230 2.123 2.028 

 GL 0.602 0.716 1.160 1.440 1.760 3.030 4.140 1.835 1.136 

 PE 0.615 0.664 1.950 1.860 2.100 2.440 3.030 1.808 1.438 

21012 GEV 0.040 0.055 0.108 0.184 0.173 0.185 0.219 0.138 0.112 

 GPA 0.039 0.053 0.130 0.167 0.143 0.174 0.196 0.129 0.106 

 GL 0.053 0.068 0.115 0.211 0.132 0.266 0.329 0.168 0.116 

 PE 0.038 0.052 0.113 0.162 0.144 0.188 0.236 0.133 0.102 

21013 GEV 0.024 0.023 0.066 0.099 0.097 0.155 0.100 0.081 0.062 

 GPA 0.031 0.029 0.081 0.073 0.063 0.083 0.140 0.072 0.055 

 GL 0.021 0.028 0.066 0.112 0.116 0.197 0.134 0.096 0.068 

 PE 0.026 0.023 0.077 0.074 0.070 0.143 0.103 0.074 0.054 

21015 GEV 0.043 0.045 0.052 0.098 0.099 0.130 0.103 0.081 0.067 

 GPA 0.041 0.041 0.052 0.070 0.066 0.085 0.096 0.064 0.054 

 GL 0.046 0.049 0.056 0.098 0.112 0.160 0.167 0.098 0.072 

 PE 0.041 0.041 0.054 0.066 0.059 0.109 0.116 0.069 0.052 

21017 GEV 0.006 0.008 0.017 0.033 0.033 0.039 0.052 0.027 0.019 

 GPA 0.009 0.011 0.014 0.041 0.050 0.071 0.032 0.033 0.025 

 GL 0.008 0.010 0.022 0.038 0.038 0.036 0.075 0.032 0.023 

 PE 0.006 0.008 0.015  0.034 0.038 0.058 0.026 0.016 

28031 GEV 0.042 0.042 0.066 0.080 0.073 0.138 0.081 0.075 0.061 

 GPA 0.058 0.060 0.088 0.095 0.064 0.139 0.112 0.088 0.073 

 GL 0.040 0.091 0.065 0.086 0.097 0.164 0.106 0.093 0.076 

 PE 0.041 0.042 0.067 0.080 0.073 0.143 0.081 0.075 0.061 

34003 GEV 1.630 1.730 1.740 1.730 1.850 2.130 2.600 1.916 1.736 

 GPA 2.100 2.180 2.350 1.960 2.120 2.440 2.150 2.186 2.142 

 GL 1.990 2.090 2.090 2.410 2.540 2.720 3.390 2.461 2.224 

 PE 1.670 1.770 1.790 1.880 2.000 2.230 2.730 2.010 1.822 

39016 GEV 2.120 2.230 2.020 1.930 1.850 2.270 4.490 2.416 2.030 

 GPA 3.360 3.380 3.390 3.380 3.320 3.740 3.900 3.496 3.366 

 GL 1.700 1.900 1.580 1.580 1.600 2.220 5.980 2.366 1.672 

 PE 2.000 2.130 1.880 1.810 1.750 2.160 4.810 2.363 1.914 

39028 GEV 0.008 0.008 0.009 0.013 0.016 0.018 0.034 0.015 0.011 

 GPA 0.012 0.013 0.014 0.018 0.021 0.022 0.018 0.017 0.016 

 GL 0.009 0.009 0.014 0.013 0.016 0.020 0.046 0.018 0.012 

 PE 0.008 0.008 0.009 0.012 0.016 0.038 0.037 0.018 0.011 
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Root Mean Square Error (RMSE) 
Station  Distn. 

D= 1 D = 7 D = 30 D = 60 D = 90 D = 180 D = 365 Average 
Average 

( D= 1 to 90 ) 

43005 GEV 1.880 2.020 1.620 1.780 1.760 1.320 3.260 1.949 1.812 

 GPA 3.000 3.190 2.800 3.120 3.060 2.510 4.560 3.177 3.034 

 GL 1.520 1.590 1.290 1.330 1.490 1.890 4.490 1.943 1.444 

 PE 1.760 1.890 1.480 1.610 1.630 1.380 3.410 1.880 1.674 

43006 GEV 1.140 1.030 1.160 1.520 1.420 1.080 3.360 1.530 1.254 

 GPA 1.790 1.840 1.960 2.490 2.390 2.040 5.130 2.520 2.094 

 GL 0.968 0.810 0.927 1.140 1.220 1.500 3.840 1.486 1.013 

 PE 1.110 0.983 1.120 1.450 1.400 1.150 3.330 1.506 1.213 

48010 GEV 1.370 1.310 2.300 2.640 3.200 2.530 2.520 2.267 2.164 

 GPA 1.900 1.760 2.920 3.360 3.800 2.540 1.730 2.573 2.748 

 GL 1.290 1.310 2.180 2.530 3.180 3.070 3.580 2.449 2.098 

 PE 1.390 1.340 2.340 2.840 3.340 2.480 2.720 2.350 2.250 

51001 GEV 0.598 0.708 0.966 1.110 1.540 2.930 3.700 1.650 0.984 

 GPA 1.030 1.040 1.320 1.660 2.360 3.860 5.930 2.457 1.482 

 GL 0.723 0.895 1.140 1.210 1.370 2.870 3.540 1.678 1.068 

 PE 0.610 0.730 0.985 1.130 1.540 2.960 3.500 1.636 0.999 

55016 GEV 0.031 0.040 0.129 0.180 0.289 0.245 0.223 0.162 0.134 

 GPA 0.033 0.048 0.140 0.135 0.220 0.149 0.371 0.157 0.115 

 GL 0.223 0.048 0.140 0.201 0.318 0.317 0.219 0.209 0.186 

 PE 0.029 0.034 0.108 0.136 0.248 0.251 0.215 0.146 0.111 

55026 GEV 0.316 0.277 0.739 1.500 0.978 1.780 2.050 1.091 0.762 

 GPA 0.608 0.595 1.150 2.580 2.070 3.300 3.360 1.952 1.401 

 GL 0.322 0.355 0.859 1.350 1.370 1.950 2.130 1.191 0.851 

 PE 0.369 0.312 0.790 1.750 0.981 1.750 1.960 1.130 0.840 

60002 GEV 0.060 0.060 0.092 0.105 0.173 0.288 0.311 0.156 0.098 

 GPA 0.095 0.091 0.069 0.091 0.215 0.385 0.232 0.168 0.112 

 GL 0.136 0.069 0.135 0.339 0.256 0.381 0.438 0.251 0.187 

 PE 0.059 0.060 0.084 0.101 0.177 0.307 0.347 0.162 0.096 

72004 GEV 0.494 0.674 1.630 1.580 2.030 1.900 2.610 1.560 1.282 

 GPA 0.413 0.459 1.110 0.982 1.490 3.250 4.780 1.783 0.891 

 GL 0.619 0.832 1.920 2.110 2.720 2.500 2.210 1.844 1.640 

72004 PE 0.473 0.605 1.370 1.210 1.810 1.970 2.410 1.407 1.094 
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EXECUTIVE SUMMARY 
 
This document is a technical annex to R&D project W6-064, ‘Probability distributions for 
x-day daily mean flow events’. It provides guidance on best practice for frequency analysis 
of annual minimum flows.  
 
The general issues to be considered when contemplating a frequency analysis are 
discussed with a strong emphasis on likely sources of error and uncertainty. In order to 
encourage a consistent methodology to be adopted in the UK a single parametric approach 
for estimating the probability of occurrence of low flow events is recommended. This 
approach is based on the use of L-moments with a Pearson Type III probability distribution 
to estimate the flow - return period relationship for annual minima of different durations.  
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1. INTRODUCTION 
 
1.1 Objectives and Applicability 
 
This document provides guidance for frequency analysis of annual minimum flows. It is 
not intended as a ‘rule book’, rather its aim is to promote a consistent approach to low 
flow frequency analysis in the UK. Whilst a guideline methodology is described, no 
programs or software tools are provided for its implementation. However references to 
appropriate software packages are provided where required.  
 
The guidelines given are specifically for good quality flow records longer than 25 years 
in length, and may give misleading and uncertain results if applied to shorter or 
incomplete flow records. For example, a semi-deterministic approach, relying on 
alternative sources information about the low flow regime, such as from an analogue 
catchment or rainfall-runoff model might be more suitable for sites with limited (less 
than 25 years) flow data. Furthermore, as the method has been derived and tested using 
measured flow series, it is not necessarily best practice for synthetic or modelled data, 
such as naturalised flow series. Similarly, it should be used with caution for series that 
are known to be subject to large hydrometric errors, especially where these are 
unquantifiable. The method is also generally inappropriate for frequency analysis of 
other hydrological variables, such as annual maxima, level, velocity and so on, or for 
annual minima from regimes unlike those found in the UK. 
 
The document is pitched at those with a basic understanding of statistical principles, and 
a glossary is provided for clarification where necessary. For those unfamiliar with the 
subject, the main principles and assumptions of low flow frequency analysis are also 
summarised later in this chapter (Section 1.3). The main aim to increase awareness of 
some of the pitfalls and issues connected with frequency analysis, such as sources of 
uncertainty or bias. These points are discussed in Chapter 2, whilst a detailed step-by-
step methodology is presented in Chapter 3. Finally a worked example is included in 
Chapter 4. 
 
 
1.2 Project Details 
 
The recommendations presented are based on the findings of R&D project (W6-064) 
entitled ‘Probability Distributions for “x-day” Daily Mean Flow Events’ (Zaidman et 
al., 2002). The project reviewed the use of parametric estimation methods within low 
flow frequency analysis, and examined the ability of different candidate probability 
distributions to describe the occurrence of D-day annual minima flow events. The study 
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was based on data for 25 UK rivers having long, stable and natural flow records. It 
should be noted that of these, 20 were located in upland areas, including three in Wales 
and 14 in Scotland, whilst only five were from the aquifer dominated regions to the 
south east of England. The range of durations examined included D=1, 7, 30, 60, 180 
and 365 days. The study also examined different methods of deriving the minima and 
ensuring that these were both stationary and independent.  
 
Three candidate distributions were considered in the study: the Generalised Extreme 
Value, the Pearson Type III and the Generalised Logistic. In each case the 3-parameter 
form was used. Extreme value theory suggests that the frequency behaviour of annual 
minima will follow that of a Generalised Extreme Value distribution, however in 
practice a number of other distributions have been shown to describe the observed 
equally well. Using the method of L-moments for parametric estimation, the parameters 
of each of the three candidate distributions were determined based on the flows and 
plotting positions probabilities of the observed data. A fourth distribution, the 
Generalised Pareto, was also considered. Although this distribution was not 
theoretically suitable for describing extreme events, it was included as a ‘control’, i.e. to 
see whether this expectation was born out in the results.  
 
All of the four distributions were able to satisfactorily represent the form of the 
observed data points, to some degree or another. A method of ranking the candidates 
according to their goodness–of-fit criteria, and RMSE was used to identify which 
distribution best represented the observed frequency curve for each series. A number of 
trends became clear from this exercise. For annual minima of short duration the 
Generalised Extreme Value and Pearson Type III distributions performed well in 
responsive catchments found in upland areas. These distributions performed less well 
for series based on longer durations, where short-lived extremes become averaged out. 
The Generalised Logistic was best in the high-storage catchments that typify many 
lowland areas of south east England. In some cases the distributions were not able to 
provide physically reasonable estimates for annual minima-recurrence intervals much 
beyond the observed range. Where the prescribed flow was less than 10%MF ‘sensible’ 
estimates of recurrence interval were, in general, obtained only for annual minima of 
short duration for impermeable catchments. Where annual minima of longer duration or 
catchments of high permeability were considered recurrence interval estimates were 
realistic only for higher prescribed flows.  
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1.3  Low Flow Frequency Analysis 
 
Low Flow Frequency Analysis (LFFA) is a stochastic approach for characterising low 
flow events. The pivotal aim is to quantify the likelihood that the flow at a particular 
site will persist below a particular level over a particular duration. LFFA is thus 
typically utilised where using a single statistic or index, such as the MAM7 or Q95, is 
insufficient to describe the low-flow regime. For example in water resource planning, 
where low flow events of different length and severity need to be considered within an 
historical context, LFFA provides a means to quantify the flow-duration-frequency 
behaviour of the site of interest. Individual low flow events can be delineated by 
considering periods where the flow falls below a threshold level (i.e. LFFA is applied to 
a partial duration series). However, unless the flow record is particularly short, a 
simplified approach, using some representative annual value to typify the overall 
character of the low flow season, is often favoured. Customarily the minimum D-day 
average discharge per year is considered.  
 
Given a set of observed annual minima {Xi, i=1..n}, the goal is to estimate the 
probability of occurrence of some minima, x. Presuming that the observed values are 
independent and identically distributed (i.e. that observed minima are random 
realisations of a single population of annual minima), this can be achieved by finding 
the cumulative distribution function, denoted by F(x), which represents the probability, 
p, of any previous or future minima, X, being less than or equal to some given value, x. 
 
  p = F(x)         (1) 
 
Similarly the probability of x being exceeded by X, termed F’(x), is given by 1-p 
 
  1-p = F’(x)        (2) 
 
The corresponding quantile function, denoted by Q(p), defines the value x associated 
with the pth quantile: 
 
  x = Q(p)         (3)
       
and can be used to define the flow xT, associated with a recurrence interval T, where T 
is the reciprocal of p (and vice versa), as follows:  
 

  xT = Q(
T
1

)         (4)
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As a single probability distribution function is assumed to describe all annual minima 
occurring at the site of interest during the lifetime of the river, including those within 
the observed series, the sample data are used to define the form of F(x). For instance the 
statistical characteristics of the observed data, particularly aspects of the shape and 
density (e.g. skewness and kurtosis), are assumed to be valid for the population as a 
whole. However, with few rivers having flow records longer than 50 years in length, 
most annual minima series represent a relatively small fraction of the possible range for 
the site of interest (i.e. there is a large sampling basis). Moreover, the observed data 
provides little detail regarding the shape of the distribution function in its upper and 
lower tails (at extremely high and low probabilities. Thus the problem of estimating 
F(x) reliably for all possible values of x is very difficult. Ironically the interest is usually 
in minima that lie well outside the range of observed values. As a result frequency 
analyses predominantly rely on parametric estimation procedures. 
 
In the parametric approach, a priori assumptions about the shape of the cumulative 
distribution function are used to select an appropriate hypothetical distribution family as 
the basis of the mathematical expression describing the distribution. The observed data 
set are then used to constrain the parameters of this distribution (i.e. select the most 
relevant family member) usually using fitting techniques such as L-moments (Hosking 
& Wallis, 1997) or maximum likelihood estimation (Cox & Hinkley, 1974). The danger 
of this approach lies in choosing an inappropriate hypothetic distribution that will 
produce a misleading quantile estimates. To minimise the chance of using an unsuitable 
distribution a number of ‘candidate’ distributions are considered. The uncertainties 
associated with the resulting models are then assessed using goodness of fit tests or by 
applying re-sampling techniques to produce confidence intervals (e.g. Takara & 
Stedinger, 1994). Unfortunately, as most flow records are short, a number of different 
distribution types may all fit the observed annual minima reasonably well and it may 
not be possible to discriminate between them on an objective basis. Thus a particular 
model may be favoured for practical reasons, such as computational convenience, or 
because it exhibits certain characteristics that the user believes a low flow distribution 
should have. For example, a distribution having a finite lower limit equal to zero (to 
represent the possibility of recording a zero, but not a negative, flow) is often 
considered preferable to one that does not. This lack of objectivity in LFFA, coupled 
with the unparsimonious use of assumptions, has brought criticism from a number of 
authors including Klemes (2000), and facilitated wider use of non-parametric function 
estimation routines. 
 
Candidate distributions are generally chosen from the extensive ‘library’ of established 
distribution families - some of the more common families are summarised by Evans et 
al. (1993). ‘Bespoke’ distribution functions are also sometimes used, such as those of 
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Gottschalk et al. (1997) based on low flow recession behaviour. Extreme value 
distributions such as the EV1 (Gumbel) and EVIII (Weibull) have traditionally been 
considered the most applicable of the established distribution families. This goes back 
to the work of Fisher and Tippet (1928) who showed that the minima of a particular 
sample will theoretically tend to one of three extreme value forms, named the EVI, 
EVII and EVIII. The Weibull distribution, advocated by Gumbel (1963), has found 
particular favour in the UK (e.g. Institute of Hydrology, 1980). The Log Pearson Type 
III (Loganathan et al., 1986), the Log-Normal (Kroll & Vogel, 2002) and the Gamma 
(Bobée & Ashkar, 1991) are also commonly used. A summary of recent work is given 
by Tallaksen (1999) and by Zaidman et al. (2002).  
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2.  GENERAL CONSIDERATIONS 
 
2.1 Introduction 
 
This chapter discusses the general considerations which must be made when 
undertaking a frequency analysis of annual minima data, outlining sources of error and 
uncertainty. The various considerations are presented in order of importance, with the 
need for a consistent and pragmatic approach outweighing some ‘scientific’ 
considerations. 
 
Figure 1 shows the general stages that should be involved in a low flow analysis, from 
deriving and manipulating the annual minimum series, through parameterisation of a 
distribution selected a-priori, to the assessment of the resulting flow-recurrence 
relationship derived from its quantile function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: General stages of a low flow frequency analysis 

Derive time series of annual minima D-day average flow 

Quantify independence and homogeneity of data series 

Derive frequency curve using plotting position estimates 
 

Apply an estimation procedure to identify the member of 
the distribution family which best matches the observed 

data  

Quantify the match between observed data and 
parameterised distribution 

Qualify/quantify the ability to characterise events 
beyond the observed range 
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2.2 Record Length  
 
Record length is possibly the most influential factor in frequency analysis. Decreasing 
the sample size introduces sampling errors and increases the inherent uncertainty 
associated with the flow and recurrence interval relationship derived from the sampled 
data. This is because the assumption that the sampled minima are random 
representations of the true low-flow distribution breaks down where the record length is 
short. Whereas a large sample is likely to clearly exhibit the features (such as the level 
of skew and kurtosis) of the population of interest, a small sample is highly unlikely to 
be representative of the population. The level of sampling error is also influenced by the 
period over which the observations were made (e.g. a 30-year record from 1940 to 1970 
may contain fewer extreme events than a 30-year record from 1970 to 2000). 
Furthermore, plotting position formulae are not robust for small sample sizes because 
they do not take into account the range and skew of the sampled flows, and thus cannot 
be thought of as unbiased estimators for short records, whilst many of the statistical 
tests used within the LFFA framework are unable to provide unequivocal answers 
where the sample size is small. 
 
Ideally, to minimise sampling errors and increase the number of observed events in the 
extreme tails of the distribution, only records of several hundreds of years in length 
would be used for analysis. In practice, of course, most rivers in the UK have only been 
gauged since the 1960’s, giving an average record length of around 40 years. Although 
it is difficult to quantify the length at which a record becomes ‘short’, an observed 
record length of 40 years is about the minimum record length that might give relatively 
reliable estimates for use in water resources application. It is inadvisable to use LFFA 
with records less than 25 years in length.  
 
As a rule of thumb, a one in T year event requires a minimum record length of T/2 
years, not counting missing or rejected years. If the aim is to characterise the 1 in 200 
year annual minimum, then a longer record (100 years or more) is required than if the 1 
in 50 year event was of interest (25 years or more). Similarly, a considerably higher 
uncertainty would be associated with a one in 100 year event based on a 30 year record, 
than a 1 in 100 year event estimated from a record of 60 years. Whilst uncertainties 
associated with individual components may be quantified (e.g. resampling methods may 
be used to provide some quantification of the sampling errors) the overall uncertainty 
associated with record length is not easily quantified. 
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2.3 Assumption of Statistical Independence and Stationarity 
 
The assumptions that the data must be independent and originating from the same 
statistical population are central to the LFFA method. The latter assumption also implies 
that the data must be stationary (i.e. show no trends over time) and homogeneous, and 
there must be no outliers amongst the sample data. Short records are particularly 
vulnerable to the effects of short-term trends, which might average out over the long 
term.  
 
Independence 
Where sample data are not independent they cannot be thought as representing a 
population of random variables. Serial elements may manifest in annual minima due to 
catchment storage processes (e.g. carry-over of base flow conditions from one year to 
the next) and are more likely for longer duration minima, where two successive minima 
have a number of days in common. Statistical dependence has an important effect on the 
interpretation of the results from LFFA. Suppose for example that the analysis suggests 
that an annual minimum flow has a non-exceedance probability, p. The probability that 
annual minima in two consecutive years both do not exceed a particular flow will then 
be p2, but if they are interdependent it would be closer to p. Thus ignoring 
interdependence may lead to substantial underestimation of risks of sequences of 
years with low flows. Non-independence can also influence the results of formal tests 
of fit and assessment of the uncertainty in parameter estimation used within the LFFA 
process. 
 
Whilst a number of tests may be used to identify whether a data series is independent 
and originating from the same population (see Chapter 3), these tests are likely to 
perform poorly where the number of observations is small, and the user is advised to 
apply the most powerful tests as possible. It is possible to revise the LFFA procedure to 
take account of dependent data (e.g. Chung & Salas). However this will be beyond the 
capabilities of most non-statisticians! It is perhaps better to be aware of the effects of 
dependence on a qualitative level and take a view based on knowledge of the catchment 
and the drought events concerned. Generally, in impervious catchments where the soil 
moisture deficit is fully replenished during the winter, there is no serial correlation 
between annual minima induced by storage (indeed there may be independent events 
within the year). Storage from aquifers, reservoirs, soils that may not become saturated 
in winter and areas of persistent snow will all increase the potential for serial 
correlation.   
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Stationarity 
Causes of non-stationarity include problems with the recording process (such as 
changes in rating equations, relocation of stations or changes in recording method), 
changes in the catchment (such as land use change), climatic variability or climate 
change. Trends are usually more evident in short records (the effects often average out 
over the longer term). If the user is confident that trend effects can be removed from the 
time series, the adjusted series may be used in LFFA.  
 
Outliers 
True outliers may be caused by ‘one-off’ artificial influences in the catchment or by 
measurement errors, and are less common for large durations, where the effects of 
abnormal daily flows are averaged out. However in a frequency analysis of extreme 
events it may be difficult to determine whether an outlying data point really is a true 
outlier or simply an extreme rare flow. In the latter case the data point is crucial as it 
will provide information that will help constrain the tail shape of the distribution 
function. It is therefore important not to remove apparent outliers arbitrarily. Where 
possible, outliers should be verified using circumstantial evidence, such as local 
knowledge, rainfall records, or by seeing if outlying events occurred on a regional basis. 
If an objective treatment is desired, a number of tests for outliers are well established in 
the statistical literature (e.g. see Barnett and Lewis, 1994). 
 
 
2.4 Choice of Distribution 
 
The aim of LFFA is to choose the theoretical distribution with the most appropriate 
shape for the data. However, the choice of distribution is rarely the major source of 
uncertainty in the end result. Whilst it is common practice to compare one or two 
different candidate distributions, there is little point in agonising over several 
alternatives giving similar results, particularly as record lengths for UK rivers are 
typically not long enough to ensure that a single ‘best’ distribution would be 
unequivocally identified in each case. We therefore advocate the Pearson Type III 
distribution for use with all catchment types and all durations. As well as giving the 
best performance in the study, the Pearson Type III has some physical attributes which 
make it a good choice for frequency analysis. In particular, the Pearson Type III is 
unlikely to predict negative flows for high recurrence intervals.  
 
 



 

R&D TECHNICAL REPORT W6-064/TR2   10

2.5  Fitting Technique 
 
Within frequency analysis there is a profusion of competing estimation procedures that 
can give different results, and several studies have focussed on comparing the 
performance of these various techniques (e.g. Arora & Singh, 1987). However two 
parameter estimation methods dominate: likelihood based techniques (i.e. maximum 
likelihood), and moment based matching techniques, specifically the use of L-Moments. 
Both are well established techniques and there are many examples of their use in the 
frequency analysis literature.  
 
L-Moments are linear combinations of the probability weighted moments and use the 
sample data to provide estimates of certain properties of the underlying population, which 
are then matched to a member of the chosen distribution family. A full description of the 
theory of the L-Moments method is beyond the scope of this document. Hosking and 
Wallis (1997) provide an extremely comprehensive review of the L-Moments 
methodology, although the same ideas are also discussed in a number of recent journal 
papers including Hosking (1990). The advantages of L-moments are that they have been 
shown to be unbiased, have relatively small sampling variance and are relatively 
insensitive to outliers (on the down side this latter point also means that large (or small) 
sample values reflecting important information in the tail of the parent distribution are 
given relatively little weight in the estimation procedure). 
 
Likelihood based techniques are well established in statistical theory and practice. They 
are more versatile than L-moments and can be adapted to deal with a range of 
circumstances, such as dependence between observations. The estimators are known to 
have certain optimal properties in the sense that, one the sample size is large enough, no 
other estimators (including L-moments) have better properties. Unfortunately they do 
not perform as well where the sample size is small. A number of problems can arise in 
attempting to apply maximum likelihood in practise, such as the non-existence of a 
maxima, or existence of several local maxima, and so on.  
 
Generally, the choice of fitting technique is irrelevant in the context of uncertainties 
generated by there being insufficient record length. Therefore from a pragmatic 
perspective, we suggest that L-moments should be used for parameter estimation. L-
moments are widely applied in flood frequency estimation at present and are available 
in many statistical/ hydrological packages such as WINFAP and MIKE11. 
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2.6  Hydrometric Errors  
 
It is assumed that the data sets to be used will be free from hydrometric errors. An 
analysis of errors carried out as part of the project showed that where the daily flow 
series are subject to random hydrometric errors of less than ± 10%, there will generally 
be little effect on the results of the frequency analysis, especially where longer duration 
are considered (the errors will tend to average out). However random hydrometric errors 
of up to ± 20% can result in more than a 20 year uncertainty in recurrence interval. 
Systematic hydrometric errors (bias) are likely to impose a systematic bias on the flow-
recurrence interval curve.  
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3. RECOMMENDED METHOD     
   
3.1 Introduction 
 
Specific guidelines for low flow frequency analysis are presented in this chapter. As 
discussed earlier, the guidelines are based on gauged flows in catchments with minimal 
artificial influence and more than thirty years of record. The flow chart shown in Figure 
2 gives an overview of the various stages in the recommended approach. The stages are 
discussed further in Sections 3.2 to 3.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Overview of guidelines for best practice in LFFA   
 
 
3.2 Computation of Minimum D-day Flow per Calendar Year 
 
Here D-day average discharge is calculated on a running average basis for the entire 
period of record. This means that a window of duration D days is moved sequentially 
through the record using an increment of one-day, the mean flow over the duration 

Derive time series of annual minima D-day average flow 
using a two-step treatment of missing values as described 

in Section 3.2 
 

Quantify independence and homogeneity of data series 
using statistical tests as described in Section 3.3 

 

Construct observed frequency curve based on Gringorten 
plotting positions (Section 3.4) 

 

Estimate parameters using the method of L-moments with 
a Pearson Type III distribution (Section 3.5) 

 

Assess the distribution function using goodness of fit 
tests to quantify the match between observed and  

estimated curves and resampling tests to quantify the 
uncertainty associated with estimated quantiles (Section 

3.6) 
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being calculated at step. Each D-day mean is indexed to the middle day of the interval. 
For any interval of length D, the index day with be the mth day where m is defined as: 
 

m = 
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       (5) 

 
For example the 7-day average determined using flow data from 3rd September 1983 to 
9th September 1983 inclusive would be indexed to the 6th September 1983. As the 
running average method is utilised with an increment of one day, 365 running average 
values are determined for each calendar year, the smallest being used as the annual 
minimum.  
 
If some daily flows are missing a particular year within the flow record, the level of 
uncertainty associated with the minimum D-day flow for that year increases, 
particularly where the missing values occur within the low flow period or where the 
number of missing values is relatively large. However, data missing from periods of 
relatively high-flow are unlikely to have much influence on the annual minima calculated 
for a particular year. Although missing values may be filled in by interpolation, this is 
inappropriate where several consecutive values are missing and an objective and 
consistent treatment of missing data is therefore required. To avoid filling in large gaps 
by interpolation whilst also avoiding rejecting years unnecessarily, the annual minima 
from data-poor years are rejected as a first step, whilst years with too much missing data 
within the low flow period are excluded in a second step as follows: 
 
Step 1.  The number of missing data allowed per calendar year is constrained to 30 days, 
i.e. an annual minimum is rejected outright if the year it represents contains 30 or more 
days with missing values.   
 
Step 2. A ‘low flow period’ is delineated for each remaining year based on the shortest 
continuous period in which the lowest 20% (73 days) of daily flows are represented. For 
example if the 60 smallest flows occurred between 15th July and 15th September, and the 
next 13 lowest flows occurred between 10th and 22nd June the ‘low flow period’ is assumed 
to span the period from 10th June to 15th September. The year is discarded if the maximum 
number of consecutive missing values within the ‘low flow period’ exceeds 7 days. 
However if there are less than seven consecutive missing days, the year is only discarded if 
the aggregate number of missing data during the ‘low flow period’ is greater than 10 days, 
otherwise missing data can be filled by interpolation. 
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Although strictly not missing data, particular problems occur at the beginning and end 
of the flow record. The first (D-m) days at the start of a record and the last (m-1) values at 
the end of the flow record cannot be used as index days. For instance to derive a value for 
1st January 1968 requires (m-1) extra days from the previous year 1967, yet if 1st January 
1968 is the first day in the record, these extra data do not exist. A similar situation arises at 
the end of the flow record and results in a reduced number of running-averages being 
computed for years at the end and beginning of the record. Where these years are 
acceptable in Step 2, they can be included in the analysis provided that the value of m does 
not exceed 75 (tests showed that the value of the annual minima was changed only if more 
than 75 days were missing).  
 
 
3.3  Validation of Independence and Stationarity  
 
Sample data possessing serial elements cannot be thought of representing a population 
of random variables, therefore the independence, stationarity and homogeneity of the 
annual minimum series should be verified prior to beginning the frequency analysis 
procedures. In particular, non-independence may manifest as larger durations are 
considered.  
 
The statistical literature gives examples of appropriate tests that may be applied to the 
data. For instance independence may be assessed using Anderson’s Test, the Wald-
Wolfowitz Test, the Durbin-Watson method or by determining the auto-correlation 
function of the data. Similarly the level of stationarity can be quantified by using tests 
such as the Spearman Rank Test and the Mann-Kendall Test, as well as via a number of 
non-linear methods. Tests for homogeneity include the Mann-Whitney Test. However it 
is important to note, that most of these tests do not perform well when the sample size is 
small (i.e. for many stations the record length will be insufficient to ensure the tests 
perform reliably).  
 
 
3.4 Construction of the Observed Frequency Curve  
 
Low flow frequency curves (probability plots) are used to depict the variation in 
observed annual minima with exceedance probability. The plotting positions along the 
probability axis are estimated using empirical formulae that evaluate the probability 
associated with a particular observation from its rank in the sample set (i.e. the plotting 
position is a distribution-free estimator of the probability). A number of plotting 
position formulae have been suggested over the years. Some are said to be optimised for 
particular distribution types, although these differences are really only evident for data 
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points of the very lowest and highest ranks. Reviews of plotting position formulae are 
given by Cunnane (1978) and again by Cunnane (1989). Based on his 
recommendations, this guidance document advocates the use of the Gringorten formula 
for estimating plotting positions. The Gringorten formula is given by 
 
pi = (i-0.44) / (n +0.12)        (6) 
 
where pi is the estimated exceedence probability for the data point of rank i, and n is the 
total number of observations. The rank, i, is calculated by reordering the set of data-
values according to size, the largest value being assigned a rank of 1, and the smallest 
value a rank of n. 
 
The probability plot is then constructed by plotting Xi (vertically) against pi. The 
plotting position is often expressed as a recurrence interval (i.e. reciprocally) such that 
the curve describes the average interval between years in which the annual minimum D-
day falls below a given discharge. If the user does not have the facility to plot on a 
probability scale a reduced variate scale may be used to ‘linearise’ the probability axis. In 
this approach the variate value corresponding to each plotting position or recurrence 
interval is determined, making use of the assumption that the data is likely to conform to 
an extreme-value type distribution. For ease, the Weibull reduced variate given by the 
following formula is recommended: 
 

V = ( )))lnln((25.014 pe −−−−             (7) 

 
where V is the reduced variate value, and p is the exceedance probability.  
 
It is important to note that whilst plotting positions are fairly accurate estimators of the 
probability where n is very large (and the sampling errors are small), they are 
predominantly influenced by the number of observations in the sample set where n is 
small. This means that plotting positions will be equally spaced along the probability 
axis, regardless of how the magnitudes of the observed flows are distributed. For 
instance for a sample size of 35 years a recurrence interval of 62 years is always 
assigned to the smallest flow, regardless of its size or relation to the other data.  
 
 
3.5   Parameter Estimation 
 
As discussed earlier, the method of L-moments is suggested as the preferred estimation 
method. Parameter estimation is best attempted using existing software, rather than from a 
first principle approach; commercial software packages providing L-moments include 
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MIKE11, S-PLUS and WINFAP, the latter being specifically designed for regional flood 
estimation procedures (Institute of Hydrology, 1999). Fortran subroutines for L-moments 
are also available as freeware e.g. Hosking (2000).  
 
The Pearson Type III distribution family is advocated as the best all-round choice of 
distribution for use in low flow frequency analysis. However where procedures for 
estimation based on the Pearson Type III are not available, the three parameter Generalised 
Extreme Value distribution is the next most preferred option.  
 
When the three parameters have been determined, they can be used to define the form of 
F(x). Here we present the Pearson Type III formulation given by Hosking and Wallis 
(1997). The three parameters are shape, k, scale, α, and location, ξ. Where k>0 the 
appropriate cumulative distribution function is  
 

F(x) = G )(/, µ
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Similarly where k<0 the appropriate cumulative distribution function is  
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and the range of x is ? = x = 8 . 
 
G and ?  represent the incomplete (integrated between 0 and x) and complete (integrated 
between 0 and infinity) Gamma Functions respectively, and may be estimated according to 
the following relationships: 
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3.6 Assessing the Estimation of F(x) 
 
In assessing whether the fitted distribution is acceptable, the bias, variability and 
accuracy of the parameter estimates are taken into account. As the ‘true’ form of the 
distribution function for annual minima at the site of interest is always unknown, the 
estimation is usually assessed in relation to the observed data points. This usually 
involved some kind of comparison between the plotting position estimators of the 
observed minima and those inferred from the estimated form of the distribution 
function. Various goodness-of-fit tests may be used to quantify how well the 
distribution fits the observed data. Equally by-eye fitting tests are often used, but should 
be backed up with some quantitative justification. Resampling methods such as the 
jacknife or bootstrap may be used to quantify the uncertain associated with quantile 
estimates or to define confidence limits. These procedures are standard statistical 
methods, and are detailed in many different statistical texts. However a comprehensive 
description may be found in volumes 9 and 12 of the Handbook of Statistics (Rao, 
1993; Patil & Rao, 1994).  
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4. WORKED EXAMPLE 
 
 
This example is based on the North Esk gauged at Dalmore Weir (station 19004), 
located in the SEPA-East region. The annual minima of interest are those for durations 
of 1 day and 180 days. The upstream catchment area is 81.6 km2 and the flow regime is 
moderately responsive - annual average rainfall is 951 mm and the Base Flow Index is 
0.54. This record is of high quality and received a grade ‘A’ rating for hydrometric 
quality in the study by Gustard et al. (1992). 
 
 
Daily Flow Record and Mean Flow 

The daily flow record is available from 01/01/1960 to 31/12/1999. The period of record 
Mean Flow (MF) is 1.53 m3s-1.  
 
 
Derivation of Annual Minima Series 

Table 1 gives the minimum D-day flow derived for each year where D=1 and D=180, 
expressed both in absolute terms and as a percentage of the Mean Flow (%MF). For 
1960, the annual minima where D=180 is rejected as no running average values could 
be calculated for the first 90 days of that year (i.e. there is no record for the latter 
months of 1959). For D=1 two or more years have the same annual minimum flow (e.g. 
1961 and 1962 and 1977 and 1978). This is a feature of the data, but the same effect 
may occur due to rounding up errors and so on. 
 
 
Validation tests for independence and homogeneity 

Figure 3 shows the annual minima series for the North Esk derived for durations of D=1 
and D=180. In both cases the annual minima varies from year to year, and on visual 
inspection no long term (linear) trends are apparent.  
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Table 1:  Annual Minima (AM) Series for the North Esk at Dalmore Weir 
 D=1 D=180 

Year AM (m3s-1) AM (%MF) AM (m3s-1) AM (%MF) 

1960 0.323 20.85 N/A N/A 
1961 0.391 25.41 76.86 49.59 
1962 0.391 25.41 113.82 73.43 
1963 0.459 29.97 136.46 88.04 
1964 0.416 27.36 89.2 57.55 
1965 0.297 19.55 124.79 80.51 
1966 0.388 25.41 111.54 71.96 
1967 0.391 25.42 107.51 69.36 
1968 0.549 35.83 153.74 99.19 
1969 0.305 20.2 75.67 48.82 
1970 0.315 20.3 93.93 60.6 
1971 0.316 20.85 80.83 52.15 
1972 0.233 14.98 45.34 29.25 
1973 0.214 13.68 50.51 32.59 
1974 0.236 15.63 51.82 33.43 
1975 0.143 9.121 58.37 37.66 
1976 0.24 15.64 58.64 37.83 
1977 0.355 22.8 109.99 70.96 
1978 0.355 22.8 92.26 59.52 

1979 0.317 20.85 69.75 45 

1980 0.361 23.45 84.09 54.25 
1981 0.392 25.41 75.25 48.55 
1982 0.298 19.55 71.63 46.21 
1983 0.222 14.33 83.17 53.66 
1984 0.138 9.12 49.72 32.08 
1985 0.382 24.76 117.41 75.75 
1986 0.29 18.89 103.2 66.58 
1987 0.369 24.11 103.4 66.71 
1988 0.234 14.98 106.07 68.43 
1989 0.263 16.94 50.76 32.75 
1990 0.276 18.24 85 54.84 
1991 0.234 14.98 60.43 38.99 
1992 0.1 6.515 93.16 60.1 
1993 0.408 26.71 124.85 80.55 
1994 0.27 17.59 57.02 36.79 
1995 0.258 16.93 66.25 42.74 
1996 0.263 16.94 53.38 34.44 
1997 0.336 22.15 95.34 61.51 
1998 0.611 39.74 159.03 102.6 

1999 0.403 26.06 92.6 59.74 
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Figure 3: Annual Minimum Series for the North Esk at Dalmore Weir. 
 
 
A number of validation test for independence, stationarity and homogeneity of the series 
are applied, in this case using the software package Systat 9 (©SPSS, 1998).  
 

• Linear Regression Test 
This shows that there is a poor linear relationship between the chronology and the 
annual minimum, giving a coefficient of (R2) of 0.028 where D=1, and a value of 0.04 
where D=180.  
 

• Spearman Rank Correlation Test 
The Spearman correlation coefficient between year and annual minima for D= 1 is equal 
to -0.236, and for D=180 is 0.127. As these values are much lower than the critical 
values for the samples, the hypothesis of rank order relationship between year and flow 
must be rejected.  
 

• Autocorrelation test for independence 
Figure 4 shows partial autocorrelation plots for a) D=1 and b) D=180. Autocorrelation 
measures the correlation of the series with itself shifted by a time lag. Autocorrelation 
can be calculated for a lag of any length, and if autocorrelation is present at one or more 
lags then the data is not independent. Partial autocorrelation plots show the relationship 
of points in a series to preceding points after ‘partialing’ out the influence of intervening 
points, and thus give a more conservative/ better perspective of autocorrelation. 
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Figure 4: Partial autocorrelation plots for a) D=1 and b) D=180 for different lags 
(in days) 
 
Values that lie outside the tramlines indicate that there is a significant correlation in the 
data at the lag (in years) indicated. Figure 4 shows that for D=1 there is little or no 
dependence within the data series, whilst for D=180 there seems to be some 
autocorrelation in the data at a lag of five years.  
 
 
Construction of Observed Frequency Curve 

The Gringorten plotting position is used to estimated the exceedance probability, p, 
using n = 40 where D = 1, and n = 39 where D = 180. Table 2 gives details of the values 
used, whilst Figure 5, shows the resulting probability plot. 
 
Table 2:  Derivation of plotting positions for D=1 and D= 180 

         D=1, N= 40  D=180, N= 39 
I AM (%MF)   p AM (%MF) p 
1 6.515 0.014 29.25 0.014 
2 9.12 0.039 32.08 0.040 
3 9.121 0.064 32.59 0.065 
4 13.68 0.089 32.75 0.091 
5 14.33 0.114 33.43 0.117 
: : : : : 

35 26.06 0.861 80.51 0.883 
36 26.71 0.886 80.55 0.909 
37 27.36 0.911 88.04 0.935 
38 29.97 0.936 99.19 0.960 
39 35.83 0.961 102.6 0.986 
40 39.74 0.986 N/A N/A 
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Figure 5: Frequency curves for D=1 and D=180  
 
 

Fitting the Pearson Type III distribution 

Parameter estimation via L-Moments is best attempted using existing software, rather than 
from a first principle approach. Several commercial software packages can provide the L-
Moments estimation procedure with the Pearson Type III distribution, including MIKE11, 
S-PLUS, WINFAP. In this example the Fortran subroutines of Hosking (2000) were 
implemented yielding the parameters shown in Table 3. 
 
 
Table 3:  Parameters obtained via L-Moments for the Pearson Type III distribution 
Parameter  D=1 D=180 
a  scale 0.1 0.29 
? location 0.32 0.87 
k shape 0.13 0.53 

 
 
As k>0 in both cases, the appropriate cumulative distribution function is  
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F(x) = G )(/, µ
β

γ
µ Γ







 −x
           (12) 

 
For the case where D =1, the parameters are given by  
 

µ= 2

4
k

= 236.69              (13) 

 

ß= kα
2
1

 = -0.0065             (14) 

 

 ?=
k
α

ξ
2

−  = -1.22              (15) 

 
The range of x is -1.22 = x = 8 . Substituting these parameters gives the following 
analytical solution for F(x): 
 

F(x) = 
)69.236(

0065.0
22.1

,69.236G

Γ







 +x

           (16) 

 
F(x) can be evaluated by solving the incomplete Gamma functions for different values of 
x. Table 4 gives values of F(x) for different values of x, with corresponding recurrence 
intervals (T). The fitted curves are shown in Fig. 6.    
 
Table 4:  Estimation of F(x) for D =1  

AM 
(%MF) F(x) T 

(years) 
6.52 0.014 71.64 
9.12 0.039 25.72 
9.12 0.064 15.67 

13.68 0.089 11.27 
14.33 0.114 8.80 

: : : 
26.71 0.886 28.44 
27.36 0.911 29.39 
29.97 0.936 30.56 
35.83 0.961 32.20 
39.74 0.986 35.19 
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Figure 6: Fitted Curves for the North Esk for D=1 and D=180 
 
 
Goodness of Fit Tests 
The match between observed and predicted annual minima is quantified using root 
mean square error (RMSE) and chi square statistics, based on the residuals (Table 5).  
 
Table 5: Comparison of observed and predicted flows, D= 180 

T 
(years) p Observed AM 

(%MF) 
Predicted AM 

(%MF) residuals 

69.86 0.014 29.25 22.51 -6.74 
25.08 0.040 32.08 27.90 -4.18 
15.28 0.065 32.59 31.11 -1.48 
10.99 0.091 32.75 33.56 0.81 
8.58 0.117 33.43 35.60 2.17 

: : : : : 
1.13 0.883 80.51 79.35 -1.16 
1.10 0.909 80.55 82.56 2.01 
1.07 0.935 88.04 86.64 -1.40 
1.04 0.960 99.19 92.40 -6.79 
1.02 0.986 102.60 103.40 0.80 

 
Root mean square errors are 0.019 and 0.036 for D=1 and D=180 respectively, whilst 
the corresponding chi-square values are 1.23 and 2.31. At this point the user should 
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refer to tables of critical values of the chi-square statistic, and based on the significance 
level of interest, determine whether they are exceeded by the observed values. The 
observed values must not exceed the critical values if the estimated curve is to be found 
acceptable. 
 
Resampling methods would also be attempted, if desired, at this stage. A full 
description of resampling methods is beyond the scope of this guidance note. However 
there are plenty of introductory texts on the subject such as Good (1999).  
 
 
Prediction of the Annual Minima – Recurrence Interval relationship 
As the goodness-of-fit tests suggest that the estimated curve is satisfactory the 
distribution function, F(x), may be used to predict the probability (and thus the 
recurrence interval) associated with a particular annual minimum flow, x. Similarly if 
the annual minima associated with a particular recurrence interval was of interest, this 
could also be determined by calculating x based on F(x).  
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GLOSSARY 
 
Accuracy – In statistical estimation, accuracy refers to the deviation of an estimate from the 
true parameter value. In general, the term is used for the quality of a measurement that is both 
correct and precise. 
 
Anderson–Darling test – A test procedure for testing the hypothesis that a given sample of 
observations comes from some specified theoretical population. It is particularly sensitive to 
deviations in the tails of the distribution. The combination of ease of computation and good 
power makes it an attractive procedure for a goodness-of-fit test.  
 
Probability scale – Where a graph has uniform subdivisions for the x axis but the y axis is 
subdivided in such a way that a plot of the cumulative distribution appears as a straight line, it is 
said to be plotted using a probability scale. For example, the arithmetic probability scale 
describes a cumulative normal distribution.  
 
Autocorrelation – In a time-series analysis autocorrelation is the internal correlation between 
observations often expressed as a function of the lag time between them.  
 
Bias – A systematic error that may distort a statistical result in one direction. A biased estimator 
is one whose expected value does not equal the true value of the parameter being estimated.  
 
Bootstrap – A nonparametric technique for estimating standard error of a statistic by repeated 
resampling (with replacement) from a sample. The technique treats a random sample of data as 
a substitute for the population and resamples from it a large number of times to produce sample 
bootstrap estimates and standard errors.  
 
Chi-square test – A test of statistical significance based on the chi-square distribution. The chi-
square statistic is obtained as the sum of all the quantities obtained by taking the difference 
between each observed and expected frequency, squaring the difference, and dividing this 
squared deviation by the expected frequency. 
 
Correlation coefficient – An index used to measure correlation. It is also known as the Pearson 
product moment correlation coefficient. It is denoted by the letter r and its value ranges from -1 
to +1. A value of +1 denotes that two sets are perfectly related in a positive sense and a value of 
-1 indicates that two sets are perfectly related in a negative sense. A value close to zero 
indicates that they are not linearly related.  
 
Critical value – The theoretical value of a test statistic that leads to rejection of the null 
hypothesis at a given level of significance. Thus, in a statistical test, the critical value divides 
the rejection and the acceptance regions.  
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Distribution function – For any random variable X, the distribution function of X, denoted by 
F(x), is defined by F(x) = P(X = x); that is, the distribution function is equal to the probability 
that a random variable assumes a value less than or equal to x for -8  < x < 8 . 
 
Durbin–Watson test – A procedure for testing independence of error terms in least squares 
regression against the alternative of autocorrelation or serial correlation. The test statistic d is a 
simple linear function of residual autocorrelations, and its value decreases as the autocorrelation 
increases.  
 
Estimation – The process of using information from sample data in order to estimate the 
numerical values of unknown parameters in a population.  
 
Gamma Function – A function generalizing the factorial expression for natural numbers, also 
known as Euler’s Second Integral. 
 
Goodness-of-fit test – A statistical procedure performed to test whether to accept or reject a 
hypothesized probability distribution describing the characteristics of a population. It is 
designed to ascertain how well the sample data conform to expected theoretical values. It 
involves testing the fit between an observed distribution of events and a hypothetical 
distribution based on a theoretical principle, research findings, or other evidence by means of a 
Pearson chi-square statistic or any other test statistic.  
 
Independence – In probability theory, two events or observations are said to be independent 
when the occurrence of one event has no effect on the probability of occurrence of another 
event. Thus, two events are independent if the probability of occurrence of one is the same 
whether or not the other event has occurred.  
 
Jackknife – A nonparametric technique for estimating standard error of a statistic. The 
procedure consists of taking repeated subsamples of the original sample of n independent 
observations by omitting a single observation at a time.  
 
Kolmogorov–Smirnov tests – Nonparametric tests for testing significant differences between 
two cumulative distribution functions. The one-sample test is used to test whether the data are 
consistent with a given distribution function and the two-sample test is used to test the 
agreement between two observed cumulative distributions. The test is based on the maximum 
absolute difference between the two cumulative distribution functions. 
 
Mann–Whitney U test – A nonparametric test for detecting differences between two location 
parameters based on the analysis of two independent samples. The test statistic is formed by 
counting all the bivariate pairs from the two samples in which one sample value is smaller than 
the other. It is equivalent to the Wilcoxon rank-sum test.  
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Maximum likelihood estimation – A method of estimation of one or more parameters of a 
population by maximizing the likelihood or log-likelihood function of the sample with respect 
to the parameter(s). The maximum likelihood estimators are functions of the sample 
observations that make the likelihood function greatest. The procedure consists of computing 
the probability that the particular sample statistic would have occurred if it were the true value 
of the parameter. Then for the estimate, we select the particular value for which the probability 
of the actual observed value is greatest. Maximum likelihood estimates are determined by using 
methods of calculus for maximization and minimization of a function.  
 
Method of moments – A method of estimation of parameters by equating the sample moments 
to their respective population values. It is generally applicable and provides a fairly simple 
method for obtaining estimates in most cases. The method, however, yields estimators that, in 
certain cases, are less efficient than those obtained by the method of maximum likelihood.  
 
Parametric methods – These are statistical procedures that are based on estimates of one or 
more population parameters obtained from the sample data.  Parametric methods are used for 
estimating parameters or testing hypotheses about population parameters.  
 
Partial autocorrelation – An autocorrelation between the two observations of a time series 
after controlling for the effects of intermediate observations. 
 
Quantiles – A general term for the (n – 1) partitions that divide a frequency or probability 
distribution into n equal parts. In a probability distribution, the term is also used to indicate the 
value of the random variable that yields a particular probability.  
 
Rank correlation – A nonparametric method for assessing association between two 
quantitative variables. A rank correlation is interpreted the same way as the Pearson product 
moment correlation coefficient. However, a rank correlation measures the association between 
the ranks rather than the original values. Two of the most commonly used methods of rank 
correlation are Kendall’s tau and Spearman’s rho. 
 
Recurrence Interval  (Return Period) – The average interval in years between two events of 
equal magnitude.  
 
Resampling – The technique of selecting a sample many times and computing the statistic of 
interest with reweighted sample observations. Some commonly used resampling techniques 
include bootstrap, jackknife, and their variants. 
 
Spearman’s rho (?) – A correlation coefficient between two random variables whose paired 
values have been replaced by their ranks within their respective samples or which are based on 
rank order measured on an ordinal scale. It provides a measure of the linear relationship 
between two variables. This measure is usually used for correlating variable(s) measured with 
rank-order scores.  
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Stochastic model – A mathematical model containing random or probabilistic elements.  
 
Unbiased estimator – An estimator whose expected value or mean equals the true value of the 
parameter being estimated. Thus, an unbiased estimator on the average assumes a value equal to 
the true population parameter.  
 
Uncertainty – A term denoting the lack of certainty inherent in a random phenomenon. 
 
Wald–Wolfowitz run test – A nonparametric test for testing the null hypothesis that the 
distribution functions of two continuous populations are the same.  
 
 
 
 
 


