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GLOSSARY

Note:

Many abbreviations and acronyms used in this project are highly specific and have no recognised

meaning elsewhere,

o (dh
a@dh

ABF

ADF

ADIST (km)
AQCONF
AQGEOL
AREAR (km?)
AREAW (km®)
ARQ (Ml/a)
BHS

BFS

C (m*/d)

Ea (M)
EA

EAL (km)

EC

Aquifer Parameter ‘omega’ derived by the Water Resources Board
Aquifer Parameter ‘alpha’ derived in this project

Average Baseflow (sometimes expressed as a discharge ‘Ml/d’ or a yield
‘l/s/kmz’)

Average Daily Flow, expressed as a discharge (i.e. M1/d)
Composite Distance of Abstractions from the River
Aquifer Configuration

Aquifer Geology

Area of Aquifer Receiving Recharge

Area of Whole Aquifer

Total Aquifer Recharge Quantity

British Hydrological Society

Baseflow Significance of Aquifer unit

River Bed Conductance, used in MODFLOW analysis
Safe Development Limit of an Aquifer, as a proportion of Recharge input
Drift Sand and Gravel

Aquifer Development Threshold, as a proportion of Average Baseflow (or
Recharge input)

Total Annual Effluent Return to the River
Environment Agency

Effective Aquifer Length (derived using a simple formula based on catchment
area and river length)

Environmental Criticality of River
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HS

ICL

K (m/d)
Ky (m/d)
KCL

L (m)
La (MI)
Li(MI)
Ls (MI)
Lw (M1)
MORECS
NRA
OSST
PABF

PAR

Qw (MV/a)

Individual Effluent Return Quantity

Total Summer Effluent Return to the River

Total Winter Effluent Return to the River

Seasonality-Distance Factor

Transmissivity Factor from Aquifer to River

Groundwater head

Constant head at rivers (fixed head in MODFLOW analysis at river cell)

Hands off Flow - flow in a river below which licences incorporating a related
cessation clause must cease abstraction

Hydrological Sensitivity of River

Interfluvial Chalk/Limestone plus miscellaneous hardrock aquifers
Aquifer Hydraulic Conductivity

River Bed Hydraulic Conductivity

Karstic Chalk/Limestone

Aquifer length, used in MODFLOW analysis

Total Licensed Annual Quantity

Individual Licence Quantity

Total Licensed Summer Quantity

Total Licensed Winter Quantity

Meteorological Office Rainfall and Evaporation Calculation System
National Rivers Authority

Other Sandstones (Cretaceous, Carboniferous etc)

Proportion of Average Baseflow (or Recharge) necessary to protect baseflow
requirements

Proportion of Average Recharge necessary to protect other environmental needs

Intermediate Weighted Assessment of Development
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Qny
Qs (Ml/a)

Qsw (MV/a)

quasi-steady-state

R&D

RECH (mim/a)
RIVLEN (km)
RS (MI)

RS; (M)

RSs (MI)

RSw (M)

S

SEAS

SSST

S)‘

T (m*/d)
T' (m%/d)

transient

VCL
WRB

X

Naturalised river flow percentile exceedence values with x defining the percentile
exceedence value

Safe Yield of an Aquifer, also referred to as the Groundwater Resource Reliable
Yield

Simple Weighted Assessment of Development

MODFLOW simulation results using a cyclic input of Average Monthly
Recharge data

Research and Development

Annual Average Recharge

River Length

Total Annual River Support Quantity

Individual River Support Quantity

Total Summer River Support Quantity

Total Winter River Support Quantity

Aquifer Storativity (sometimes S, is substituted)
Seasonality Factor of Abstractions

Sherwood Sandstone

Specific Yield

Aquifer Transmissivity

“Effective” Transmissivity from Aquifer to River

MODFLOW simulation results using an actual historic monthly recharge dataset
as input

Typical Valley Chalk/Limestone
Water Resources Board

i) ‘aquifer length’ (m) applicable to the Dupuit equation
i)  ‘percentile exceedence’ applicable to naturalised flow percentile
exceedence values
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EXECUTIVE SUMMARY

Although this R&D Technical Report is compiled as a ‘stand alone’ document it is intended to
complement the User Manual which describes the formulation and application of the Groundwater
Resource Reliable Yield (yie/d) Methodology.

This document provides details of the groundwater modelling and analytical work which underpins

the formulation of the basic ‘type curve’ approach and many of the factors used in the resulting
Methodology.

The details in this document generally relate to an idealised aquifer configuration and the main focus
demonstrates how the baseflow regime can be readily defined by a relatively simple consideration of
aquifer recharge and typical aquifer characteristics. In most cases these data will be available, albeit
with some uncertainties, enabling assessments to be conducted.

This document does not describe the environmental constraints and allocations which also limit the
resulting yield quantity. These are defined in the User Manual.

Keywords

Groundwater, Methods, Resources, Yield
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1. INTRODUCTION

This R&D Technical Report includes an account of the scientific work carried out that
forms the basis for some of the procedures and factors used in the Groundwater
Resource Reliable Yield (yield) Methodology as described in the R&D Technical
Report W9 - User Manual (Papaioannou and Erskine, 1996a). Therefore, whilst this
R&D Technical Report is written as a ‘stand alone” document, its total meaning and
application can only be realised if read in conjunction with the User Manual.

The details described here only apply when the baseflow from the aquifer to surface
water is considered significant as described in Section 2.1 of the User Manual. This
account only elucidates procedures and factors used in the Methodology (described in
the User Manual) which are derived from computer modelling and related analytical
assessment. Most of these form the basis for deriving the ‘alpha’ parameter and
applying this to a ‘type curve’ as a means of establishing Dy, the seasonal minimum
baseflow expressed as a fraction of the average baseflow, in an idealised and non
developed (zero groundwater abstraction) aquifer.

Other factors and procedures used in the Methodology to determine yield (Qs) are not
considered here but are detailed in the User Manual. These include parameters such
as:

e PABF the proportion of average baseflow allocated to protect minimum baseflow
regime.

e PAF the proportion of average baseflow or recharge to protect ‘other” groundwater
related environmental needs.

To date, no comparable consideration or evaluation has been undertaken to deal with
the situation when the baseflow from an aquifer is not considered significant. The
procedures described in the User Manual under these circumstances has not been
subject to any scientific evaluation.

A detailed Introduction and Background to the project is given in Section | of the R&D
Project Record (Papaioannou, 1996).

The second section in this Note is a description of the modelling runs carried out and a
summary of the lessons learnt during the experimentation. The purpose of this work
was to determine the minimum baseflows to rivers resulting from seasonal fluctuations
in recharge to an idealised aquifer.
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The third section demonstrates the existence of a key ‘aquifer parameter” which can be
derived from the idealised assumptions used in the modelling. This parameter enables
output from the model to be described mathematically. Therefore. it is possible to
distil the findings from the modelling work down to a single equation and ‘type curve’.

In the fourth section work is described that tests the theories advanced in sectioiis two
and three. Real data is analysed in order to put the ‘type curve’ on a sound empirical
basis. Hydrological statistics have been used to verify the equations and show that
they generally represent real conditions in gauged catchments satisfactorily and
therefore, the method can be applied to both highly investigated/monitored areas as
well as ungauged catchments. Further case examples are given in Section 3.2 of the
User Manual.

Ré&D Technical Report W10 2



2.1

MODELLING SET-UP AND EXPERIMENTATION

Set-up

In order to investigate the behaviour of an idealised aquifer under variable recharge
conditions, a simple numerical model of the aquifer was developed. This model used
the software MODFLOW which employs the method of finite differences to
approximate the Darcy equation of groundwater flow.

The model consists of a 1-dimensional unconfined aquifer in section with the river
forming a boundary at one end (represented by a fixed head node) and a groundwater
divide at the other end (represented by a no-flow node) as shown in Figure 2.1. The
equation of groundwater flow used is:

a( ah) oh
ox\ o) =55

The initial variables considered in the modelling experimentation were the head at the
river boundary (ho), the hydraulic conductivity (K) of the aquifer, the storage (S) of the
aquifer and the length (L) of the aquifer.

A large number of model runs not involving any abstraction simulations were carried
out which can be divided into the following categories:

e Steady State runs. Used to verify the model with the analytical solution
h*= qx (2L - x)/K + ho® where x is distance from the river.

¢ ‘Quasi-Steady-State’ Runs. Transient runs where the recharge was set to an annual
cycle. The average monthly figures (derived over the period 1961-1990) for
MORECS square 109 were used for the annual recharge. After a few years the flow
to the river also becomes cyclical. The minimum figure in the river flow cycle is
noted as a percentage of the average flow. This ratio is defined as Dy or the ratio of
Minimum Base Flow (MBF) to Average Base Flow (ABF). In order to standardise
output from the different model configurations and enable meaningful comparisons,
much of the output shown in hydrograph form uses yield (l/s/kmzj rather than flow
(I/s).

e Transient Runs. Transient Runs using historic monthly data for MORECS square
109 (see Figure 2.2). The runs were conducted for the 30 year period (1960-1990)
using monthly time steps and the initial condition was the "Quasi-steady-state’
solution. The output of these runs was noted in terms of the minimum annual
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2.2

2.2.1

baseflow yields to the river with each annual minimum value represented on a
Gumbel Probability Plot.

Output from the above model runs were used to form the basis for defining a key
‘aquifer parameter” which could be derived mathematically from the initial variables
described above.

Further ‘Quasi-Steady-State’ modelling experimentation was then conducted to explore
the effect of:

Abstraction Scenarios. For selected runs, abstractions were included in the model.
The effects of varying abstraction season and location were also briefly investigated
to establish a factor (Fsp) which could be applied in the Methodology.

Variable River Bed Conductance Scenarios. For selected model runs and aquifer
parameter values the effect of reducing river bed conductance was briefly explored.
From this it was possible to show how the ‘effective transmissivity’ (T') from the
aquifer to the river is modified by different combinations of aquifer transmissivity
and river bed properties leading to formulation and application of a transmissivity
factor (Fr).

Spatially Variable Hydraulic Conductivity (Spatially Variable K). For selected
model runs the effect of spatially variable hydraulic conductivity (typical of Chalk
aquifers) was very briefly explored. There is a strong inference that applying the
‘weighted’ mean (composite) K across the whole aquifer model gives a reasonable
approximation to the output from spatially variable K model runs. Therefore, this
simple approximation is recommended in the Methodology.

Results

General Findings

The results of the steady-state runs were in accordance with the analytical solutions.

The results of the ‘quasi-steady-state’ runs are given in Table 2.1. A selection of the
initial runs are also illustrated in Figure 2.3 and 2.4. The model was run for ten years
and the baseflow yields to the river in the last year (by which time the annual pattern is

repeating identically) are presented. Clearly the minimum yields becomes smaller as:

¢ K increases

o S decreases

o the fixed head (ho) increases

o the aquifer length (L) decreases.
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The minimum yield (or flow) expressed as a proportion of average baseflow yield is a
measure of the sensitivity of the baseflow as related to the aquifer parameters.

Briefly, minimum baseflow yields are shown to:

¢ reduce in model runs with abstraction simulations. Minimum yields are most
dominantly affected by abstraction quantity but are also sensitive to abstraction
season and location with the summer season and locations right next to the river
proving the most sensitive.

¢ increase in model runs with reduced river bed conductance (usually resulting from
reduced river bed hydraulic conductivity) which will cause ‘effective
transmissivity’ (T") to reduce when compared with aquifer transmissivity T.

The relationships between all the parameters described above and the minimum
baseflow yield is further developed in Section 3.

The results of various runs (for ho = | m and L = 1000 m) with transient data are
shown in Figures 2.5, 2.6 and 2.7. Probability Plots using the Annual Minima are

shown in Figures 2.8, 2.9 and 2.10. A complete list of runs carried out is given in
Table 2.2.
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Table 2.2

Summary of Transient MODFLOW Runs Carried Out Using Historical Data

Aquifer Parameters Minimum Flow
Run S K ho L Median 20 year Quasi-Steady
Number m/d m m % ABF Return period Solution
% ABF % ABF
HIST2 0.01 5 1 1 000 26 9 40
HIST4 0.01 50 1 1 000 2 0 9
HIST9 0:05 5 1 1 000 71 42 77
HIST11 0.05 50 1 1 000 34 13 50
HIST16 0.25 5 1 1 000 90 73 93
HIST17 0.25 50 1 1 000 77 48 81
An important observation drawn from these runs is that the variability of the real
annual recharge causes minimum baseflow yields to generally be lower than those
predicted from the quasi-steady-state model. Even the “average’ (median) minimum
baseflow yield is always less than the ‘quasi-steady-state’ solution. This probably
results from the inherent variability in each individual year and it is believed that
taking a ‘quasi-steady-state’ solution from average monthly recharge figures (derived
using monthly data for MORECS grid square 109 over the period 1961 to 1990) gives
a recharge input during critical recession periods which is relatively moderated in
severity (i.e. truncated in both spring and autumn by averaging) and which is not
indicative or typical of cyclic recession characteristics on an individual annual basis.
2.2.2 The Effects of Annual and Seasonal Abstractions

The ‘quasi-steady-state’ runs involving abstractions and seasonality are summarised in
Table 2.3. The size of the abstraction has been set, using assumptions and output from
the runs outlined in Table 2.1, as the amount of water that would reduce the residual
minimum baseflow yields to 20% of average (without abstraction) if abstracted
continuously at a location next to the river. The percentages given for the various runs
are the revised residual minimum baseflow yields.

R&D Technical Report W10 9



Table 2.3

Effects on Residual Minimum Baseflow Yield caused by Abstraction Rate

S K Abstraction Residual Minimum Baseflow Yield (% ABF)
Rate Abstraction close to River Abstraction spread out
m/d % ABF All year Winter Summer All year Summer
(continuous) only only (continuous) only
0.01 5 17.6 20.2 375 20.4 224 23.6
0.05 50 26.3 20.3 35.8 20.6 22.7 25.5
0.05 5 50.9 20.2 333 224 229 349
0.25 50 53.8 204 33.0 223 22.4 36.2
0.25 5 64.8 213 413 27.5 31.8 47.6

All the above runs were conducted with ho = I m and L = 1000 m and by default with Fr = 1.0
(i.e. river bed hydraulic conductivity is equivalent to aquifer hydraulic conductivity).

When the ‘residual’ percentage is larger than 20% this indicates extra resource being
available for development. The seasonal columns (‘winter only’ etc) represent
abstractions at the same rate but only for half the year and therefore the total
abstraction quantity is half the equivalent ‘all year’ value.

The conclusions to be drawn are:

i) if abstraction is located further away from the river then some ‘extra’ water
becomes available for abstraction development

i) if abstraction is in winter only, considerably more resource can usually be
exploited

iii)  if abstraction is in summer only, the resource is usually and almost as depleted
as if it were abstracted all the year round.

This work has emphasised the need to consider where abstraction takes place in the
catchment and the particular magnitude of summer abstractions. Therefore, these
limited results have been used to derive a factor (Fgp) which is applied in the
Methodology as highlighted in the User Manual (see Section 2.2.4 and Table 2.6
therein).
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The Effects of Variable Aquifer K and River Bed Conductance

A small series of ‘quasi-steady-state’ model runs were conducted to explore the effects
of:

e Spatially Variable Aquifer Hydraulic Conductivity
e Variable River Bed Conductance.

The baseline runs used for comparison with the above are all outlined in Table 2.1 and
include fixed hydraulic or geometric parameters of;,

e ho=5m;
e L =1000m;
e S=0.03;

river bed hydraulic conductivity effectively equal to aquifer hydraulic conductivity;
and were modelled using varied aquifer hydraulic conductivities of 1, 5, 10, 20 and
50 m/d. The results from the baseline runs, with output expressed as baseflow yield

(l/s/kmz) are shown in Figure 2.11.

The baseline and exploratory model runs outlined above are summarised in Table 2.4
and the results are summarised below.

i) Spatially Variable Aquifer Hydraulic Conductivity

The 1000 m length of aquifer was divided into two zones of contrasting
hydraulic conductivity with:

e K, going from the river cell boundary (at zero) to 300 m distant.
¢ K, going from 300 m distant to the model boundary (at 1000 m).

Two model runs were conducted with:

¢ K,=50m/dand K, =5 m/d
e K;=10m/dand K, =1 m/d.

R&D Technical Report W10 11
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When modelled output is compared with that from the baseline runs (see
Figure 2.12 and Table 2.4), and concentration is given to the minimum modelled
yield, it can be seen that the most similar matches are achieved with K = 20 m/d
and K = 5 m/d respectively. Although there is cyclic distortion in the resultant
yield hydrographs, when making comparisons. it is concluded that the weighted
mean of the variable aquifer hydraulic conductivity (composite K) should give
an adequate approximation for Methodology purposes. In these examples
composite K equates to 18.5 m/d and 3.7 m/d respectively.

ii)  Variable River Bed Conductance

Variable River Bed Conductance has been modelled by effectively assuming a

— 1 m width of river bed material next to the river cell with a range of hydraulic
conductivity values expressed as K,. With the baseline model configuration this
gives river bed conductance (C) expressed as:

K, *x*ho
C=——""
b
where b  =river bed thickness (equai to | m in this instance)
x = width of modelled river cell (equal to 100 m in this instance).

Therefore, river bed conductance reduces to:
C=500*K,
The K, ranges explored and resultant C values considered were:

e K, =0.1 m/d (equivalent to silt) giving C =50 m°/d
e K, = 1.0 m/d (equivalent to silty sand) giving C = 500 m?/d
e K, =10.0 m/d (equivalent to medium sand) giving C = 5000 m?/d.

and where K, is less than aquifer K, model runs have been conducted with
aquifer K equal to 10 m/d, 20 m/d and 50 m/d (see Table 2.4). All runs have
been conducted using ‘quasi-steady-state’ analysis and the comparisons between
modelled yield output for variable river bed conductance and baseline values are
shown in Figures 2.13, 2.14 and 2.15 respectively. In addition, Table 2.4 also
highlights, for each run with aquifer K > river bed K, which baseline run gives
the most similar resultant yield.

In addition, Table 2.4 also includes a suggested factor, which for the model

configuration including a river bed conductance term. expresses the reduction
necessary to the aquifer K value, when used in the model with no river bed
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conductance component (as in the baseline runs), in order to give an equivalent
modelied output.

In the Methodology, as described in the User Manual (Papaioannou and Erskine,
1996a) Section 2.2.2 and Table 2.3, these ‘same’ factors are expanded to reduce
aquifer transmissivity (T) to ‘effective’ transmissivity (T") from the aquifer to
the river by use of a transmissivity factor (Fr).

R&D Technical Report W10 14



SEASONALLY VARIABLE RECHARGE
(See Figure 2.2)

SRR

NO FLOW /] FIXED HEAD RIVER CELL
BOUNDARY /| oo i

? e v

MOST MODEL RUNS
COMPRISE UNIFORM K & S h,

/]
S S

T -

Range of Aquifer Hydraulic and Geometric Values Modelled
Asuming No Abstraction and with Emphasis on Analysing
Baseflow Yield to the River Cell

K = Hydraulic Conductivity from 1 to 50m/d

S = Storativity from 0.01 to 0.25

ho= Fixed Head at River Cell from 1 to 50m

L = Aquifer Length from 300 to 5000m

e riabl riefly Examined Include:
Abstraction: Quantity, Location and Season
Variable K: Spatially Variable Hydraulic Conductivity

Variable K,: Variable River Bed HydraulicConductivityProperties
Leading to Contrasting Conductance Terms

Figure 2.1 Simple Model (MODFLOW) Configuration
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The Above 'Recharge' Distribution Represent the Average Monthly
Effective Rainfall Calculated for MORECS Square 109 over the
Period 1961-1990

For Most 'Dynamic' Model Runs the Above Monthly Average
Distribution has been used as Input 'Recharge' for the
Quasi-Steady-State Analysis

For Some Dynamic Model Runs the Historic Monthly
Distribution has been used as Input 'Recharge’ for
Dynamic Historical Analysis

Figure 2.2 Average Monthly 'Recharge' from MORECS' Square 109
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Figure 2.8 Probability Distribution of Minimum Yield Dynamic Historic Analysis (S=0.01, K=50m/d)
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Figure 2.9 Probability Distribution of Minimum Yield Dynamic Historic Analysis (§=0.01, K=5Sm/d)
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ANALYTICAL CONSIDERATIONS

Consideration of the mathematical solution to the idealised aquifer problem (see
Figure 2.1) has produced a formula which compares reasonably well with modelled
minimum baseflows. The analytical problem considered was that of a constant
transmissivity aquifer undergoing sinusoidal recharge at all points.

The resulting analytical solution is not fully verified though the crucial parameter
T/L?S, referred to as ‘alpha’ is shown to have direct parailels with much earlier work
(Oakes and Wilkinson, 1972) which presents a similar parameter ‘omega’ («) where:

_ Tr?
T 48172

W

In this earlier work recharge was simplified to a seasonal winter ‘block’ as opposed to
the sinusoidal approximation adopted in this project.

The main breakthrough in this project, compared with earlier work. was to recognise

how the ‘alpha’ term could be used to develop the type curve which is described
further below.

Transferring the ‘alpha’ parameter to the unconfined aquifer situation is not strictly
valid because T is not constant in the unconfined configuration. Experimentation with
the known model results, for runs in which aquifer K is constant throughout the model
and no river bed conductance is applied, established that the best approximator for T in
the definition of alpha is Kh where h* = ho® + qL%/K (based on the solution to the
steady-state Dupuit equation at x = L).

As shown in Figure 3.1 all the model runs for the various, K, ho, S and L values used
fall roughly on the same line which is close but not perfectly the same as the analytical

constant transmissivity aquifer solution. The reasons for the scatter are thought to be a
combination of’

¢ Error in analytical solution assuming constant transmissivity

e Differences in analytical solution using sinusoidal (and not quasi-steady-state)
recharge

e Error in modelled solution arising from numerical approximation.

The use of this graph as a type curve clearly provides a method of arriving at a
reasonable estimate of Dr (minimum baseflow yield over average baseflow yield)
given K. ho, L and S without having to run the model.
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The alpha value of an aquifer is an indication of how well the aquifer acts as a
reservoir in storing groundwater and regulating baseflow. In turn, this can be used to
indicate the aquifer’s abstraction development potential and this concept is expanded in
Section 4 below. High alphas indicate rapid response low-flexibility aquifers and low

alphas indicate flexible aquifers with respect to groundwater resource development
potential.

Using the data compiled in Table 2.2 an attempt has been made to show that minimum
baseflow yields and Dy values derived under real historic recharge conditions when
compared with quasi steady state derivations are:

o slightly reduced for the median value
¢ further reduced for increasing return period.

This is shown in Figure 3.2 which highlights reductions for 20 year return periods and
the median (mean annual) value.
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VERIFICATION OF Dy THEORY

Using data readily accessible in the Institute of Hydrology Yearbooks, an attempt has
been made to verify the theories postulated for the relationship between Dy and the
aquifer parameters used to define the ‘alpha’ term. A number of catchments have been
selected on the basis that:

o they have rivers which are baseflow dominated
* believed not to experience overwhelming artificial influences
e some are well known to members of the project team.

For each catchment the values of the parameters have been selected as follows:
* Average Baseflow : BFI x Average Flow

e Minimum Flow : The minimum flows recorded from 1981 to 1990 have been
averaged.

e Equivalent Aquifer Length: The aquifer length (L) used in modelling and analytical
work previously described is replaced by the equivalent aquifer length (EAL). This
is calculated by dividing half the Catchment Area by the total river length in the
catchment. This is a recommended formula which should work well for simple
geometrical aquifer and river configurations.

o ‘Effective’ Transmissivity: The ‘effective’ transmissivity (T') used is the product of
aquifer transmissivity (T) (or Kh) and the transmissivity factor (Fy) which is
derived from a brief assessment of (or assumptions about) river bed properties. The
‘effective’ transmissivity (T') is an approximation for “transmissivity’ between the
aquifer and the river and has been found from modelling analysis to be an important
controlling factor on Dy.

The results are given in Table 4.1 and Figure 4.1 shows the correlation between the
calculated values of Dy and the theoretical values. The trend in the data is clearly
visible although there is a fair amount of scatter. Some of the scatter may be explained
by artificial influences on the river which are not taken into account. It is expected that
with more accurate estimates of T', S and other parameters the scatter may be reduced.
Further and more detailed case examples; which go on to examine vield are described
in Section 3.2 of the User Manual (Papaioannou and Erskine. 1996a).
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