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GLOSSARY

The following list gives brief definitions of the technical terms and acronyms that are used
throughout the report. Some of them are defined in greater detail within the report. In these
cases the appropriate Section number is given.

ALK

ALT

ASPT
Back-propagation

BBN
BLDS
BMWP
BOD

Conformity index

DEPTH
DISCH
DO

EQI

F1 and F2
F1/F2

Feature map
GQA
GTM

GTM10
IFE
IFE614

Impact analysis

LDIST
LSLOPE
M(C.X)

M’ (C.X)
N13DASPT
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Alkalinity (mg/1 of CaCOs3).
Altitude (m).
Average Score Per Taxon.

A commonly used training algorithm for supervised-learning neural
networks.

Bayesian Belief Networks (Section 1.5).
Percentage of boulders in the substrate.

Biological Monitoring Working Party score system.
Biochemical Oxygen Demand.

A measure of how consistent a given taxon’s state is relative to the
rest of the sample (Section 5.5).

Average depth of river (cm).

Discharge category.

Dissolved Oxygen (percentage saturation).

Environmental Quality Index.

Data files derived from IFE614 database, each having 307 records.
A cross-validated training scheme: trained on F1, tested on F2.

A topographic map showing the variation of a given variable over the
output array of a SOM (Sections 4.4.2 and 4.4.3).

General Quality Assessment — a river quality assessment scheme
used by the Environment Agency.

Generative Topographic Mapping — a type of unsupervised neural
network.

A site specific GTM with a 10x10 output array (Section 4.2).
Institute of Freshwater Ecology.

A database of 614 ‘unpolluted’ sites, from which RIVPACS III was
developed by IFE.

A procedure for determining the relative importance of individual
input nodes in a supervised neural network. (Section 3.3.4).

Logjo of distance from source (km).

Log;o of slope (m/km).

Mutual information between class (C) and attribute (X) - (2.1.2).
Indifferent mutual information between C and X (Section 2.1.2).

A dependent neural network predictor of ASPT having 13 inputs.
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N13DNFAM
N5DASPT
N5SDRASPT

N5XASPT
N5SXRASPT

N7DNFAM
N7XNFAM

NFAM

NNBMWP
NNIFE614

NNRSCR

Organic River Quality

PBLS
Pool

Revised scores

Riffle
RIVPACS

RIVPACS III
SAND

SILT

SOM

SOM10

SOM20

State of existence

Supervised learning
Unsupervised learning

WIDTH
X
Y
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A dependent neural network predictor of NFAM having 13 inputs.
A dependent neural network predictor of ASPT having 5 inputs.

A dependent neural network predictor of ASPT (based on revised
scores) having 5 inputs.

An independent neural network predictor of ASPT having 5 inputs.

An independent neural network predictor of ASPT (based on revised
scores) having 5 inputs.

A dependent neural network predictor of NFAM having 7 inputs.

An independent neural network predictor of NFAM having 13
inputs.

Number of BMWP families.

A neural network trained on GQA class ‘a’ data (Section 3.2).

A neural network trained on the IFE614 database (Section 3.2).

A neural network trained on GQA (revised score) class ‘a’ data (3.2).

A river quality classification based upon the EQI(ASPT) component
only of the GQA classification (Section 2.4).

Percentage of pebbles in the substrate.
A site having >70% sand and silt in its substrate.

The revised BMWP family scores derived by Walley and Hawkes
(1996, 1997).

A site having >70% boulders and pebbles in its substrate.

A computer package, originally developed for the prediction of the
macroinvertebrate fauna of unpolluted running water sites in Great
Britain, but since extended to provide river quality classifications via
the use of EQIs.

The third, and current, version of RIVPACS.

Percentage of sand in the substrate.

Percentage of silt in the substrate.

An unsupervised neural network called a Self-Organising Map.

A site specific SOM with a 10x10 output array (Section 4.2).

A general SOM classifier with a 20x20 output array (Section 4.4).
The absence (0) or abundance category (1-4) of a taxon.

A training procedure for neural networks based on known target
values.

A training procedure for neural networks in the absence of known
target values.

Average width of river (m).
Global easting of the National Grid Reference.
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EXECUTIVE SUMMARY

This Technical Report presents the findings of a study into potential applications of Artificial
Intelligence (AI) in the biological monitoring of river quality. It was carried out as the second
stage of National R&D Project E1/i621 “Applications of Artificial Intelligence in River Quality
Surveys”.

Artificial Intelligence is defined as a discipline concerned with the building of computer
programs that perform tasks requiring intelligence when done by humans. In this particular
case, the task is the interpretation of biological data into river quality terms. When this is done
by human experts it involves two complimentary mental processes: scientific reasoning and
pattern recognition. Two Al techniques which are capable of modelling these processes,
Bayesian reasoning and neural networks, were investigated. However, emphasis was placed
on the development and testing of the neural networks, because the ready availability of the
necessary data provided a unique opportunity to gain rapid results. The most advanced of the
Bayesian methods requires elicitation of knowledge from experts, a process that can prove
very time consuming. Thus the method investigated, known as naive Bayesian inference, was
not the most advanced but had the benefit of being able to draw its ‘knowledge’ from the data.
This permitted a rapid assessment of the potential of Bayesian methods to be made.

Two types of neural network were tested: supervised-learning networks, which require both
input data and desired or target outputs; and unsupervised-learning networks, which require
input data only. A commonly used supervised-learning network, known as back-propagation,
was shown to slightly outperform RIVPACS in the task of predicting ‘unpolluted” ASPT and
NFAM, and an unsupervised-learning network, known as a Self-Organising Map (SOM), was
shown to have considerable potential for the diagnosis of different types of pollution. Full
details of the theory, development and testing of these networks are given in the report,
together with details of several other networks that perform different tasks.

Bayesian classifiers of river quality were developed separately for spring and autumn samples.
They provide classifications in probabilistic terms, and include a conformity index which is
used to identify anomalies in the community composition. They have potential for use as
diagnostic and quality assurance tools.

Information theory was used to define the ‘indicator values’ of the BMWP taxa in terms of the
amount of information they provide about river quality class. Values were derived using
presence/absence and abundance data, thus permitting: a) the taxa to be listed in rank order of
their overall worth as indicators of river quality; and b) the added value gained from recording
abundance to be quantified.

The report concludes that the Al methods tested have considerable potential for use in river
quality classification and river management. The results will be of interest to those working in

river quality management and environmental monitoring.

Keywords: artificial intelligence, AI, neural networks, Bayesian, information theory, river,
pollution, RIVPACS, ASPT, biological monitoring, benthic, macroinvertebrates.
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1. INTRODUCTION

1.1 Background to Study

The work described in this report stems from research carried out in the early 1990s by a
small team of researchers at Aston University. The team was first established in 1989 when
W. J. Walley. a specialist in artificial intelligence (Al), and H. A. Hawkes, an expert river
ecologist, agreed to collaborate on the development of a biomonitoring system based upon Al
techniques. They subsequently engaged two PhD students: M. Boyd to work on a knowledge-
based (or expert systems) approach; and B. M. Ruck to take a neural networks approach.
Thus the project developed along two parallel strands of research, one based upon methods of
reasoning under conditions of uncertainty (Walley et al., 1992a, 1992b; Boyd et al., 1993,
Boyd, 1995). and the other based on the puttern recognition zapabilities of neural networks
(Ruck et al., 1993a; Ruck, 1995). Walley (1993, 1994) described the principles underlying
both approaches and the progress made on each. In adcition, a small project on the
application of neura} networks to predict benthic community structures in ~he Great Lakes
was carried out in collaboration with the Nutional Water Research Institute of Canada (Ruck
et al., 1993b: Ruck er al., 1996). In 1993, a group of Slovenian Al researchers specialising in
machine learning methods of rule induction approached the Aston team with a view to testing
their techniques in the biomonitoring field. This resulted i1 a joint pape: on the use of
machine learning to classify river water quality (Dzeroski et ¢ L, 1994) and a further one that
compared Bayesian, neural and machine learning methods of classification (Walley and
Dzeroski. 1995). Collaboration with the Slivenian group has continued, resulting in further
publications on the application of machin: learning technic ues, mainly ir relation to the
induction of rules from bioindicator data (DZeroski ef al., 1996, 1997a, 1998

This Environment Agency project (Nation:! R&D Project 6211 has produced three Al-based
publications (Walley and Fontama, 1997, 1998 and in press). To the authors” knowledge the
papers cited above are the only publication: to date on the apy 1 cation of Al-techniques to the
biological monitoring of river' quality.

The need for the improvement of existing biomonitoring methods was demonstrated by a
comprehensive reappraisal of the Biologicl Monitoring Workirg Party system based upon
an analysis of data from the 1990 River Quality Survey of England and Wales (Walley and
Hawkes, 1996. 1997). and later by a preliminary reappraisal of the saprobic system based on
a similar analysis of Slovenian data (Dzeroski ez al., 1997b).

1.2 Prior Knowledge

This project. which commenced on 1st September 1995, had he benefit of knowledge gained
from earlier studies. This included knowled ge gained:
e over many decades, as a result of the development of » arious biomonitoring systems,
principally in Europe;
e from the development of the RIVPACS system; and
e trom the development of the Al systems outlined abo»e.

' Throughout the remainder of this report the term “river quality’ rather than ‘water quality’ has been used in
recognition of the fact that environmental stresses other than the quality of waier affect the biological
community. For example, contamination of the substrate and engineering works.
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De Pauw and Hawkes (1993) comprehensively reviewed several European systems, clearly
outlining their main features, strengths and weaknesses, and Hawkes (1998) provided a
detailed account of the history and development of the Biological Monitoring Working Party
score system. The knowledge gained from these earlier systems stems more from the basic
principles of biological monitoring than from the systems themselves, since the systems are all
essentially simple ad hoc numeric or tabular algorithms. Early in the development of the Al
approach to biomonitoring it was concluded that none of these ad hoc systems provided an
adequate model of the expertise of river ecologists (Walley, 1993, 1994). The basic
knowledge gained from these systems was that:

e the most suitable biota for use in biomonitoring are the benthic macroinvertebrates, for
reasons that were concisely stated by De Pauw and Hawkes (1993);

e different taxa have different sensitivities to pollution and are therefore indicative of
different river qualities;

e some taxa are more useful indicators of river quality than others;

e some taxa are naturally more abundant that others; thu: the use of a single scale of
abundance categories is not ideal;

e several factors other than river quality are important detzrminants of community
composition, the principal ones being site type (i.e. eroding or depositing), geographic
location and time of year; and

e the sampling procedure used significantly affects the recorded community
composition.

The essential knowledge gained from the RIVPPACS study was ttat:

e the community composition of unpolluted running-water ¢ites can be predicted with a
reasonable degree of accuracy from the geographical location and environmental
characteristics of the site.

The additional knowledge gained from the Al-based studies men:ioned earlier was that:

e experts use two complementary mental processes wher interpreting biological data,
lausible (or probabilistic) reasoning based upon their scientific knowledge of the

ecological system and pattern recognition based upon the r experience ol past cases;

e the relationships between river qualitv and the occurrence of individual taxa (hence
community composition) are inherentiv uncertain;

» the absence of a commonly occurring taxon gives useful ¢vidence about river quality;

o different abundance levels are generally indicative of different qualities, thus
abundance-based data are more discriminating than preseni-only data;

e high abundance levels are generally more discriminating ‘han low ones; and

e the use of an inappropriate abundance_scale for a giver :axon will results in Joss of
information.

Walley and Fontama (in press) gave a comprehensive discuss.cn and justification of these
statements.

1.3 Appropriate Techniques

The prior knowledge outlined above has important implications for the selection of
appropriate data interpretation techniques. Firstly, and most importantly, uncertainty in the
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relationships between river quality and the states of existence of the taxa (i.e. different
abundance levels, including absence) means that the evidence provided by a sample is not
exact in its meaning but vague. That is, there is uncertainty in the meaning of the data, in
addition to any uncertainty in its value. Thus, the principal requirement of an appropriate
technique is that it should be capable of handling this uncertainty with minimal loss of
information. This is not achieved by existing systems based upon scores, indices or look-up
tables. because they make no attempt to account for variability in the meaning of the data.
They effectively eliminate such variability by the use of averages or single-valued
representative scores or indices, such as BMWP family scores, average score per taxon and
saprobic indices. This results in the loss of valuable information and undermines the system’s
ability to reach a reliable conclusion. Secondly, the techniques chosen should be capable of
modelling the plausible reasoning and/or pattern recognition processes used by experts.
Thirdly. they should be capable of using the evidence given b different states of existence of
the taxa in a way that permits discrimination between thc different river qualities they
represent.  Finally, they must be capable of separating cut the effects on community
composition of factors other than river quality.

Artificial Intelligence covers a wide range of research topics, including natural language
processing, neural networks, speech recognition, computer vision, expert systems and
robotics. Two of these, neural networks and expert systems. are particularly relevant to the
problem at hand. The pattern recognition capabilities of neural networks, and the
probabilistic reasoning capabilities of Buayesian expert syvstems, offer the prospect of
emulating the two mental processes used by experts. Both ~echniques effectively handle
uncertainty in the meaning of the data, the first does so implizitly via its inherent abilities to
generalise and to interpret input patterns as a4 whole 1n a non-iinear way, and the second does
so explicitly via probability theory. In addition, both techn ques are able o give different
meanings to evidence provided by different states of existence. As regards their ability to
separate out the effects of factors other than river quality. this is clearly within their
capabilities, but at the outset of the project 1t was not known how this would be best achieved
or how successful it would prove to be.

There are other important factors supportiny the use of neur: | networks in conjunction with
probabilistic expert systems. Neural networks use historical data, whereas expert systems use
scientific knowledge. Our industry is rich m both, so the application of these two techniques
also permits maximal use to be made of available resource:. Furthermore, a comparative
study of Bayesian, neural and machine lexmning methods of classifying river water quality
from biological data (Walley and DZeroski. 1995) concluded that the best performance was
achieved by the Bayesian models, followed closely by the neuril networks.

1.4 Neural Networks

Neural networks were originally devised as simple models of the structure and function of the
brain. but some have now abandoned the original brain-based concept. What they all have in
common is the ability to ‘learn’ from data. They can be classified into two types: networks
that learn in a supervised way, and those th: learn in an unsupervised way.

In supervised learning, the network is prescated with many different examples of input data,
together with their desired outputs. Thus, Juring the traininz phase the network is able to
compare its outputs with the desired outputs to determine the magnitude cf its errors. The
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training algorithm enables the network to modify its internal parameters, so that next time the
same examples appear its predictions are less erroneous. This process is repeated many times
unti] the network’s performance is maximised. The trained network can then be applied in
practice to provide predictions and classifications for new cases.

In unsupervised learning the desired outputs are not given and the network ‘learns’ to classify
the examples by recognising different patterns in the data, in a similar way to a child learning
to recognise faces without the aid of a teacher. The ability to recognise different faces,
however, has limited utility until one is able to attach names to the faces. Thus the benefit of
not having to supply unsupervised networks with desired ourputs is offset by the need to
identify and label their output categories once training is comple te.

This report explores potential applications of both types of netv/ork, and fuller descriptions of
how they function are given in the relevant sections. However. those seeking a more detailed
introduction to the theory and application of neural networks «re referred to the introductory
text by Beale and Jackson (1990) and the more advanced te:ts by Haykin (1994), Bishop
(1995) and Kohonen (1995).

1.5 Probabilistic Reasoning

Traditional expert systems are based on classical logic anc. operate by the chaining of
"If. Then......" rules. These systems are perfectly adequate for problems :nvolving exact
relationships, but have serious weaknesses with respect to problems involving uncertain
relationships. Under conditions of uncertaint: it is necessary to employ one of the methods of
'Inexact’ or plausible reasoning, such as Dempster-Shafer theorv of evidence. fuzzy logic or
Bayesian inference (Giarratano and Riley, 1989). The latter has a long history but was
originally considered to be computationally too demanding fcr use in complex knowledge-
based systems. However, this problem his been overcome chrough the development of
updating algorithms based on local computations within graphical representations of
dependencies (Lauritzen and Spiegelhalter, 1988). Bayesian methods now provide the most
powerful and consistent means of reasoning Lnder uncertainty.

A Bayesian Belief Network (BBN) is an expert system in which the knowledue-base consists
of two distinct parts: a causal network that defines the 'caus:-effect’ relationships between
variables: and a set of conditional probability matrices that relate the state of each ‘effect’ (or
child) variable to the states of its ‘cause’ (o~ parent) variables. Figure 1.1 shows the causal
network of a simple BBN of river ecology. This is presented mierely to illustrate the structure
of the network, not as a valid working mode]. so the relationships may appear over-simplistic.
Each node in the network represents a variable, and the arrov/¢ between variables represent
causal relationships and the direction of causality (i.e. cause t> effect). Each variable has a
number of possible states (e.g. Altitude may be high, medium or low) and the likelihood of
each, given the current state of evidence. is defined by a probability (or belief). The
conditional probability matrices mentioned earlier define the prebability of the variable being
in each of its possible states, given the states of its parents (i.e. tnose variables at the tail ends
of its incoming causal links). For example, if Geology had just two states, igneous and
sedimentary. and Distance from Source hac three states, sho:t. medium anc long, then the
conditional probability matrix for Altitude would define the probability of cach of its three
states for each of the six possible combinations of Geology and Distance fror Source. In the
case of variables like Geology, that have no parents, thelr probability matrices reduce to a
vector of prior probabilities. The conditional and prior probabilities rnay be derived
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subjectively by elicitation from experts, or more objectively by data analysis if a suitable
database is available.

Figure 1.1 The causal network of a simple BBN model of river ecology.

Initially, when no evidence at all has been presented to the network, the beliefs in the states of
all variables are equal to their priors (NB. the priors of child ncdes are automatically derived
from their conditional probabilities and the prior probabilities of their parents) When evidence
is presented to the network, in terms of the ~bserved state of ure or more of its variables, the
beliefs in the states of all the other variables are updated using algorithms -hat are soundly
based in probability theory. This is probabilisiic reasoning in its most advanced form.

Chong and Walley (1996) demonstrated th= superiority of BI3Ns over rule-based systems.
However. the development of BBNs that are capable of performing well on real-world
problems is a time-consuming process requiring consideradle knowledge elicitation and
knowledge structuring.  Like all knowledue-based systems they suffer from the so-called
knowledge elicitation bottleneck. Readers seeking detailed accounts of the theory and
application of BBNs should refer to Pearl (1%88), Neapolitan (.990) and Jenson (1996).

If a problem can be expressed as a multi-va.ued hypothesis (e g. several river quality classes)
that can be determined from several conditionally independent items of evidence (e.g. the
presence or absence of given biota), then i~ can be solved using ‘naive’ Bayesian inference.
This assumes that the causal network consists of a single ‘cause’ linked to many ‘effects’, as
illustrated in Figure 1.2. In this case the river quality is assuined to be the sole cause of the
states (i.e. present or absent) of each of the taxa included in the model.

" Wauter
Quality, L
-

Ficure 1.2 The causal network of a simple naive Bayesian classifier
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This method can be used to classify river guality without the need to model the complex
interdependencies of the ecological system, provided that:

a) other causal factors, like site type and season, can be effectively separated out, and;

b) the assumption of conditional independence of the evidence can reasonably be assumed
to hold (1.e. independent within quality classes, not between them, e.g. it is assumed that
Asellidae and Gammaridae are independent within any given quality class, but not
independent across the classes).

These requirements may appear demanding. but they are the same assumptions that are
implicit in the BMWP and saprobic systems. However, it is important to state them explicitly,
$o as to remain conscious of the limitations of the method.

The principal advantages of Bayesian methods are that they offer a mathematically sound and
consistent way of reasoning under conditions of uncertainty and provide probebilistic outputs,
thus indicating the degree of uncertainty in their conclusions. The models investigated in this
study were based solely on naive Bayesian inference.

1.6  Outline of the Study
1.6.1 Objectives

The overall objective of the project was:

“To develop computer-based systems for the interpretation of biological data in river quality
terms using Al techniques, and to assess their potential use as expert assistants and river
quality classifiers on a national scale, in order to help the Azency determine whether this
approach could fulfil its need for systems that analyse biological river quality data more fully.”

This was subdivided into two specific objecties:

* to analyse data from the National Biological Database t» help develop the Al systems
and to provide distributions of taxa in geographical and river quality terms; and

e to develop and evaluate classification and interpretaticn systems based on artificial
intelligence techniques so that the Agency can assess the utility of artifizial intelligence
for analysing biological river quality s irvey data.

Full details of the distributions of taxa in geographical and rive - quality terms were published
in R&D Technical Report E12 (Walley and Martin, 1997). The results of the other data
analyses carried out during the study are presented in this report.

Although the stated objectives of the study did not define the AI techniques to be used, the
Technical Plan did refer to them. This required that the main einphasis of the study be placed
on the use of neural networks, since these made best use of the vast amount of data available
from the River Quality Surveys. That is, the study was intended to be data-based not
knowledge-based.

It was also intended that the Al systems should not build on existing methods such as BMWP
and RIVPACS, but should start afresh from basic Al principles. However, the work by
Walley and Hawkes (1996, 1997) on the reappraisal of the BMWP scores resulted in a slight
deviation from this intention. The Agency felt that there was a need for an investigation into
the impact of the ‘revised’ scores on GQA classifications. This occurred :t a time when
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networks were being developed within the jroject to classify s:te type based upon the ASPT
‘potential” of the site. It was realised that an opportunity existed to develop a neural network
predictor of ‘revised” ASPT, and hence a revised GQA classification, without impacting too
much on the development of the new Al-based approach. This led to the development of
neural network predictors of ASPT and number of families (NFAM), based on data supplied
by the Institute of Freshwater Ecology (IFE). and subsequently a predictor of ‘revised” ASPT.

1.6.2 Selected taxa and abundance scale

Table 1.1 lists the 76 BMWP families used in this study. Eight of the origina] BMWP families
have since been split into separate families, but for the purpose of this report they were
recombined into their original families. Consequently, each of these ‘families’ consisted of a
group of families as detailed below:

Planariidae - includes Dugesiidae

Hydrobiidae - includes Bithyniidae

Ancylidae - 1includes Acroloxidae

Gammaridae - includes Crangonyctidae and Niphargidae
Dytiscidae - includes Noteridae

Hydrophilidae - includes Hydraenidae

Rhyacophilidae - includes Glossosomat:dae

Psychomyiidae - includes Ecnomidae

Table 1.1 The 76 BMWP families used in the study
Planariidae | Gammaridae Calopterygida= Rhyacophilidae
Dendrocoelidae Astacidae Aeshnidae Philopotamidae
Neritidae Siphlonuridae Corduliidae Polycentropidae
Viviparidae Baetidae Libellulidae Psychomyiidae
Valvatidae Heptageniidae Hydrometridac Hydropsychidae
Hydrobiidae Leptophlebiidae Gerridae Hydroptilidae
Lymnaeidae Ephemerellidae Nepidae Phryg¢aneidae
Physidae Potamanthidae Naucoridae Limnephilidae
Planorbidae Ephemeridae Aphelocheiridae Molarinidae
Ancylidae Caenidae Notonectidae Berac:idae
Unionidae Taeniopterygidae Corixidae Odontoceridae
Sphaeriidae Nemouridae Haliplidae Leptoceridae
Oligochaeta Leuctridae Dytiscidae Goeridae
Piscicolidae Capniidae Gyrinidae Lepidnstomatidae
Glossiphoniidae Perlodidae Hydrophilidae Brachycentridae
Hirudididae Perlidae Scirtidae Sericostomatidae
Erpobdellidae Chloroperlidae Dryopidae Tipulidae
Asellidae Platycnemidae Elmidae Chircnomidae
orophiidae Coenagriidae | Sialidae { Sunuliidae

7
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Three BMWP families (Lestidae, Pleidae and Hygrobiidae) were included in the 1995 survey
but were not found in any samples. Three other families were removed from the list because
they are not used by the Agency and have been excluded from RIVPACS III. These are
Clambidae, Chrysomelidae and Curculionidae.

The abundance scale used throughout the project was based upon a logarithmic banding of the
number of individuals found, as set out below:

0 - notfound

1 - 1-9individuals

2 - 10-99 individuals

3 - 100 -999 individuals
4 - 21000 individuals.

1.6.3 Data validation and analyses

It was initially intended that the project would be based upon data from the 1990 River
Quality Survey of England and Wales, but a delay in the commencement of the project made it
possible to use the 1995 data. Thus all results presented in this report are based upon data
from the 1995 River Quality Survey of Englund and Wales. For the purpose of this project,
England and Wales was divided into ten regions® based upon he original ten administrative
regions of the former National Rivers Authority (NRA), as 1t is in the Agency’s national
Biological Database. The relationships hetween these regions and the present eight
administrative regions of the Environment Agency are given in "“able 1.2.

Table 1.2  Relationship between the former ten NRA administrative regions used as
the basis of this study and the present eight administrative regions of the
Environment Agency.

0. A\ Region Present Environment Agency Administrative Region/Area
Anghan Anglian Region
Northumbrian | Northumbria Area of North East Region
North West North West Regio
Severn Trent Midlands Region
Southern Southern Region
South West Devon and Comwall Areas of South West Region
'hames Thames Region
Welsh Welsh Region
9 Wessex North Wessex and South Wessex Areas of South West Region
l 10 | Yorkshire Dales and Ridings Arcas of North East Region

Although the 1995 database was known to be of higher quality thaa the 1990 database it still
had to be validated to ensure that the data used were complete, representative and as error free
as possible. The original database, prior 1o validation, cortained 13,296 samples from

- The fact that the project was based on ten regions e. the original NRA Regions) as opposed to the present
eight Environment Agency Regions led to confusion ¢ ver the use of ‘Region’ and ‘region’, bacause some of the
projects regions were no longer administrative Regions. The convention adopied was to use “Region’ only when
referring to the proper name of one of the present eight Regions of the Einvironment Agency (e.g. Midlands
Region) or when referring to all eight collectively.
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approximately 6700 sites. During the validation process 1.220 samples were removed,
Jeaving 12.076 validated samples from 6038 sites (i.e. two samples, spring and autumn, from
each site). A brief description of the validation process and reasons for removing sites is given
in R&D Technical Report E12 (Walley and Martin, 1997). A comprehensive account of the
data validation exercise is given in the Project Record (Walley and Martin, 1998).

The data analyses carried out on the validated data in relation to the distributions of taxa
reported in R&D Technical Report E12 (Walley and Martin, 1997) were:

e geographical distributions of sampling sites;
e geographical distributions of taxa by occurrence and abundance category; and

e frequency distributions of taxa by river quality and abundance category.

Data analyses and manipulations carried out on the validated data in relation to the
development of the Al systems described in this report were:

e derivation of indicator values of taxa based on information theory:;

e construction of various input vector 11les based on different groupings of taxa;
e construction of a database of exempiars based on an ar alysis of site tvpes;

e construction of a database of matched chemical and biclogical sites;

e analysis of the distribution of sites by EQI(ASPT) and EQI'NFAM); and

e derivation of the conditional probabiiities need for the 3ayesian classifier.

In addition, many different analyses were carried out on the -esults produced by the various
models. These are detailed in the sections w here the models are described.

1.6.4 Subjectivity and the need for exemplars

One problem that arises in the development of any system to classify river qu ality in biological
terms is the lack of a well-defined standard et of quality classes. River quality is so complex
and multi-dimensional that any attempt to express it in meanir gful and readily understandable
general terms must involve a degree of subjectivity. Thus, the -eal problem facing us is how to
minimise the effects of subjective errors on the performance cf the systems. That is, how can
we best handle the subjective aspect of the problem to produce the most meaningful and
consistent classification system? We can attempt lo minim se its extent and maximise its
quality. and we can examine the stage at which it enters the jrocess, so as (o avoid building
‘objective methods’ on subjective foundatious.

The Biological Monitoring Working Party 'BMWP) system is based upon family scores that
were allocated subjectively by a committze of experts. Thus, this system is founded on
subjectivity. albeit the best available expert opinion at the time (1976-78.. Hawkes (1998)
gave a comprehensive account of the devel:pment of the system, the problems faced and the
decisions made. A computer-based reappraisal of the BMWF scores (Walley and Hawkes,
1996, 1997) demonstrated how the accura:y of these subjectively derived values could be
enhanced through an analysis of field data.

An alternative approach to that taken by BMWP could be to usz a committee of experts to
classify a Jarge set of biological field samples into their virious river quality classes. To
achieve this the committee would first have to develop an agreed overview of the ecological
nature of each river quality class. They would then have to classify a large number of samiples
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covering all quality classes and a wide range of site types. However, once the experts had
agreed this set of examples (i.e. a database of exemplars), it could then be used as the standard
by which biological river quality is defined. An advantage of this approach is that the
subjective component defines a set of end-points, which are then used as targets for the
classification systems, not the foundation on which they must build. This is precisely what is
needed for the training of supervised-learning neural networks (i.e. a training set consisting of
the desired outputs corresponding to a set of example inputs). On the other hand,
unsupervised-learning neural networks do not require desired outputs during their training
phase. They simply learn to sort the input examples into groups based upon the patterns in
their data, leaving the experts to label the groups into river quality terms at the end of the
training process. Once again, the subjective judgements provided by the experts are used to
define end points. However, some subjectivity still remains at the beginning of the modelling
process, the subjectivity relating to model selection (e.g. the type of network, its topology and
training algorithm). The effect of this can be minimised by optimising the model’s
performance on a set of exemplars, or alternatively, by maximising its mutual information
value.

In this study, a database of exemplars was needed for the trainin:; of the river quality classifier
based on supervised-learning neural network:. It was also requirec for the derivation of the
conditional probabilities for the Bayesian muodels, because th:: data-based approach to the
project required that these be derived by data unalysis, not through knowledge elicitation.

The original intention was that a database of exemplars wotld be constructed by asking
Agency biologists to classify their sites subjectively, without reference -o their GQA
classification, using their own knowledge and understanding of the ecology of the sites.
However. this proved to be impracticable within the time-scale of the projec:. Thus, it was
decided to construct the database using classifications derived bv two existing methods, but
after removing all dubious classifications. Full details of hovs this was done are given in
Section 2.4 (Database of Exemplars). The justification for using existing class:fications, some
of which may have been incorrect, was thzr both the neural and Bayesiar systems were
capable of handling noisy data, and would not be unduly disturbed by a few remaining
erroneous classifications. Neither of the two methods depends upon every desired output
being absolutely correct, provided the database is fairly large and the proportion of errors is
relatively small and well distributed across the: classes.

1.6.5 Indicator values of taxa

It has long been known that some taxa are better indicators of river quality than others.
Indeed, the saprobic system uses indicator values as weighting coefficients in the
mathematical formulation of the saprobic index. These weights iare determined from the shape
of the subjectively derived distribution of saprobic valency, usir.g rles proposzd by Sladecek
(1964). A broadly tolerant species with a flat distribution is given an indicator value (or
weight) of unity, whereas a species which is highly specific, appearing in only one of the five
saprobic classes. is given an indicator value o: five.

The BMWP system makes no use of indicator values, but Wealley and Hawkes (1997)
suggested some modifications to the Biological Monitoring Working Party score system that
incorporated abundance rating, biotope type and indicator value They defined indicator value
in terms of the inverse of the standard deviation of the taxon’s distribution with respect to the
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Average Score Per Taxon (ASPT) of the sites at which the taxon occurred. This, in effect,
produces similar results to Sladecek’s rules.

At the outset of this project it was decided that there was a need for a definition of indicator
value, which truly reflected the information value of the evidence provided by the taxon. It
was felt that this would prove valuable when attempting to optimise the input vectors to the
neural networks. Indicator values based upon the mutual information between the biological
GQA class and the state of existence of the taxa were derived using present-only and
abundance data. These were subsequently used as the basis of an investigation into how the
size of the input vector to the neural networks might be minimised without jeopardising their
performance. The derivation and analysis of these indicator values are fully described in
Section 2.1, and a detailed account of the tests on the input vector is given in Section 2.2.

1.6.6 Overview of models developed

The models developed in this project fall into three categories:

e supervised-learning neural networks;
e unsupervised-learning neural networks; and
e naive Bayesian classifiers.

Extensive exploratory tests were carried out to determine which of the various supervised-
learning and unsupervised-learning neural networks were best suited to the tasks at hand. In
addition tests were carried out to determine the best configuration of each type. These
investigations are described in the introductions to Sections 3 (Supervised Neural Networks)
and 4 (Unsupervised Neural Networks).

The models that were developed were:
Supervised-learning networks

Classifiers of site type

Predictors of ASPT and NFAM
Predictors of BOD, DO and ammonia
Classifiers of biological river quality

Unsupervised-learning networks

e Classifiers of biological river quality

Naive Bayesian Classifiers

e C(lassifier of biological ‘organic’ river quality

Four of these were investigated in greater detail than the others, namely: the predictors of
ASPT and NFAM,; the unsupervised classifiers of biological river quality; and, to a lesser
degree, the classifiers of site type and the naive Bayesian classifiers.

1.7 Operational Value of the Study

The efficient and reliable interpretation of field data is of prime importance to the Agency.
Each year vast amounts of data are collected and processed at considerable expense. Thus, it
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is desirable to use the best available techniques for its analysis and interpretation to ensure that
as much useful information as possible is extracted from it. Prior to this project the Agency
had not investigated the use of AI methods. The results show that at least two Al techniques,
neural networks and Bayesian reasoning, offer considerable potential for use in an operational
setting. In addition, the project has produced some valuable spin-off benefits, and several of
the outputs will prove useful to operational staff. These include:

e the identification / correction of errors in the GQA databases, especially the 1995 database;

e maps showing the geographical distribution of the BMWP taxa based (for the first time) on
average abundances (R& D Technical Report E12);

¢ histograms showing the frequency of occurrence of the BMWP taxa by river quality and
abundance category (R& D Technical Report E12);

e rankings of BMWP taxa in terms of their information value (or indicator value) with
respect to river quality (2.1 and Appendix A);

¢ evidence showing which additional taxa could usefully be added to the BMWP list (2.1.3);

e the demonstration of how abundance data (currently collected but not used) can be used to
improve the information values of the BMWP taxa (2.1.3) and hence the performance of
classification / diagnostic systems;

e new information on the relationship between taxa and environmental variables (3.3.4 -
3.3.8);

e results which indicate that the BMWP system could benefit from the use of the revised
scores derived by Walley and Hawkes (1996, 1997) (3.3.9);

e results which give an indication of the overall reliability of GQA classifications (3.3.10);

e a computer package called SOMVIEW (available on disk or via the Web at http://
www.soc.staffs.ac.uk/research/groups/cies/somview/somview.htm) that enables users to
view any two SOM feature maps, and hence to visually explore the relationships between
them in data space; and A '

e a computer package called RBMS (available free to Agency staff, although not a contract
deliverable) which provides user-friendly access to the national biological database
(validated sites only), plus the GQA biological classifications, various alternative
classifications produced by the project and some useful analytical tools (NB. This is the
first time that data from all Regions have been made readily available to users).

These outputs provide operational staff with more reliable data, some useful analytical tools
and the means of gaining further insight into the relationships between the taxa, river quality
and environmental variables. If operational biologists make full use of these outputs, their
abilities to interpret their field data will be enhanced.

It is anticipated that further developments of this work, which are now being pursued via a
new R&D contract, will produce two river quality diagnostic systems: one based on an
improved version of the SOM neural network, and the other based on Bayesian Belief
Networks. These will be available for field testing late in 1999.
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2. DATA ANALYSES AND MANIPULATION

2.1 Indicator Values
2.1.1 Background

This study commenced before valid abundance-based data had been acquired from the North
West, Midlands and Welsh Regions and before the development of the site-type classifiers
(Section 3.2). Thus the original analysis was based on a database containing data from only
seven of the ten former NRA regions listed in Table 1.2, and a method of classifying sites into
Riffles and Pools® first used by Walley and Hawkes (1996, 1997), as defined below.

Site Type Nature of Substrate Number of Samples
Riffles > 70% boulders and pebbles 7416
Pool > 70% sand and silt 2174
Riffle/Pool  neither Riffle nor Pool 2488

Indicator values were only derived for sites classified as either Riffles or Pools.

The analysis was repeated later using validated data from all ten regions. The same definitions
of site types into Riffles and Pools were used, because a change to the site-types derived in this
study (Section 3.2) would have required major changes to the software and the data files. The
results of these analyses are given in Appendix A.

The term ‘indicator value’ is generally used rather loosely. This can lead to confusion since
there are two very different interpretations. The term is often used to represent the value of a
taxon as an indicator of river quality, when it is found in a sample. This, in fact, is a
conditional indicator value, since it only applies when it is known that the taxon is present.
Thus, by this definition, a very rare taxon can have a high indicator value. Such indicator
values provide an appropriate means of weighting the evidence given by a taxon when found
in a sample. However, if one is trying to rationalise a taxonomic list for survey purposes, or
developing a data interpretation system based upon several possible states of existence of the
taxa, including absence, then the most appropriate definition is one based on the information
value of each state of existence weighted in proportion to its probability of occurrence. This
provides an overall (or unconditional) measure of the utility of each taxon as a sensor of river
quality. Thus a rare taxon that is indicative of a particular river quality will score lowly on this
measure, because its most commonly occurring state (i.e. absent) tells us nothing about the
quality of the water. A commonly occurring taxon that is indicative of a particular river
quality scores highly because it frequently provides valuable information via its occurrence,
and even its absence provides useful information.

2.1.2 Mathematical formulation

The mutual information M(C,X) is a well-recognised measure of the common information
shared by two variables C (class) and X (attribute). In our case, C represents six river quality
classes (i.e. biological GQA classes a-f, numbered 1 to 6 here) and X represents five possible
states of existence (i.e. abundance categories O - 4) of a given taxon.

? The terms Riffles and Pools are used throughout this report to mean river sites having substrate compositions as
defined by Walley and Hawkes. They should not be taken to mean riftles and pools as generally understood be
river ecologists , although the two meanings are clearly closely related.
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n;j = number of samples of the i th class in which the given taxon is in the j th state;
N; = total number of samples of the i th class;
M ; = total number of samples in which the given taxon is in the j th state; and
T = total number of samples,
then the mutual information between C and X is given by:
Pij
M(C,X) =Y, p;log| —— (1)
ij qirj
where:
n.-
pij = —}J = probability of observing the given family in the i th class and the j th state;
N; . .
q; = - - probability of the i th class; and
rj = ——]—;J— = probability of the given family being in the j th state.

However, this formulation is not ideal for a new definition of the indicator values of
bioindicators, since the derived values of the probabilities are dominated by data from the
most commonly occurring classes. Since indicator values are intended to represent how well
each taxon discriminates between the different classes, it is important that the data are not
weighted towards any particular class. This can be achieved by defining the probabilities in a
way that gives equal weight to all classes, thus:

p.’. —_ni ’ '__l rl= i ’
) 6Nl 4i 6 J i=1pl]

This is equivalent to applying the Principle of Indifference and produces a set of probabilities
that can be used to define indicator values based upon what we have called the Indifferent
Mutual Information value, M’(C,X), defined as:

6p;
M'(C,X)= Y. p} log( 2 ] @
ij g

Riffle and Pool data were used to derive M’(C, X) values for all 76 taxa, based on abundance

data and present-only data. In the latter case, equation (2) had to be modified to use just two
states of existence (i.e. present and absent) instead of five. The abundance-based values,
M,(C,X), and the present-only values, M ;,(C,X ), were used to define an improvement

ratio (R;), thus:
_ M,(C.X)

77 M,(C.X) ©)

This ratio represents the benefit gained by recording the abundance of the taxon as opposed to
just its presence. A value of 1.0 represents no benefit at all, whereas a value of 1.5 represents
a 50% increase in information value.
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Riffle and Pool M’(C,X) values were also derived for 17 non-BMWP taxa. However, not all
Regions recorded these taxa so the results are based upon data covering only part of England
and Wales. Two of these taxa produced M’(C,X) values that would have placed them in the
top 50 indicator taxa for both Riffles and Pools. They were Hydracarina and Ceratopogonidae,
which would have been placed 34th and 30th respectively in the Riffle list and 29th and 45th
in the Pool list. Thus, if new taxa are to be added to the BMWP list at a future date, then these
two should be prime candidates, at least from the information theory viewpoint.

2.1.4 Results of regional analysis

In order to examine what variation might exist in the information values of individual taxa
between regions, M’(C,X) values based on abundance data were derived for each of the ten
regions. The results are given in Tables A3 for Riffle sites and Table A4 for Pool sites. Both
tables also give the average and standard deviation of the M’(C,X) values taken across all ten
regions, plus the national M’(C,X) value (as given in Table Al and A2) and the ratio between
the regional (average) and national values. The results for North East (Northumbria) and
South West (Devon and Cornwall) in Table A4 are given in italics, because there were so few
pool sites in these regions that the derived statistics were considered unreliable. Thus they
were excluded from the calculation of regional average M’(C,X) values for Riffles. Tables A3
and A4 reveal that almost all taxa have a higher regional average M’(C,X) value than national
value. This is because the regional analysis eliminates:

a) more of the site-type effect; and

b) part of the national variation in the mix of species within families.

The list of ratios of regional to national values indicates that some taxa produce much higher
ratios than others. For example, Oligochaeta (ratio = 3.6 in Riffles and 3.9 in Pools),
Chironomidae (3.3 and 3.9), Asellidae (2.0 and 4.2), Glossiphoniidae (2.9 and 1.6),
Erpobdellidae (3.9 and 2.9), Sphaeriidae (1.9 and 1.6) and Lymnaeidae (3.3 and 2.2). High
values are also produced by many of the less common taxa, but these are considered
unreliable, due to distortions caused by very small sample sizes in some regions. A high ratio
implies that the various states of the taxon are indicative of different river qualities in different
regions. This is most likely to occur where a taxon is represented by different species in
different regions. Conversely, a ratio around unity indicates that the taxon is a fairly consistent
indicator across the whole country (e.g. Elmidae with 0.967 for Riffles and 1.047 for Pools).
There were, as expected, very few taxa with ratios noticeably less than unity (i.e. 7 taxa in
Riffles and 3 taxa in Pools had ratios < 0.9), the lowest being 0.812 for Caenidae in Pools and
0.844 for Gyrinidae in Riffles. An ecological explanation for these low values has not been
found, but it is possible that they were due to sampling error, since some of the regional
samples were fairly small.

The rank order of the taxa based upon regional average M’(C,X) differs from that based upon
national M’(C,X). The most significant changes from national to regional ranking are as
follows.

Riffles (upgradings): Gammaridae (from 12th to 4th), Simuliidae (19th to 10th),
Hydrobiidae (21st to 11th), Asellidae (25th to 12th), Ancylidae (23rd to 14th), Oligochaeta
(36th to 16th) and Glossiphoniidae (33rd to 18th).

Riffles (downgradings): Leuctridae (6th to 13th), Lepidostomatidae (8th to 19th),
Perlodidae (11th to 21st), Gyrinidae (10th to 23rd) and Ephemerellidae (15th to 25th).
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The above formulation was designed for use on the national database, where Riffle and Pool
sites are represented in all six river quality classes. In some of the regional databases,
however, Riffle and Pool sites are not found in all six quality classes. Thus the equations were
modified to account for the reduced number of classes, wherever this occurred. The benefit of
splitting the analyses between Riffles and Pools was that the mutual information between C
and X was enhanced, because the split partially removed the site type effect.

2.1.3 Results of national analysis

The mutual information, M(C,X), and indifferent mutual information M’(C,X) were derived
for each taxon based on the validated national dataset, using both abundance data and
presence/absence data split between Riffles and Pools. Although it was stated earlier that
M(C,X) is not the appropriate measure to use as an indicator value, its values were derived to
provide a baseline against which to compare the proposed indicator values, M’(CX). In
addition, Riffle and Pool M’(C,X) values were derived for each of the ten regions of the former
NRA (as defined in Table 1.2) using abundance data only. The results are given in Appendix
A.

Tables Al and A2 give the overall M(C,X) and M’(C,X) values of 76 BMWP taxa for Riffles
and Pools as derived from nation-wide ‘present-only’ and ‘abundance’ data. The tables also
give the improvement ratio, which provides a measure of the added benefit gained by using
abundance data as opposed to present-only data. The taxa are listed in order of their
abundance-based M’(C,X) value. That is, they appear in order of their value as indicators of
river quality if their abundance levels are recorded and used in the classification. Inspection of
the Riffles and Pools lists reveals a very different ordering of the taxa in each. Only six of the
top twenty taxa are common to both lists, namely Elmidae, Leptoceridae, Baetidae, Caenidae,
Gammaridae and Ephemeridae, the first five of which are the overall top five indicator taxa
listed in rank order. It is interesting to note that the average M’(C,X) values of all 76 taxa
listed in Tables A1 and A2 are 0.0746 and 0.0610 for Riffles and Pools respectively. The
equivalent figures based on the top twenty taxa in each site type are 0.1948 and 0.1436
respectively. Thus, samples taken from Riffles are about 25% to 35% better (i.e. in
information terms) at discriminating between river qualities than those taken from Pools. This
confirms in quantitative terms what river ecologists have known for a long time.

Another interesting point to note is that a few taxa are markedly better indicators when their
abundance, as opposed to just their presence, is recorded. Oligochaeta was exceptional in this
respect, showing nine-fold and twenty-fold increases in Riffle and Pool M’(CX) values
respectively when derived from abundance data. Other notable taxa were Chironomidae (69%
and 109% increases respectively), Asellidae (62% and 67%), Erpobdellidae (52% and 26%),
Physidae (88% [relatively small sample] and 10%), Sphaeriidae (13% and 21%), Lymnaeidae
(14% and 16%), Gammaridae (14% and 15%) and Baetidae (20% and 8%). The lack of
noticeable improvements by the other taxa was probably the result of the logj,-based
abundance scale being too coarse for their particular cases. The fact that most of the high
improvement ratios (Tables Al and A2) were achieved by taxa that naturally occur in high
numbers implies that the log;o-based scale is better suited to these taxa than the naturally less
numerous taxa. Walley er al. (1992b) used five different abundance scales to maximise the
information input to their Bayesian classifier, thus ensuring that each taxon was represented
by an appropriate scale. If the Agency were to adopt a finer scale for the naturally less
numerous taxa it would undoubtedly draw out more useful information from these taxa.
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Pools (upgradings): Gammaridae (6th to 1st), Sphaeriidae (7th to 3rd), Asellidae (32nd to
7th), Oligochaeta (33rd to 9th), Lymnaeidae (20th to 10th), Chironomidae (36th to 13th)
and Erpobdellidae (31st to 16th).

Pools (downgradings): Dytiscidae (13th to 22nd), Coenagriidae (9th to 23rd) and
Calopterygidae (12th to 28th).

Table A5 shows the top 12 Riffle taxa in each of the ten regions listed in order of the M’(C,X)
values. Eight of the ten regions are very similar in terms of the rank order of their top taxa.
Elmidae ranks first in all eight, and Hydropsychidae ranks either second or third in seven of
the eight, the odd one out being Southern Region were it ranks 11th. In the two regions where
Elmidae does not rank first (i.e. Anglian and Thames), Gammaridae is the leading taxon.
Gammaridae also ranks highly (3rd) in Southern Region. Thus visual inspection of these lists
indicates that Anglian, Thames and Southern are somewhat different from the other regions in
terms of their top indicator taxa for Riffle sites.

Table A6 lists the top Pool taxa in eight of the ten regions. The other two regions, North East
(Northumbria) and South West (Devon and Cornwall) had too few Pool sites to produce
reliable estimates of M’(C,X). These lists show far less similarity between regions than was
the case for Riffles.

The top taxon overall, in terms of average regional ranking position, was Gammaridae,
followed by Leptoceridae, Baetidae, Hydrobiidae and Elmidae in rank order.

In order to compare the regions in terms of their overall information values of the taxa, the
average M’(C,X) of each region’s top 40 taxa was determined. The highest average was
achieved by Thames Region in the case of Riffle sites (value = 0.201) and Midlands Region in
the case of Pool sites (value = 0.186). Table 2.1 below gives the values for the other regions
expressed as a percentage of these maximum values. The variations from region to region may
be due to several factors. Firstly, the existing classification system may suit some regions
better than others and/or one site type better than another. For example, Midlands Region
performs well with respect to Pool sites but poorly with respect to Riffle sites, whereas in the
case of Thames Region it is vice versa. The sites in some regions may be better suited to
biomonitoring than in other regions, and there may be differences in the standard of sampling
and analysis procedures. It is not possible at this stage to identify the most likely cause of
these variations, but they are interesting to note and may be worthy of further investigation.

Table 2.1 Average indifferent mutual information values, M’(C,X), of the top 40 taxa
for Riffle and Pool sites, expressed as a percentage of the maximum for the given site

type.

Site Ang | N.East | NWest| Mid | Sthn | SWest | Thms | Welsh | SWest | NEast
Type Nrthm D&C Wssx | D&R

Riffle| 97% | 89% | 70% | 67% | 68% | 98% | 100% | 76% | 97% | 78%
Pool | 88% | 61% | N/A | 100% | 88% | N/A | 80% | 71% | 82% | 85%
Avg | 92% | 75% | N/A | 84% | 78% | N/A | 90% | 73% | 90% | 81%
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2.2 Input Vectors

In view of the large number of potential inputs to the proposed models (i.e. 76 taxa), it was
decided to investigate ways of combining or eliminating taxa without jeopardising the
performance of the models. In fact, it was thought that combining rare taxa into groups based
upon their pollution sensitivities might even improve performance. Thus, the main purpose of
the investigation was to maximise performance without over-parameterisation of the models.
The results of the study of indicator values provide a means of ranking the taxa in terms of
their information value, and the revised BMWP scores derived by Walley and Hawkes (1996)
provided a means of grouping taxa into sensitivity bands. Various input vectors were tested on
supervised and unsupervised neural networks in an attempt to determine an optimum input
configuration. These include:

e 76 inputs comprising all 76 BMWP families, using their abundance categories as inputs;

e 77 inputs comprising all 76 BMWP families (as above) plus NFAM, the number of
families present;

e 50 inputs comprising the top 50 BMWP families, based on their national indifferent mutual
information values;

e 51 inputs comprising the top 50 BMWP families plus NFAM;

e 21 inputs based upon taxonomic groups of families®, using the total of their abundance
categories as the input values;

¢ 21 inputs based upon taxonomic groups of families, using the number of families present in
each group as the input value; and

e 16 inputs based upon groups of taxa, each having similar sensitivities to organic pollution
as indicated by their overall revised BMWP scores (Walley and Hawkes, 1996), and using
the total of their abundance categories as the input value.

It was hoped that one of the vectors based upon groups of families would perform as well, if
not better, than the full vector of 76 families. It was expected that the vector comprising the
16 sensitivity groups would perform particularly well, but this was not found to be the case.
For the unsupervised networks, the best input vector was found to be the one consisting of 76
BMWP families, whereas for the supervised networks the best was the 77 input vector
consisting of 76 BMWP families plus NFAM. This does not however mean that these are the
most cost-effective input vectors. It may well be possible to achieve 95% of optimum
performance using 50% percent of the taxa, but optimisation based upon benefit / cost ratio
was not the purpose of the exercise.

* The 21 groups consisted of Flatworms, Mollusca (3 groups), Worms, Leeches, Crustacea (2 groups), Mayflies
(3 groups), Stoneflies, Damselflies, Dragonflies, Bugs, Beetles (2 groups), Caddisflies (2 groups), Chironomidae
and one miscellaneous group (consisting of Tipulidae, Simuliidae and Sialidae). Where major groups were
subdivided, this was achieved by clustering the taxa on the basis of their overall revised scores.
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2.3 Distribution of Sites by River Quality Class

The distribution of the 1995 validated sites by biological GQA class is given in Table 2.2
below.

Table 2.2 Distribution of the number of sites by biological GQA class

Biological GQA Class Total No.
a b c d e f of Sites
Number of Sites 1762 1747 1271 638 488 132 6038
Percentage of Total | 29.2% | 28.9% | 21.0% | 10.6% | 8.1% 2.2% 100%

The rules used by the Environment Agency when allocating sites to these GQA classes were
based on the threshold values for EQI(ASPT) and EQI(NFAM) given in Table 2.3 below:

Table 2.3 Threshold values of EQIs for the allocation of GQA classes

GQA Class EQI(ASPT) EQI(NFAM)
a 1.00 0.85
b 0.90 0.70
c 0.77 0.55
d 0.65 0.45
e 0.50 0.30
f - -

A site is allocated to the highest class in which its EQI(ASPT) and EQI(NFAM) equal or
exceed the stated threshold values for the class.

Table 2.4 gives a breakdown of the 1995 biological GQA classification into its EQI(ASPT)
and EQI(NFAM) component parts. The totals in the bottom row show the distribution
between the classes if the classification was based on EQI(ASPT) alone, and the totals in the
right-hand column show the distribution based on EQI(INFAM) alone. The matrix gives the
overall distribution with respect to these two component parts. For example, 15 sites achieved
a ‘b’ classification on the basis of their EQI(ASPT), but only a ‘d’ classification on the basis
of their EQIINFAM). Since ‘d’ is the lower of the two, their overall biological GQA class is
‘d’. Thus, a low EQI(NFAM) caused their EQI(ASPT) class to be downgraded by two class
intervals. This is not exceptional since several sites were downgraded by three or more class
intervals due to either a low EQI(ASPT) or a low EQI(NFAM). For example, three were
downgraded from ‘a’ to ‘d’ due to low EQI(NFAM)s and, conversely, 12 sites were
downgraded from ‘a’ to ‘d’ due to low EQI(ASPT)s. All 15 sites were thus given the same
overall biological GQA classification of ‘d’, despite being represented by two very different
biological communities, one indicative of organic pollution, (i.e. low EQI(ASPT) and high
EQI(NFAM)) and the other indicative of toxic pollution (i.e. high EQI(ASPT) and low
EQI(NFAM)).

Although these may be considered to be of equal severity in terms of environmental stress, it
is desirable to label them in a way that preserves their different identities. For example, the
first three sites could be labelled ‘ae’ to indicate high ASPT but low NFAM, and the other 12
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could be labelled ‘ea’ to indicate low ASPT and high NFAM. This would in effect produce a
more detailed classification system in which both the organic and toxic dimensions of river
pollution are represented. The problem that the existing classification system presents to this
study, especially the naive Bayesian classifiers, is that it results in examples of the lower
quality classes (d-f) being represented by markedly different biological communities, even
within a given site type and river quality class.

Table 2.4 Relationship between river quality classifications based upon EQI(ASPT)

only and EQI(NFAM) only
GQA Class based on GQA Class based on EQI(ASPT) only
EQI(NFAM) only a b C d e f Total
a 1762 1269 267 12 3310
b 140 338 460 61 1 1000
c 39 129 376 258 19 821
d 15 84 205 84 391
e 10 25 143 203 5 389
f 2 1 18 71 35 127
Total 1947 1763 1213 697 378 40 6038

2.4 Database of Exemplars

The main purpose in constructing this database was to provide data for the training and testing

of supervised-learning neural networks and the derivation of conditional probabilities for the

naive Bayesian classifiers. These models required both inputs and target outputs (i.e. river

quality classes). The problem was how to derive target outputs, bearing in mind:

a) the undesirability of using the GQA classifications, since these were dependent upon
existing (imperfect) systems that could not be considered to be absolute standards; and

b) complications concerning the ‘organic’ and ‘toxic’ components of the GQA classification
highlighted above.

It was subsequently decided to use the EQI(ASPT) component of the GQA class as the basis

of an ‘organic’ classification, which was derived using two different procedures in an attempt

to reduce its dependence on existing methods. The reasons for defining the targets in this way

are listed below.

e Errors in both the observed and predicted values of NFAM are so great as to make

EQI(NFAM) unreliable. This is supported by:

a) the 1995 audit of samples by IFE, which showed an average of 1.88 gains and 0.22
losses per sample taken (NB. Walley and Martin, 1997, contains a summary of gains and
losses by region); and

b) the results of tests carried out during the development of the neural network predictors of
ASPT and NFAM as part of this project (Section 3.3.7), which showed that predictions
of NFAM are far less reliable than those of ASPT.

e The combination of EQI(ASPT) and EQI(NFAM) to form one GQA classification results
in unnecessary confusion in the relationships between community composition and river
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quality class. This would have undermined the performance of the naive Bayesian
classifiers and, to a lesser degree, the supervised-learning neural networks.

Thus it was thought better to separate the components into their ‘organic’ (based on ASPT)
and ‘toxic’ (based on NFAM) parts, and to use only the former, being the reliable part, as the
target river quality classifications in the database of exemplars.

It should be noted that the decision to split the GQA quality classification into its two
component parts was only relevant to the supervised-learning networks and the derivation of
conditional probabilities for the Bayesian classifiers. The unsupervised-learning networks did
not require target classifications and were therefore unaffected by this decision.

The first stage in the construction of the database of exemplars was to combine the taxonomic
strings of the spring and autumn samples. This was achieved by taking the highest of each
family’s two abundance levels (‘absence’ being treated as zero). The next stage was to derive
reliable site-type and ‘organic’ river quality classifications for each site.

Site type was classified into five ASPT bands (labelled 1-5) based upon three different
methods of predicting unpolluted ASPT, two based on neural networks (NNRSCR &
NNIFE614 - see Section 3.2 for details) and the other on RIVPACS III The final site-type
classification was allocated by ‘majority vote’ of the three methods. In the rare cases where
none of the three methods agreed, a fourth method (based upon neural network NNBMWP)
was introduced to break the tie. Section 3.2 gives a detailed explanation of the site types and
the reasons for classifying them. The geographic distributions of the 6038 sites by site type are
shown in Figures B1 to B5 in Appendix B.

In the case of ‘organic’ river quality, the final classification required complete agreement
between two methods based on EQI(ASPT) bandings. One used predicted ASPT derived by
RIVPACS III and the other used values derived by a neural network predictor of ASPT (called
NX5ASPT - see Section 3.3.5). If the classifications given by the two methods disagreed then
the site was rejected from the database of exemplars. Both methods were based upon original
BMWP scores, not revised scores, since appropriate data on the latter were not available at the
time.

The final number of sites remaining in the database of exemplars was 4960, of which site
types 1, 2, 3, 4 and 5 contributed 1048, 1001, 955, 996 and 960 respectively.

2.5 Database of Matched Biological and Chemical Sites

In order to develop the predictors of BOD, DO and ammonia it was necessary to link data on
these three chemical variables to the validated biological data. This required the matching of
chemical sampling sites to biological sampling sites. Since many ‘matched’ chemical and
biological sites had different Ordnance Survey grid references, software was developed to
calculate their distance apart. Analysis of these distances uncovered many grid reference
errors, and these were either corrected or the sites removed from the database of matched sites.
To ensure that the database only included valid matches, all pairs of sites that were greater
than 400 metres apart were excluded, with the exception of sites in North East (Northumbria)
where a threshold of 1 km was used. The reason for this exception was that the region had
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very few matched sites that were less than 400 metres apart. It was thought desirable to
increase the threshold in this case to avoid under-representation of the region in the database.

Unfortunately, many biological sites did not have a matching chemical site, and the final
database consisted of just 3556 matched sites, which included 1897 exact matches (53.3%)
and a further 1270 matches (35.7%) that were up to 150 metres apart. The distribution of the
sites by biological GQA class is given in Table 2.5.

Table 2.5 Distribution of matched biological and chemical sites by biological GQA class

Biological GQA Class Total No.
a b C d e f of Sites
Number of Sites 1119 1102 746 320 204 65 3556
Percentage of Total | 31.5% | 31.0% | 21.0% | 9.0% 5.7% 1.8% 100%

2.6 Conditional Probabilities

Bayesian methods are based upon probabilities that can either be elicited from experts or
estimated from data, if available. When probabilities are subjectively derived from experts
they are normally referred to as beliefs. In this project all probabilities were derived from
data. Probabilities may be conditional probabilities or prior (i.e. unconditional) probabilities.
A conditional probability is the probability of an event occurring given that some condition is
known to exit. For example, Table 2.7 shows that the probability of finding Asellidae in
abundance category 2 (i.e. state 2) is 0.423 given that: a) it is spring; b) the site is a lowland
pool; and c) the ‘organic’ river quality is class ‘b’. This is just one element of the conditional
probability matrix for Asellidae. If Table 2.7 had included the probability tables for both
seasons (spring and autumn) and all five site types, it would have represented the complete
conditional probability matrix for Asellidae conditioned on season, site type and ‘organic’
river quality. In the absence of any information on these three variables, the relevant
probability would be the prior probability of Asellidae being in state 2, which is about 0.20.

The probabilities required for the Bayesian models were the conditional probabilities,
P(exlQ,T), of taxon j occurring in state k given the river quality class (Q) and the site type (7).
In our case, there were 76 BMWP taxa, five states of existence (i.e. absence = 0 and
abundance categories = 1 to 4), six river quality classes (a - f) and five site types (1 to 5).
Values of P(e;lQ,T) were derived using the combined spring and autumn biological data from
the 5008 exemplar sites’. The distribution of the sites with respect to site type and ‘organic’
river quality class is given in Table 2.6. The performance of the resulting Bayesian classifier
indicated that better results might be achieved by developing separate classifiers for spring and
autumn. Thus, conditional probabilities were also derived for spring and autumn data taken
separately (i.e. P(elQ,T,S), where S is the season).

> The database of exemplars used in this case was constructed in a slightly different way from that described in
Section 2.4. Instead of splitting ties in site types (such as 2, 3 and 4) by referring to a fourth classification, they
were split by taking the middle value (i.e. 3 in this case) provided that all three were direct neighbours. This
increased the size of the database slightly, from 4960 to 5008 sites.
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quality class. This would have undermined the performance of the naive Bayesian
classifiers and, to a lesser degree, the supervised-learning neural networks.

Thus it was thought better to separate the components into their ‘organic’ (based on ASPT)
and ‘toxic’ (based on NFAM) parts, and to use only the former, being the reliable part, as the
target river quality classifications in the database of exemplars.

It should be noted that the decision to split the GQA quality classification into its two
component parts was only relevant to the supervised-learning networks and the derivation of
conditional probabilities for the Bayesian classifiers. The unsupervised-learning networks did
not require target classifications and were therefore unaffected by this decision.

The first stage in the construction of the database of exemplars was to combine the taxonomic
strings of the spring and autumn samples. This was achieved by taking the highest of each
family’s two abundance levels (‘absence’ being treated as zero). The next stage was to derive
reliable site-type and ‘organic’ river quality classifications for each site.

Site type was classified into five ASPT bands (labelled 1-5) based upon three different
methods of predicting unpolluted ASPT, two based on neural networks (NNRSCR &
NNIFE614 - see Section 3.2 for details) and the other on RIVPACS III The final site-type
classification was allocated by ‘majority vote’ of the three methods. In the rare cases where
none of the three methods agreed, a fourth method (based upon neural network NNBMWP)
was introduced to break the tie. Section 3.2 gives a detailed explanation of the site types and
the reasons for classifying them. The geographic distributions of the 6038 sites by site type are
shown in Figures B1 to B5 in Appendix B.

In the case of ‘organic’ river quality, the final classification required complete agreement
between two methods based on EQI(ASPT) bandings. One used predicted ASPT derived by
RIVPACS III and the other used values derived by a neural network predictor of ASPT (called
NX5ASPT - see Section 3.3.5). If the classifications given by the two methods disagreed then
the site was rejected from the database of exemplars. Both methods were based upon original
BMWP scores, not revised scores, since appropriate data on the latter were not available at the
time.

The final number of sites remaining in the database of exemplars was 4960, of which site
types 1,2,3,4and 5 contributed 1048, 1001, 955, 996 and 960 respectively.

2.5 Database of Matched Biological and Chemical Sites

In order to develop the predictors of BOD, DO and ammonia it was necessary to link data on
these three chemical variables to the validated biological data. This required the matching of
chemical sampling sites to biological sampling sites. Since many ‘matched’ chemical and
biological sites had different Ordnance Survey grid references, software was developed to
calculate their distance apart. Analysis of these distances uncovered many grid reference
errors, and these were either corrected or the sites removed from the database of matched sites.
To ensure that the database only included valid matches, all pairs of sites that were greater
than 400 metres apart were excluded, with the exception of sites in North East (Northumbria)
where a threshold of 1 km was used. The reason for this exception was that the region had
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very few matched sites that were less than 400 metres apart. It was thought desirable to
increase the threshold in this case to avoid under-representation of the region in the database.

Unfortunately, many biological sites did not have a matching chemical site, and the final
database consisted of just 3556 matched sites, which included 1897 exact matches (53.3%)
and a further 1270 matches (35.7%) that were up to 150 metres apart. The distribution of the
sites by biological GQA class is given in Table 2.5.

Table 2.5 Distribution of matched biological and chemical sites by biological GQA class

Biological GQA Class Total No.
a b c d e f of Sites
Number of Sites 1119 1102 746 320 204 65 3556
Percentage of Total | 31.5% | 31.0% 21.0% | 9.0% 5.7% 1.8% 100%

2.6 Conditional Probabilities

Bayesian methods are based upon probabilities that can either be elicited from experts or
estimated from data, if available. When probabilities are subjectively derived from experts
they are normally referred to as beliefs. In this project all probabilities were derived from
data. Probabilities may be conditional probabilities or prior (i.e. unconditional) probabilities.
A conditional probability is the probability of an event occurring given that some condition is
known to exit. For example, Table 2.7 shows that the probability of finding Asellidae in
abundance category 2 (i.e. state 2) is 0.423 given that: a) it is spring; b) the site is a lowland
pool; and c) the ‘organic’ river quality is class ‘b’. This is just one element of the conditional
probability matrix for Asellidae. If T able 2.7 had included the probability tables for both
seasons (spring and autumn) and all five site types, it would have represented the complete
conditional probability matrix for Asellidae conditioned on season, site type and ‘organic’
river quality. In the absence of any information on these three variables, the relevant
probability would be the prior probability of Asellidae being in state 2, which is about 0.20.

The probabilities required for the Bayesian models were the conditional probabilities,
P(eylQ,T), of taxon j occurring in state k given the river quality class (Q) and the site type (D).
In our case, there were 76 BMWP taxa, five states of existence (i.e. absence = 0 and
abundance categories = 1 to 4), six river quality classes (a - f) and five site types (1 to 5).
Values of P(eylQ,T) were derived using the combined spring and autumn biological data from
the 5008 exemplar sites’. The distribution of the sites with respect to site type and ‘organic’
river quality class is given in Table 2.6. The performance of the resulting Bayesian classifier
indicated that better results might be achieved by developing separate classifiers for spring and
autumn. Thus, conditional probabilities were also derived for spring and autumn data taken
separately (i.e. P(e;lQ,T.S), where S is the season).

5 The database of exemplars used in this case was constructed in a slightly different way from that described in
Section 2.4. Instead of splitting ties in site types (such as 2, 3 and 4) by referring to a fourth classification, they
were split by taking the middle value (i.e. 3 in this case) provided that all three were direct neighbours. This
increased the size of the database slightly, from 4960 to 5008 sites.
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Most taxa showed noticeable differences in their distributions of P(eylQ,T,S) from site type 1
to site type 5, but few, mainly stoneflies, showed marked differences between spring and
autumn.

Table 2.7 illustrates a typical case of differences in conditional probability distributions
between site types 1 (upland riffle) and site type 5 (lowland pool). The taxon in question,
Asellidae, is essentially a pollution-tolerant pool species that invades organically polluted
riffles. Consequently, it is very common in pools across all river qualities except the most
severely polluted, but only common in the poorer quality riffles, as the table shows.

Table 2.8 shows an extreme difference between spring and autumn probability distributions.
The taxon in question, Chloroperlidae, is far more abundant in spring than autumn.

Table 2.6 Distribution of data used to derive the conditional probabilities.

Site ‘Organic’ river quality class

Type a b c d e f Total
1 441 418 95 50 36 8 1048
2 359 287 176 108 107 11 1048
3 296 187 209 165 94 6 957
4 339 234 261 135 37 7 1013
5 250 305 241 105 35 6 942

Total 1685 1431 982 563 309 38 5008

Table 2.7 Conditional probability distributions, P(ex|Q,T,S), for Asellidae in site types 1
and 5 during spring.

Spring - Site Type 1 (Upland riffle)

Spring - Site Type 5 (Lowland pool)

‘Organic’ River Quality Class ‘Organic’ River Quality Class
State | a b c d e f a b C d e f
0 |0.966|0.888(0.621|0.420|0.333|0.625| |0.188(0.148{0.174|0.257|0.229|0.667
1 10.032(0.096|0.295(0.420(0.250| O 0.436(0.403(0.469(0.371{0.457(0.333
2 10.002|0.014{0.084{0.160]0.389|0.375]| |0.356|0.423|0.320|0.324|0.229| O
3 0 10.002| O 0 |0.028f O 0.020]0.0260.037|0.0480.057| O
4 0 0 0 0 0 0 0 0 0 0 [0.029] O

Table 2.8 Conditional probability distributions, P(ey!Q,T,S), for Chloroperlidae in site
type 1 during spring and autumn.

Spring - Site Type 1 (Upland riffle)

Autumn - Site Type 1 (Upland riffle)

‘Organic’ River Quality Class ‘Organic’ River Quality Class
State a b c d e f a b c d e f
0 ]0.141|0.287|0.70510.920| 1 1 0.726|0.837|0.979| 1 1 1
1 0.5080.462{0.26310.080| O 0 0.245|0.151|0.021| O 0 0
2 10.347{0.249|0.032| O 0 0 0.029|0.012| O 0 0 0
3 10.005|0.002| O 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
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3. SUPERVISED-LEARNING NEURAL NETWORKS

3.1 Introduction

A brief introduction to neural networks, including supervised and unsupervised learning, was
given in Section 1.4. The most commonly used supervised-learning neural network is the
standard back-propagation network, an example of which is shown in Figure 3.1. Typically, it
has a layer of input nodes, a layer of output nodes (just one in this case) and normally one or
two hidden layers of nodes. The latter are hidden in the sense that they do not interface with
the user, unlike the input and output layers. The nodes in the hidden and output layers are
different to those in the input layer in that they process data. For this reason they are referred
to as processing elements. Networks are normally fully connected, in that each node in a given
layer is connected to every node in its adjacent layers. The input vector (xy,..x;..x,) is
presented to the network via the n input nodes, shown here as boxes to distinguish them from
processing elements, which are shown as circles.

Output Y
(Target T)

Hidden Layer (k)

Input Vector X  x1 X2 X3 X; n

Figure 3.1 A typical standard back-propagation neural network

In the brain analogy, a processing element is analogous to the cell body of a neuron. It
receives signals from many input links, which are analogous to the neuron’s dendrites, and
transmits them in modified form to other processing elements via output links, analogous to
the neuron’s axon terminals. These output signals are magnified or suppressed by weights (w)
before arriving at the next processing element. The weights are analogous to the conductivities
across the synaptic gaps, where nerve impulses transfer from the axon terminals of one neuron
to the dendrites of another. It is these conductivities that hold the key to learning. When we
learn, the conductivities at some of the many billions of synapses in our brain are modified,
some suppressing the transfer of nerve impulses, others enhancing them. The back-
propagation training algorithm attempts to model this learning process through the iterative
adjustment of the weights on the links between layers. The modification of the nerve impulse
within the cell body of the neuron is modelled by a mathematical function, called a transfer or
activation function, that is associated with each processing element.
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Prior to commencing the training process, the raw data are processed to form the input vectors
(xy,.-%;..x,). This generally involves transforming each individual variable to a scale ranging
from -1 to +1, but more sophisticated transforms are sometimes used in an attempt to enhance
the value of the input vectors. In addition, all weights are randomly initialised to small values
about a mean of zero. The training process proceeds as follows.

1. A typical case is presented to the network as an input vector (xy,..X;,..X,)

2. Inputs x; are multiplied by their weights w; to produce the inputs to the processing
elements in hidden layer (j).

3. The processing elements in layer j modify the weighted sum of their inputs to produce
outputs (y,), using the transfer function:

yj=f(X;) “)
where:
n
X] = ZWijx,- .
i=1

A commonly used transfer function is the hyperbolic tangent,
yj =tanh(X ),
but other S-shaped functions are sometimes used.

4. The outputs y; are multiplied by weights wj to produce the inputs to the processing
elements in hidden layer (k).

5. The processing elements in layer k modify the weighted sum of their inputs to produce
outputs (y;), using the transfer function:

i = f(Xg) (5)
where:
m
Xk = Zijyj .
Jj=1

6. The outputs y; are multiplied by weights wyo to produce the inputs to the processing
elements in the output layer (i.e. in this case the single element, “O”).

7. The output Y is then derived by:

Y=f(Xo) (6)
where:
p
Xo= D WkoVk -
k=1

8. Output Y is compared with the desired (or target) output T to determine the error E in the
network’s prediction.

9. The back-propagation algorithm then modifies all of the weights in the network, such that
if the same input data are presented again the network’s error will be less. Note that only a
fraction of the error, as defined by the ‘learning rate’, is eliminated at each stage. A full
description of the back-propagation process is beyond the scope of this report, but the
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mathematics of this and other training algorithms can be found in several texts (Beale and
Jackson, 1990; Haykin, 1994; Bishop, 1995).

10. Steps 1 to 9 are repeated many times using different examples, and if necessary, when all
examples have been used, the same set of examples is used all over again. As time
progresses the average error decreases, rapidly at first but then more slowly, and the
algorithm progressively reduces the learning rate.

If the training process is allowed to continue unchecked it reaches a point where the network
begins to model the noise in the data as well as its underlying features, and thereby begins to
‘memorise’ individual cases. This undermines the network’s ability to generalise its
‘knowledge’ to new (i.e. previously unseen) cases. To maximise the network’s performance
on such cases its training has to be stopped at a stage before it starts to memorise (i.e. over-fit)
the data. This is best achieved by testing the network’s performance on independent data at
intervals during training. Training is stopped at the point when the errors on the independent
test data are minimised. Once trained, the network is ready to be put to work, making
predictions for totally new cases.

Most other supervised-learning networks are similar to the standard back-propagation network
described above. Many only differ in the formulation of their training algorithm (i.e. in the
way that they modify the weights to reduce prediction errors), but others differ more
fundamentally, in terms of their structure and function.

3.2 Site Classifiers

The environmental characteristics of a sampling site have a significant influence on its
community composition, and must be accounted for in any system that attempts to classify
river quality from biological data to ensure an accurate classification. It was thought desirable
to classify sites into a relatively small number of types and to relate these to the principal site
factors governing community composition. Consideration was given to:

a) grouping the 35 RIVPACS III site types into their parent groups; and

b) classifying the sites from their environmental characteristics using a Self-Organising

Map (SOM).

Unfortunately, both of these methods resulted in site groupings that did not discriminate well
between the predicted ASPTs of the sites. Such discrimination was considered to be important * -
because ASPT represents a measure of community composition that is closely related to river
quality.

Finally, it was decided to base the site-type classifications on predicted ASPTs divided into
bands. The basic principle used was to divide the predicted two-season ASPTs into five
ASPT bands, labelled 1 to 5, band 1 being the highest scoring and 5 the lowest. The
thresholds between bands were chosen such that each band contained an approximately equal
number of sites. This was done to facilitate uniformity of precision in the classification
models. To ensure that the final site-type classifications were as reliable as possible four
different methods were used to predict the two-season ASPTs, and hence to classify the site
types (as detailed in Section 2.4).

1) A neural network predictor NNBMWP) trained and tested on the observed ASPTs of the
Biological GQA Class ‘a’ sites in the 1995 database of validated sites;
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2) A neural network predictor (NNRSCR) trained and tested on the observed revised ASPTs
(i.e. calculated using the site-abundance related scores derived by Walley & Hawkes,
1997) of Biological GQA Class ‘a’ sites in the 1995 database of validated sites;

3) RIVPACS III two-season predictions (NB. RIVPACS III was derived using the IFE 614
dataset); and

4) A neural net predictor (NNIFE614) trained and tested on the observed ASPTs of sites in
the IFE 614 dataset; '

Thus two of the methods were developed using data from Biological GQA Class ‘a
(presumably ‘clean’) sites that were sampled in the 1995 Survey, and the other two were based
on the IFE614 dataset. Three of the methods were based on neural networks and one on
multivariate statistical methods (i.e. RIVPACS). The reason for using data based on
Biological GQA Class ‘a’ sites was to overcome the site-type bias that existed in the IFE614
database, as illustrated in Table 3.1. The reason for using a method based upon the revised
ASPT scores was to guard against the system being too sensitive to the revision of BMWP
scores.

[

Table 3.1. Number of IFE614 sites falling within a specific alkalinity/substrate class
expressed as a percentage of the corresponding number of 1995 National
Survey sites

Nature of Substratum (Percentage Sand + Silt)

Alkalinity 0to<10 | 10to<30 | 30to <50 | 50to <70 | 70to <90 | 90 to 100
0to <15 25.6% 23.6% 0.0% 0.0% 0.0% N/A
15 to <30 22.2% 5.2% 12.6% 0.0% 0.0% N/A
30 to <50 22.6% 8.2% 6.8% 0.0% 0.0% 0.0%
50 to <75 20.2% 9.0% 4.4% 3.6% 0.0% 0.0%

75 to <100 23.8% 5.6% 6.2% 6.6% 6.0% 2.8%

100 to <150 18.4% 11.2% 5.0% 4.8% 7.0% 6.6%

150 to <200 11.8% 8.2% 2.2% 6.6% 1.8% 3.8%

200 to <250 15.0% 8.0% 8.2% 7.6% 7.6% 6.6%
250 to <300 0.0% 6.4% 4.2% 3.4% 6.8% 2.8%
300 + 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Preliminary tests carried out on neural network NNBMWP showed that three environmental
factors dominated the prediction of ASPT, namely alkalinity, altitude and the percentage of
silt in the substrate. However, these tests also showed that virtually the same level of
performance (i.e. correlation coefficient = 0.8094 compared to 0.8150) was achieved using the
combined percentage of sand and silt instead of just silt alone. It was felt that this negligible
loss of performance was offset by certain advantages of combining the sand and silt
percentages. Firstly, it meant that one of the three environmental inputs was identical to that
used by Walley and Hawkes (1996, 1997) as the basis of their site-type classifications.
Secondly, it reduced the likely error in the measurement of this input, since the recorded
percentage of sand+silt in the substratum is subject to slightly less error than silt alone. It
should be noted that the predicted ASPTs are only used as a means of ranking the sites in
terms of their ‘ASPT potential’, and that their absolute values are irrelevant to the process of
site classification.
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Each of the four methods was used to classify all 6038 validated sites, irrespective of their
river quality class. The number of sites allocated to each site type by the four methods, acting
separately and in combination (i.e. based upon unanimity of classification), are given in Table
3.2, together with their combined (or joint) classification rates expressed as a percentage.

Table 3.2 Results of site classifications based on various combinations of four different
models. The results from combinations of two or more methods are listed in
order of their joint classification rate. Also given is the average mutual
information between site class and the biological data.

Method No. sites allocated to class : Percentage of max. possible allocation
1|2]3|4)] SiteTypel | Site Type2 | Site Type3 | Site Type 4 | Site Type 5
o 1208 1209 1210 1209 1210

o 1209 1209 1209 1209 1210

o 1231 1199 1217 1207 1192

e | 1208 1211 1210 1208 1209
o | o 1165 954 | 1113 92.1 | 1030 85.2 | 1026 &84.9 | 1155 954
o o | 1127 933 | 1042 86.2 | 932 77.0| 884 731 | 1071 &8.6
o o | 1109 91.8| 995 823 | 901 745 | 891 737 | 1084 89.7
o | o o | 1084 90.1 | 986 81.6 | 829 686 | 793 656 | 1047 86.6
o o 1054 87.3| 807 673 | 617 51.0| 610 50.5 | 818 68.6
o | o | 1052 87.1 816 68.1 598 494 | 603 50.0 | 808 67.8
o | o 1037 858 | 795 66.3| 578 478 | 579 480 | 796 66.8
oo | o 1022 846 | 755 63.0| 534 442 | 513 425 | 781 655
o o | o | 1012 838 | 724 604 | 498 412 | 479 39.7 | 756 634
o | o | o 987 81.7 | 702 585 | 471 39.0| 468 388 | 748 62.8
o | o | o] e 981 81.2 | 696 580 | 452 374 | 429 355 | 736 61.7

Note: Method 1 = NNBMWP, Method 2 = NNRSCR, Method 3 = RIVPACS III
Method 4 = NNIFE614.

The purpose in combining the classifications was to determine what proportion of sites were
consistently classified into the same site type by different methods of classification. It is clear
from the results given in Table 3.2 that greater consistency existed between the three neural
network methods than between RIVPACS and any one neural network.

The highest level of consistency between any two methods was achieved by the NNBMWP
and NNRSCR models (average joint classification rate across all five site types = 90.6%),
which was encouraging since it demonstrated that the classification system was fairly
insensitive to the revision of BMWP family scores. The closest matching model to that based
on RIVPACS predictions was NNBMWP, but their average joint classification rate across all
five site types was only 64.9%.

The variation in joint classification rate (%) across the site types is worthy of comment. All
combinations tended to agree on the classification of site type 1, the lowest joint classification
rate being 81.2% when all four methods were combined. Site types 2 and 5 were also
classified with a fair degree of consistency, giving joint classification rates across all four
methods of 58.0% and 61.7% respectively. Site type 4 had the lowest rate (35.5%), followed
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closely by site type 3 (37.4%). However, these low values were almost entirely due to a
mismatch between the RIVPACS method and the three neural networks. The corresponding
values based on the three networks alone were 68.6% and 65.6% respectively.

It was originally intended to construct the database of exemplars using only sites that were
classified to the same site type by all four methods, or at least three of them, but this would
have differentially reduced sample sizes, leaving site types 3 and 4 with very few samples.
Thus it was decided to base the final site types on the majority vote of just three methods,
NNRSCR, RIVPACS II and NNIFE614, leaving NNBMWP to provide the casting vote in the
event of a tie. Figures B1 to B5 in Appendix B give the spatial distributions of site types 1 to 5
over England and Wales. These show that type 1 sites (i.e. having low percentage sand+silt,
low alkalinity and a tendency to the higher altitudes), occur predominantly in the upland
regions of the Lake District, Pennines, Wales, Devon and Cornwall, whereas type 5 sites (i.e.
having high percentage sand+silt, high alkalinity and low altitude), occur predominantly in the
flat, lowland, soft rock areas of England, such as East Anglia, Lincolnshire, Somerset,
Cheshire, Oxfordshire and parts of Yorkshire. Table 3.3 gives the regional distributions of

sites by their site types.

Table 3.3 Regional distributions of sites by site type.

Percentage of Sites in Site Type:

Region 1 2 3 4 5

Anglian 00% | 05% | 72% | 25.4% | 66.9%
North East (Northumbria) 276% | 257% | 287% | 9.9% | 8.1%
North West 297% | 31.9% | 159% | 9.1% | 13.3%
Midlands 6.6% | 172% | 34.9% | 26.8% | 14.4%
Southern 26% | 247% | 17.6% | 26.3% | 28.7%
South West (Devon & Cornwall) 589% | 308% | 7.9% | 13% | 1.0%
Thames 02% | 35% | 23.6% | 45.0% | 27.7%
Welsh 460% | 293% | 97% | 92% | 5.8%
South West (North & South Wessex) | 2.0% | 58% | 289% | 40.8% | 22.5%
N_East (Dales & Riding) 237% | 282% | 177% | 12.2% | 18.2%

| National Average [ 203% [ 201% | 192% | 203% | 202% |

Clearly, site types 1 and 5 are best visualised as upland riffles and lowland pools respectively.
The other three types represent a progression between these two extremes. The precise
definition of the five site types involves a continuous relationship between three variables (i.e.
alkalinity, altitude and the percentage of sand+silt in the substrate), thus they cannot be
defined by simple rules. However, they can be represented approximately in tabular form.
Figures B6 to B9 show the distribution of site types 1 - 5 with respect to alkalinity, percentage
sand+silt and altitudinal range, and provide a convenient means of visualising the different

types.
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3.3 Predictors of ASPT and NFAM

These networks were not developed as part of the mainstream Al approach to biomonitoring,
but as an extension to the work on site classifiers. They were designed to provide a like-for-
like comparison between RIVPACS III (Wright et al., 1995) and neural network predictors of
‘unpolluted’ average score per taxon (ASPT) and number of families (NFAM).

3.3.1 Thedata

The networks were developed using the same data set (IFE614) that was used to develop
RIVPACS III. That is, 13 environmental variables plus observed ASPTs and NFAMs from
each of 614 'unpolluted' river sites covering the whole of Great Britain. The environmental
variables were as follows:

a) location (National Grid Reference or NGR);

b) altitude (m - above Ordnance datum);

¢) distance of site (km) downstream from its source;

d) discharge category (on a 1 to 10 log-type scale);

e) slope of the river bed (m/km) based on the distance between 50-metre contour lines;

f) average width (m) and average depth (m) of the river at the time of sampling;

g) nature of the river bed (or substrate) expressed as four average percentages of the plan
area covered by boulders, pebbles, sand and silt; and

h) average alkalinity (mg/l of CaCO3).

All of these contributed to the initial input vector to the networks, although some were
represented in a different form. The National Grid Reference, for example, was converted to
global co-ordinates X and Y, based upon an origin at grid reference SV 000 000. In addition,
the logarithmic values of slope and distance from source were used in place of their straight
values, because initial tests showed that these transforms improved performance. Thus the 13
environmental variables used in this exercise were those listed in Table 3.4 below.

Table 3.4 List of the 13 variables in the full environmental input vector

Variable | Description Variabl | Description

X Global easting of NGR DISCH | Discharge category

Y Global northing of NGR BLDS | Boulders (% of substrate)

ALT Altitude (m) PBLS Pebbles (% of substrate)

LDIST | Log, distance from source (km) | SAND | Sand (% of substrate)
LSLOPE | Log of slope (m/km) SILT Silt (% of substrate)
WIDTH | Average width of river (m) ALK Alkalinity (mg/]1 of CaCOs3)
DEPTH | Average depth of river (cm)

The data used as target outputs were the observed ASPT and NFAM based upon two-season
(i.e. spring and autumn) and three-season (i.e. spring, autumn and winter) combined samples.
The final models, however, were based on two-season data only, because the Agency’s
biological monitoring programme was based upon two-season sampling.
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3.3.2 Training and testing

Relatively small data sets, like IFE614, present a dilemma. In the interests of precision it is
tempting to use all of the data to train the network, but this leaves no means of testing its
performance on independent data. As mentioned earlier, the danger in doing this is that the
network may over-fit the data and thereby give a false impression of high performance. This
problem was overcome in this study by randomly partitioning the data into two equal sub-sets
of 307 sites, labelled F1 and F2. These were used interchangeably as training and testing sets,
thus producing two networks - one trained on F1 and tested on F2 and the other trained on F2
and tested on F1 - the final prediction being based on the average of the two. This process,
known as two-fold cross validation, enabled the final model (i.e. the average of two
independent predictions) to be based upon all 614 records, while at the same time permitting
independent testing on all 614 records. Over-fitting was avoided by terminating training at the
point where performance on the independent test sets began to deteriorate.

3.3.3 Choice of network type

Before embarking on the development of the final network, preliminary tests were carried out
to determine which type of network was best suited to the problem at hand. Various types of
network were trained and tested using all 13 environmental variables in the input vector.
These included the standard back-propagation, modular, directed random search, genetic
reinforcement learning, radial basis function, general regression and Bayesian neural
networks. The results of performance tests on these networks are given in Table 3.5.

Table 3.5 Results of performance tests on various neural networks.

Correlation coefficients between target
and predicted ASPTs

Type of Network ' T F1/Tst F2 | Trn F2/Tst F1 Mean
Back-propagation Network 0.851 0.809 0.830
Modular Network with 3 experts 0.854 0.810 0.832
Directed Random Search 0.840 0.763 0.802
Genetic Reinforcement Learning 0.640 0.602 0.621
Radial Basis Function 0.816 0.815 0.816
General Regression Neural Network 0.780 0.760 0.770
Bayesian Neural Network 0.806 0.785 0.795

The best performing networks were the standard back-propagation network and the modular
network. The number of experts (i.e. modules) used in the modular networks were found to
have little effect on their performance. The one that used three modules produced the best
overall correlation (i.e. 0.832) between target and predicted ASPTs, but this was only
marginally better than that achieved by the standard back-propagation network (i.e. 0.830). It
was decided to use the standard back-propagation network for the development of the ASPT
and NFAM predictors, because this network has far fewer parameters and is thus faster to train
and less prone to over-fitting.

R&D Technical Report ES2 32



3.3.4 Identification of key variables

The relevance of each environmental variable to the prediction of ASPT and NFAM was
determined using leave-one-out impact analysis. Thus networks were trained using all 13
input variables and then tested on the independent test set, using the correlation coefficient
between predicted and desired outputs as the measure of performance. The effect of disabling
each input node in turn was then determined, in terms of the resulting percentage reduction in
the correlation coefficient. This provided a measure of the importance of each input variable
to the network’s predictions. The results of the impact analyses on the initial 13-input
networks are given in Table 3.6.

These results showed that three variables, ALT, ALK and SILT, dominated the prediction of
ASPT, with impacts of 31.31%, 22.65% and 11.5% respectively. In the case of NFAM, two
variables dominated the predictions, Y and LDIST with impacts of 33.28% and 29.71%
respectively, but several other inputs had impacts greater than 5% (i.e. LSLOPE, ALK, ALT,
DISCH and X).

Table 3.6 Results of impact analyses on the 13-input neural network predictors of
ASPT and NFAM. The variables are listed in order of their percentage
impact on performance of the networks. F1/F2 means trained using data
file F1 and tested using data file F2.

Input ASPT Predictor (% impacts) | Input NFAM Predictor (% impacts)
Variable F1/F2 | F2/F1 Mean | Variable F1/F2 F2/F1 Mean
ALT 20.71 41.90 31.31 |Y 36.79 29.78 33.28
ALK 20.61 24.39 22.65 |LDIST 44.14 15.28 29.71
SILT 13.18 9.81 11.50 |LSLOPE 8.30 6.40 7.35
DISCH 3.82 3.91 387 |ALK 342 10.03 6.73
LSLOPE 1.73 4.43 3.08 |ALT 3.96 9.45 6.70
WIDTH -0.31 4.70 220 |[DISCH 10.43 1.20 5.81
LDIST 0.87 2.31 1.59 |X 7.77 3.16 5.47
DEPTH 1.20 1.39 1.30 |WIDTH 7.42 -1.21 3.10
X 0.63 1.17 0.90 |SAND 2.81 243 2.62
Y 0.75 0.46 0.61 |BLDS 3.24 1.74 2.49
PBLS 0.40 0.56 0.48 |DEPTH -0.64 544 2.40
SAND 0.46 0.49 048 |PBLS -0.33 1.57 0.62
BLDS -0.16 -0.47 -0.32 |SILT -1.74 2.97 0.62

3.3.5 Development of a two-season predictor of ASPT

Although the results of the impact tests on the 13-input predictor of ASPT enabled the input
variables to be ranked in order of importance, it would be wrong to assume that, for example,
the top eight variables from this list would produce the best eight-input predictor. This is
because the removal of just one variable might change the order of importance of the
remaining 12 variables. The best possible eight-input predictor, for example, is produced by
progressive removal of the weakest variables until just eight variables remain. At each stage,
a new network is trained and subjected to impact analysis to give a new ranking of its input
variables. In this study, impact analysis was used to progressively reduce the number of input
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variables from 13 to one. Each network was trained and tested using cross validation between
Fl1 and F2. The order in which the variables were deleted was based on their average
percentage impact on the two networks F1/F2 and F2/F1. The change in performance level
resulting from the reduction in input variables was monitored by means of the correlation
coefficient between the predicted and target ASPTs. The results of these analyses are given in
Table 3.7.

These show that the average correlation coefficient remained virtually unchanged as the
number of environmental inputs was reduced from thirteen to five. Further reduction to three
inputs produced a slight decrease, but after this the decline was rapid. Since the aim of the
exercise was to reduce the number of input variables to the minimum possible without
impacting significantly on overall performance, it was decided to adopt the five-input model,
called N5XASPT (NB: N for neural, X for cross validated), as the final two-season predictor
of ASPT. Both of the networks making up this model (i.e. F1/F2 and F2/F1) used ALK, ALT,
SILT, LSLOPE and DISCH as their input variables. The average impacts of these variables on
the final models were 30.64%, 26.92%, 19.82%, 3.83% and 1.62% respectively.

Table 3.7 Development of two-season predictor of ASPT - Results of progressive
removal of the weakest input variables.

Number of Correlation Coefficients between Predicted and Target ASPT
Input Variables Network F1/F2 Network F2/F1 Average
13 0.8503 0.8007 0.8255
12 0.8522 0.8070 0.8296
11 0.8510 0.7986 0.8248
10 0.8549 0.8084 0.8317
9 0.8591 0.8085 0.8338
8 0.8542 0.7979 0.8261
7 0.8543 0.8018 0.8281
6 0.8576 0.8093 0.8335
5 0.8512 0.8072 0.8292
4 0.8357 0.7957 0.8157
3 0.8368 0.7932 0.8150
2 0.8110 0.7553 0.7832
1 0.4335 0.4334 0.4335

The reason for the generally lower correlations produced by network F1/F2 (i.e. trained on F1
and tested on F2) was explored, and it was concluded that F1 contained more outliers than F2.
The data were subsequently re-partitioned, resulting in greater similarity between the two sets.

3.3.6 Development of a two-season predictor of NFAM

The development of the NFAM predictor proceeded in the same way as that for ASPT.
However, in this case the correlation coefficient started to decline at a much earlier stage in
the progressive elimination of input variables. It appeared that the best model would require
about seven or eight environmental inputs. To clarify the situation the same tests were carried
out using the three-season data. The results are summarised in Table 3.8.
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Table 3.8 Development of two-season predictor of NFAM - Results of progressive
removal of the weakest input variables.

Number of Average Correlation Coefficient of F1/F2 and F2/F1 Networks
Input Variables 2-season model 3-season model | Overall avg. 2/3-season

13 0.5987 0.6391 0.6189
11 0.6007 0.6417 0.6212

9 0.6050 0.6372 0.6211

8 0.6000 0.6486 0.6243

7 0.5973 0.6609 0.6291

6 0.5706 0.6457 0.6081

5 0.5699 0.6355 0.6027

3 0.5702 0.6094 0.5898

1 0.4571 0.4530 0.4551

The results show that seven inputs produced the best overall correlation coefficient. In
addition, the seven variables were found to be the same in both the two- and three-season
models. Thus the seven-input model, N7XNFAM, was adopted as the final two-season
predictor of NFAM. The seven input variables were Y, ALT, SAND, LDIST, LSLOPE,
DEPTH and X in order of their average impact percentages, which were 53.8%, 16.2%,
15.7%, 15.5%, 9.1%, 7.1% and 4.9% respectively.

3.3.7 Comparison with RIVPACS III

The neural network predictors, NSXASPT and N7XNFAM, were developed using two-fold
cross validation and just five and seven environmental variables respectively, whereas
RIVPACS III was developed using all 614 sites and all 13 environmental variables. To
provide a ‘like-for-like’ comparison between the two methods, it was necessary to train and
test additional neural networks using all 614 sites. This was done using five and seven inputs
as before, and also using all 13 inputs. These networks were named NSDASPT, N7DNFAM,
N13DASPT and N13DNFAM, where the ‘D’ refers to the fact that, like RIVPACS 1II, they
were tested on dependent data (i.e. of necessity). It will be recalled that the 'X' used in the
names of the earlier networks referred to the fact that they were cross-validated. The
performance of the neural network predictors, expressed in terms of their linear regression
statistics, are given in Table 3.9 together with equivalent figures for RIVPACS IIL.

Table 3.9 Performance of various predictors of ASPT and NFAM expressed in terms of
the correlation coefficient (r), slope coefficient (a) and intercept (c) of the
linear regression lines relating predicted values to observed values.

ASPT Predictors NFAM Predictors
Model r a C Model r a c
N5XASPT 0.8261 | 0.9861 | 0.0822 | N7XNFAM 0.5860 | 0.8669 | 3.6168
N5SDASPT 0.8358 | 1.0007 | -0.0040 | N7DNFAM 0.6704 | 1.0070 | -0.1752
N13DASPT 0.8468 | 1.0016 | -0.0086 |[N13DNFAM | 0.6665 | 1.0070 | -0.2149
RIVPACS III | 0.8444 | 1.0274 | -0.1624 |RIVPACS I | 0.6703 | 1.0808 | -2.3578

The ‘like-for-like’ comparison between the ASPT predictor N1I3DASPT and RIVPACS III
showed that the neural network slightly out-performed RIVPACS in terms of its correlation
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coefficient, but more noticeably in terms of its slope coefficient (ideally 1.0000) and intercept
(ideally 0.0000). The ‘like-for-like’ comparison between the NFAM predictor N13DNFAM
and RIVPACS III showed that RIVPACS slightly out-performed the neural network in terms
of its correlation coefficient, but that the network noticeably out-performed RIVPACS III in
terms of slope coefficient and intercept. Indeed, a slope of 1.08 and intercept of -2.36 implies
that RIVPACS 1III is biased in its predictions of high and low values of NFAM. The overall
performance of NI3DNFAM was therefore judged to be slightly better than RIVPACS TIL.

It is also worth noting that NSDASPT matched RIVPACS Il in terms of overall performance
and that N7DNFAM was the best overall predictor of NFAM. This clearly demonstrates that
spatial variations in ‘unpolluted’ ASPT and NFAM can be predicted using a relatively small
number of environmental variables. However, only ALT and LSLOPE were common to the
two models, leaving just three of the 13 environmental variables as totally redundant (i.e.
PBLS, BLDS and WIDTH). Clearly, at least one of the four substrate variables was bound to
be redundant.

The overall performance of the cross validated predictor NSXASPT appears to be marginally
worse than that of RIVPACS III, but one has to remember that in this case the test results were
based on independent data, not dependent data as was the case for RIVPACS III. Thus, it
seems likely that this network would prove to be a better predictor of ASPT for new data than
would RIVPACS. Indeed the only true measure of the worth of a model is its performance on
independent data.

The performance of the cross-validated predictor N7XNFAM appeared to be much worse than
that of all the dependent models, including RIVPACS IIl. In order to gain some measure of
the difference to be expected between performances on dependent and independent data, a
series of tests were carried out in which identical networks were trained and tested
dependently and independently (i.e. using combinations F1/F1, F2/F2, F1/F2 and F2/F1). The
results showed that the average difference between the correlation coefficients produced by
the ASPT predictor when tested on dependent and independent data was only 0.0287,
indicating that its performance on previously unseen data was only marginally below that
achieved on its training set. In the case of the NFAM predictor the average difference was
0.1671, representing a 23% reduction in correlation coefficient between tests on dependent
data and previously unseen (independent) data. The implications of these findings are:

a) that N5XASPT is the best overall predictor of ASPT;

b) that N7XNFAM is probably the best overall predictor of NFAM;

c) that NFAM predictions are far less reliable than ASPT predictions; and

d) that the EQIINFAM) component of biological GQA classifications are far less reliable
than previously thought.

The predictions made by the neural networks were achieved directly from the input variables
in one non-linear mathematical mapping, whereas RIVPACS (Moss et al., 1987) used three
consecutive mappings (i.e. environmental data to site type, site type to community structure,
community structure to predicted ASPT and NFAM). It has been suggested that RIVPACS
adds ecological knowledge to the prediction process, because its three mappings are based on
ecological concepts, but this is not so. The three steps simply provide convenient staging posts
for three linear (or relatively simple non-linear) mathematical mappings. RIVPACS, like the
neural networks, is purely a mathematical model calibrated from data. Even the use of
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temperature and temperature range within RIVPACS is a mathematical function of the input
variables (e.g. X, Y and ALT). Thus, the neural networks would have automatically
accommodated, via their complex non-linear mappings, any temperature effects that related to
X, Y and ALT. If necessary, the neural networks could have been trained to perform the same
three mappings as RIVPACS, thus providing predictions of biological site-type and
community structure. However, the aim of the exercise was solely to predict ASPT and
NFAM for the purpose of river quality classification, so there was no point in introducing
unnecessary steps. The single non-linear mapping makes the classification process simpler
without any loss of validity.

3.3.8 Sources of error and bias

In order to check the predicted values of ASPT and NFAM for spatial bias, the EQIs of the
English and Welsh sites in the IFE614 database were plotted on maps. Since the database
contains only ‘unpolluted’ sites their EQIs should equal unity, but in reality they are scattered
around unity. Figures C1 and C2 in Appendix C show the distributions over England and
Wales of the deviations from unity of EQI(ASPT) and EQI(NFAM) as derived from the neural
network predictions of ASPT and NFAM. Figures C3 and C4 show the corresponding
distributions based on RIVPACS predictions. None of these maps reveals any evidence of
overall spatial bias in the deviations of the EQIs. However, they do indicate spatial bias on a
river basin scale, because EQIs greater or less than unity tend to persist along some rivers (e.g.
the Usk and the Stour in Kent on Figure C3). This implies that some relevant environmental
factors are missing from the present profile of environmental characteristics. The existing
variables predominantly represent properties of the site, only alkalinity can be considered to
incorporate characteristics of the catchment. Thus, there appears to be a deficiency in
catchment characteristics, such as geology, soil type and mean altitude of the catchment. The
importance of geology in determining the community composition was demonstrated by Ruse
(1996). The amount of woody litter at the site could also be a useful addition to the site
variables. On the other hand, the suitability of alkalinity as an environmental input variable
has to be questioned, bearing in mind its relationship to some forms of pollution. Since it was
found to be the most important variable governing the prediction of ASPT, it would clearly be
advantageous to devise a means of predicting natural alkalinity from other environmental
variable that are independent of pollution. Perhaps the inclusion of catchment geology would
help in this regard.

Despite the fact that RIVPACS and the neural networks gave almost identical levels of
performance, they produced some very different predictions for individual sites, as can be seen
from Figures 3.2a and 3.2b. The correlation coefficients between the two systems were 0.9562
and 0.8525 for ASPT and NFAM predictions respectively, indicating better agreement
between ASPT predictions than NFAM predictions, as one might expect given that both
RIVPACS and the networks performed better with respect to ASPT than NFAM.

Various analyses were carried out to determine the causes of the differences between:

a) the values predicted by the two systems; and

b) the observed and predicted values (i.e. the so-called prediction ‘errors’).
The results of these analyses are outlined below, but discussed in greater detail by Walley and
Fontama (1998)
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The likelihood of error and bias were found to be greatest at sites where one or more
environmental variables were exceptionally high or low. This was especially true for sites
having: high or very low altitude; and/or high or very low alkalinity; and/or a high percentage
of sand and silt. Note that all of these variables were found to be key environmental factors,
so if they were not truly represented in the data at the extremes of their ranges it could result in
noticeable distortions in the models’ predictions. It was surprising to find that high altitude
was associated with poor predictions, since high altitude sites were over-represented in the
data. However, detailed investigation revealed that out of five very high altitude sites (i.e.
over 450 metres), three had unusually high alkalinities. It is possible that these three sites
distorted the models and hence the predictions for these and other high altitude sites.
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Figure 3.2 Graphs showing: (a) RIVPACS predicted ASPT against NSDASPT
predicted ASPT; and (b) RIVPACS predicted NFAM against N7DNFAM
predicted NFAM.

There were several cases where two sites, having almost identical sets of environmental
variables, had observed values of ASPT or NFAM that differed very substantially, but very
similar predicted values. For example, two of the sites had observed NFAMs of 18 and 44,
whereas the values predicted by RIVPACS were 29.1 and 30.2 respectively and those
predicted by the neural networks were 30.8 and 31.5 respectively. This case clearly supports
the view that there are relevant environmental factors missing from the current set of
environmental input variables. Although observed values of NFAM are known to be
particularly sensitive to sampling effort, this could not account for the differences in this case.
However, it is reasonable to assume that variations in sampling effort during the collection of
the IFE614 data will have contributed to the NFAM prediction ‘errors’, and hence the poor
performance of the NFAM models.

When discussing prediction ‘errors’ it is also important to realise that ‘unpolluted’” ASPT and
NFAM are in fact non-stationary time series, since they are governed by natural variations in
the biological community that are determined by factors such as seasonal variation, population
dynamics, hydrological events etc. Thus the ‘unpolluted” ASPT and NFAM for a given site
cannot rightly be considered as constant values, since they are really stochastic variables
defined by some probability distribution. Thus, a significant component of the apparent
prediction errors may not be due to errors at all, but simply natural variation.
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There is also the matter of what is meant by ‘unpolluted’. One might expect that pollution
includes things like pesticides, but does it include disease and the stresses caused by river
engineering works (e.g. channel regrading, weed removal, removal of bankside vegetation,
flow regulation, water abstraction etc.)? In the absence of a clear definition of the term
‘unpolluted’, or preferably ‘unstressed’, there can be no proper basis for the selection of
reference sites.

3.3.9 Two-season predictor of ASPT based on revised BMWP scores.

After completing the development of the ASPT and NFAM predictors described in Sections
3.3.5 and 3.3.6, the Institute of Freshwater Ecology supplied values of observed ASPT for the
IFE614 sites, based upon the revised BMWP family scores derived by Walley and Hawkes
(1996, 1997). The opportunity was taken to train and test two-season predictors of ASPT
using three different sets of target ASPTs, based upon the overall, site-related and site-
abundance-related revised scores. The correlation coefficients achieved by these networks are
given in Table 3.10.

Table 3.10 Correlation coefficients achieved by ASPT predictors based on revised

BMWP scores
N5SXRASPT NSDRASPT
Type of revised score F1/F2 | F2/F1 | Avg. | F1/F1 | F2/F2 | Avg.
Overall score 0.8790 | 0.8904 | 0.8847 | 0.9019 | 0.8957 | 0.8988
Site-related score 0.8830 | 0.8861 | 0.8846 | 0.9029 | 0.9025 | 0.9027
Site-abundance-related score | 0.8645 | 0.8735 | 0.8690 | 0.8874 | 0.8853 | 0.8864

These results show that all of these networks performed better than their corresponding
networks based on original BMWP scores (Table 3.9). Table 3.10 shows that the networks
based on overall scores and site-related scores performed equally well, giving the best overall
results. These results provide a clear indication that the revised BMWP scores derived by
Walley and Hawkes (1996, 1997) are an improvement on the original BMWP scores.

3.3.10 GQA classifications based on neural network predictions of ASPT and NFAM

The neural network predictors NX5ASPT and N7XNFAM were used to derive EQI(ASPT)
and EQI(NFAM) values, and hence to provide biological GQA classifications for all validated
sites in the 1995 database. The EQI threshold values used to separate the different classes
were not those used for the original classification based on RIVPACS, because these resulted
in significant changes to the overall number of sites allocated to each class. Instead, the
original threshold values were marginally adjusted to give the same overall distribution of
sites between classes.

This same exercise was repeated using the neural network predictor of ASPT based on overall
revised scores (i.e. using NSXRASPT in place of NSXASPT). It is worth noting that this
model produced a correlation coefficient of 0.8847 between the predicted and observed ASPT,
which is noticeably better than anything previously achieved. Once again the threshold EQIs
used to separate the quality classes were marginally adjusted so as to achieve the same overall
distribution of sites between quality classes as that produced by RIVPACS. Table 3.11 shows
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the original EQI threshold values that were used to produce the biological GQA classifications
from RIVPACS predictions and the adjusted values used to produce the neural network
classifications based on revised scores.

Table 3.11 Original and adjusted EQI classification thresholds.

River Original Thresholds Adjusted Thresholds (Revised scores)
Quality RIVPACS Model N5XRASPT / N7XNFAM Model

Class EQI(ASPT) | EQI(INFAM) EQI(ASPT) EQI(NFAM)

a 1.00 0.85 0.989 0.850

b 0.90 0.70 0.889 0.711

c 0.77 0.55 0.771 0.553

d 0.65 0.45 0.664 0.453

e 0.50 0.30 0.535 0.300

f <0.50 <0.30 <0.535 <0.300

3.3.11 Comparisons between GQA classifications based on RIVPACS and neural
network

Table 3.12 compares the biological GQA classifications derived using RIVPACS with those
derived using the neural networks based on the original BMWP scores (i.e. the NSXASPT /
N7XNFAM models).

Table 3.12 Distribution of validated sites by biological GQA class based on EQIs
derived by RIVPACS and the neural networks NSXASPT and N7XNFAM.

Equivalent GQA Classification GQA classification based on EQIs
based on EQIs derived by derived by RIVPACS
N5XASPT & N7XNFAM a b c d e f Total
a 1505 | 252 4 0 0 0 1761
b 255 | 1320 | 172 0 0 0 1747
c 2 175 | 999 95 1 0 1272
d 0 0 96 | 479 66 0 641
e 0 0 0 64 | 403 20 487
f 0 0 0 0 18 112 130
Total 1762 | 1747 | 1271 | 638 | 488 | 132 | 6038

The number of sites given the same biological GQA classification by RIVPACS and the
neural networks based on BMWP scores (i.e. using NSXASPT / N7XNFAM) was 4818,
representing 79.8% of the 6038 validated sites. Hence, a change in the method of predicting
ASPTs and NFAMs from a statistical approach (i.e. RIVPACS) to a neural networks
approach, resulted in 20.2% of sites being classified to a different GQA class (i.e. 20.1% by +
1 class and 0.1% by =+ 2 classes).

Table 3.13 compares the biological GQA classifications derived using RIVPACS with those

derived using the neural networks based on the overall revised scores (i.e. the NSXRASPT /
N7XNFAM models). In this case, the networks classified 4379 sites to the same class as
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RIVPACS, representing 72.5% of all sites. This means that a further 7.3% of sites were
classified to a different class when the basis of the neural network predictors was changed
from BMWP scores to the overall revised scores derived by Walley and Hawkes (1996,
1997), thus putting 27.5% of sites in a different GQA class to that allocated by RIVPACS (i.e.
27.2% by = 1 class and 0.3% by + 2 classes). This does not necessarily mean that over 20%
of sites are presently classified incorrectly, but it does mean that classifications based upon
EQIs are sensitive to the method used to derive the them (even though the methods have the
same level of accuracy) and, to a lesser degree, the accuracy of the scores allocated to each
family.

Table 3.13 Distribution of validated sites by biological GQA class based on EQIs
derived by RIVPACS and the neural networks NS5SXRASPT and

N7XNFAM.
Equivalent GQA Classification GQA classification based on EQIs
based on EQIs derived by derived by RIVPACS

N5SXRASPT & N7XNFAM a b c d e f Total
a 1403 | 348 10 0 0 0 1761

b 352 | 1165 | 230 0 0 0 1747

c 7 233 | 900 | 129 2 0 1271

d 0 1 131 | 422 | 85 0 639

e 0 0 0 87 | 378 | 21 486

f 0 0 0 0 23 111 134

Total 1762 | 1747 | 1271 | 638 | 488 | 132 | 6038

3.4 Predictors of BOD, DO and Ammonia

Supervised-learning networks were developed to predict BOD, DO and ammonia using the
standard back-propagation network with an input vector consisting of the states of existence
(i.e. 0 to 4) of the 76 BMWP. The final networks had two hidden layers, one with 60 nodes
and the other with 30, and a single output node representing either BOD, DO or ammonia.

The database of matched biological and chemical sites consisted of 3556 validated sites, but
for the purpose of this study, all sites that were greater than 150 m apart were eliminated from
the database. The figure of 150 m was chosen on the basis that an error of £ 100 m between
both the NGR eastings and northings of the chemical and biological sites would result in a
distance apart of 141 m. This was considered to be an acceptable error in the grid references
of sites that were truly matched. The remaining 3167 sites were divided into the five site
types and then randomly partitioned to provide test sets of exactly 100 sites and training sets
of approximately 500 sites. Training was continued until performance on the test set started to
deteriorate, subject to a maximum of 200,000 cycles. The results of performance tests on the
final models, based on the independent test sets of 100 sites, are given in Table 3.14.

Although the correlation coefficients given in Table 3.14 are not as high as one might like, it
is worth noting that the dissolved oxygen predictor was as good as the independent predictor
of NFAM (see Table 3.9) and the predictor of ammonia was noticeably better. If the
correlations had been better, a more detailed study would have been carried out involving two-
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fold cross validation, with a view to producing a biological equivalent of the chemical GQA
classification.

Table 3.14 Correlation coefficients between observed and predicted values of BOD, DO
and ammonia for the 100 independent test sites.

Site Type Overall
Chemical 1 2 3 4 5 Mean
Parameter
BOD 0.3277 0.6330 0.5105 0.5626 0.4513 0.4970
Dissolved Oxygen 0.6379 0.6666 0.5923 0.5587 0.4362 0.5783
Ammonia 0.6106 0.6063 0.7106 0.6206 0.7509 0.6598

3.5 Classifiers of River Quality

Supervised-learning classifiers of ‘organic’ river quality were trained and tested for each of
the five site types. The database of exemplars (Section 2.4) was partitioned to produce a
representative test set of exactly 100 sites for each site type, leaving the remaining sites (i.e.
approx. 900 sites per site type) to make up the training set. All networks had two hidden
layers, with between 10 and 60 nodes in each. The output layer had six nodes, one for each
quality class.

The initial tests were based upon three of the seven input vectors defined in Section 2.2,
namely the 16 sensitivity groups; 21 taxonomic groups (inputs = total abundance); and 50 top
families plus NFAM. Networks based on these three input vectors were tested against each
other using data for site types 1, 3 and 5. The target outputs for these tests were the ‘organic’
river quality classes, as defined in Section 2.4. The overall ‘success’ rates achieved by the
network are given in Table 3.15. It should be noted that success in this context means that the
network classified the sample to the same class as the ‘organic’ component of its GQA
classification. This assumes that the target ‘organic’ classes had all been correctly assigned,
which was unlikely, despite all our efforts to eliminate sites with dubious classifications.
Nevertheless, the tests did provide a valid measure of the networks’ abilities to model the data.

Table 3.15 Results of initial tests on supervised classifiers.

Overall ‘Success’ Rates (%)
Model (input vector) Site Type 1 Site Type 3 Site Type 5
50 families 56.9 65.6 59.8
50 families + NFAM 67.7 68.6 68.6
76 families + NFAM 88.2 74.5 69.6

In the light of these results, networks were trained to predict the ‘organic’ river quality for all
five site types using an input vector comprising the 76 BMWP families plus NFAM. These
models were developed using the database of exemplars, thus the target classifications were
the ‘organic’ classes as defined in that database (Section 2.4). During the training phase the
networks were tested at intervals of 1,000 cycles until their performance on the test set started
to deteriorate, subject to a maximum of 200,000 training cycles. The results of performance
tests on these networks are given in Table 3.16. The success rates are based on the
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assumption that the ‘organic’ classifications in the database of exemplars are correct. Since
some will be incorrect, despite all our efforts to eliminate misclassifications from the database
of exemplars, the results are best interpreted as lower bounds of the true performance.

Table 3.16 Performance of 77-input predictors of ‘organic’ river quality class.

Site Success rates (%) by ‘organic’ class Average | Overall
Type a b c d e f per class | rate (%)
1 74.1 75.0 64.7 80.0 57.1 0.0 58.5 69
2 77.4 84.2 66.7 71.4 84.0 333 69.5 77
3 79.5 55.6 70.0 81.0 71.4 0.0 59.6 74
4 98.2 46.2 55.6 86.7 75.0 0.0 60.3 83
5 86.1 68.4 47.8 86.7 60.0 0.0 58.2 71

Avg 83.1 65.9 61.0 81.2 69.5 6.7 61.2 75

Although the overall ‘success’ rate was 75%, it was not very uniform across the classes,
falling to only 6.7% for class ‘©* and giving an average per class of just 61.2%. This kind of
problem often occurs when classifiers are developed using data in which one or more classes
are poorly represented. In this case it was the consequence of there being very few class “f’
sites in the database. One way to overcome the problem would have been to repeat the class
‘> (and even class ‘e’) data in the training set as many times as necessary to provide adequate
representation. Clearly, repeated data are poor substitutes for extra data, but this procedure
would have served to improve performance on class ‘f’. Plans to remedy this problem and to
re-train the networks using two-fold cross validation analysis were abandoned in favour of
work on Self-Organising Maps (SOM), which were showing considerable promise.
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4. UNSUPERVISED NEURAL NETWORKS

4.1 Introduction

A brief introduction to neural networks, including supervised and unsupervised learning, was
given in Section 1.4. The main advantage of using unsupervised neural networks is that they
do not require target values for their outputs. They simply recognise different patterns in the
input data and allocate them to a number of discrete categories. Three different types of
network were tested to determine which was best suited to the task at hand. These were:

a) Self-Organising Maps (SOM)
b) Adaptive Resonance Theory (ART2)
c) Generative Topographic Mapping (GTM)

It was soon established that the choice was really between SOM and GTM, both of which
gave very similar levels of performance in the initial tests. It was therefore decided to proceed
with the development of the river quality classifier using SOM and GTM networks.

Since unsupervised networks do not require output targets, it was not necessary to restrict the
training data to the database of exemplars. Neither was it necessary to partition the data into
training and testing sets. Consequently, the full set of 6038 validated sites was used as the
training data. A series of tests were carried out using SOM and GTM based upon 36 output
categories (i.e. a square 6x6 map). The input vectors tested included biological inputs only and
various mixtures of biological and environmental inputs. The results indicated that the
patterns in the combined biological and environmental input vectors were too complex to
permit the networks to effectively discriminate between them. Thus it was decided that the
effects of environmental factors on community composition would have to be accounted for
by developing separate networks for each of the five site types defined earlier.

4.2 Development of Site Specific SOM and GTM Classifiers

Networks having a 10x10 output array (SOM10 and GTM10) were trained for each site type,
using combined spring and autumn data (i.e. abundance levels of the 76 BMWP families) as
the input vector. The SOMs were trained over 60,000 cycles and the GTMs over 20 cycles
(NB. GTM training is a fundamentally different process from that of SOMs), which were
roughly equivalent in terms of training effort. Once trained, the networks were used to
categorise each of the 6038 sites to one of the 100 output ‘bins’ associated with its particular
site type. On average, therefore, each bin contained approximately 12 sites with very similar
community structures. Both the SOM and GTM networks allocated the sites to bins in such a
way that the community structures of neighbouring bins were closely related. Thus, any
attribute of the sites that is related to community structure (e.g. river quality, alkalinity, DO or
the occurrence of a given family) should vary in a relatively smooth and continuous way
across the 10x10 output array. A contour map of any given attribute, commonly called a
feature map, can be plotted using the attribute’s average values within each bin of the output
array. To test the relative performance of the SOM and GTM models, the standard deviation
of each attribute within each bin was derived. The average standard deviation of the attribute
over the 100 output bins was then derived for each site type. This value represented the noise
between the attribute’s feature map and its values within the samples in the bins. Thus, the
lower the noise the better the fit between the model and the data with respect to that particular
attribute. Table 4.1 shows the noise levels (i.e. average standard deviations) on the GTM10
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and SOM10 feature maps of 13 key attributes (i.e. ASPT, NFAM, three key environmental
variables and the top eight taxa). The columns labelled 1 to 5 give the noise levels on the
attribute’s feature maps for site types 1 to 5. Also given is the average noise level, across all
five site types, for GTM10 and SOM10. The column at the extreme right hand side of the
table gives the ratio of the average noise level on the SOM to that on the GTM for each the
attributes. The figures in this column highlight the fact that there was negligible difference
between the two networks in terms of their overall ability to categorise the data.

Table 4.1 Noise levels (average standard deviations) on the SOM and GTM feature
maps of 13 key attributes.

GTM10 for Site Type: GTM10 SOMI10 for Site Type: SOM10|Ratio
Attribute 1 2 3 4 5 JAvg(G)] 1 2 3 4 5 JAvg(S)] S/G
ASPT 029034]033]1032(035] 033 ]0.280.31(033)|0.31|033] 031 J0.95
NFAM 2.8813.12 1298 (3.15]3.02| 3.03 |2.83]3.07|3.06](3.15(3.02] 3.02 |1.00
ALK 18.96{33.49(38.56|40.2852.02] 36.66 |18.58|33.60|39.06(42.47150.98] 36.94 | 1.01
ALT 60.63(38.99(31.15|25.63|20.01| 35.28 |58.48|40.37|31.89(26.71|19.20} 35.33 | 1.00
SILT 4.05 | 7.45110.91|16.23|25.81] 12.89 | 3.78 | 6.88 [10.92}16.89(25.55] 12.80 | 0.99

Leptoceridae 0.49 | 0.54 |1 0.47 1051 |045| 049 }0.52|050(047]049]046| 049 |0.99
Gammaridae 0.63]0.71 | 0.66 | 0.60 | 0.58 | 0.63 | 0.63|0.71 | 0.65] 0.63 | 0.58 | 0.64 | 1.01

Elmidae 0.44 1 0.47 | 0.46 | 0.54 | 0.50 | 0.48 | 0.44 [ 0.46 | 0.47 | 0.54 | 0.48 | 0.47 ]0.99
Baetidae 0.50 | 0.52 | 0.58 [ 0.57 | 0.58 | 0.55 | 0.49|0.54]058 (060061} 0.56 |1.03
Caenidae 0.4510.50]0.47(051]|045] 048 | 048|054 048|052 046 049 |1.04

Hydrobiidae 0.62 | 0.74 | 0.67 | 0.66 | 0.65| 0.67 | 0.61|0.74|0.70 [ 0.67 [ 0.60 | 0.66 | 1.00
Limnephilidae | 0.55 | 0.53 [ 0.56 | 0.56 | 0.55| 0.55 | 0.54 [ 0.53 | 0.57 [ 0.57 | 0.54 | 0.55 | 1.01
Hydropsychidae| 0.48 | 0.59 | 0.59 | 0.58 | 0.48 | 0.54 ] 0.49 [ 0.56 [ 0.57 [ 0.58 | 0.47 | 0.53 |0.98

Avg. | 1.00

Both networks produced well-structured feature maps of the key attributes, indicating that they
were performing much better than the earlier models. For example, the variations in average
ASPT and NFAM across the 10x10 output array of the SOM (site type 2) were smooth and
had a good range of values, as can be seen from Figure 4.1.
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Figure 4.1 Feature maps of ASPT and NFAM produced by the SOM for site type 2.

It should be noted that the vertical and horizontal scales merely serve to provide the ‘x’ and
‘y’ co-ordinates of the 100 ‘classification’ bins located at the grid intersections. For these bins
to have any real meaning they must first be labelled in terms of their river quality. This is not
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a trivial task. It requires the attention of experts to examine the characteristic features of each
bin, perhaps with the aid of feature maps.

However, before proceeding further, a choice had to be made about which type of network
should be chosen for use as the unsupervised classifier of river quality. It was finally decided
to use the SOM network because:
a) it had along and well-proven record, whereas GTM was a recent innovation;
b) reliable SOM software was readily available (i.e. SOM-PAK); and
¢) it performed better than GTM with respect to ASPT (see Table 4.1), the most relevant
single feature with respect to river quality.

In view of this decision a brief description is now given of the structure and function of the

SOM network. Readers are referred to Kohonen (1995), the originator of SOM, for a detailed
account of the theory and application of these networks.

4.3 Structure and Function of Self-Organising Maps (SOM)

A Self-Organising Map (SOM) is an unsupervised neural network in which the output takes
the form of a two-dimensional array of output nodes, as shown in Figure 4.2.

Figure 4.2 Topology of a Self-Organising Map with a 5x5 output array. Note that all
output nodes are connected to the input vector, not just node j as shown.

Each output node (j) is fully connected to the input vector (x;, X,... X;,... X,), and represents a
particular pattern in the data, as defined by the set of weights on the links connecting the node
to the input vector. That is, the weight vector (wy;, Wyj,... Wjj,... Wy;) is the exemplar pattern
represented by node j. These patterns are determined by the training algorithm during the
learning phase. Initially, all weights are randomised, so each output node represents an
arbitrary pattern. Representative input data are then presented to the network and compared to
the exemplar pattern of each output node to determine which gives the best match. The
similarity metric most commonly used to determine the best match is the Euclidean distance:
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dj= {2(’%’ - Wij)z} 7
i=1

The exemplar pattern of the winning node, and all nodes in its ‘neighbourhood’, are then
modified to make them slightly closer matches to the input pattern. The modified weights,
wjj, are derived as follows:

W{j = Wij + 0(10(.2()65 - le) (8)

where: o = learning-rate coefficient; and
o, = neighbourhood coefficient.

Both of these coefficients are less than or equal to unity and decay with training time. In
addition, the neighbourhood coefficient decreases with distance from the winning node, thus
the winning node’s distant neighbours are modified less than its close neighbours. The
neighbourhood coefficient is typically defined by a bell-shaped function with its maximum
value (i.e. unity) centred on the winning node. Initially the bell is very wide, covering a large
neighbourhood, but as training time proceeds its diameter gradually shrinks, thus confining the
neighbourhood to an ever tightening circle around the winning node. Equation (8) therefore
has the effect of gradually reducing both the size and spatial extent of the modifications as
training proceeds. The final result, when training is complete, is that neighbouring nodes
represent very similar patterns and well-separated nodes represent very different patterns.
Thus, any individual element of the patterns (e.g. ws;,), when plotted on the output array as a
contoured map, will produce a well-defined feature map, provided it is an important
discriminating factor. If it is not, its 'feature map' will be poorly defined, appearing more like
random noise.

4.4 Development of a General SOM Classifier of River Quality

4.4.1 Training and testing

In view of the encouraging results from SOM10, a second attempt was made to develop a
general (i.e. all-site-types-in-one) classifier of river quality using a 20x20 output array
(SOM20). It was trained over 60,000 cycles using an input vector consisting of the 76 BMWP
and 13 environmental variables, with the Euclidean distance as the similarity metric.

Table 4.2 compares the noise levels on the feature maps of the 13 key attributes produced by
SOM10 and SOM20. The overall average ratio between the two sets of data (i.e. 1.009)
indicates that SOM20 produced marginally higher noise levels than SOM10. However, it
performed noticeably better on ASPT and NFAM which, being composites of the whole
taxonomic list, were considered the most important of the 13 key attributes. Thus it was
concluded that the single classifier, SOM20, achieved at least the same level of performance
as the five site-specific classifiers making up SOM10. An interesting feature of the results
shown in Table 4.2 is the change in importance of the environmental variables ALK and SILT
from SOM10 to SOM20. ALK is the most important environmental factor in SOMI10,
because this network was based on the site-type classifications in which ALK was the primary
determining factor. However, in SOM20 the importance of SILT was much increased at the
expense of ALK. Note the ratios of 1.259 for ALK and 0.727 for SILT, indicating that
SOMZ20 fits the SILT data much better than SOM10, and vice versa for the ALK data.
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Table 4.2 Average standard deviations across the SOM10 and SOM20 feature maps of
13 important attributes. The SOM10 values are the average across the five
site types, as per Table 4.1.

SOM10 SOM20 Ratio

Attribute Avg.(S1) Avg.(S2) S2/51
ASPT 0.313 0.305 0.974
NFAM 3.0238 2.929 0.969
ALK 36.938 46.523 1.259
ALT 35.3286 35.449 1.003
SILT 12.8026 9.307 0.727
Leptoceridae 0.4892 0.498 1.018
Gammaridae 0.6398 0.634 0.991
Elmidae 0.4742 0.486 1.025
Baetidae 0.5642 0.573 1.016
Caenidae 0.4932 0.511 1.036
Hydrobiidae 0.6626 0.692 1.044
Limnephilidae 0.5512 0.562 1.020
Hydropsychidae 0.5346 0.55 1.029
Average 1.009

The benefit of being able to classify the river quality of a site directly from its biological and
environmental data, without first having to classify its site type, was seen as a major advantage
of SOM20. Consequently, the remainder of the work on the development of an unsupervised
classifier of river quality was focused on the SOM20 network.

4.4.2 Production of feature maps

The final step in the development of a SOM is the allocation of meaningful labels to each of
its output bins. Not all bins need to be given unique labels, since it may not be possible or
even desirable to give separate labels to all bins, since the difference between some, in terms
of river quality, may be negligible. Indeed, if SOM20’s 400 bins are to be divided into just six
GQA classes, then some classes will clearly be represented by 100 or more bins. Nevertheless,
careful examination of the common characteristics of the sites allocated to each bin may make
it possible to identify bins that represent particular types of pollution. If this can be achieved,
then the network will serve not only as a classifier of biological GQA class, but also as a
diagnostic tool capable of identifying problems due to specific pollutants. In an attempt to
facilitate the interpretation of SOM20’s output array, and thus to aid the labelling of its nodes,
feature maps were produced of 97 attributes. These are presented as coloured contour maps in
Appendix D. The 97 attributes include: site type, 13 environmental variables; three chemical
variables (BOD, DO and ammonia); ASPT and NFAM; GQA class, as derived by RIVPACS;
GQA class, as derived from the neural network predictions of ASPT and NFAM based on
revised scores; and the 76 BMWP families.
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4.4.3 Analysis and interpretation of feature maps

Before attempting to analyse the feature maps it is necessary to have a clear understanding of
what the output array represents. Basically, it provides a means of visualising multi-
dimensional data in two dimensions. Each node in the output array represents a cluster of data
points, but not necessarily on the bases of one node per ‘natural’ cluster, because the pre-
defined number of nodes (e.g. 400 in SOM20) may differ from the number of ‘natural’
clusters in the data. Thus a large cluster may be allocated to several nodes, each one
representing a particular region of the cluster. However, the SOM’s training algorithm
arranges the nodes in the two-dimensional output array such that neighbouring nodes represent
closely related clusters or sub-clusters. That is, clusters that are near neighbours in data space
(i.e. data having very similar patterns) are near neighbours in the output array. Nodes that are
well-separated in the output array represent very dissimilar patterns, or clusters that are well-
separated in data space.

In our case the patterns in the combined biological and environmental data represent different
combinations of biological communities and site types, that can be interpreted as symptomatic
of different states of health of the river. The network has sorted out the patterns into an
ordered two dimensional arrangement, but has left us to define the meaning of each pattern in
river quality terms. The feature maps help us to understand the logic behind the arrangement
of the patterns, by allowing us to see how various attributes of the patterns are distributed
across the array.

The feature maps shown in Appendix D are represented as coloured topographical maps. For
the sake of clarity of the map they do not show the 400 output nodes from which the contours
are derived. The nodes are in fact located at the intersections of the set of grid lines that
would be formed if lines were drawn vertically through the 20 points on the x axis and
horizontally through the 20 points on the y axis. The numerical values represented by each
node are the particular attribute’s mean values derived from the samples that were allocated to
that node.

The most informative feature map shown in Appendix D is the one on page D-2 showing the
distribution of Silt. This clearly shows that the SOM has allocated the very silty sites (i.e. sites
that one would associate with pools) to a distinct group of nodes in a triangular region on the
right hand side of the output array. The maps for Altitude, Boulders and Slope, also on page
D-2, clearly show that the upland, rocky, steep sloping sites (i.e. sites normally associated with
riffles) are represented by the nodes in the top left hand portion of the array. The map of Slope
shows that the nodes representing the gently sloping sites occupy the bottom-left to top-right
diagonal of the array. These findings are confirmed by the Site Type feature map on page D-1
which shows that:
a) Type 1 sites (upland riffles) occupy a compact area in the top-left of the map; and
b) Type 5 sites (lowland pools) occupy three regions of the map, a triangular area on the
right, a smaller area on the bottom-left and an isolated area towards the centre.
The other site types form contour bands between site types 1 and 5, with a diagonal tendency
roughly parallel to the low slope band.

On page D-3, the maps for Discharge Category, Distance from Source, Width and Depth
show distributions that are clearly related to one another and to the distribution of Slope on
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page D-2. The relationship between the distributions of Width and Depth indicate that high
depth to width ratios are associated with silty substrates, as one might expect.

On page D-4, the map of Alkalinity shows a close inverse relationship with that of Altitude on
page D-2. The distributions of BOD, Ammonia, ASPT and NFAM provide a good indication
of which nodes represent the good river quality sites and which represent the poor ones. There
is a large group of nodes in the upper left hand region of the array that represent good quality
sites with high percentages of boulders and pebbles (i.e. riffles), and there is a small group of
nodes located around grid points (14, 7) to (14, 11) in the pool region of the array that have
relatively high ASPTs and NFAMs, thus indicating good quality pools. Poor quality sites
appear to be represented by a large group of nodes in the bottom right, and a smaller group at
the top right.

The first two maps on page D-5 show the distribution of biological GQA classes as defined
by: a) RIVPACS; and b) the neural networks predictors of ASPT and NFAM based on revised
scores. These confirm the conclusion about the distribution of river quality drawn from the
maps on the previous page, but also indicate that there is a third region of ‘poorer’ quality
represented by a small group of nodes in the top left hand corner of the array. The fact that
these represent low alkalinity upland streams having low NFAM values implies that they are
probably sites affected by acidification. The two GQA maps provide a first approximation of
which nodes represent the six GQA classes, and a visual representation of the differences
between the ‘RIVPACS’ and ‘Neural Network (RScrs)’ methods of classification. The
distribution of the classes appears complex because different site types are represented by
different regions of the map, and all six GQA classes have to be represented within each site

type.

The remaining maps on page D-5, together with those on the following 12 pages, show the
distributions of the 76 BMWP taxa in terms of their average abundance levels. It is interesting
to compare the distributions of the top indicator taxa (as determined in Section 2.1) with the
distribution of GQA classes. The close similarity between the distribution of Elmidae (the top
indicator taxon) with that of the GQA classes is quite astounding. Other very similar
distributions are displayed by Hydropsychidae, Ephemerellidae and to a lesser degree Baetidae
and Leptoceridae. Several taxa exhibit distributions that relate closely to the distribution of
good quality riffles, for example Heptageniidae, Leuctridae, Perlodidae, Lepidostomatidae and
Sericostomatidae.

Some taxa show close relationships to physical or chemical attributes. For example, many
taxa have distributions that are closely related to the distribution of sites with low Slope.
These include Neritidae, Viviparidae, Unionidae, Platycnemidae, Coenagriidae,
Aphelocheiridae, Notonectidae, Phryganeidae and Molannidae. Others, like Physidae,
Planorbidae, Sphaeriidae, Glossiphoniidae, Erpobdellidae and Asellidae appear to be more
closely associated with Alkalinity than any other single physical or chemical attribute.

There are also some interesting similarities and differences to be found in the distributions of
taxa both within and between groups, like the mayflies, stoneflies and caddis flies. For
example, note the difference between Baetidae, Heptageniidae and Caenidae, and the
similarity between Ephemerellidae and Sericostomatidae.
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There are many other interesting features to be found in these pages - too many to be listed
here. Suffice to say that the feature maps of SOMs provide a powerful means of visualising
multi-dimensional data.

4.4.4 SOM viewer on the Web

To enable readers to compare any two feature maps, the authors have provided a SOM viewer
on the Web (http://www.soc.staffs.ac.uk/research/groups/cies/somview/somview.htm). This
enables any two of the 97 feature maps to be viewed alongside each other. Please note that
this Web page uses frames and that not all Web browsers are frame capable. Frame capable
browsers include all recent versions of Netscape and MS Internet Explorer.
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5. NAIVE BAYESIAN MODELS

5.1 Introduction

A brief introduction to methods of probabilistic reasoning, including the naive Bayesian
approach, was given in Section 1.5. The first probabilistic classifier of biological river quality
was a naive Bayesian model developed by Walley et al. (1992b). This model performed well
in tests, albeit on a relatively small dataset of 300 sites. A later version of the same model was
shown to out-perform a range of other Al-based models (Walley and DZeroski, 1995). It was
for this reason that it was decided to develop a naive Bayesian classifier in this project.

5.2 The Mathematics of Naive Bayesian Inference

For the purpose of this section, and in the interests of mathematical simplicity, let us for the
moment ignore the effects of site type and season on the biological community. Under these
circumstances the naive Bayesian approach defines our six river qualities (a-f) as a set of
exhaustive and mutually exclusive classes, Q; (i = 1 to 6), and uses the evidence provided by
the 76 BMWP taxa (the witnesses), each having five possible states of existence, k (i.e. absent
plus abundance categories 1 to 4). The method is based upon the assumption that the states of
existence of the taxa are conditionally independent (i.e. independent within each quality class,
but not necessarily between them). Evidence is combined using the standard equation for
naive Bayesian inference:

P(Q;)

76
PEr) [P 10) 3)

Jj=1

P(Q,-Iel,..ej,..e76) =
where:

P(Qley,..ej,..e76) = probability that river quality (Q;) is equal to the i th quality

class given the evidence (e ,..€j,..€7¢) provided by the sample;

P(ejlQ;) = probability of evidence (¢) given river quality class (Q;);
P(Q;) = prior probability of river quality class Qj;
P(E76) = prior probability of evidence (e1 ,..€j,..e76);

e; = evidence provided by taxon j (i.e. its current state of existence k)

The prior probabilities, P(Q;), differ considerably from class to class, since class O (i.e. class
‘b”) occurs far more frequently than class Qg (i.e. class ‘f”). This has the effect of causing the

model’s predictions to favour commonly occurring classes at the expense of infrequently
occurring ones. Although this may give slightly better overall performance in terms of the
percentage of correct classifications, it produces non-uniform accuracy across the classes,
resulting in poor performance on less commonly occurring classes (i.e. ‘d’, ‘¢’ and ‘f’). On the
other hand, if one applies the Principle of Indifference, by assuming that the prior probability
of each class is the same (i.e. P(Q;) =1/ 6 for all i), this has negligible difference on overall

performance (at least for our particular problem with its 76 witnesses) but results in
approximately uniform precision across the classes. Quite apart from this obvious benefit,
there is good reason to judge each case solely on the merit of the evidence presented, totally
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ignoring expectations from prior experience. This is the same principle that tries to overcome
prejudice in our judicial and appointments processes.

If the Principle of Indifference is applied to equation (3) it gives:

76
P(Q,-Iel,..ej,..e76)=%HP(ele,-) 4)
j=1

where: N =6P(E7¢).

The apparently difficult task of estimating N is made trivial by the fact that the sum of the
probabilities of the river quality being in each of the six classes is unity. That is:

6
Y P(Qiley,..ej,..e76) = 1 (5)
i=1

By summing equation (4) over all six quality classes, it follows that:

76
[1Pe;10) (6)

j=1

6
N =

i=1
N is then substituted into equation (4), thus permitting the evaluation of the probability,
P(Q;ley,..e j ,--e76) , of each river quality class i, given the evidence from the taxa.

Although this looks a complex procedure, N is simply a normalisation constant that ensures
that the predicted probabilities across the classes sum to unity. Thus, the whole process is
quite straightforward once the conditional probabilities, P(e;1Q; ), have been derived.

The conditional probabilities, like the family scores in the BMWP system and the saprobic
indices in the saprobic system, are constants associated with each taxon, except that in this
case there are 30 for each taxon (i.e. one probability per quality class and state of existence).

5.3 A Simple Example

Figure 5.1 illustrates, in diagrammatic form, the process by which evidence is combined. In
the interest of simplicity, this example is based upon just five indicator taxa, each having two
states of existence (i.e. present and absent). In the example, four of the taxa are present
(Gammaridae, Heptageniidae, Baetidae and Erpobdellidae) and one absent (Asellidae). The
conditional probability distributions of the five taxa are shown stacked upon each other. In
each case the distribution shown is the one appropriate to the taxon’s state of existence, hence
the one for Asellidae shows the probability of it being absent from each of the six quality
classes. The height of each shaded column indicates the probability of the absence of
Asellidae from the particular class. In the other cases, it indicates the probability of the
taxon’s presence in the class. Note that the probabilities in these distributions do not sum to
unity. This is because they are distributions of the probability of the taxon’s state given the
river quality class (e.g. the probability of Gammaridae being present in class ‘b’ is shown as
about 0.90).

The process of combining the evidence (i.e. the probability distributions) proceeds as follows.
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1) For each quality class, multiply the probabilities corresponding to each of the five taxa (i.e.
the heights of the five columns standing immediately above each other). Since these are all
less than unity, their product may be a very small fraction, as shown in the distribution
labelled “Products of Columns”.

2) If we apply the Principle of Indifference, as suggested earlier, the “Products of Columns”
distribution is identical in shape to the required distribution, except that it does not sum to
unity. Thus all that is now required is to normalise the distribution to ensure that it does
sum to unity. That is, sum the six products to determine the value of the normalisation
constant N, then divide the product of each column by N to determine the probabilities of
the six classes, P(Q;leq,..e j ,--€7¢) » shown as P(QIE) in Figure 5.1 for brevity.

1

P(elQ) Gammaridae (Present)
0
1

P(elQ) Heptageniidae (Present)
0
1

P(elQ) Asellidae (Absent)
0
1

PElQ) Baetidae (Present)
0
1

P(lQ) Erpobdellidae (Present)
0
1

Products of columns

0
1 Probability of Class

P(QIE) (Normalised Products)
0

Figure 5.1 A simple example of mechanics of naive Bayesian classification of river
quality using evidence from indicator taxa.

In this particular example the final conclusion is that the river quality is most probably class
‘b’ (50%), but perhaps class ‘a’ (40%) or even class ‘c’ (10%). When only a few indicator
taxa are used the conclusion is generally not very conclusive, as in this case, but when many
more are used the result is generally quite conclusive.
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5.4 Avoiding Brittle Behaviour

If the conditional probability matrices P(ejlQ;) contain some elements that are zero, then the
system is likely to behave in a brittle way. That is, on occasions it will ‘crash’ and fail to give
aresult. This happens when something occurs which the probability matrices believe cannot
occur. That is, when each of the six columns being multiplied out contains at least one zero
probability. For example, suppose a sample has 20 taxa, 19 of which indicate a river quality of
class ‘a’ (80%) or class ‘b’ (20%), but the twentieth taxon (Chironomidae in abundance
category 4) indicates class ‘f”. If the probability distribution for Chironomidae shows that the
probability of it occurring in class ‘a’ or class ‘b’ in abundance category 4 is zero, then the
system will crash because an apparent impossibility has occurred. If, however, its probability
distribution indicates very small probabilities of Chironomidae occurring in classes ‘a’ and
‘b’, then the system will most probably conclude that the river quality is class ‘a’, or possibly
class ‘b’, because the weight of evidence from the nineteen taxa overpowers that of
Chironomidae. This is a very extreme example, and one that would certainly require further
investigation if it occurred in reality, but highlights the importance of never allowing zero
probabilities to occur in the conditional probability matrices. They should be replaced by
small positive values. This is similar to adopting a sceptical attitude to miracles, ghost stories
and great money making schemes. It pays to be sceptical. Indeed, Walley and DZeroski
(1995) showed that the elimination of zeros from conditional probability matrices resulted in
an improvement in overall performance of naive Bayesian classifiers of river quality. They
tested two methods of elimination, details of which are given in their paper, and found that
they resulted in very similar improvements in performance.

5.5 Conformity Indices

Walley et al. (1992b) showed that a benefit of the Bayesian approach is that it permits the
evaluation of a probability-based conformity index (C;) for each taxon (j), defined as:

_ Probability of taxon being in its current state, given the nature of the rest of the sample

C.:
J Probability of taxon being in its current state, given no evidence at all
That is:
o P(ejlel,...ej_l,ej_,_l, ..... 676) (7)
/ P(e;)
where:
6
P(e;)= Y P(Q)P(e;10)
i=1
P(E76)
P(ejlej,...ej_l,ej+1,...e76)= j
P(E35)
and

P(EJ5) = P(ej,...j_1,€j41:--€76)
J J J
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The probability of the evidence, P(Es), can be derived from N = 6P(E7), as stated in
equation (4). P(E715) is the probability of the evidence minus the j th item (ej). It can be
derived by undoing the contribution of P(e;1Q;) in equation (6).

The index is greater than unity when the evidence given by the taxon conforms with that given
by the rest of the sample, and is less than unity when the two conflict. If the index is very low
(say < 0.4), the taxon’s state is sufficiently inconsistent with the rest of the sample to be
considered exceptional. Thus, by deriving conformity indices for each taxon (i.e. present or
absent) it is possible to identify unexpected presences and absences for any given quality
class, site type and season. Furthermore, a conformity index for the sample as a whole can be
derived by averaging the conformity indices of all the taxa. Averages greater than about 1.4
indicate that the sample has a consistent community composition, whereas those less than
about 1.1 indicate that the sample has a fair degree of inconsistency in its biological
composition. It is important to note that the unexpected absences and presences are not
determined relative to a predicted reference-state community, as in RIVPACS, but relative to
the rest of the actual community in its actual river quality state. Such information can prove
invaluable when trying to identify specific pollutants. The system thus identifies oddities in
the actual sample, not the deviation of the samples from some predicted ‘ideal’ or reference-
state community. The latter could readily be determined by the Bayesian system, but it would
contribute nothing to the classification process.

5.6 The Models Tested

Naive Bayesian models were developed to classify ‘organic’ river quality class (i.e. as defined
in Section 2.4) for each of the five site types. ‘Organic’ river quality was used instead of the
biological GQA class, because the models required reliable target classifications from which
to derive their conditional probabilities. The GQA classifications were not considered
sufficiently reliable for this task (section 2.4), owing to the unreliability of NFAM predictions
(Section 3.3.7), and hence of the EQI(NFAM) component of the biological GQA
classification.

The first model developed was based upon combined spring and autumn biological data, but
models were later developed for spring and autumn separately. This was done because the
combined samples did not represent true biological communities and were therefore not
necessarily consistent in terms of their community compositions. Any such inconsistency
would undermine the ability of the conformity index to correctly identify unexpected
occurrences and absences.

The probability matrices required for the combined-season models, P(elQ,T), were
conditioned on river quality class (Q) and site type (T), whereas those required for the spring
and autumn models, P(elQ,T.,S), were further conditioned on season (S). All of these
conditional probabilities were derived from the database of exemplar sites as described in
Section 2.6.

Once developed, the models were used to classify the ‘organic’ river quality of each of the
6038 validated sites, and the results compared with the ‘organic’ classification derived from
EQI(ASPT)s derived by RIVPACS. Since neither of these classifications can be considered as
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absolutely correct, the results have been expressed in terms of the percentage agreement
between the two. Table 5.1 gives the results for the combined-season model.

Table 5.1 Percentage agreement between ‘organic’ river quality classifications given by
the naive Bayesian (combined-season) model and RIVPACS III

Site Percentage agreement by ‘organic’ river quality class Average | Overall
Type A b c d e f per class rate

1 83.9 60.0 79.8 88.7 88.4 100.0 83.5 75.0

2 82.5 66.9 75.9 77.1 85.6 91.7 80.0 76.8
81.0 64.5 72.9 75.6 82.1 100.0 79.4 74.8
77.2 71.6 71.5 80.4 79.6 87.5 78.0 74.9
78.9 67.3 64.4 63.5 67.9 85.7 71.3 68.8
Avg 81.1 65.6 71.4 75.5 81.5 92.7 78.0 74.1

wn B~ W

The benefits of applying the Principle of Indifference are apparent in the relative uniformity of
‘accuracy’ across all classes, giving an overall average per class of 78%. Compare this with
the distribution produced by the neural network classifier given in Table 3.16, where a very
similar overall rate (i.e. 75%) was achieved but with a much lower overall average per class
(i.e. 61.2%). Although these two cases are not strictly comparable, they do serve to illustrate
the point that higher overall performance does not necessarily give an acceptable distribution
of accuracy across the classes.

Table 5.2 and 5.3 compare the Bayesian (spring and autumn) and RIVPACS classifications of
the 6038 validated sites. The overall levels of agreement between the two systems were 67.1%
in spring and 65.7% in autumn. The tables reveal that 96 of the spring and 192 of the autumn
Bayesian classifications were two or more classes below their RIVPACS classification,
whereas only 29 and 20 respectively were two or more classes above their RIVPACS
classification. This imbalance between downgradings and upgradings is due to the fact that
the RIVPACS classification, being based on combined samples, tends to give an optimistic
view of the year as a whole. That is, the combined samples are more representative of the
better of the two individual samples and therefore tend to dominate the classification.

Table 5.2 Comparison between the Bayesian (spring) and RIVPACS classifications of
‘organic’ river quality of the 6038 validated sites.

RIVPACS Bayesian ‘Organic’ Class (Spring)

‘Organic’ Class a b c d e f Total
a 1492 403 51 0 1 0 1947
b 419 1000 319 19 5 1 1763
c 21 216 767 194 14 1 1213

d 0 5 111 471 106 4 697

e 0 0 3 66 285 24 378

f 0 0 0 0 4 36 40
Total 1932 1624 1251 750 415 66 6038
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Table 5.3 Comparison between the Bayesian (autumn) and RIVPACS classifications
of ‘organic’ river quality of the 6038 validated sites.

RIVPACS Bayesian ‘Organic’ Class (Autumn)

‘Organic’ Class a b c d e f Total
a 1477 370 91 8 1 0 1947
b 418 990 307 40 4 4 1763
c 20 242 704 211 35 1 1213

d 0 8 127 471 83 8 697

e 0 0 4 68 290 16 378

f 0 0 0 0 3 37 40
Total 1915 1610 1233 798 416 66 6038

Table 5.4 compares the Bayesian spring and autumn classifications. The overall level of
agreement between the two seasons was 64.0%. There distributions across the classes were
very similar, although autumn produced slightly fewer class ‘a’ and ‘b’ sites than spring, but
in percentage terms the difference was negligible. There were, however, some major changes
in site classification between the two seasons. The table shows that 98 spring samples were
classified as two or more classes below their autumn classification, and 170 autumn samples
were classified as two or more classes below their spring classification. The most extreme
case was Aller Brook (30m d/s ft br Aller Orchard) in South West Region (Devon and
Cornwall Areas) which was classified as ‘f” in spring and ‘a’ in autumn.

There is clearly advantage to be gained from having separate spring and autumn classifiers, if
only for operational reasons.

Table 5.4 Comparison between the Bayesian (spring) and Bayesian (autumn)
classifications of ‘organic’ river quality of the 6038 validated sites.

Bayesian
‘Organic’ Class Bayesian ‘Organic’ Class (Spring)
(Autumn) a b c d e f Total
a 1472 386 54 0 2 1 1915
b 366 955 270 17 2 0 1610
c 85 254 694 182 17 1 1233
d 9 27 196 445 117 4 798
e 0 2 33 96 263 22 416
f 0 0 4 10 14 38 66
Total 1932 1624 1251 750 415 66 6038

The Bayesian classifiers not only give the ‘organic’ river quality class of the site in terms of a
probability distribution, but also the conformity index of the sample and details of any
unexpected occurrences or absences of taxa in relation to the rest of the community. Taxa
with conformity indices of less than 0.4 were considered to be in an unexpected state of
existence. That might mean unexpectedly absent, unexpectedly present, or an unexpectedly
high or low level of abundance.
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Table 5.5 gives sets of such results for two sites surveyed in 1995, Pearl Brook and
Thurgarton Beck. Details are also given of the spring and autumn samples and the site
characteristics. These sites were selected to illustrate the value of the conformity index and
the probability-based classification, hence they are presented as unusual cases, not typical
ones. Five taxa were identified as unexpectedly present, all having conformity indices of less
than 0.04, except Ancylidae with 0.36. Just one taxon was identified as unexpectedly absent,
Gammaridae at Thurgarton Beck in both spring (C; = 0.39) and autumn (C; = 0.36). Since
Ancylidae and Gammaridae were only just below the 0.40 threshold used for the identification
of exceptional cases, they are not as obviously exceptional as the other taxa. In fact, it is
difficult to see why the occurrence of Ancylidae was identified as exceptional. It may be the
result of using conditional probabilities derived directly from field data, without smoothing
the distributions first.

Table 5.5 Selected results from the naive Bayesian classifier. Note that the number in
front of each taxon is its abundance category based upon a log;, scale. Taxa
shown in bold type had conformity indices of less than 0.40.

Pearl Brook Thurgarton Beck

Altit. 100 m, Dist. from source 3.6 km, Altit. 20 m, Dist from source 5.0 km,

Alk. 88.5 mg/l, Width 5m, Depth 20cm,  Alk. 262 mg/l, Width 1 m, Depth 8 cm.
Blds 3%, Pebls 30%, Sand 0%, Silt 67%. Blds 30%, Pebls 40%, Sand 20%, Silt 10%
Biological GQA class ‘e’ Biological GQA class ‘c’

Spring Sample Autumn Sample Spring Sample Autumn Sample
1 Hydrobiidae 2 Oligochaeta 2 Hydrobiidae 2 Hydrobiidae
1 Sphaeriidae 1 Erpobdellidae 2 Lymnaeidae 2 Lymnaeidae
1 Oligochaeta 1 Asellidae 1 Ancylidae 1 Ancylidae
1 Glossiphoniidae 1 Baetidae 1 Sphaeriidae 1 Sphaeriidae
1 Erpobdellidae 1 Leuctridae 4 Oligochaeta 2 Oligochaeta
1 Asellidae 1 Limnephilidae 1 Glossiphoniidae 1 Glossiphoniidae
1 Baetidae 2 Chironomidae 1 Baetidae 1 Baetidae
2 Hydropsychidae 1 Leptophlebiidae 2 Caenidae
2 Chironomidae 1 Dytiscidae 1 Haliplidae
1 Tipulidae 2 Dytiscidae
3 Chironomidae 1 Elmidae
1 Sialidae
1 Hydroptilidae
2 Tipulidae
2 Chironomidae

Missing Taxon
Gammaridae

Classification (Prob) Classification (Prob)

Missing Taxon
Gammaridae

Classification (Prob) Classification (Prob)

Avg. Conf. Ind. 1.05 Avg. Conf. Ind. 1.05

Class ‘a’ (0.00)
Class ‘b’ (0.00)
Class ‘c’ (0.02)
Class ‘d’ (0.91)
Class ‘e’ (0.07)
Class ‘f” (0.00)

Class ‘a’ (0.00)
Class ‘b’ (0.00)
Class ‘c’ (0.01)
Class ‘d’ (0.42)
Class ‘e’ (0.37)
Class ‘f” (0.20)
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Class ‘a’ (0.00)
Class ’b’ (0.01)
Class ‘c’ (0.80)
Class ‘d’ (0.19)
Class ‘e’ (0.00)
Class ‘f” (0.00)

Class ‘a’ (0.04)
Class ‘b’ (0.25)
Class ‘¢’ (0.71)
Class ‘d’ (0.00)
Class ‘e’ (0.00)
Class ‘f” (0.00)

Avg. Conf. Ind. 0.99 Avg. Conf. Ind. 1.00
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The degree of certainty that the model attaches to its classification is easily seen from its
probabilistic output. Samples with a high average conformity index generally result in a
classification in which the probability of the predicted class is greater than 0.9. Inconsistent
samples, however, tend to produce less conclusive classifications, their distributions often
span two or more classes, as can be seen in one of the four cases given in Table 5.5.
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6. SUMMARY AND GENERAL DISCUSSION

The performance of the various Al models developed during the project were discussed in the
appropriate sections, together with the results of their predictions/classifications and any
issues arising therefrom. This section highlights the key findings and discusses the issues that
they raise. It also provides pointers to those sections where fuller discussion can be found.

6.1 Key Findings
6.1.1 Prior knowledge

The key findings from earlier Al studies (Section 1.1), that are not incorporated in any existing
biological monitoring systems, are as follows.

e Expert river ecologists use two complimentary mental processes when directly interpreting
biological data: plausible reasoning, based on their scientific knowledge; and pattern
recognition, based on their experience.

e Bioindicator data are inherently uncertain in what they imply about river quality (Walley,
1994; Walley and Fontama, in press). For example, the presence of a given taxon does not
indicate a specific quality, but a range of possible qualities (Walley and Martin, 1997).
This uncertainty in meaning has important implications for the design of interpretation
systems (1.3). Its elimination by the use of representative values (e.g. BMWP family
scores) and averages (e.g. ASPT) simply results in loss of information.

e Two Al techniques are particularly well suited to the modelling of the mental processes
used by experts, namely Bayesian reasoning (1.5) and neural networks (1.4).

e The absence of a taxon from a-sample--often provides valuable information, thus
biomonitoring systems should incorporate data on the absence of bioindicator taxa as well
as their presence (Walley and Fontama, in press).

e Different levels of abundance (including the absence) of a bioindicator can differ
noticeably in both the weight (1.6.5 and 2.1), and meaning of the evidence they provide
(Walley and Fontama, in press).

e River quality is a concept having so many complex dimensions that it can only be
conceived and defined in terms that are essentially subjective, thus all river quality
classification systems, whether biological or chemical, have their subjective components.
The issue to be addressed is how to minimise any detrimental impact of this component on
system performance (1.6.4).

e There are no absolute standards for river quality, so existing classifications do not provide
ideal examples on which to base the development of new systems.

6.1.2 Indicator values
Information theory was used to define the indicator values of the 76 BMWP families for both

presence/absence and abundance-level (including absent) data. The key findings of the study
were as follows.
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e The term ‘indictor value’ is used fairly loosely, despite the fact that it can have two very
different meanings (2.1.1), a conditional value and an unconditional value. The first has
value as a weighting coefficient in systems like the saprobic system, whereas the second
has a much more general meaning in that it indicates the taxon’s overall value as a sensor
of river quality, irrespective of any specific site or sample. This value has significance in
relation to the overall design and optimisation of monitoring systems.

e Information theory (2.1.2) provides a means of evaluating indicator values (conditional or
unconditional) of bioindicators in terms of the value of the information they provide in
relation to some desired classification. Unconditional indicator values were derived using
national presence/absence and abundance data from Riffles and Pools (2.1.3 and Appendix
A).

e Indicator values differed between Riffles and Pools, and only six families were common to
the top 20 from each site type, namely (in rank order) Elmidae, Leptoceridae, Baetidae,
Caenidae, Gammaridae and Ephemeridae (Appendix A).

e Some families gave much higher indicator values when based on abundance data rather
than just presence/absence data, notably Oligochaeta, Chironomidae, Asellidae and
Erpobdellidae (2.1.3 and Appendix A).

e Two non-BMWP families, Hydracarina and Ceratopogonidae, gave indicator values that
placed them in the top 50 indicator families (2.1.3), and it is suggested that they should be
added to the list of BMWP families.

e Indicator values based upon regional subsets of the national data showed a high degree of
similarity between the rank orders of families in most regions, with the exception of Anglia
and Thames which, although similar in themselves, were noticeably different from the rest
(2.1.4).

e The rank order of families based on the average of their regional indicator values was
different from that based on the national data, in that some families moved up a several
places and others move down. The reason for this appeared to be that some families
showed marked differences in indicator value from region to region, which when averaged
resulted in a change in their national ranking position (2.1.4). This was most probably due
to spatial variations in the species mix within the families in question.

6.1.3 Supervised-learning networks

Supervised-learning networks were developed to: classify site type; predict ‘unpolluted’” ASPT
and NFAM; predict BOD, DO and ammonia; and classify ‘organic’ river quality. However,
the first two were investigated in greater depth than the other two. It should be noted that the
predictors of ASPT and NFAM were not developed as part of the mainstream Al approach to
biomonitoring, but as a means of comparing the capabilities of neural networks with a
recognised statistical model (RIVPACS) in a like-for-like way using the same dataset. The key
outcomes from these studies were as follows.

Site Type Classifiers (3.2)

These were developed to enable the validated sites to be partitioned into approximately equal
subsets on the basis of their environmental characteristics.
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The site types were classified into five categories, labelled 1 to 5, by banding predicted
‘unpolluted” ASPTs such that each site type had an approximately equal number of sites.
Three neural network classifiers were developed, each based on a different training set but
the same three-variable input vector consisting of alkalinity, altitude and substrate
(percentage sand plus silt).

The 6038 validated biological sites were classified into site types using a consensus of
neural network classifiers and a classifier based upon RIVPACS predictions of ASPT. The
geographic distributions (Figures B1-B5)) of the five site types indicate that they vary from
upland riffles (type 1) to lowland pools (type 5). The precise nature of these five types is
best illustrated graphically in terms of their altitudes, alkalinities and substrate
compositions (Figures B6-B9).

Predictors of ASPT and NFAM (3.3)

Preliminary tests carried out on several different types of network showed that the most
suitable network for the task was the standard back-propagation network (3.3.3).

Irrelevant environmental variables were removed from the input vector using impact
analyses (3.3.4). These showed that the ASPT predictor required just five inputs (i.e.
alkalinity, altitude, percentage silt, logjo of slope and discharge category) and that the
NFAM predictor required seven inputs (i.e. distance north, altitude, percentage sand, logjo
of distance from source, log;, of slope, river depth and distance east).

Two-fold cross validation analysis permitted the development and testing of both

independent and dependent models (3.3.2). Tests on these models (3.3.7) showed that:

- the ASPT predictors performed markedly better than the NFAM predictors on both
dependent and independent data;

- the NFAM predictors performed markedly worse on independent data than on dependent
data, thus casting further doubt on the reliability of NFAM predictions in practice.

Comparisons made between the neural networks and RIVPACS III showed that the
networks slightly out-performed RIVPACS, and achieved in one non-linear mathematical
step what RIVPACS achieved in three steps (3.3.7)

An ASPT predictor based upon the revised BMWP family scores derived by Walley and
Hawkes (1996, 1997) produced a noticeable improvement in the correlation between the
predicted and target ASPTs, thus indicating that the revised scores provided a better fit than
the original scores (3.3.9).

An investigation into possible causes of error and bias in the predictions of ASPT and

NFAM indicated that:

- the most likely cause of an apparent spatial bias on a river basin scale (3.3.8 and
Appendix C) was the lack of one or more relevant environmental variables in the input
data, especially catchment (as opposed to site) variables (e.g. geology).

- a significant component of the apparent prediction errors may not be errors at all but
simply stochastic variations of natural processes (3.3.8).

- errors were greatest when one or more of the key predictor variable (e.g. alkalinity,
altitude and silt) were close to the upper or lower limits of their range (i.e. at or near the
edge of data space).
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Accuracy of GQA Classifications

Biological GQA classifications of the 6038 validated sites based upon the neural network
predictors of ASPT and NFAM showed 79.8% agreement with the RIVPACS classification
when based upon original BMWP scores and 72.5% agreement when based on revised
scores, thus indicating that up to about 25% of existing biological GQA classifications may
be of questionable accuracy (3.3.11).

Biological GQA classifications are sensitive to the mathematical method used to predict
ASPT and NFAM, even when the methods have the same overall level of accuracy
(3.3.11).

Other Supervised-learning Networks

Networks were trained to predict BOD, DO and ammonia from biological data for each of
the five site types (3.4). The correlation coefficients achieved were 0.497, 0.578 and 0.660
for BOD, DO and ammonia respectively.

Networks were trained to classify ‘organic’ river quality (3.5) using target classifications
derived by two different methods, one based on RIVPACS and one based on a neural
network predictor of ASPT (2.4). Separate networks were trained for each of the five site
types. These achieved an overall ‘correct’ classification rate of 75%, but performed poorly
on class ‘f” due to its under-representation in the data (3.5).

6.1.4 Self-Organising Maps (unsupervised networks)

Initial tests carried out on three different unsupervised networks (i.e. SOM, GTM and ART?2)
to determine which was the most suitable for the task, showed that SOM and GTM performed
better than ART?2 and that there was very little to choose between the two (4.1 and 4.2). It was
decided to proceed with SOM on the basis that it was well established and had a long record
on successful applications. The key findings were as follows.

The principal advantage of unsupervised networks is that they do not require target values,
but this has a cost in that their output categories have no meaning until they have been
labelled by experts, which is not a trivial task. SOM and GTM have the advantage that
they permit visual interpretation of multi-variate data via feature maps (Appendix D) based
upon their output arrays.

Five SOMs were developed using 10x10 output arrays, one for each site type (4.2). Their
input vectors consisted of the 76 BMWP taxa only, since it was assumed that the site types
had accounted for the environmental factors.

A single SOM with a 20x20 output array was developed to cover all site types (4.4). Its
input vector consisted of 76 BMWP taxa plus 13 environmental variables. Tests showed
that there was very little difference in performance between the five 10x10 site-specific
SOMs and the single 20x20 SOM covering all site types. Thus it was decided to proceed
with the development of the latter since it had the advantage of not requiring site type
classifications.

Feature maps of 97 attributes of the data were produced (Appendix D), together with a
software package, SOMVIEW, that permits any two feature maps to be compared on
screen. Examination of the feature maps has highlighted some interesting relationships
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(4.4.3) and SOMVIEW clearly has potential as a research tool. A limited version of
SOMVIEW is freely available on the Web (4.4.4).

e No attempt was made to label the 400 output categories, because there are improvements
that can be made to the SOM’s topology and function before attempting this task. These
objectives now form part of a new project (National R&D Project E1-056). Preliminary
investigations have shown that different parts of the map represent different types of
pollution, a property that clearly opens up the possibility of using the SOM for diagnosis,
not just classification.

6.1.5 Bayesian classifiers

Although this project was primarily concerned with neural networks, it did include the
development of classifiers of river quality based on naive Bayesian inference. This was done
to explore the potential of Bayesian methods and to provide an independent measure of the
performance of the neural network classifiers. The principal outcomes were as follows.

e Naive Bayesian classifiers of ‘organic’ river quality were developed for each of the five
site types using combined-season data (5.5). They incorporated conformity indices (5.4) to
highlight families that are unexpectedly absent or over/under abundant in relation to the
composition of the rest of the community. Unfortunately, the lack of biological consistency
in the combined-season samples (i.e. they were not true communities) undermined the
ability of the conformity indices to identify anomalous states of existence. Nevertheless, the
models achieved 74.1% agreement with the ‘desired’” combined-season values, compared to
75.0% for the equivalent neural network, but produced much better uniformity of accuracy
across the classes than the network.

e Naive Bayesian classifiers of ‘organic’ river quality were developed for each of the five site
types using spring and autumn data-separately (5.5). This was done to overcome the
problem arising from the lack of biological consistency in the combined-season model.
These models classify ‘organic’ river quality in probabilistic terms using the spring and
autumn samples separately, and in both cases provide lists of families that are considered to
be misfits in the observed community (not relative to a ‘reference-state’ community),
including unexpected absences.

e The spring and autumn models achieved 67.1% and 65.7% agreement with the ‘desired’
combined-season classification (5.6). The lower figures achieved here (i.e. compared with
the 74.1% of the combined-season Bayesian models) are a natural consequence of
producing two separate classifications in place of one annual classification, and do not
indicate lower performance. The level of agreement between the Bayesian spring and
autumn classifications was 64.0%.

e The Bayesian approach provides two distinct advantages. Firstly, it not only handles the
inherent uncertainty in the meaning of the data in a mathematically sound way, but also
carries it through to its conclusion, thus providing a measure of the reliability of the
conclusion. Secondly, the ability of conformity indices to identify unexpected states of
existence has potential for use in quality assurance and the diagnosis of specific pollutants.
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6.2 Discussion of Main Issues

There are several important issues that arise out of this project. These are mainly concerned
with fundamental differences between the Al approach and approaches used by existing
methods, but they also include issues relating to: inherent subjectivity; the scope and meaning
of quality classes; the best ways forward for classification systems; and the development of
diagnostic/ prognostic systems.

6.2.1 Basis of approach

The AI approach is fundamentally different from the RIVPACS approach, in that it is not
based upon the concept of a ‘clean’ reference state, but takes a more holistic approach to
‘clean’ and ‘dirty’ water biology. That is, RIVPACS is based only on the biology of
‘unpolluted’ waters, leaving the BMWP system to provide the basis for the river quality
classification via EQIs, whereas the AI approaches is based on the biology of all waters,
polluted or unpolluted. No single river quality condition is considered more important than
any other, since each is treated as a sort of ‘reference’ condition in its own right. Thus the
problem of how to measure the absolute difference between a river’s actual state and its
‘unpolluted’ (or reference) state, in order to define its degree of environmental stress (i.e. as
via EQIs in the RIVPACS approach) simply does not arise in the Al approach. The river’s
actual state is judged relative to several possible ‘unpolluted’ and polluted (or unstressed /
stressed) states, based on the known or recorded biology of those states. The principal reason
for taking this approach was that it is basically what an expert with knowledge and experience
of ‘dirty’ water ecology would do, but there are also good analytical reasons for rejecting the
metric (i.e. EQI) approach, as will be explained later.

The Al approach also incorporates some key characteristics of biological data that hitherto
have been ignored or inadequately represented, namely inherent uncertainty in its meaning and
the relevance of absent taxa. The absence of a taxon, like its other states of ‘existence’, is
allowed to contribute evidence about the river’s state of health. In all cases, the evidence
presented is inherently uncertain, but is more so in the case of absence. It is not absolute in its
meaning but vague, and is best thought of in terms of probability distributions. These
distributions are non-linear, sometimes bi-modal, and differ in shape between abundance
levels (Walley and Fontama, in press). Consequently, the relationship between community
composition and river quality turns out to be non-linear and not necessarily uni-modal. These
facts severely undermine any reference state approach that is based upon simple metrics of
environmental stress (e.g. EQIs). The AI techniques used in the study were able to
accommodate both the uncertainty and the variations in meaning in the data.

The Bayesian models represented them explicitly in the form of probability
distributions and combined the evidence using probability theory, thus producing
conclusions expressed in probabilistic terms.

The neural networks handled the uncertainty implicitly via their inherent ability to
generalise by recognising patterns as a whole, and modelled the variations in meaning
with respect to abundance level via their ability to perform complex non-linear
mappings. One network produced outputs in probabilistic terms, and the others could
be made to do so if required.
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6.2.2 Subjectivity

The only models developed in the study that could be termed ‘objective’ were the neural
network predictors of BOD, DO and ammonia, because they were based on chemically
derived target outputs, but even these contained some subjectivity (e.g. choice of output
topology, choice of sampling site and time). However, general river quality by its very nature
(1.6.4) dictates that any classification system will contain a significant subjective component.
We need to recognise this fact and concentrate on maximising the quality of the subjective
component and minimising any detrimental impact it may have on the system’s performance.
Walley and Hawkes (1996, 1997) demonstrated how the quality of the subjectively derived
BMWP scores could be enhanced by data analysis. Even so, the BMWP system, on which the
biological GQA classifications are based, remains founded on subjectivity. One interesting
feature of the SOM classifier is that it transfers the subjective input from the beginning to the
end of the classification process, by ‘objectively’ categorising the data into different patterns
and then leaving experts to define the river quality that each pattern represents. The only
subjectivity remaining at the start of the process is the choice of output topology and similarity
metric. Intuitively, this transfer of subjectivity to the end of the process seems desirable, since
it at least makes any impact on final classifications more transparent.

6.2.3 Scope and meaning of quality classes

Many different terms have been used in relation to the quality classes, including water quality,
environmental quality, biological quality, biological condition and river quality. These have
all been used rather loosely or at least without a clear definition of meaning. River quality has
been used throughout this report in recognition that man-made impacts on community
composition do not occur only as a result of pollution of the river water, but also through
factors such as contamination of the river bed, destruction of habitats by river engineering
works, and the regulation of river flows. However, some natural events and processes can
have very similar effects on community composition, but being natural they do not constitute
pollution and should not result in a degradation of river quality class. This presents quite a
challenge and highlights the need for the collection of relevant environmental data across a
wider range of variables than at present. The study has highlighted some current deficiencies
in this respect (3.3.8), with reference to bias in predicted ASPTs and NFAMs on a river-basin
scale. If the effects of bed contamination, engineering works and flow regulation are to be
separated out from natural effects, then urgent action is needed to acquire the data necessary
for the construction of the models.

6.2.4 The future of classification systems

The results of this project show that the present biological GQA classification system is
sensitive to the type of model used to predict the unpolluted ASPTs and NFAMs (even given
the same overall accuracy), and that a change from RIVPACS to neural network predictions
would result in 20.1% of sites changing their classification by one class. Furthermore, a
revision of BMWP scores to the site-related values derived by Walley and Hawkes (1997)
would result in a further 7.3% of sites changing their classification by one class. Thus, if we
assume the GQA classification system is perfect except for possible improvements to the
BMWP scores and predictions of ASPTs and NFAMs, then it follows that such improvements
could result in up to 27% of sites changing their class. However, the GQA classification
system is not perfect for reasons relating to its EQI metrics mentioned earlier. Thus the
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Agency has to judge whether this situation is acceptable and, if not, to what extent it wishes to
improve the system. Does it wish to revise the existing system to gain whatever
improvements can be had without embarking on wholesale change, or does it wish to embrace
a new approach with potential for greater accuracy and reliability ?

There are several ways in which the existing system can be improved.

e A revision of BMWP family scores would improve the system’s ability to discriminate
between different organic qualities. This could be done either by adopting the scores
derived by Walley and Hawkes (1996, 1997) or, preferably, by carrying out a reappraisal of
scores based on the 1995 validated biological data.

e Improvements could be made to the prediction of EQI metrics. In the case of ASPT, this
could be achieved using a combination of neural network models and RIVPACS to form a
‘committee of experts’ that would provide a prediction by consensus. In the case of
EQI(NFAM), the less reliable of the two metrics, it is difficult to see how any worthwhile
improvement could be made without a fundamental change to its basis. For example, a
weighted NFAM could be defined by weighting families according to their sensitivity to
toxic pollution. This would remove some of the coarseness of NFAM but do little to
reduce its sensitivity to sampling effort. In addition, or alternatively, a ‘toxic’ equivalent to
ASPT could be developed based on a set of family scores that reflect each family’s overall
sensitivity to ‘toxic’ pollution.

e The collection of additional environmental data that are relevant to the prediction of ASPT
and NFAM would help to improve the predictions, and hence the accuracy of the EQI
metrics.

e If family scores were expressed in the form of probability distributions (i.e. similar to
saprobic valencies), then the naive Bayesian approach could be used to combine the
evidence (including that given by absent taxa) to derive a pseudo-ASPT (i.e. an exact
Bayesian equivalent of the average score per taxon). This would have the advantage of
improving accuracy and providing a measure of reliability for each individual case.

e In the longer term, once the AI systems have been fully proven under operational
conditions, it would be beneficial to replace the existing metric-based classification system
by an Al system that takes a more holistic approach to river ecology by incorporating the
biology of both ‘unpolluted’ and polluted waters. The thousands of samples that are
collected annually by the Agency contain a wealth of information on the biology of
polluted and environmentally stressed waters. The present system inadequately models this
biology using a simple metric based upon predicted ASPTs and NFAMs. This represents a
considerable waste of valuable information that has been collected at great expense.

6.2.5 Development of diagnostic / prognostic systems

The project has demonstrated that AI techniques have considerable potential for the
development of operational tools for the diagnosis of river quality problems. In particular, the
results of tests on the Self-Organising Maps (SOM10 and SOM20) showed that these
networks have the potential of relating different patterns in the biological/environmental data
to specific types of pollution. However, the links between the patterns and the types of
pollution are not made by the SOM. It requires experts to create these links by identifying and
labelling the river condition represented by each pattern. This is because SOMs are
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unsupervised networks that learn in the absence of target outputs. The outputs categories of
the SOMs that were developed in this project were not labelled by experts, because it was
recommended that further improvements be made to the topology and function of the SOMs
before commencing this exercise. These improvements are now being implemented through
National R&D Project E1-056.

If the targets are known, as was the case for BOD, DO and ammonia (despite their known
inadequacies), then supervised networks can be trained to predict concentrations of specific
pollutants. This, however, requires the matching of biological sites to chemical sites having
data on the range of pollutants of interest. Machine learning techniques have also been used
to infer chemical parameters from biological data (DZeroski et al., 1997a). Unlike neural
networks, machine learning attempts to derive knowledge from the data by inducing rules.
This has the advantage of making their conclusions more transparent, but they have yet to
demonstrate the same level of performance as neural networks.

The ability of the naive Bayesian classifiers to identify anomalies in community composition
offers a possible way of identifying specific pollutants. It also provides a powerful means of
rapidly screening data for quality assurance purposes. These benefits, together with the ability
of Bayesian Belief Networks (BBNs) to model dependencies within complex systems and to
reason predictively and diagnostically under conditions of uncertainty, make Bayesian
methods the most promising knowledge-based tools available. These systems are so flexible
that they can be used for diagnosis or prognosis as the need arises. Furthermore, they are non-
monotonic, which means that they can ‘change their minds’ when new evidence ‘explains
away’ earlier evidence.

Furthermore, the SOM and BBN techniques are complimentary: one making good use of
available databases and replicating the pattern recognition skills of experts; and the other
making good use of existing scientific knowledge and replicating expert reasoning. It is
envisaged that it will be possible in future to combine these two approaches to produce a
single overall conclusion, weighted in proportion to the certainty in the separate conclusions
drawn by the SOM and BBN.
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7.

RECOMMENDATIONS AND CONCLUSION

7.1 Recommendations

That consideration be given to ways of improving the reliability of the biological GQA
classification system. The suggested improvements are:

- the use of neural networks in conjunction with RIVPACS to predict unpolluted ASPTs
and NFAMs;

- to collect additional environmental variables to improve the predictive capabilities of the
models;

- to revise the BMWP family scores through an analysis of the 1995 National Survey data,
including the derivation of scores for different site types and abundance levels;

- to add Hydracarina and Ceratopogonidae to the list of BMWP taxa;

- to apply a Bayesian approach to the combination of the evidence given by the BMWP
taxa (including absent taxa) so as to produce a pseudo-ASPT (i.e. an exact Bayesian
equivalent of ASPT); and

- to introduce a ‘toxic’ equivalent of ASPT in an attempt to overcome the problems
resulting from the unreliability of the EQI(NFAM) metric.

That action be taken to compile databases of matched biological and chemical sites,
incorporating as many relevant environmental and chemical variables as possible, but
especially the principal pollutants and other main causes of environmental stress.

That the work on SOM networks be continued to further improve their topology and
internal functions, and to develop and test an operational SOM for use on the diagnosis of
river quality problems.

To further explore the potential of Bayesian methods through a feasibility study involving
the development of a prototype Bayesian Belief Network for the diagnosis and prognosis of
specific river quality problems.

In the longer term, when Al methods have proven their worth as diagnostic and prognostic
tools, consideration should be given to using them for river quality classification.

7.2 Conclusion

Two techniques from the field of Artificial Intelligence have been shown to offer considerable
potential for use in river quality classification and as operational tools for the diagnosis and
prognosis of river quality problems. These techniques are neural networks and Bayesian
methods of reasoning under conditions of uncertainty. Together they offer the possibility of
modelling the mental processes used by expert river ecologists when directly interpreting
biological data.
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Table A1 Information values of 76 BMWP taxa for ‘Riffle’ sites listed in order of
their M’(C, X) values derived from abundance data.

M, X) M, X)
Mutual Inform. Indiff. Mut. Inform. Improv.
Rnk Taxon (Pres)  (Abun) (Pres) (Abun)  Ratio
1 ELMIDAE 0.2551 0.3158 0.3809 0.4415 1.16
2 HYDROPSYCHIDAE 0.1591 0.1839 0.3044 0.3309 1.09
3 HEPTAGENIIDAE 0.1769  0.1958 0.2481 0.2688 1.08
4 SERICOSTOMATIDAE 0.1844 0.18%4 0.2520  0.2575 1.02
5 RHYACOPHILIDAE 0.1478 0.1571 0.2287 0.2390 1.05
6 LEUCTRIDAE 0.1465 0.1514 0.1955 0.2030 1.04
7 LEPTOCERIDAE 0.1127 0.1149 0.1899 0.1917 1.01
8 LEPIDOSTOMATIDAE 0.1451  0.1458 0.1845 0.1849 1.00
9 BAETIDAE 0.0576  0.0741 0.1544 0.1845 1.20
10 GYRINIDAE 0.1347 0.1368 0.1721 0.1740 1.01
11 PERLODIDAE 0.1220  0.1236 0.1706  0.1728 1.01
12 GAMMARIDAE 0.0307 0.0383 0.1502 0.1714 1.14
13 TIPULIDAE 0.0766  0.0916 0.1345 0.1561 1.16
14 CAENIDAE 0.0800 0.0822 0.1457 0.1484 1.02
15 EPHEMERELLIDAE 0.0945 0.0963 0.1320 0.1337 1.01
16 LIMNEPHILIDAE 0.0495 0.0537 0.1280 0.1336 1.04
17 HYDROPHILIDAE 0.0872  0.0937 0.1262 0.1336 1.06
18 GOERIDAE 0.1018 0.1038 0.1304 0.1323 1.01
19 SIMULIIDAE 0.0528 0.0605 0.1125 0.1210 1.08
20 EPHEMERIDAE 0.0997 0.1005 0.1166 0.1173 1.01
21 HYDROBIBITHINIIDAE 0.0224  0.0292 0.0995 0.1173 1.18
22 NEMOURIDAE 0.0663 0.0691 0.1093 0.1132 1.04
23 ANCYLIDAE 0.0460 0.0501 0.0944 0.1055 1.12
24 LEPTOPHLEBIIDAE 0.0704 0.0709 0.0987 0.0996 1.01
25 ASELLIDAE 0.0560  0.0803 0.0586  0.0951 1.62
26 SPHAERIIDAE 0.0125 0.0154 0.0719 0.0812 1.13
27 CHLOROPERLIDAE 0.0505 0.0510 0.0791 0.0796 1.01
28 HYDROPTILIDAE 0.0390  0.0405 0.0719 0.0754 1.05
29 POLYCENTROPODIDAE 0.0474  0.0488 0.0725 0.0744 1.03
30 DYTISCIDAE 0.0226  0.0232 0.0688 0.0701 1.02
31 TAENIOPTERYGIDAE 0.0438 0.0452 0.0670 0.0688 1.03
32 PLANARIIDAE 0.0151 0.0166 0.0661 0.0685 1.04
33 GLOSSIPHONIIDAE 0.0118 0.0132 0.0542 0.0566 1.04
34 BRACHYCENTRIDAE 0.0386  0.0388 0.0492  0.0493 1.00
35 ODONTOCERIDAE 0.0466  0.0470 0.0483  0.0485 1.00
36 OLIGOCHAETA 0.0022  0.0250 0.0052  0.0465 8.94
37 PSYCHOMYIIDAE 0.0150 0.0155 0.0440 0.0446 1.01
38 CHIRONOMIDAE 0.0067  0.0205 0.0250 0.0423 1.69
39 PERLIDAE 0.0363  0.0365 0.0410 0.0411 1.00
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Table A1 Information values of 76 BMWP taxa for ‘Riffle’ sites listed in order of

(cont.) their M’(C, X) values derived from abundance data.
M(C, X) M, X)
Mutual Inform. Indiff. Mut. Inform. Improv.
Rnk Taxon (Pres)  (Abun) (Pres) (Abun)  Ratio
40 CALOPTERYGIDAE 0.0174  0.0177 0.0352 0.0356 1.01
41 PISCICOLIDAE 0.0214  0.0215 0.0345 0.0347 1.00
42 HALIPLIDAE 0.0097 0.0102 0.0322 0.0328 1.02
43 ERPOBDELLIDAE 0.0116  0.0191 0.0199 0.0301 1.52
44 PLANORBIDAE 0.0049 0.0063 0.0241 0.0256 1.06
45 SIALIDAE 0.0102 0.0105 0.0236  0.0241 1.02
46 LYMNAEIDAE 0.0040 0.0060 0.0192 0.0219 1.14
47 NERITIDAE 0.0147 0.0151 0.0206 0.0212 1.03
48 SCIRTIDAE 0.0089  0.0092 0.0184 0.0188 1.02
49 APHELOCHEIRIDAE 0.0131 0.0140 0.0175 0.0179 1.03
50 DENDROCOELIDAE 0.0042 0.0046 0.0153  0.0157 1.03
51 VALVATIDAE 0.0032  0.0045 0.0120 0.0142 1.18
52 PHILOPOTAMIDAE 0.0091  0.0094 0.0130 0.0133 1.02
53 CORIXIDAE 0.0030  0.0047 0.0101 0.0119 1.19
54 COENAGRIIDAE 0.0029 0.0033 0.0086  0.0090 1.05
55 GERRIDAE 0.0042  0.0045 0.0075 0.0079 1.05
56 UNIONIDAE 0.0040 0.0040 0.0074 0.0074 1.01
57 PHYSIDAE 0.0017  0.0029 0.0032  0.0060 1.88
58 BERAEIDAE 0.0031 0.0031 0.0050 0.0051 1.00
59 MOLANNIDAE 0.0034 0.0034 0.0050 0.0050 1.00
60 CAPNIIDAE 0.0029 0.0036 0.0039 0.0046 1.18
61 ASTACIDAE 0.0022  0.0027 0.0036  0.0041 1.11
62 HYDROMETRIDAE 0.0012 0.0014 0.0029 0.0031 1.06
63 HIRUDINIDAE 0.0030 0.0031 0.0027 0.0031 1.13
64 CORDULEGASTERIDAE 0.0020 0.0020 0.0030 0.0030 1.00
65 PLATYCNEMIDIDAE 0.0010 0.0014 0.0024 0.0028 1.15
66 PHRYGANEIDAE 0.0012  0.0012 0.0027 0.0027 1.00
67 NOTONECTIDAE 0.0009  0.0009 0.0026  0.0026 1.00
68 VIVIPARIDAE 0.0017  0.0020 0.0021 0.0023 1.08
69 DRYOPIDAE 0.0010 0.0010 0.0016 0.0016 1.03
70 COROPHIIDAE 0.0007 0.0011 0.0013  0.0015 1.16
71 SIPHLONURIDAE 0.0004  0.0009 0.0007 0.0010 1.53
72 POTAMANTHIDAE 0.0006  0.0008 0.0009 0.0010 1.14
73 NEPIDAE 0.0004 0.0004 0.0009  0.0009 1.00
74 LIBELLULIDAE 0.0004  0.0004 0.0006  0.0006 1.00
75 AESHNIDAE 0.0005  0.0005 0.0005  0.0005 1.00
76 NAUCORIDAE 0.0001  0.0001 0.0003  0.0003 1.00
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Table A2

Rnk Taxon
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LEPTOCERIDAE
CAENIDAE
ELMIDAE
BAETIDAE
HYDROBI/BITHINIIDAE
GAMMARIDAE
SPHAERIIDAE
PLANORBIDAE
COENAGRIIDAE
SIALIDAE
LIMNEPHILIDAE
CALOPTERYGIDAE
DYTISCIDAE
CORIXIDAE
VALVATIDAE
EPHEMERIDAE
HALIPLIDAE
PLANARIIDAE
HYDROPTILIDAE
LYMNAEIDAE
ANCYLIDAE
GLOSSIPHONIIDAE
POLYCENTROPODIDAE
PSYCHOMYIIDAE
HYDROPSYCHIDAE
MOLANNIDAE
LEPTOPHLEBIIDAE
PISCICOLIDAE
UNIONIDAE
NOTONECTIDAE
ERPOBDELLIDAE
ASELLIDAE
OLIGOCHAETA
HYDROPHILIDAE
SERICOSTOMATIDAE
CHIRONOMIDAE
EPHEMERELLIDAE
PHRYGANEIDAE
NERITIDAE
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Information values of 76 BMWP taxa for ‘Pool’ sites listed in order of
their M’(C, X) values derived from abundance data.

M(C, X) M'(C, X)

Mutual Inform. Indiff. Mut. Inform. Improv.
(Pres)  (Abun) (Pres)  (Abun) Ratio
0.1927 0.1989 0.2469 0.2531 1.02
0.1689 0.1831 0.2127 0.2243 1.05
0.1398 0.1511 0.1989 0.2107 1.06
0.0959 0.1067 0.1624 0.1747 1.08
0.1073  0.1126 0.1645 0.1728 1.05
0.0883 0.1060 0.1487 0.1705 1.15
0.0659 0.0771 0.1240 0.1501 1.21
0.0809 0.0841 0.1362 0.1418 1.04
0.0893 0.0975 0.1284 0.1377 1.07
0.0752 0.0767 0.1300 0.1318 1.01
0.0746  0.0831 0.1167 0.1289 1.10
0.0945 0.0970 0.1256  0.1280 1.02
0.0616  0.0653 0.1134 0.1198 1.06
0.0691 0.0748 0.1088 0.1176 1.08
0.0730 0.0757 0.1106 0.1146 1.04
0.0904 0.0922 0.1080 0.1098 1.02
0.0661 0.0691 0.1059 0.1097 1.04
0.0596 0.0610 0.1009 0.1032 1.02
0.0646  0.0689 0.0855 0.0892 1.04
0.0305 0.0404 0.0723  0.0840 1.16
0.0608 0.0634 0.0812 0.0838 1.03
0.0337 0.0368 0.0779 0.0836 1.07
0.0568  0.0595 0.0742  0.0769 1.04
0.0555 0.0577 0.0752 0.0768 1.02
0.0422  0.0457 0.0693 0.0721 1.04
0.0629 0.0633 0.0717  0.0720 1.00
0.0519 0.0545 0.0686  0.0707 1.03
0.0540 0.0552 0.0646  0.0656 1.02
0.0492 0.0502 0.0615 0.0622 1.01
0.0409 0.0429 0.0589  0.0609 1.03
0.0277 0.0379 0.0431 0.0541 1.26
0.0174 0.0314 0.0311  0.0520 1.67
0.0020  0.0337 0.0023  0.0484 21.21
0.0214 0.0256 0.0444 0.0483 1.09
0.0368 0.0381 0.0454 0.0464 1.02
0.0103  0.0260 0.0222  0.0463 2.09
0.0354 0.0379 0.0436  0.0456 1.05
0.0367 0.0367 0.0455 0.0455 1.00
0.0368 0.0385 0.0439 0.0453 1.03
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Table A2
(cont.)

Rnk Taxon

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

PHYSIDAE
PLATYCNEMIDIDAE
TIPULIDAE
GYRINIDAE
GOERIDAE
GERRIDAE
LEPIDOSTOMATIDAE
SIMULIIDAE
HEPTAGENIIDAE
RHYACOPHILIDAE
VIVIPARIDAE
NEMOURIDAE
BERAEIDAE
DENDROCOELIDAE
COROPHIIDAE
NAUCORIDAE
BRACHYCENTRIDAE
SCIRTIDAE
APHELOCHEIRIDAE
HYDROMETRIDAE
PERLODIDAE
LEUCTRIDAE
AESHNIDAE
NEPIDAE
LIBELLULIDAE
TAENIOPTERYGIDAE
ASTACIDAE
CORDULEGASTERIDAE
ODONTOCERIDAE
CHLOROPERLIDAE
HIRUDINIDAE
SIPHLONURIDAE
PERLIDAE
DRYOPIDAE
CAPNIIDAE
POTAMANTHIDAE
PHILOPOTAMIDAE
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Information values of 76 BMWP taxa for ‘Pool’ sites listed in order of
their M’(C, X) values derived from abundance data.

M, X) M'(C, X)

Mutual Inform. Indiff. Mut. Inform. Improv.
(Pres)  (Abun) (Pres)  (Abun) Ratio
0.0247  0.0277 0.0400 0.0439 1.10
0.0345 0.0375 0.0417 0.0437 1.05
0.0176  0.0201 0.0385 0.0422 1.10
0.0255 0.0279 0.0360 0.0382 1.06
0.0313  0.0327 0.0371 0.0381 1.03
0.0191 0.01%96 0.0283  0.0286 1.01
0.0260  0.0265 0.0279 0.0281 1.01
0.0114 0.0133 0.0261 0.0278 1.07
0.0223  0.0229 0.0270 0.0273 1.01
0.0179  0.0204 0.0247 0.0264 1.07
0.0173 0.01%4 0.0234  0.0250 1.07
0.0127 0.0151 0.0223  0.0248 1.12
0.0173  0.0181 0.0201  0.0207 1.03
0.0122 0.0125 0.0196 0.0199 1.02
0.0106 0.0151 0.0145 0.0190 1.31
0.0138 0.0151 0.0169 0.0179 1.06
0.0118 0.0125 0.0151 0.0157 1.04
0.0071  0.0087 0.0138 0.0154 1.12
0.0132  0.0137 0.0146 0.0149 1.02
0.0083  0.0089 0.0134 0.0139 1.04
0.0099 0.0117 0.0114 0.0136 1.20
0.0082 0.0096 0.0115 0.0131 1.14
0.0059  0.0059 0.0087  0.0087 1.00
0.0055  0.0055 0.0083  0.0083 1.00
0.0044 0.0044 0.0068 0.0068 1.00
0.0036  0.0047 0.0042 0.0056 1.31
0.0013  0.0026 0.0024 0.0036 1.51
0.0030 0.0030 0.0034 0.0034 1.00
0.0022 0.0031 0.0027 0.0031 1.18
0.0026  0.0026 0.0026  0.0026 1.00
0.0013 0.0013 0.0018 0.0018 1.00
0.0007  0.0007 0.0012 0.0012 1.00
0.0013 0.0013 0.0011  0.0011 1.00
0.0006  0.0006 0.0010 0.0010 1.00
0.0009  0.0009 0.0009  0.0009 1.00
0.0007  0.0007 0.0006  0.0006 1.00
0.0000  0.0000 0.0000  0.0000 1.00
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Table A2
(cont.)

Rnk Taxon

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

PHYSIDAE
PLATYCNEMIDIDAE
TIPULIDAE
GYRINIDAE
GOERIDAE
GERRIDAE
LEPIDOSTOMATIDAE
SIMULIIDAE
HEPTAGENIIDAE
RHYACOPHILIDAE
VIVIPARIDAE
NEMOURIDAE
BERAEIDAE
DENDROCOELIDAE
COROPHIIDAE
NAUCORIDAE
BRACHYCENTRIDAE
SCIRTIDAE
APHELOCHEIRIDAE
HYDROMETRIDAE
PERLODIDAE
LEUCTRIDAE
AESHNIDAE
NEPIDAE
LIBELLULIDAE
TAENIOPTERYGIDAE
ASTACIDAE
CORDULEGASTERIDAE
ODONTOCERIDAE
CHLOROPERLIDAE
HIRUDINIDAE
SIPHLONURIDAE
PERLIDAE
DRYOPIDAE
CAPNIIDAE
POTAMANTHIDAE
PHILOPOTAMIDAE

R&D Technical Report E525

Information values of 76 BMWP taxa for ‘Pool’ sites listed in order of
their M’(C, X) values derived from abundance data.

M(C, X) M, X)
Mutual Inform. Indiff. Mut. Inform. Improv.
(Pres)  (Abun) (Pres)  (Abun) Ratio
0.0247 0.0277 0.0400 0.0439 1.10
0.0345  0.0375 0.0417 0.0437 1.05
0.0176 ~ 0.0201 0.0385 0.0422 1.10
0.0255  0.0279 0.0360 0.0382 1.06
0.0313  0.0327 0.0371 0.0381 1.03
0.0191 0.0196 0.0283 0.0286 1.01
0.0260  0.0265 0.0279 0.0281 1.01
0.0114 0.0133 0.0261 0.0278 1.07
0.0223  0.0229 0.0270  0.0273 1.01
0.0179  0.0204 0.0247 0.0264 1.07
0.0173  0.0194 0.0234  0.0250 1.07
0.0127 0.0151 0.0223  0.0248 1.12
0.0173 0.0181 0.0201  0.0207 1.03
0.0122 0.0125 0.0196 0.0199 1.02
0.0106 0.0151 0.0145 0.0190 1.31
0.0138 0.0151 0.0169 0.0179 1.06
0.0118 0.0125 0.0151 0.0157 1.04
0.0071  0.0087 0.0138 0.0154 1.12
0.0132 0.0137 0.0146  0.0149 1.02
0.0083  0.0089 0.0134 0.0139 1.04
0.0099 0.0117 0.0114 0.0136 1.20
0.0082  0.0096 0.0115 0.0131 1.14
0.0059  0.0059 0.0087  0.0087 1.00
0.0055  0.0055 0.0083  0.0083 1.00
0.0044  0.0044 0.0068  0.0068 1.00
0.0036  0.0047 0.0042  0.0056 1.31
0.0013  0.0026 0.0024 0.0036 1.51
0.0030  0.0030 0.0034  0.0034 1.00
0.0022 0.0031 0.0027 0.0031 1.18
0.0026  0.0026 0.0026  0.0026 1.00
0.0013  0.0013 0.0018 0.0018 1.00
0.0007  0.0007 0.0012 0.0012 1.00
0.0013  0.0013 0.0011 0.0011 1.00
0.0006  0.0006 0.0010 0.0010 1.00
0.0009  0.0009 0.0009  0.0009 1.00
0.0007  0.0007 0.0006  0.0006 1.00
0.0000  0.0000 0.0000  0.0000 1.00
A-5
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Appendix B

Distribution of Site Types 1 to S

R&D Technical Report E52 B-1






Figure B1. Geographic distribution of site type '1'.

R&D Technical Report E52 B-2



Figure B2. Geographic distribution of site type '2'.

R&D Technical Report E52 B-3



Figure B3. Geographic distribution of site type '3'.

R&D Technical Report E52 B-4



Figure B4. Geographic distribution of site type '4’'

B-5

R&D Technical Report ES2






Figure B4. Geographic distribution of site type '4'.

R&D Technical Report E52 B-5



Figure B5. Geographic distribution of site type 'S'.
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Appendix C

Distribution of EQI(ASPT) and EQI(NFAM)

over England and Wales as produced by the
Neural Network and RIVPACS

Predictors of ASPT and NFAM

R&D Technical Report E52 C-1






Key to EQI

@ >1.00 (1.25)
O <1.00 (0.75)

=1.00

Size of circle represents
difference from EQI of 1.00

Figure C1. Distribution of EQI(ASPT) for the IFE614 sites based upon ASPT
predictions produced by the neural network NSXASPT

R&D Technical Report E52 C-2



Key to EQI

@ >1.00 (1.25)
O <1.00 (0.75)

=1.00

Size of circle represents
difference from EQI of 1.00

Figure C2. Distribution of EQI(NFAM) for the IFE614 sites based upon NFAM
predictions produced by the neural network NSXNFAM

R&D Technical Report ES2 C-3



Key to EQI

@ >100 (1.25)
O <1.00 (0.75)

« =1.00

Size of circle represents
difference from EQI of 1.00

Figure C3. Distribution of EQI(ASPT) for the IFE614 sites based upon RIVPACS
predictions
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Key to EQI

@ >1.00 (125
O <1.00 (0.75)

. =1.00

Size of circle represents
difference from EQI of 1.00

Figure C4. Distribution of EQI(NFAM) for the IFE614 sites based upon RIVPACS
predictions
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Appendix D

Feature Maps produced by SOM20

Site Type

Slte Type

T s el B

This map of Site Type is typical of the feature maps produced by SOM20.
It represents the distribution of the particular attribute, Site Type, across
the 20x20 output array of ‘classification” bins produced by SOM20).

The following pages show feature maps for a further 96 attributes,
including 12 physical variables, four chemical variables, ASPT, NFAM,
two biological GQAs (RIVPACS and Neural Network) and 76 BMWP
families.

A detailed explanation of feature maps and how to interpret them is given
in Section 4.4.3,
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