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Science at the Environment Agency

Science underpins the work of the Environment Agency, by providing an up to date
understanding of the world about us, and helping us to develop monitoring tools
and techniques to manage our environment as efficiently as possible.

The work of the Science Group is a key ingredient in the partnership between
research, policy and operations that enables the Agency to protect and restore our
environment.

The Environment Agency’s Science Group focuses on five main areas of activity:

• Setting the agenda: To identify the strategic science needs of the Agency to
inform its advisory and regulatory roles.

• Sponsoring science: To fund people and projects in response to the needs
identified by the agenda setting.

• Managing science: To ensure that each project we fund is fit for purpose and
that it is executed according to international scientific standards.

• Carrying out science: To undertake the research itself, by those best placed to
do it - either by in-house Agency scientists, or by contracting it out to
universities, research institutes or consultancies.

• Providing advice: To ensure that the knowledge, tools and techniques
generated by the science programme are taken up by relevant decision-makers,
policy makers and operational staff.

Professor Mike Depledge Head of Science
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Executive summary

This report outlines the results of an extension to R&D Project E1-056 (Walley et al., 2002),
which was financed by the Environment Agency. The aims were to:
• test the computer-based systems River Pollution Diagnostic System (RPDS) and River

Pollution Bayesian Belief Network (RPBBN) developed in E1-056 using data derived
from the newly acquired 2000 general quality assessment (GQA) survey;

• update and improve RPDS by including a means of identifying and incorporating
‘reference states’ and a methodology to extend RPDS to produce a classification system;

• retrain RPDS using number of families in place of alkalinity in the input vector;
• produce an updated database to be used as input to the existing RPDS;
• identify means for updating and improving the current prototype RPBBN.

As proposed in the original specification of the extension, no changes were made to the
existing RPDS and RPBBN software, as it would require considerable time, cost and effort to
update the systems on the Environment Agency’s network. Instead, the proposed changes
remain largely theoretical. A new database has been produced for RPDS, including a retrained
model with both 1995 and 2000 data. Although the database is not complete (e.g. it does not
contain RIVPACS classifications of sites from the 2000 National River Quality Survey of
England and Wales, or figures for feeding group composition at each site), it contains
sufficient information to be used with the standard version of RPDS.
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1. Introduction

1.1 Background and objectives

The work described in this report was carried out as an extension to National R&D Project
E1-056, Development of Artificial Intelligence Systems for the Classification and Diagnosis
of River Quality based on Biological and Environmental Data. The original contract resulted
in the delivery of two software systems for the Environment Agency: River Pollution
Diagnostic System (RPDS) and River Pollution Bayesian Belief Network (RPBBN). The
development of these two systems is described in detail in R&D Technical Report E1-056/TR
(Walley et al. 2002). Following the successful completion of the original contract, a number
of further requirements were identified. The objectives of the additional work to be addressed
in this extension to the project were:

1. Identify the best means of improving/updating the RPDS system to meet the needs of the
Water Framework Directive (WFD). In particular, the development of:
a) a means of identifying ‘reference states’ and incorporating them into the model;
b) a classification system, an artificial intelligence (AI)-based equivalent of general quality

assessment (GQA) that relates the actual biological condition of the river to its reference
condition.

2. Retrain RPDS using number of families (NFAM) in place of alkalinity (ALK) in the input
vector.

3. Identify any changes to the reported GQA quality classes that would result from the
adoption of an AI-based (RPDS) classification system.

4. Test the existing systems using independent data derived from the 2000 GQA survey.

5. Update and extend the current prototype RPBBN.

It was not proposed that any changes should be made to the RPDS and RPBBN software
code; rather, this extension was intended to explore possible future approaches and
demonstrate the potential of further work on RPDS and RPBBN.

The work was carried out by the Centre for Intelligent Environmental Systems (CIES) in the
Faculty of Computing, Engineering and Technology at Staffordshire University under the
supervision of Mark O’Connor. Two research associates, David Trigg and Ray Martin,
worked on the project. Mark O’Connor worked on the updating and retraining of RPDS,
David Trigg on the testing of systems and updating of RPBBN, and Ray Martin on the
collation and checking of data.
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1.2 Summary of outcomes

The overall objectives of the project were achieved in that:

• Means of updating/improving RPDS were identified, including a means of identifying
and incorporating ‘reference states’ and a methodology to extend RPDS to produce a
classification system.

• RPDS was retrained using number of families in place of alkalinity in the input vector,
and a new database was produced to be used as input to the existing RPDS.

• RPDS and RPBBN were tested using data derived from the 2000 GQA survey.
• Means for updating and improving the current prototype RPBBN were identified.

The new database resulting from the retraining of RPDS can be used with the original RPDS
program. No changes were made to the existing systems (RPDS and RPBBN), and so the
other updates and improvements that were identified remain largely ‘theoretical’. A further
project should incorporate the required changes to the software code, and more detailed
testing of the theoretical possibilities for improvement of the systems. These objectives now
form part of a new project, Development of an Integrated Classification System for Rivers and
Lakes, funded by the Environment Agency’s Environmental Monitoring, Classification and
Reporting Project for the Water Framework Directive.
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2 Data

2.1 Introduction

The project required good quality data for 2000 of the type that was provided for the original
project E1-056: biological, environmental, chemical and stress data for the biological river
quality monitoring sites throughout England and Wales. The most important of these were the
biological data and environmental characteristics, because they were used as the input vector
for the pattern recognition system developed in the original project. In order to retrain the
system on 2000 data without changing the software code of RPDS, it was essential that the
available data were of the same type. R&D Technical Report E1-056/TR provides a
comprehensive overview of the data used in the original project (Section 2: Construction and
Analysis of Project Databases, pp. 5–13). The following sections give brief details of the data
that was compiled for this project.

2.2 Biological and environmental data

Each record in the biological and environmental database included the abundance category of
the 76 families used in the Biological Monitoring Working Party (BMWP) score listed in
Table 2.1 and the 13 environmental characteristics listed in Table 2.2 (these are the families
and variables defined in BT001, Murray-Bligh (1999). The biological samples were collected
and analysed according to standard RIVPACS methods used by the Environment Agency.
The abundance categories used throughout the project are the same as those used previously
(see Table 2.3). Table 2.4 shows the distribution of sites by Environment Agency region and
season.

Table 2.1 The 76 BMWP families used in the study

Planariidae
Dendrocoelidae
Neritidae
Viviparidae
Valvatidae
Hydrobiidae
Lymnaeidae
Physidae
Planorbidae
Ancylidae
Unionidae
Sphaeriidae
Oligochaeta
Piscicolidae
Glossiphoniidae
Hirudididae
Erpobdellidae
Asellidae
Corophiidae

Gammaridae
Astacidae
Siphlonuridae
Baetidae
Heptageniidae
Leptophlebiidae
Ephemerellidae
Potamanthidae
Ephemeridae
Caenidae
Taeniopterygidae
Nemouridae
Leuctridae
Capniidae
Perlodidae
Perlidae
Chloroperlidae
Platycnemidae
Coenagriidae

Calopterygidae
Aeshnidae
Corduliidae
Libellulidae
Hydrometridae
Gerridae
Nepidae
Naucoridae
Aphelocheiridae
Notonectidae
Corixidae
Haliplidae
Dytiscidae
Gyrinidae
Hydrophilidae
Scirtidae
Dryopidae
Elmidae
Sialidae

Rhyacophilidae
Philopotamidae
Polycentropidae
Psychomyiidae
Hydropsychidae
Hydroptilidae
Phryganeidae
Limnephilidae
Molannidae
Beraeidae
Odontoceridae
Leptoceridae
Goeridae
Lepidostomatidae
Brachycentridae
Sericostomatidae
Tipulidae
Chironomidae
Simuliidae
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Table 2.2 The 13 environmental variables used in the study

Variable Description Variable Description
X Global northing of NGR DISCH Discharge category
Y Global easting of NGR BLDS Boulders (% of substrate)

ALT Altitude (m) PBLS Pebbles (% of substrate)
LDIST Log10 distance from source SAND Sand (% of substrate)

LSLOPE Log10 of slope (m/km) SILT Silt (% of substrate)
WIDTH Average width of river (m) ALK Alkalinity (mg/l of CaCO3)
DEPTH Average depth of river (cm)

Table 2.3 Abundance categories for BMWP taxa

Abundance category Number of individuals
0 0 (none found)
1 1–9
2 10–99
3 100–999
4 1000 or more

Table 2.4 Distribution of sites used in the study by region and season. The 1995 sites
were each sampled in spring and autumn, hence the numbers of sites for each season
were identical. At the time the studies were undertaken, there was not an equivalent

‘perfect match’ between spring and autumn sites with 2000 data.

1995 2000Region Spring Autumn Total Spring Autumn Total Total Total as %

Anglian 638 638 1276 621 588 1209 2485 11.0
North East 690 690 1380 650 491 1141 2521 11.2
North West 811 811 1622 672 603 1275 2897 12.8
Midlands 1033 1033 2066 959 789 1748 3814 16.9
Southern 496 496 992 475 430 905 1897 8.4
South West 1092 1092 2184 1015 887 1902 4086 18.1
Thames 484 484 968 442 446 888 1856 8.2
Welsh 795 795 1590 778 674 1452 3042 13.5
Total 6039 6039 12078 5612 4908 10520 22598 100
Total as % 26.7 26.7 53.4 24.8 21.7 46.6 100
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2.3 Chemical data

For those biological GQA sites in the database that could be matched with chemical GQA
sites, the chemical data were added to the records, in the same way as previously (R&D
Technical Report E1-056, Section 2.3). Table 2.5 shows the percentage of biological sites for
which chemical data were available and the coverage across each chemical determinand. The
values of the chemical determinands recorded in the database were the average of the ‘raw’
values recorded during the three months preceding the date on which the biological samples
were taken.

Table 2.5 Data coverage by year and season, as numbers of samples and percentage of
total samples, for chemical data used in the study. The data is listed in order of %

overall coverage.

1995 2000
Spring Autumn Spring Autumn All data

Variable No. % No. % No. % No. % No. %
pH value 3538 58.59 3509 58.11 5326 94.90 4649 94.72 17022 75.33
TON 3538 58.59 3509 58.11 5324 94.87 4648 94.70 17019 75.31
Temperature 3536 58.55 3512 58.16 5319 94.78 4649 94.72 17016 75.30
Ammoniacal nitrogen (non-ionised) 3517 58.24 3501 57.97 5283 94.14 4631 94.36 16932 74.93
Ammoniacal nitrogen (total) 2811 46.55 2569 42.54 5327 94.92 4649 94.72 15356 67.95
BOD 3515 58.21 3480 57.63 3795 67.62 3332 67.89 14122 62.49
Oxygen (saturation) 2580 42.72 2567 42.51 3825 68.16 3297 67.18 12269 54.29
Chloride 2478 41.03 2069 34.26 3499 62.35 3097 63.10 11143 49.31
Oxygen (dissolved) 2108 34.91 2019 33.43 3492 62.22 2994 61.00 10613 46.96
Nitrite 2487 41.18 2472 40.93 2984 53.17 2566 52.28 10509 46.50
Zinc (total) 1849 30.62 2118 35.07 3399 60.57 2890 58.88 10256 45.38
Nitrate 2404 39.81 2395 39.66 2858 50.93 2398 48.86 10055 44.50
Hardness 1941 32.14 2210 36.60 2874 51.21 2450 49.92 9475 41.93
Calcium (total) 1428 23.65 1542 25.53 3340 59.52 2817 57.40 9127 40.39
Magnesium (total) 1428 23.65 1541 25.52 3336 59.44 2817 57.40 9122 40.37
Suspended solids 1762 29.18 1278 21.16 3389 60.39 2687 54.75 9116 40.34
Phosphate 3255 53.90 3440 56.96 895 15.95 764 15.57 8354 36.97
Copper (total) 606 10.03 537 8.89 3280 58.45 2777 56.58 7200 31.86
Conductivity 1435 23.76 1674 27.72 1586 28.26 1409 28.71 6104 27.01
Copper (dissolved) 1453 24.06 1502 24.87 747 13.31 640 13.04 4342 19.21
Cadmium (total) 513 8.49 537 8.89 692 12.33 743 15.14 2485 11.00
Nickel (total) 726 12.02 349 5.78 575 10.25 485 9.88 2135 9.45
Lead (total) 508 8.41 498 8.25 574 10.23 487 9.92 2067 9.15
Magnesium (dissolved) 235 3.89 238 3.94 822 14.65 716 14.59 2011 8.90
Calcium (dissolved) 235 3.89 238 3.94 818 14.58 711 14.49 2002 8.86
Chromium (total) 485 8.03 354 5.86 594 10.58 499 10.17 1932 8.55
Lead (dissolved) 348 5.76 427 7.07 430 7.66 354 7.21 1559 6.90
Nickel (dissolved) 423 7.00 195 3.23 422 7.52 348 7.09 1388 6.14
Iron (total) 285 4.72 267 4.42 432 7.70 338 6.89 1322 5.85
Chromium (dissolved) 221 3.66 196 3.25 434 7.73 354 7.21 1205 5.33
Iron (dissolved) 194 3.21 226 3.74 394 7.02 317 6.46 1131 5.00
Zinc (dissolved) 266 4.40 182 3.01 341 6.08 274 5.58 1063 4.70
Cadmium (dissolved) 172 2.85 256 4.24 289 5.15 236 4.81 953 4.22
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2.4 Stress data

No stress data were available for the GQA sites in 2000. The 1995 stress data were of
generally poor quality (Martin & Walley, 2000), and so the procedures for collecting the data
needed to be modified. This was the subject of a separate project; the results of this were not
available in time to incorporate into this project.
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3. Testing and retraining RPDS

3.1. Background

It was noted in R&D Technical Report E1-056 (Walley et al., 2002, Sections 5.6.1 and 5.6.2)
that:
• RPDS needed to be tested on independent data. In the original project, all the 1995 data

were used to train the RPDS model. It was originally intended to test this model using the
2000 data, but these were not available in time.

• The models should be retrained using the combined 1995 and 2000 data sets, to produce
a more reliable version of RPDS. This would not require any alterations to RPDS itself,
only a change in the data files it uses.

3.2. Testing RPDS

The original test results for RPDS, based on the 1995 data, are given in Table 3.1 (this was
Table 3.3, p. 34 in Walley et al., 2002). The data were split into seasons so that spring and
autumn were tested separately, and then the combined ‘whole year’ data set tested. The
correlation coefficients (Pearson, r, and Spearman rank, rs) were calculated between the
predicted values of each chemical, taken to be the mean value for the samples in a particular
cluster, and the recorded values for each sample in that cluster. As mentioned in Walley et al.
(2002) this was not an independent test, since the predicted values were derived from the
averages of the recorded values. On the other hand, it was not a dependent test in the usual
sense either, since RPDS is an unsupervised-learning model and does not train to fit target
(i.e. recorded) data.

In order to perform an independent test, RPDS was tested using the 2000 data; that is, each of
the samples taken in 2000 was classified to one of the original RPDS clusters (i.e. the model
based on the 1995 data). To ensure a fair comparison with the original system, the original
input vector (i.e. abundance levels of 76 BMWP taxa and the environmental variables listed
in Table 2.2 excluding eastings and northings) was initially retained. The predicted chemical
values for 2000, defined as above, were compared with their recorded values, and the two
correlation coefficients were then calculated for all chemicals. Table 3.2 gives the results of
this exercise, which was performed for both spring and autumn samples separately, and then
for combined samples over the whole year. The differences between these results and those of
the original tests based on 1995 data (Table 3.1) are given in italics, and in general
demonstrate a slight deterioration in performance, as is expected from a truly independent
test. In quantitative terms, 13 of the 34 variables produced whole year rs values greater than
0.6 (compared with 18 previously), and 4 of these were above 0.75 (compared with 11
previously).

Although Table 3.2 is headed by iron (dissolved), with an apparently large improvement in
the prediction, this must be treated as spurious because of the very small numbers of samples
involved. (Other variables occur at the other end of the table with apparently large
deterioration in the prediction, but they too are based on similarly small sets of data.)
Temperature, the second variable in Table 3.2, was predicted poorly in the individual seasons
but very well over the whole year. This is explained by seasonal influence, where the data is
grouped around a set of values for each season; both sets were predicted poorly on their own,
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but much better in combination when the overall range of recorded temperatures was much
greater. It is pleasing to note that some key variables were predicted well, such as those
associated with eutrophication (total oxidised nitrogen, nitrate and phosphate) and some of
the heavy metals (magnesium and copper in particular).

For the next exercise, 1995 and 2000 data sets were combined and used as training data for
MIR-max (the software underlying RPDS, see Walley et al., 2002) to produce an updated
model for RPDS. Comparison of predicted values with recorded values was performed again
and the results given in Table 3.3. This time, 41 variables were predicted, made up of the 34
chemicals plus average BMWP-score per taxon (ASPT), BMWP score, number of families,
RIVPACS GQA class, and the five-year mean values of biochemical oxygen demand (BOD),
dissolved oxygen (DO) and ammonia. The first four of the additional variables are closely
associated with the biological data used for the clustering, and were predicted extremely well,
as expected. Not being a truly independent test, for reasons explained earlier, the correlation
coefficients for the chemicals were also generally high; 19 of the original 34 variables
produced whole-year rs values greater than 0.6, although only seven were above 0.75. Some
of the higher correlation coefficients were attenuated (such as the previous spurious result for
dissolved iron) because they were based on more training data. The mean change in the rank
correlation coefficient for the data taken for the whole year from the original RPDS model
was 0.0063, a very small improvement. The coefficients for the predictions for five variables
(temperature, oxygen (dissolved), iron (dissolved), iron (total) and oxygen (saturation))
improved by more than 0.1, and those for five others (zinc (dissolved), cadmium (dissolved),
chromium (dissolved), ammoniacal nitrogen (total) and ammoniacal nitrogen (non-ionised))
deteriorated by more than 0.1. The combined model would be expected to perform better on
independent data, although this has not been tested yet.

The next test investigated the effect of removing alkalinity from the input vector. Although
alkalinity was the most important predictor of biological composition, it is influenced not
only by geology but also by effluent discharges such as sewage works and farm run-off. The
ambiguity between influence by natural factors and those which might be termed pollution
means that alkalinity is not robust as an environmental variable. This test was designed to
assess its importance to the chemical predictions. The test used the same input vector as
previously with the exception of alkalinity. This test was only run on the spring data and the
results are given in Table 3.4. The differences in the correlation coefficients between this test
and the previous one indicate that the predictions of the biological statistics (i.e. BMWP
score, ASPT, number of families, biological GQA class) were improved a little while those of
the chemical variables tended to be a little worse. Of the 34 original chemical variables, the
predictions of 8 were better and 26 worse, although the mean change in rank correlation was
only -0.0184. Of the 26 worse predictions, the decrease in the rank correlation was less than
0.05 for 20 variables, and greater than 0.1 for just one (cadmium (dissolved)). Alkalinity itself
was one of five variables with a poorer rank correlation of between 0.05 and 0.1. Thus,
removing alkalinity from the training vector had a minor detrimental effect on the predictive
performance overall, as expected. However, the effect on most of the variables was only very
slight. The removal of alkalinity actually improved the predictions of the concentrations of
certain metals (lead and zinc) that need acidic conditions to dissolve and which would be
sensitive to alkalinity. This may have been because some values of alkalinity were artificially
boosted by effluent discharges masking the natural levels.
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The final test included ‘number of families’ in the input vector, as an indicator of taxon
richness. Since pollution reduces biodiversity, inclusion of ‘number of families’ should enable
RPDS to distinguish between polluted samples with few families and those with very few,
and hence enhance its predictive power at the polluted end of the spectrum. ‘Number of
families’ is one of two variables used by RIVPACS to derive environmental quality indices
(EQIs), but is free of the subjective component of the other, ASPT, which is based on BMWP
scores. The test was performed on both spring and autumn data separately and for the whole
year data, and the results given in Table 3.5. As in the previous test, the predictions of the
biological statistics were slightly better, while those for the chemical variables were slightly
worse overall. This time, 28 of the original 34 chemicals gave slightly worse rank correlations
for the whole year data and six gave better values, although the mean deterioration was only -
0.0180. Of the 28 worse rank correlations, 23 deteriorated by less than 0.05, one by more than
0.1, with four in between. As with the previous test, the effect on metals may be significant:
three of the six improved predictions were zinc, iron and chromium. This again suggests an
improved capacity to expose heavy metal pollution.

The replacement of ‘alkalinity’ by ‘number of families’ in the input vector resulted in slightly
worse predictions of most chemical variables, but this was offset by slightly improved
predictions of the heavy metals. Therefore, the change had a fairly neutral effect on the
predictive capability of the model, but achieved the aim of removing a possible pollutant,
alkalinity, from the input vector.



Science Report Further development and testing of artificial intelligence systems for the classification
and diagnosis of river quality based on biological and environmental data

10

 Table 3.1 Results of performance tests on RPDS 2.0, showing the Pearson
correlation coefficient (r) and the Spearman rank correlation coefficient (rs) between the
predicted and recorded values of 34 chemical variables, listed in order of their whole
year rs. Also shown are the numbers of samples of each variable.

  Spring  Autumn  Whole year
 Variable*  No. Sam  r  rs No. Sam  r  rs No. Sam  r  rs
 CATL  1326  0.838  0.861  1300  0.815  0.846  2626  0.827  0.854
 ALKN  2874  0.837  0.846  2874  0.829  0.839  5748  0.833  0.842
 HARD  1878  0.615  0.851  1867  0.674  0.829  3745  0.642  0.840
 MGDS  151  0.714  0.771  155  0.755  0.849  306  0.737  0.815
 CADS  151  0.737  0.753  155  0.697  0.816  306  0.716  0.786
 TOXN  3531  0.722  0.773  3535  0.707  0.752  7066  0.715  0.763
 ZNDS  121  0.568  0.788  90  0.555  0.718  211  0.551  0.760
 COND  1337  0.624  0.792  1308  0.531  0.725  2645  0.580  0.759
 NO2N  2453  0.585  0.762  2444  0.524  0.752  4897  0.555  0.757
 MGTL  1326  0.694  0.759  1300  0.686  0.748  2626  0.690  0.755
 NO3N  2363  0.700  0.762  2359  0.685  0.745  4722  0.692  0.754
 CDDS  60  0.744  0.673  42  0.793  0.766  102  0.767  0.706
 AMNI  2794  0.393  0.705  2801  0.297  0.695  5595  0.345  0.700
 PHVL  3531  0.732  0.691  3535  0.721  0.678  7066  0.726  0.685
 PHOS  3248  0.448  0.676  3249  0.335  0.651  6497  0.395  0.663
 CHLO  2440  0.383  0.675  2451  0.315  0.615  4891  0.337  0.646
 CUDS  1361  0.471  0.645  1343  0.420  0.627  2704  0.436  0.637
 CUTL  408  0.604  0.627  424  0.576  0.622  832  0.590  0.627
 CRDS  78  0.562  0.644  64  0.584  0.545  142  0.569  0.584
 AMTN  3510  0.376  0.583  3514  0.335  0.559  7024  0.355  0.571
 PBDS  168  0.470  0.532  158  0.567  0.596  326  0.523  0.566
 BOD5  3508  0.459  0.579  3512  0.438  0.550  7020  0.448  0.565
 PBTL  335  0.510  0.476  322  0.313  0.499  657  0.390  0.486
 CDTL  342  0.703  0.445  324  0.748  0.526  666  0.728  0.485
 CRTL  319  0.364  0.488  308  0.464  0.472  627  0.396  0.481
 TEMP  3529  0.494  0.486  3533  0.414  0.411  7062  0.455  0.450
 SUSS  1691  0.278  0.457  1712  0.338  0.440  3403  0.310  0.449
 ZNTL  1801  0.412  0.461  1800  0.446  0.427  3601  0.424  0.444
 NIDS  271  0.653  0.418  242  0.431  0.465  513  0.544  0.442
 OXDS  2047  0.439  0.455  2058  0.422  0.417  4105  0.430  0.437
 NITL  559  0.465  0.443  540  0.487  0.409  1099  0.474  0.427
 OXSA  2543  0.373  0.405  2552  0.353  0.382  5095  0.363  0.394
 FEDS  79  0.183  0.378  62  0.346  0.388  141  0.205  0.374
 FETL  151  0.441  0.440  131  0.397  0.222  282  0.418  0.345
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Table 3.2 Results of tests on the original RPDS 2.0 model applied to 2000 data, showing Pearson correlation coefficient and Spearman
rank correlation coefficient between the predicted and recorded values of 34 variables. The numbers of samples for which a prediction
was available are also shown. The figures in italics show the change from the original results (i.e. tested on 1995 data). Data is listed in

order of whole year rank correlations.

Spring Autumn Whole year
Variable No. samples Correlation Rank correlation No. samples Correlation Rank correlation No. samples Correlation Rank correlation
Iron (dissolved) 29 -50 0.5720 0.3890 0.6659 0.2879 8 -54 0.8271 0.4811 0.9567 0.5687 37 -104 0.6546 0.4496 0.7929 0.4189
Temperature 5258 1729 0.0784 -0.4156 0.2250 -0.2610 4589 1056 0.2579 -0.1561 0.2659 -0.1451 9847 2785 0.6635 0.2085 0.7695 0.3195
Alkalinity 5612 2738 0.7806 -0.0564 0.7629 -0.0831 4908 2034 0.7611 -0.0679 0.7409 -0.0981 10520 4772 0.7713 -0.0617 0.7528 -0.0892
Calcium (total) 1717 391 0.7296 -0.1084 0.7834 -0.0776 1698 398 0.6641 -0.1509 0.7189 -0.1271 3415 789 0.6972 -0.1298 0.7524 -0.1016
Hardness 2286 408 0.7241 0.1091 0.7978 -0.0532 2098 231 0.6436 -0.0304 0.6903 -0.1387 4384 639 0.6881 0.0461 0.7492 -0.0908
Oxygen (dissolved) 2497 450 0.0994 -0.3396 0.2154 -0.2396 2166 108 0.3649 -0.0571 0.4366 0.0196 4663 558 0.5263 0.0963 0.6848 0.2478
Calcium (dissolved) 187 36 0.6432 -0.0938 0.7382 -0.0148 170 15 0.4891 -0.2079 0.5870 -0.2290 357 51 0.5901 -0.1259 0.6826 -0.1034
Conductivity 1041 -296 0.4713 -0.1527 0.7512 -0.0408 1033 -275 0.3963 -0.1347 0.6556 -0.0694 2074 -571 0.4017 -0.1783 0.6751 -0.0839
Nitrate 2582 219 0.6138 -0.0862 0.6917 -0.0703 2192 -167 0.4908 -0.1942 0.5833 -0.1617 4774 52 0.5660 -0.1260 0.6499 -0.1041
TON 5263 1732 0.6236 -0.0984 0.6801 -0.0929 4588 1053 0.4754 -0.2316 0.5639 -0.1881 9851 2785 0.5637 -0.1513 0.6380 -0.1250
Magnesium (dissolved) 187 36 0.6446 -0.0694 0.7280 -0.0430 170 15 0.5181 -0.2369 0.4733 -0.3757 357 51 0.5792 -0.1578 0.6197 -0.1953
Nitrite 2743 290 0.5149 -0.0701 0.6749 -0.0871 2367 -77 0.2569 -0.2671 0.5716 -0.1804 5110 213 0.3032 -0.2518 0.6097 -0.1473
Magnesium (total) 1713 387 0.5156 -0.1784 0.6786 -0.0804 1678 378 0.3698 -0.3162 0.5227 -0.2253 3391 765 0.4363 -0.2537 0.6053 -0.1497
Copper (dissolved) 363 -998 0.4885 0.0175 0.6148 -0.0302 327 -1016 0.1787 -0.2413 0.5370 -0.0900 690 -2014 0.1890 -0.2470 0.5930 -0.0440
Phosphate 876 -2372 0.3957 -0.0523 0.6079 -0.0681 758 -2491 0.3005 -0.0345 0.4909 -0.1601 1634 -4863 0.3337 -0.0613 0.5561 -0.1069
pH value 5265 1734 0.6563 -0.0757 0.5946 -0.0964 4589 1054 0.5350 -0.1860 0.5011 -0.1769 9854 2788 0.6075 -0.1185 0.5520 -0.1330
Chromium (dissolved) 31 -47 0.4756 -0.0864 0.6374 -0.0066 13 -51 -0.3046 -0.8886 -0.1184 -0.6634 44 -98 0.4394 -0.1296 0.5273 -0.0567
Chromium (total) 172 -147 0.0015 -0.3625 0.5167 0.0287 94 -214 0.1069 -0.3571 0.5104 0.0384 266 -361 0.0363 -0.3597 0.5187 0.0377
Copper (total) 526 118 0.1875 -0.4165 0.4724 -0.1546 299 -125 0.3970 -0.1790 0.4343 -0.1877 825 -7 0.2534 -0.3366 0.4827 -0.1443
Chloride 3176 736 0.1836 -0.1994 0.5540 -0.1210 2674 223 0.1121 -0.2029 0.4603 -0.1547 5850 959 0.1038 -0.2332 0.4629 -0.1831
BOD 3746 238 0.4029 -0.0561 0.4856 -0.0934 3288 -224 0.2864 -0.1516 0.4052 -0.1448 7034 14 0.3383 -0.1097 0.4486 -0.1164
Iron (total) 47 -104 0.0952 -0.3458 0.0531 -0.3869 37 -94 0.3180 -0.0790 0.5180 0.2960 84 -198 0.1784 -0.2396 0.4349 0.0899
Lead (total) 175 -160 0.0748 -0.4352 0.3223 -0.1537 109 -213 0.0483 -0.2647 0.4940 -0.0050 284 -373 0.0609 -0.3291 0.4189 -0.0671
Ammoniacal nitrogen (non-ionised) 5222 2428 0.2152 -0.1778 0.5180 -0.1870 4571 1770 0.1220 -0.1750 0.2851 -0.4099 9793 4198 0.1541 -0.1909 0.4094 -0.2906
Ammoniacal nitrogen (total) 5008 1498 0.2338 -0.1422 0.4632 -0.1198 4177 663 0.1959 -0.1391 0.3935 -0.1655 9185 2161 0.1646 -0.1904 0.3892 -0.1818
Suspended solids 2538 847 0.1338 -0.1442 0.3416 -0.1154 1636 -76 0.2111 -0.1269 0.3287 -0.1113 4174 771 0.1548 -0.1552 0.3793 -0.0697
Oxygen (saturation) 3187 644 0.1549 -0.2181 0.1693 -0.2357 2757 205 0.3792 0.0262 0.4223 0.0403 5944 849 0.3790 0.0160 0.3667 -0.0273
Zinc (dissolved) 37 -84 0.2513 -0.3167 0.5112 -0.2768 22 -68 0.0201 -0.5349 0.3666 -0.3514 59 -152 0.1489 -0.4021 0.3291 -0.4309
Nickel (total) 191 -368 0.2301 -0.2349 0.2159 -0.2271 94 -446 0.3869 -0.1001 0.2300 -0.1790 285 -814 0.3340 -0.1400 0.2807 -0.1463
Zinc (total) 2360 559 0.0291 -0.3829 0.2961 -0.1649 2306 506 0.1453 -0.3007 0.2453 -0.1817 4666 1065 0.0675 -0.3565 0.2780 -0.1660
Cadmium (total) 221 -121 0.5879 -0.1151 0.0267 -0.4183 165 -159 0.3665 -0.3815 0.4786 -0.0474 386 -280 0.4377 -0.2903 0.2417 -0.2433
Lead (dissolved) 60 -108 0.4188 -0.0512 0.1291 -0.4029 69 -89 -0.0209 -0.5879 0.2101 -0.3859 129 -197 0.0099 -0.5131 0.2296 -0.3364
Cadmium (dissolved) 23 -37 -0.8663 -1.6103 -0.3437 -1.0167 23 -19 0.3289 -0.4641 0.5093 -0.2567 46 -56 0.1714 -0.5956 0.0077 -0.6983
Nickel (dissolved) 49 -222 0.0109 -0.6421 -0.2376 -0.6556 13 -229 -0.1454 -0.5764 -0.0087 -0.4737 62 -451 -0.0233 -0.5673 -0.0946 -0.5366
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Table 3.3 Results of tests on RPDS using combined 1995 and 2000 samples trained with
the original input vector, showing Pearson correlation coefficient and Spearman rank
correlation coefficient between the predicted and recorded values of 41 variables. The
numbers of samples for which a prediction was available are also shown. Data is listed

in order of whole year rank correlations.

Spring Autumn Whole year

Variable
No. of

Samples Corr.
Rank
corr.

No. of
Samples Corr.

Rank
corr.

No. of
Samples Corr.

Rank
corr.

Diff from
1995

ASPT 6032 0.9356 0.9411 6033 0.9218 0.9290 12065 0.9303 0.9374 N/A
BMWP score 6032 0.9328 0.9356 6033 0.9236 0.9274 12065 0.9285 0.9321 N/A
Number of families 11651 0.8905 0.8865 10947 0.8831 0.8807 22598 0.8870 0.8856 N/A
Temperature 8855 0.2746 0.4121 8161 0.4733 0.4648 17016 0.7879 0.8371 0.3871
RIVPACS GQA class 6032 0.8644 0.8231 6033 0.8543 0.8149 12065 0.8594 0.8340 N/A
Hardness 4787 0.7481 0.8387 4639 0.7447 0.7998 9426 0.7488 0.8224 -0.0176
Calcium (total) 4752 0.7831 0.8260 4319 0.7284 0.7887 9071 0.7585 0.8099 -0.0441
Conductivity 2889 0.5688 0.8120 2915 0.4373 0.7920 5804 0.4804 0.8018 0.0428
Alkalinity 11651 0.8213 0.8109 10947 0.8055 0.7905 22598 0.8137 0.8014 -0.0406
Calcium (dissolved) 840 0.7892 0.7862 775 0.7651 0.7898 1615 0.7809 0.7958 0.0098
Oxygen (dissolved) 5570 0.3537 0.4280 4993 0.5040 0.5214 10563 0.6682 0.7581 0.3211
Magnesium (dissolved) 842 0.6508 0.7444 780 0.6426 0.7400 1622 0.6565 0.7495 -0.0655
TON 8862 0.7128 0.7646 8157 0.5331 0.6369 17019 0.6288 0.7146 -0.0484
Nitrate 5219 0.7105 0.7503 4731 0.5072 0.6621 9950 0.6015 0.7133 -0.0407
Magnesium (total) 4748 0.6010 0.7367 4318 0.5741 0.6702 9066 0.5885 0.7083 -0.0467
Nitrite 5438 0.5962 0.7357 4995 0.4797 0.6619 10433 0.5062 0.6967 -0.0603
Phosphate 4111 0.4639 0.6994 4179 0.5149 0.6563 8290 0.5415 0.6899 0.0269
Copper (total) 3836 0.5612 0.6924 3241 0.5476 0.6793 7077 0.5591 0.6888 0.0618
BOD (3-year mean) 3576 0.5373 0.6509 3565 0.5609 0.6661 7141 0.5492 0.6587 N/A
pH value 8864 0.7302 0.6853 8158 0.6617 0.6170 17022 0.7016 0.6584 -0.0266
Chloride 5928 0.2902 0.6649 5097 0.2463 0.6280 11025 0.2615 0.6493 0.0033
Iron (dissolved) 293 0.5912 0.6522 228 0.4564 0.6434 521 0.4696 0.6486 0.2746
Ammonia (3-year mean) 3576 0.4345 0.6373 3565 0.4369 0.6530 7141 0.4357 0.6469 N/A
Lead (dissolved) 438 0.5705 0.5217 478 0.4541 0.5229 916 0.4813 0.6378 0.0718
Copper (dissolved) 2024 0.5179 0.7071 1986 0.4468 0.5956 4010 0.4615 0.6348 -0.0022
DO (3-year mean) 3576 0.5549 0.5756 3565 0.5562 0.5630 7141 0.5556 0.5701 N/A
Suspended solids 5138 0.3437 0.4828 3909 0.3286 0.4746 9047 0.3575 0.5446 0.0956
Chromium (total) 808 0.3053 0.5729 581 0.4255 0.5236 1389 0.3137 0.5429 0.0619
Zinc (dissolved) 307 0.4870 0.5077 195 0.5236 0.5978 502 0.5074 0.5417 -0.2183
Cadmium (dissolved) 186 0.6999 0.3243 244 0.4603 0.6859 430 0.5815 0.5303 -0.1757
Iron (total) 451 0.3679 0.4930 297 0.5127 0.5530 748 0.4156 0.5159 0.1709
Oxygen (saturation) 6405 0.3670 0.3796 5864 0.5236 0.5385 12269 0.5202 0.5154 0.1214
BOD 7027 0.4058 0.5208 6423 0.3822 0.4920 13450 0.3937 0.5074 -0.0576
Lead (total) 806 0.4542 0.4497 694 0.4611 0.5463 1500 0.4609 0.5048 0.0188
Nickel (total) 1020 0.5037 0.4108 561 0.6038 0.4506 1581 0.5552 0.4611 0.0341
Cadmium (total) 925 0.6324 0.3915 1013 0.4713 0.5420 1938 0.5309 0.4594 -0.0256
Nickel (dissolved) 505 0.4478 0.4247 251 0.5216 0.4465 756 0.5001 0.4524 0.0104
Chromium (dissolved) 350 0.4523 0.5659 256 0.4130 0.4102 606 0.4510 0.4485 -0.1355
Ammoniacal nitrogen (total) 8138 0.3567 0.4443 7218 0.2971 0.4695 15356 0.3346 0.4450 -0.1260
Zinc (total) 5248 0.3572 0.4217 4993 0.3665 0.4362 10241 0.3612 0.4385 -0.0055
Ammoniacal nitrogen (non-ionised) 8800 0.2709 0.3365 8132 0.2605 0.3622 16932 0.2649 0.3384 -0.3616
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Table 3.4 Results of tests on RPDS using combined 1995 and 2000 spring samples
trained with alkalinity removed from the original input vector, showing Pearson
correlation coefficient and Spearman rank correlation coefficient between the predicted
and recorded values of 41 variables. The difference in correlation from that achieved
using the full original input vector is also shown. Data is listed in order of rank
correlations.

Variable
No. of

samples Correlation Difference Rank
correlation Difference

ASPT 6039 0.9358 0.0002 0.9413 0.0002
BMWP score 6039 0.9339 0.0011 0.9361 0.0005
Number of families 11651 0.8937 0.0033 0.8922 0.0057
RIVPACS GQA class 6039 0.8686 0.0042 0.8408 0.0177
Hardness 4815 0.7117 -0.0365 0.7942 -0.0444
Conductivity 3021 0.5700 0.0012 0.7902 -0.0218
Calcium (total) 4768 0.7398 -0.0432 0.7798 -0.0462
Calcium (dissolved) 1053 0.7423 -0.0468 0.7680 -0.0182
Alkalinity 11651 0.7620 -0.0593 0.7463 -0.0646
TON 8862 0.6964 -0.0163 0.7457 -0.0189
Nitrate 5262 0.7028 -0.0078 0.7410 -0.0092
Nitrite 5471 0.5801 -0.0161 0.7298 -0.0059
Magnesium (total) 4764 0.5757 -0.0253 0.7164 -0.0203
Magnesium (dissolved) 1057 0.6251 -0.0257 0.7070 -0.0374
Phosphate 4150 0.4420 -0.0219 0.6872 -0.0122
Copper (total) 3886 0.3811 -0.1800 0.6825 -0.0099
Copper (dissolved) 2200 0.4497 -0.0682 0.6735 -0.0336
Chloride 5977 0.2987 0.0085 0.6710 0.0060
pH value 8864 0.7069 -0.0233 0.6481 -0.0372
BOD (3-year mean) 3615 0.5264 -0.0109 0.6440 -0.0068
Ammonia (3-year mean) 3615 0.4020 -0.0325 0.6413 0.0040
Lead (dissolved) 778 0.5394 -0.0311 0.6085 0.0868
Zinc (dissolved) 607 0.5433 0.0563 0.5971 0.0894
Iron (dissolved) 588 0.5642 -0.0270 0.5731 -0.0791
DO (3-year mean) 3615 0.5439 -0.0109 0.5635 -0.0121
Chromium (total) 1079 0.3779 0.0726 0.5419 -0.0311
BOD 7310 0.4171 0.0113 0.5321 0.0112
Chromium (dissolved) 655 0.4065 -0.0458 0.4762 -0.0897
Suspended solids 5151 0.3248 -0.0189 0.4741 -0.0088
Lead (total) 1082 0.4835 0.0293 0.4562 0.0065
Oxygen (dissolved) 5600 0.3658 0.0121 0.4292 0.0011
Iron (total) 717 0.3712 0.0033 0.4289 -0.0642
Ammoniacal nitrogen (total) 8138 0.3259 -0.0307 0.4270 -0.0173
Zinc (total) 5248 0.3212 -0.0359 0.4230 0.0013
Temperature 8855 0.2711 -0.0035 0.4086 -0.0035
Nickel (total) 1301 0.4441 -0.0596 0.3899 -0.0209
Cadmium (total) 1205 0.6381 0.0056 0.3821 -0.0094
Oxygen (saturation) 6405 0.3511 -0.0159 0.3695 -0.0101
Nickel (dissolved) 845 0.4059 -0.0419 0.3437 -0.0809
Ammoniacal nitrogen (non-ionised) 8800 0.2695 -0.0013 0.3406 0.0041
Cadmium (dissolved) 461 0.5827 -0.1172 0.1801 -0.1443
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Table 3.5 Results of tests on RPDS using combined 1995 and 2000 samples trained with
number of families included in the input vector, showing Pearson correlation coefficient
and Spearman rank correlation coefficient between the predicted and recorded values of

41 variables. The numbers of samples for which a prediction was available are also
shown. Data is listed in order of whole year rank correlations, and the differences in the

whole year correlations (see Table 3.3) shown in the last column in italics.

Spring Autumn Whole year

Variable

No. of
sample

s
Corr. Rank

corr.
No. of

samples Corr. Rank
corr.

No. of
samples Corr. Rank

corr. Diffs

BMWP score 6036 0.9527 0.9551 6026 0.9428 0.9482 12062 0.9480 0.9522 0.0201
ASPT 6036 0.9351 0.9425 6026 0.9253 0.9327 12062 0.9315 0.9396 0.0022
Number of families 11651 0.9295 0.9340 10947 0.9226 0.9273 22598 0.9263 0.9311 0.0455
RIVPACS GQA class 6036 0.8741 0.8464 6026 0.8580 0.8324 12062 0.8661 0.8400 0.0060
Temperature 8855 0.2744 0.4073 8161 0.4577 0.4499 17016 0.7865 0.8340 -0.0031
Hardness 4797 0.7032 0.7933 4628 0.6980 0.7399 9425 0.7034 0.7700 -0.0525
Conductivity 2881 0.5470 0.7760 2929 0.4180 0.7625 5810 0.4603 0.7689 -0.0329
Calcium (total) 4754 0.7458 0.7842 4319 0.6914 0.7368 9073 0.7213 0.7635 -0.0464
Oxygen (dissolved) 5594 0.3593 0.4349 4977 0.5174 0.5248 10571 0.6722 0.7583 0.0002
Calcium (dissolved) 856 0.7394 0.7527 742 0.6762 0.7255 1598 0.7132 0.7470 -0.0488
Alkalinity 11651 0.7570 0.7415 10947 0.7363 0.7169 22598 0.7471 0.7299 -0.0715
Magnesium (dissolved) 858 0.6412 0.7173 743 0.6026 0.7006 1601 0.6250 0.7159 -0.0336
Nitrate 5221 0.7018 0.7382 4735 0.4867 0.6341 9956 0.5867 0.6947 -0.0187
TON 8862 0.6978 0.7461 8157 0.5116 0.6084 17019 0.6113 0.6918 -0.0227
Nitrite 5449 0.5823 0.7311 4990 0.4515 0.6449 10439 0.4812 0.6849 -0.0118
Magnesium (total) 4750 0.5799 0.7124 4318 0.5514 0.6382 9068 0.5667 0.6799 -0.0284
Phosphate 4113 0.4575 0.6910 4179 0.4843 0.6281 8292 0.5171 0.6706 -0.0193
Copper (total) 3852 0.4133 0.6940 3240 0.3391 0.6250 7092 0.4027 0.6680 -0.0208
BOD (3-year mean) 3558 0.5228 0.6486 3584 0.5401 0.6488 7142 0.5315 0.6490 -0.0097
Ammonia (3-year mean) 3558 0.3829 0.6471 3584 0.3850 0.6462 7142 0.3840 0.6468 -0.0001
Chloride 5935 0.2793 0.6504 5105 0.2374 0.6128 11040 0.2519 0.6336 -0.0157
Iron (dissolved) 257 0.4900 0.5798 241 0.6266 0.6447 498 0.5459 0.6170 -0.0315
Copper (dissolved) 2042 0.3449 0.6673 1975 0.3388 0.5669 4017 0.3413 0.6148 -0.0200
pH value 8864 0.7036 0.6437 8158 0.6115 0.5610 17022 0.6655 0.6063 -0.0520
Zinc (dissolved) 297 0.4643 0.6104 173 0.4360 0.5474 470 0.4653 0.5904 0.0487
DO (3-year mean) 3558 0.5416 0.5624 3584 0.5475 0.5610 7142 0.5446 0.5620 -0.0080
Lead (dissolved) 414 0.5619 0.4881 438 0.3485 0.5569 852 0.4886 0.5403 -0.0975
Suspended solids 5150 0.3338 0.4780 3911 0.3515 0.4503 9061 0.3588 0.5333 -0.0113
Chromium (total) 781 0.3124 0.5922 559 0.3910 0.4251 1340 0.3178 0.5298 -0.0131
Iron (total) 429 0.3574 0.4835 318 0.4646 0.5748 747 0.3847 0.5230 0.0071
BOD 6952 0.4177 0.5307 6413 0.3674 0.4910 13365 0.3918 0.5087 0.0013
Oxygen (saturation) 6405 0.3504 0.3742 5857 0.5034 0.5258 12262 0.5039 0.5075 -0.0079
Lead (total) 793 0.5006 0.4748 656 0.4052 0.5108 1449 0.4340 0.4981 -0.0067
Chromium (dissolved) 338 0.4505 0.5832 238 0.3910 0.3336 576 0.4487 0.4865 0.0380
Cadmium (total) 922 0.5331 0.4173 1003 0.4809 0.4861 1925 0.4974 0.4434 -0.0159
Nickel (total) 983 0.5661 0.4137 547 0.5042 0.4432 1530 0.5392 0.4372 -0.0240
Zinc (total) 5242 0.2789 0.4051 5001 0.3220 0.4366 10243 0.2973 0.4294 -0.0092
Ammoniacal nitrogen (total) 8138 0.3330 0.4272 7218 0.2888 0.4382 15356 0.3171 0.4283 -0.0167
Cadmium (dissolved) 182 0.7547 0.2105 224 0.5464 0.6082 406 0.5824 0.4266 -0.1037
Nickel (dissolved) 488 0.4398 0.4144 224 0.3771 0.3354 712 0.4163 0.4130 -0.0394
Ammoniacal nitrogen (non-ionised) 8800 0.2551 0.3456 8132 0.2636 0.3749 16932 0.2612 0.3561 0.0177
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3.3 Proposed improvements to RPDS and MIR-max

A number of improvements have been suggested to enhance RPDS and its underlying
algorithms, MIR-max.

3.3.1 Temporal tracking of sites in RPDS

Temporal tracking is a complex task in terms of data visualisation; the problem is illustrated
for a hypothetical case in Figure 3.1. In Figure 3.1, a GQA-equivalent RPDS classification
has been derived for the clusters, with quality classes ‘a’ to ‘f’ and ‘reference’ classes (within
class ‘a’) for those clusters representing the very best conditions. The desired reference class
for any sample can be determined through examination of the physical characteristics of the
sampling site. Its corresponding reference class is the one that most closely matches the site
characteristics. This then becomes the ‘target’ class towards which the sampled site tracks as
its quality improves.

Figure 3.1 Tracking a site through time, for a hypothetical case. The desired reference
class for the site (i.e. the reference class most closely matching the environmental

conditions of the site) is circled in black, and its current class is highlighted by a white
circle. The progression of the site across the output map towards its ‘target’ reference

class is tracked over time as its condition changes.
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3.3.2 Identification of reference condition and development of classification system

The Water Framework Directive (WFD) demands a means of identifying ‘reference states’
and a classification system relating actual biological condition to its reference.

Although RPDS is not based on a reference condition, it would be possible to select the ‘best’
RPDS clusters as representative of reference conditions by interpreting the cluster map
according to predefined criteria and expert opinion. The precise mechanism for selecting
these clusters would need to be decided following further research and discussion, but would
probably rely on the biological and chemical characteristics of the clusters given in the
‘Report’ page of RPDS. By setting threshold values for key variables such as EQI(ASPT),
EQI(NFAM), AMTN (total ammoniacal nitrogen), BOD, DO, PHOS (total phosphate),
TOXN (total oxidised nitrogen) and heavy metals concentrations, the ‘top’ clusters could be
identified and assigned as ‘reference clusters’, subject to final confirmation by a panel of
experts. EQI(ASPT) and EQI(NFAM) could be derived from RIVPACS predictions of ASPT
and NFAM or an approach based on AI such as the neural networks model developed by
Walley and Fontama (1998). The thresholds set for the chemical variables would be the upper
limits above which the cluster could not be considered to represent a reference state. The
range of variables would be wide enough to prevent a change in a single variable, such as an
increase in biological diversity following mild enrichment, from having undue influence. The
measures used would also need to take account of the ‘site type’, to ensure that reference
clusters exist for all possible types. The contents of each cluster would then be examined in
detail to ensure that each site satisfies the requirements of a reference site. Any sites deemed
not to meet the reference criteria would be removed from the reference clusters.

This method has been used to produce a ‘prototype’ system in MIR-max, to illustrate the
possibilities. Thirty-four clusters were identified as potential reference clusters, because of the
predominance of GQA class ‘a’ sites within them. (Note that, for this prototype, the choice
was based on the average GQA class of sites within each cluster. In any ‘final’ system, the
choice would be made using a suite of measures, taking account of differing site types.) Sites
that could not be regarded as being of reference condition were then removed from these
clusters – any sites that were not in the top GQA classification group were rejected. The
group of reference clusters was then arranged around the perimeter of a hexagonal output map
(Figure 3.2i), although this constraint need not be imposed. The reference clusters were then
considered to be ‘fixed’. The remaining data (i.e. all the site samples not allocated to
reference clusters) were then grouped into 216 clusters using MI-max (to maintain 250
clusters total), and arranged in the hexagonal output space using R-max but under the
restriction that the perimeter remained ‘fixed’ (Figure 3.2ii).
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Figure 3.2(i) Reference clusters
arranged on perimeter of MIR-max

output space. (Spring samples; colour
coding refers to average ASPT – bottom
left of the map roughly corresponds to

reference ‘pools’, top right to reference
‘riffles’.)

Figure 3.2(ii) Non-reference clusters
arranged in output space, with reference

clusters on the perimeter. (Spring
samples; colour coding as in Figure 3.2i)

It would also be possible to develop a classification system based on RPDS. The classification
of the clusters into quality bands could be achieved at two levels. First, it could be based on
EQIs in a similar way to that used in RIVPACS classifications. Second, it could be based on
more detailed profiling of typical characteristics of each WFD quality class, using the
approach described earlier for the definition of RPDS reference states. In this case, the basis
of the classification would be the comparison of exemplar values for key characteristics of a
cluster with predefined threshold values. This approach makes use of a much wider range of
recorded data and could be achieved with or without the use of reference states. We consider
it to be far more reliable than the RIVPACS approach, since EQIs alone provide a very
simplistic model of the degree of impact. However, it could only be considered WFD
compliant if it incorporated EQRs in its key characteristics.

Dealing with site types for which there is no reference state in the data would not be a serious
issue since reference conditions would not be essential to the classification. Although RPDS
could classify sites relative to reference states, the formation and location of clusters in the
output map would not be dependent upon the existence of a corresponding reference cluster.
Thus, the classification of sites with no corresponding reference state would still be possible
provided the boundaries between the five WFD classes can be drawn on the output map. This
would not be difficult, provided that there are sufficient clusters near to the boundaries that do
have corresponding reference states. The site in question would then be classified (in
probabilistic terms) to the WFD class of the cluster(s) to which it is assigned. Furthermore,
this classification could be tested against a classification based on thresholds for key
variables, similar to that suggested earlier for use in the definition of reference states.
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3.3.3 Classification statistics

Error associated with the assignment of clusters into WFD quality bands The exemplar
values for a cluster are the mean values of each variable for the samples in that cluster.
Clearly, these values are prone to uncertainty, especially if the number of samples in the
cluster is small, or the range of values is large. Confidence intervals (say 95%) could be given
for each variable to indicate the level of confidence with which a particular cluster belongs to
its allocated WFD quality class. Hence, near the boundaries of the class there may be ‘grey
areas’ containing clusters that do not belong to the classes on either side at a given level of
confidence.

Error associated with assignment of a sample to a cluster Predictions in RPDS are based on
the average values of ‘archive’ sites belonging to the cluster to which the site under
consideration is allocated. A number of measures relate to the level of ‘confidence’ that can
be given to these predictions:
• the mutual information (MI) value achieved for the classification (i.e. the confidence with

which the site has been allocated to the cluster);
• the MI achieved for other potential clusters;
• the consistency of ‘archive’ values within the cluster;
• the homogeneity of ‘archive’ values across all clusters.
Each of these measures is readily available from the information in RPDS; the difficulty is in
presenting the variety of measures as a single figure that will make sense to the end-user. An
overall confidence scale using percentages is proposed as the most ‘user-friendly’ option
(possibly with a set of bandings to indicate e.g. ‘very good’, ‘good’, ‘fair’, etc.), with further
options to examine any particular aspect (from those listed above) in more detail.
Alternatively, the distance (i.e. Euclidean, or possibly an MI equivalent) of the site from its
neighbouring clusters in data space could be used to provide probabilities of the sites
belonging to each cluster, in a similar way to that used in RIVPACS. These probabilities
would then be summed across all clusters in each WFD class, to give a probability of the site
belonging to each class.

Error associated with sampling The sensitivity of a classification due to small variations in
the sample composition, either from natural sources or due to sampling error, could be
assessed using Monte Carlo simulation.

RPDS is a purely data-driven system based on pattern recognition rather than the rule-based
approach associated with a traditional ‘expert system’. It is founded on objective data analysis
and not the subjective elicitation of rules from experts. This ensures that any necessary
subjective input, such as expert appraisal of the ‘ecological reality’ of the clusters, only
occurs at the end of the modelling process. Past experience has indicated that experts find
RPDS output maps meaningful, and often enlightening. Justification of an RPDS
classification system in terms of ‘ecological reality’ would therefore depend on the degree to
which its classifications instilled confidence in experienced limnologists. The additional
features of RPDS, such as feature maps, templates and reports should help in this regard,
especially if these were to be extended and used in conjunction with the expertise inherent in
a system such as RPBBN, because they provide ‘back-up’ evidence to support the ‘basic’
classification. This would ensure that an RPDS-based classification system would satisfy the
needs of WFD.
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In summary, RPDS has been demonstrated to be a viable alternative to classification for WFD
based on the RIVPACS approach. Classification can be achieved by comparison with defined
reference conditions, and appropriate confidence statistics derived, using the methodologies
outlined. The main advantages of the approach are that the processes are: (i) holistic and
maximise the amount of information that can be extracted from the data (unlike RIVPACS
where much of the information is lost by the use of BMWP scores); and (ii) totally objective
until expert opinion is used at the end to define thresholds values (unlike RIVPACS where
subjective judgement enters via both the use of pre-determined reference sites and the
reliance on BMWP scores).

3.3.4 Improvements to the MIR-max algorithms

O’Connor (2004) suggested the following improvements to MIR-max, and discussed the
possible future development of MIR-max in more detail.

The MIR-max algorithm, like most optimisation algorithms, does not guarantee convergence
to a global optimum, only a near-optimum. A possible improvement would be to allow groups
of samples, not just individual samples, to change clusters during the training process. This
approach may achieve a higher overall mutual information, because it is possible either for
single ‘true’ clusters to be split across two or more MI-max classes, or for multiple ‘true’
clusters to be merged into a single MI-max class.

Two possible approaches to the achievement of this potential improvement are:
(1) Perform a check at intervals throughout the training process, whereby clusters could be

either split or merged.
(2) Enable groups of samples to be moved ‘en bloc’ (e.g. on selection of a single random

sample, also select those samples in the same cluster that are sufficiently ‘similar’),
rather than restricting the movements to single samples.

The precise way in which such solutions could be implemented efficiently would require
further research.

R-max is currently based on a distance measure in data space. Ordinal biological data, such as
abundance ratings, are not ideally suited to the use of distance measures, although R-max
provides an acceptable solution since the ordering process is considered secondary to that of
clustering. An information-theoretic version of R-max would be possible, using the mutual
information between clusters in place of a distance measure. However, when only small
numbers of samples are involved, the mutual information between two clusters may be
difficult to justify as a reliable measure. Further research would be required to investigate the
feasibility and utility of an information-theoretic approach to ordering.
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4 RPBBN

4.1 Testing RPBBN using the 2000 river survey data

4.1.1 Introduction

The River Pollution Bayesian Belief Network (RPBBN) was created using the data from the
1995 River Survey of England and Wales (this data set is referred to as N2R95). At the time
of development, this was the only data set of its kind in existence. Therefore the system could
only be subject to either dependent testing (i.e. using the training data) or cross-validation
testing, where the data set is split into parts that are used alternately for training and testing.
However, neither of these options gave a true indication of the accuracy of the full RPBBN
system trained using all the N2R95 data set. R&D Report E1-056/TR (Walley et al., 2002)
provides background on BBNs and details the initial development and testing of RPBBN.

The compilation of the data for the 2000 River Survey of England and Wales (N2R2000)
provided the opportunity to perform tests on the full RPBBN system and gain some indication
of its potential.

4.1.2 Aim of testing
The aim of testing was to evaluate how accurately the RPBBN system (trained using the 1995
river survey data) could predict the chemical attributes total ammoniacal nitrogen (AMTN),
dissolved oxygen – percentage saturation (OXSA), total phosphate (PHOS), pH (PHVL)
and total oxidised nitrogen (TOXN).

4.1.3 Methods of analysis
The predictions produced by BBN systems are sets of probability values that correspond to
each of a variable’s possible states. That is, each prediction corresponds to a probability
distribution rather than a single value. This makes it necessary to perform several tests in
order to extract enough information to make a reasoned judgement about the performance of
the BBN. In the following tests, three different types of analysis were used:

1. The derivation of the correlation coefficient ‘r’ value for the actual values of the variable
and a predicted value produced by summing the product of the probability and mean
values (obtained from the test set) of each state (Equation 4.1).

∑
=

=
N

i
ii xpx

1
(Eqn 4.1)

where:
N = the number of states of the variable
pi = the probability of the variable being in the ith state
xi = the centroid value of the ith state.

2. The percentage of correct categorical classifications, where the categorical classification
is taken to be that with the highest probability value.

3. The mean of the highest probability values for each state, for the correct categorical
predictions alone and for all the predictions (i.e. correct and incorrect).
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The weighted mean analysis (test 1) assesses the whole probability distribution, the correct
categorical classification (test 2) assesses the most likely state, and the mean highest
probability (test 3) assesses the overall confidence in the predictions.

4.1.4. Results

Table 4.1 shows both the Pearson and Spearman rank correlation coefficients of the weighted
means predictions compared with those obtained previously in tests using 1995 data. The
Spearman rank values are included as they usually provide a better appraisal of the weighted
mean prediction because of the truncation of the predictable range.1 The results of the
categorical classification analysis are shown in Table 4.2, which details both the number and
the percentage of those correct classifications.

Table 4.1 The Pearson (r) and Spearman rank (rs) correlation coefficients for the
weighted mean analysis

AMTN OXSA PHOS PHVL TOXN
rs r rs r rs r rs r rs

2000 0.2181 0.4270 0.4151 0.4015 0.4472 0.6073 0.5919 0.5558 0.5613 0.6277
1995 0.2631 0.4798 0.4327 0.4716 0.4252 0.6415 0.6405 0.6071 0.5406 0.6497

Table 4.2 The number and percentage of correct categorical classifications

AMTN OXSA PHOS PHVL TOXN
No.
Correct

%
Correct

No.
Correct

%
Correct

No.
Correct

%
Correct

No.
Correct

%
Correct

No.
Correct

%
Correct

2958 29.84 2802 39.35 646 38.96 3829 38.39 4066 40.78

Figures 4.1–4.5 show confusion matrices of the categorical classification results for AMTN,
OXSA, PHOS, PHVL and TOXN, respectively. These matrices show the spread of the
predicted classifications in relation to their actual classifications. The matrices provide
additional information on the incorrect classifications.

                                                          
1 The probability values are limited to the range [0,1] and must sum to unity. The results produced by the
weighted mean equation are thus limited to values between the lowest and highest mean state value. This often
leads to a clustering of predictions at the maximum and minimum values, which can have a detrimental effect on
the Pearson correlation coefficient. Spearman’s coefficient analyses the rank ordering of the predictions and so
should in theory be less affected by clustering.
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Figure 4.1 Confusion matrix for total
ammoniacal nitrogen (AMTN)

Figure 4.2 Confusion matrix for
dissolved oxygen – percentage
saturation (OXSA)

 
Figure 4.3 Confusion matrix for
phosphate (PHOS)

Figure 4.4 Confusion matrix for pH
(PHVL).

Figure 4.5 Confusion matrix for total oxidised nitrogen (TOXN)
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To provide a baseline against which to compare the certainty of the predicted probabilities,
Table 4.3 shows the prior probability values for the states of the five chemical variables.
Table 4.4 shows the mean highest probability values for all the predictions and Table 4.5 for
the correct classifications alone.

Table 4.3 Prior probability values for each state of the five chemical variables in RPBBN

AMTN
0–0.03 0.03–0.05 0.05–0.12 0.12–0.295 0.295–33
0.065 0.187 0.347 0.263 0.139

OXSA
0–80.9 80.9–91.5 91.5–99.8 99.8–107.2 107.2–235
0.147 0.213 0.279 0.214 0.148

PHOS
0–0.0275 0.0275–0.06 0.06–0.24 0.24–0.98 0.98–14

0.141 0.210 0.283 0.218 0.149
PHVL

0–7.4 7.4–7.7 7.7–8 8–8.2 8.2–14
0.143 0.212 0.282 0.215 0.147

TOXN
0–0.9 0.9–2.5 2.5–5.9 5.9–9.5 9.5–160
0.146 0.213 0.280 0.214 0.147

Table 4.4 The mean and standard deviation (SD) of the highest probability values for all
classifications

AMTN
0–0.03 0.03–0.05 0.05–0.12 0.12–0.295 0.295–33

Mean SD Mean SD Mean SD Mean SD Mean SD
0.502 0.141 0.587 0.124 0.577 0.117 0.472 0.068 0.608 0.145

OXSA
0–80.9 80.9–91.5 91.5–99.8 99.8–107.2 107.2–235

Mean SD Mean SD Mean SD Mean SD Mean SD
0.549 0.132 0.443 0.072 0.580 0.142 0.494 0.112 0.422 0.116

PHOS
0–0.0275 0.0275–0.06 0.06–0.24 0.24–0.98 0.98–14

Mean SD Mean SD Mean SD Mean SD Mean SD
0.670 0.163 0.570 0.137 0.577 0.135 0.461 0.088 0.484 0.098

PHVL
0–7.4 7.4–7.7 7.7–8 8–8.2 8.2–14

Mean SD Mean SD Mean SD Mean SD Mean SD
0.662 0.165 0.525 0.108 0.608 0.140 0.487 0.105 0.434 0.093

TOXN
0–0.9 0.9–2.5 2.5–5.9 5.9–9.5 9.5–160

Mean SD Mean SD Mean SD Mean SD Mean SD
0.719 0.167 0.606 0.123 0.567 0.117 0.490 0.088 0.516 0.127
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Table 4.5 The mean and standard deviation (SD) of the highest probability values for
correct classifications

AMTN
0–0.03 0.03–0.05 0.05–0.12 0.12–0.295 0.295–33

Mean SD Mean SD Mean SD Mean SD Mean SD
0.493 0.112 0.587 0.126 0.570 0.119 0.472 0.070 0.638 0.151

OXSA
0–80.9 80.9–91.5 91.5–99.8 99.8–107.2 107.2–235

Mean SD Mean SD Mean SD Mean SD Mean SD
0.569 0.133 0.455 0.066 0.593 0.143 0.516 0.103 0.422 0.144

PHOS
0–0.0275 0.0275–0.06 0.06–0.24 0.24–0.98 0.98–14

Mean SD Mean SD Mean SD Mean SD Mean SD
0.716 0.155 0.582 0.132 0.583 0.141 0.465 0.090 0.433 0.028

PHVL
0–7.4 7.4–7.7 7.7–8 8–8.2 8.2–14

Mean SD Mean SD Mean SD Mean SD Mean SD
0.711 0.161 0.544 0.104 0.619 0.140 0.487 0.102 0.446 0.084

TOXN
0–0.9 0.9–2.5 2.5–5.9 5.9–9.5 9.5–160

Mean SD Mean SD Mean SD Mean SD Mean SD
0.758 0.160 0.623 0.116 0.573 0.118 0.493 0.091 0.541 0.137

4.1.5. Discussion

The results produced from the testing of the full RPBBN using independent data are similar to
those produced during the cross-validation tests in the original study, based on RPBBN
models trained on half of these records (Walley et al., 2002). Although the results for the
cross-validation tests were slightly better, the differences were not pronounced. Therefore, the
results were again characterised by some reasonable correlation coefficients in the weighted
mean analysis, a relatively poor performance in the categorical classification analysis and low
means overall for the highest probability values, which indicate a fair degree of residual
uncertainty in the predictions made.

The probability values for the full RPBBN were derived from the complete N2RPlus1
database (see Walley et al., 2002) containing 7230 records, whereas the cross-validation
RPBBN models were trained on half of these records. Therefore, it might have been expected
that the full RPBBN would have performed better; the conditional probability matrices were
derived from a much larger data set and so could be expected to produce better estimations of
the underlying probability distribution. However, the results showed little discernible
difference in the performance of the two models. Two distinct factors most probably serve to
explain this:

1. Diminishing returns. As with many statistical methods, the improvements that can be
gained by increasing the sample population from which the estimate is derived quickly
decrease.

2. Impact of Dither smoothing. In the initial RPBBN study, it was noted that although the
effect of Dither smoothing was better than previous methods it produced fairly cautious
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models with improved performance in the mid-range predictions but a ‘reluctance’ to
predict extreme events.

In combination, these two factors imply that, although the full RPBBN is based on twice as
much data as the cross-validated models, the differences between the two were unlikely to be
significant.

4.1.6. Conclusions
The similarity in performance between the full and cross-validated models could be
interpreted as an indication of the failure of BBN to improve predictive accuracy even with
additional data. However, even though the RPBBN model was tested using all the 1995 river
survey data, thus overcoming the drawbacks of previous testing, various issues identified as
having significant impact on performance have not been addressed by the tests undertaken in
this study. These issues include:

• the development of new and improved methods of representing conditional probability
distributions to reduce the difficult task of deriving the large number of probability
values that are required for the probability matrices;

• the development of new and more sensitive methods of smoothing probability
distributions.

If these issues are addressed (even partially) it should be possible to develop a BBN model
capable of better performance than that achieved in this study.

4.2 Improvements to RPBBN

4.2.1 Viewing updated probabilities alongside previous ones

The previous version of RPBBN (version 1.2) was limited in that it could only display the
current state of the variables in the system. The inability to save and display previous states of
the system meant there was no simple method of visualising the differences between two
states. The addition of a Store Probabilities feature (in the Options menu) rectified this
problem by enabling current probabilities to be saved and stored as blue probability bars
alongside the updated probability bars. Figure 4.6 shows the revised system, displaying a
stored set of probabilities alongside the current probabilities of the variables. This provides a
simple mechanism for comparing different scenarios.

This feature is of particular use when experimenting with ‘What if?’ situations, where the
effects of different proposed actions (e.g. reducing ammoniacal nitrogen) on the current state
of the system can be assessed. The process would simply store the state of the system
associated with the sample data, and then the states of variables could be adjusted to achieve
the proposed actions, for example the reduction of ammoniacal nitrogen. The system would
then predict the changes that would occur as a result of the proposed action, and the new
states could be quickly compared against the original states of the variables.

The storage of previous states could be extended to allow a number of them to be saved
concurrently. The main problem with this proposal would be the display of more than one or
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two stored states at a time, given the limited amount of space allocated to the probability bars
and the potential for confusing the user. The solution to this problem may be the development
of an easy to use and unobtrusive Stored Probabilities manager, which would allow several
previous states to be stored, indexed and then selected individually for display.

Figure 4.6 Screen shot of RPBBN with the Store Probabilities feature in action, assessing
the effects of changes in a reduction in ammoniacal nitrogen on the biological

community

4.2.2 Identifying anomalies in recorded data for quality assurance or sensitivity testing

The identification of anomalies in recorded data is an important task, both as part of quality
assurance and for sensitivity testing. Anomalous values are identified in RPBBN by
comparing the recorded values for each variable with the predicted value for that variable
made by RPBBN using the rest of the sample data as evidence. The values are defined to be
anomalous if the predicted probability for the state that corresponds to the recorded value is
less than the threshold value of 0.05. This value was chosen because it is a standard level of
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significance used in a variety of statistical tests to prove the null hypothesis (i.e. that the
prediction was not similar to the recorded value).

The option to enable the anomalies to be identified in the loaded records is under the Data
menu. By default, this option is disabled as it involves a substantial amount of additional
processing. Figure 4.7 shows a screen shot of this feature in action. The RPBBN software has
identified the recorded value for Ephemeridae as anomalous. This is indicated as follows:

 the bar corresponding to the anomalous state is highlighted in the bar-chart;
 the variable is marked in bold in the listing of the recorded values in the sample.

Figure 4.7 Screenshot of RPBBN with a sample record loaded and the Identify
Anomalies options enabled. In this example, the recorded value for Ephemeridae has
been identified as anomalous and is indicated as such both in the bar chart for this
variable (highlighted in yellow) and in the listing of the sample data (text in bold).

The identification of anomalous values could be developed further in several ways. Probably
the most obvious is the development of a more sophisticated method of defining the values
that are considered anomalous than the arbitrary threshold value of a probability less than
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0.05 currently used. Another useful development would be a batch-processing feature that
could work through an entire data file and identify the anomalous values in each sample and
then produce a report at the end. This would allow RPBBN to be used as a data validation
tool, although final validation of a sample with potentially anomalous data would require
examination by an experienced biologist.
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 5 Summary and conclusions
 
 5.1 Summary
 
This extension to R&D Project E1-056 has addressed the following aims:

• to test the computer-based systems RPDS and RPBBN developed in E1-056 using data
derived from the newly acquired 2000 GQA survey;

• to update and improve RPDS by including a means of identifying and incorporating
‘reference states’ and a methodology to extend RPDS to produce a classification system;

• to retrain RPDS using ‘number of families’ in place of ‘alkalinity’ in the input vector;
• to produce an updated database to be used as input to the existing RPDS;
• to identify means for updating and improving the current prototype RPBBN.

A new database has been produced for use with RPDS, which includes both 1995 and 2000
data. The new RPDS model defined in this database has been trained with both sets of data,
using ‘number of families’ in place of ‘alkalinity’ in the input vector.
 
 
5.2 Recommendations for further research and development
 
A number of recommendations for further research were made in the original R&D Technical
Report that have not been addressed by this extension.

Fully integrated surveys. As recommended in the initial R&D Technical Report E1-056, the
most valuable action that could be taken to further the development of advanced bio-
monitoring systems would be to fully integrate future biological, chemical, stress and other
Environment Agency surveys. It is hoped that the current and ongoing redevelopment/update
of the Environment Agency’s main B4W database will go some way to addressing the
problems of ‘matching’ sites from the various surveys.

Include other types of bio-indicator. Indicators other than macroinvertebrates (e.g. aquatic
plants, algae and fish) may provide valuable information, and where such data is available, it
should be investigated as a possible enhancement to the current input vector.
 
 Integration of River Biology Monitoring System (RBMS), RPDS and RPBBN. It would be
useful to integrate RPDS and RPBBN into a single system to create an expert system using
both pattern recognition and plausible reasoning. Ideally, this would involve some method of
combining their conclusions/predictions. It would also seem sensible to include user-friendly
information-retrieval facilities, as exemplified by RBMS, in the same system, to produce a
single software resource for use by the Environment Agency.
 
 Other recommendations arising particularly from this project extension are discussed in
Sections 3.3 and 4.2:
• further research and development of MIR-max algorithms;
• further investigation of the use of MI and other RPDS outputs as measures of confidence;
• improvements to enhance RPBBN user interaction.
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 5.3 Conclusions

Conclusions from the RPDS tests
• When samples taken in 2000 were classified into the clusters based on the 1995 data,

comparisons of predicted chemical variables with their recorded values indicated only
a slight deterioration from the results of previous tests on the 1995 data only. Given
the truly independent nature of this test, this is a convincing demonstration of the
predictive capabilities of the system.

• When RPDS was trained on the combined data sets from 1995 and 2000, comparisons
of predicted chemical variables with their recorded values indicated a very slight
overall improvement from the results of previous tests with the 1995 data only.

• Removing alkalinity from the input vector had only a minor detrimental effect on
overall performance, although predictions of some potentially sensitive metals were
improved. Thus little predictive capacity was lost while removing a potential pollutant
from the input vector.

• Replacing alkalinity by ‘number of families’ in the input vector also had a fairly
neutral effect on overall predictive performance, but again predictions of some
potentially sensitive metals were improved.

Updates and improvements to RPDS
• A methodology for identifying reference conditions and other WFD quality bands has

been proposed, based either on a set of EQIs, or on the interpretation of the cluster
map according to expert opinion. Confidence intervals could be given to indicate the
level of confidence with which a cluster belongs to a particular WFD band.

• A probabilistic method for classifying a new sample has been described with
probabilities based on a distance measure of the site from its neighbouring clusters.
These probabilities would be summed across all clusters in each class to give the
probability of belonging to each class.

• Errors associated with sampling could be assessed using Monte Carlo simulation.
• Reference clusters in the output map could be constrained to lie on the boundary as

described, although distortion would be avoided if unconstrained. Temporal tracking
of improvements could be easily visualised.

Conclusions from the RPBBN tests
• The results of testing the full RPBBN (trained on the whole 1995 database) with the

samples taken in 2000 as independent data were similar but slightly worse than those
produced during the cross-validation tests (based on splitting the 1995 database) in the
original study.

• Further work is needed to develop better methods of smoothing the distributions in the
conditional probability matrices.

Updates and improvements to RPBBN
• A Stored Probabilities option has been added, which enables previous probability bars

to be shown alongside new bars. This allows comparison between different scenarios
to be visualised easily.

• An Identify Anomalies option has been added, which compares the recorded values for
each variable with predictions made using the rest of the database.
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