Project 363

PUMPING STATION - EFFICIENCY OF OPERATION AND COST FOR A DESIGN LIFE SPAN

SURVEY OF PUMPING INSTALLATIONS AND DESIGN PHILOSOPHY

Preliminary Report

Decembe 1992 Project No 163

Ref: VH/91742/R03/A

project 363

National Rivers Authority

PUMPING STATION - EFFICIENCY OF OPERATION AND COST FOR A DESIGN LIFE SPAN

SURVEY OF PUMPING INSTALLATIONS AND DESIGN PHILOSOPHY

Preliminary Report

December 1992

A H Taylor Mechanical Services Manager National Rivers Authority PO Box 12 Richard Fairclough House Knutsford Road Warrington WA4 1HG

National Rivers Authority Pumping Station Research

National Rivers Authority Rivers House Waterside Drive Almondsbury Bristol BS12 4UD

Tel: 0454 624400 Fax: 0454 624409

First Published 1992

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the National Rivers Authority.

Dissemination Status

Internal: Released to Regions External: Restricted

Document Number: 363

Research Contractor

This document was produced under R&D Contract by

Bullen and Partners Consulting Engineers 11/12 Eldon Place Bradford West Yorkshire BD1 3AZ

Tele: 0274 - 370410 Fax: 0274 - 734447

NRA Project Leader

The NRA's Project Leader for R&D contract 363:

Alan H. Taylor North West Region

Additional Copies

Further copies of this document may be obtained from Regional R&D Coordinators or the R&D Section of the NRA Head Office.

National Rivers Authority Pumping Station Research

CONTENTS

			Page				
1.0	SUM	1					
2.0	PRO	PROJECT DESCRIPTION					
3.0	STU	4					
	3.1	Phase 1 - Data Base & Design Philosophy	5				
	3.2	Phase 2 - Maintenance Practices	6				
	3.3	Phase 3 - Detailed Analysis & Reporting	7				
4.0	DAT	9					
	4.1	Summary of Pump Data	9				
	4.2	Analysis by Capacity	9				
	4.3	Analysis by Type	9				
	4.4	Analysis by Manufacturer	10				
	4.5	Cost of Stations by Capacity	10				
5.0	PUM						
	PRE	11					
	5.1	Summary	11				
	5.2	Introduction	11				
	5.3	Historical Background	11				
	5.4	Design Philosophy	15				
	5.5	General Considerations	16				
	5.6	Selection of Pumps and Ancillary Equipment	17				
	5.7	Design Check List	22				
	5.8	Points for further study	22				

National Rivers Authority Pumping Station Research

APPENDICES

APPENDIX A STUDY APPROACH

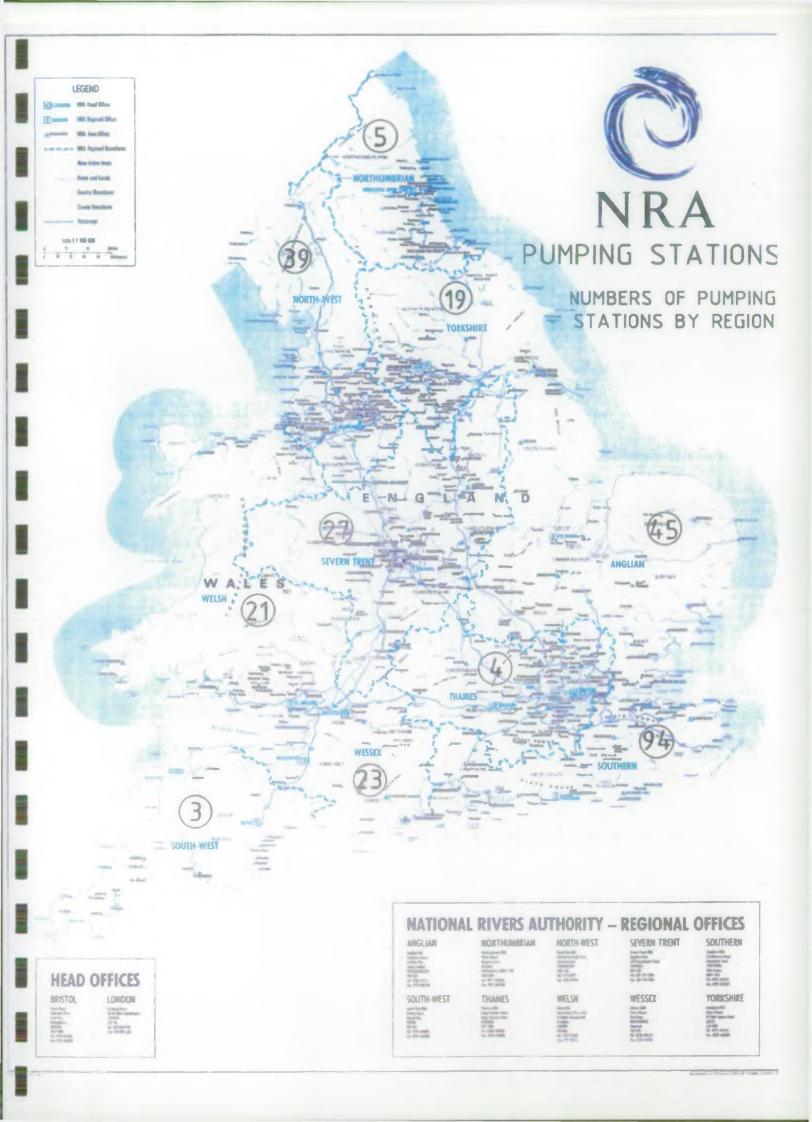
- A1 Survey of Pumping Plant Questionnaire
- A2 Survey of Pumping Plant Design Questionnaire
- A3 Survey of Pumping Plant Maintenance Questionnaire

APPENDIX B DATA BASE

- B1 Summary of Pump Data and Location Maps by Region
- B2 Pump Analysis by Capacity
- B3 Pump Analysis by Type
- B4 Pump Analysis by Manufacturer
- B5 Costs of Stations by Capacity

APPENDIX C DESIGN PHILOSOPHY

- C1 Design Considerations
- C2 Checklist
- APPENDIX D PHOTOGRAPHS


APPENDIX E REFERENCES

1.0 <u>SUMMARY</u>

The National Rivers Authority is currently responsible for 280 pumping stations (see map overleaf). These not only represent a very large capital investment in mechanical and electrical equipment but also involve the Authority in high annual expenditure in respect of their operation, maintenance and replacement. In view of the large financial commitment, the Authority wish to ensure that the most cost effective solutions are adopted for all new stations.

Preliminary investigation would appear to indicate that there is no common approach to the design and maintenance of flood defence pumping stations. It is evident that benefit would result from a detailed study of design philosophy and maintenance methods used. The object of the present study is to produce a manual of recommended practice for the guidance of engineers.

This interim report follows completion of the first phase of the study which comprised the following; a detailed survey of all land drainage pumping plant, preparation of a data base, and analysis of design philosophy throughout all regions. The report describes the project, summarises the results of the pumping plant survey and indicates the generally accepted current approach to the design of flood defence pumping stations. It also outlines some of the topics and problems that will be addressed in detail in the final report.

2.0 PROJECT DESCRIPTION

There is no common approach or code of practice applied to the design of flood defence pumping installations and it is thought that over-reliance may be placed on established custom and practice. This approach can lead to the specification and adoption of old and possibly well proven designs even though they may be less cost effective or efficient than alternative solutions. In addition, no consistent strategy exists for electrical and mechanical maintenance procedures. There would also appear to be current lack of forward planning in establishing the life expectancy of plant and associated systems and implementing long, medium or short term capital investment programmes for their replacement.

Having identified the above problems, the National Rivers Authority is addressing them by commissioning the present study of the land drainage pumping stations under its control. Particular emphasis is to be placed on the efficiency of operation and costs incurred for a design lifespan. In the past, initial cost has often been the main criterion possibly influenced by the grant-aid regulations, but it is obvious that prudent investment and financial control requires consideration of operating, maintenance and repair costs incurred during the entire life of the station. The overall objectives of the project are to:

- produce a detailed database of all the National Rivers Authority mechanical and electrical pumping plant, categorised into type, size, duty, age and other relevant criteria.
- analyse design philosophy and detail of flood defence pumping stations
 throughout all regions and determine best practices and relevant costings.

- iii) review national strategies for maintenance investment and mechanical and electrical maintenance procedures.
- iv) publish results and prepare a manual of recommended practice for guidance of engineers.

To achieve these objectives, the study is divided into three phases with the following specific objectives:

Phase 1 - To conduct a detailed survey of flood defence pumping plant installations through the NRA and prepare a detailed categorised data base. To analyse design philosophy and carry out field studies to determine how decisions are made and developed through to final selection of type, site, and pumping station arrangement.

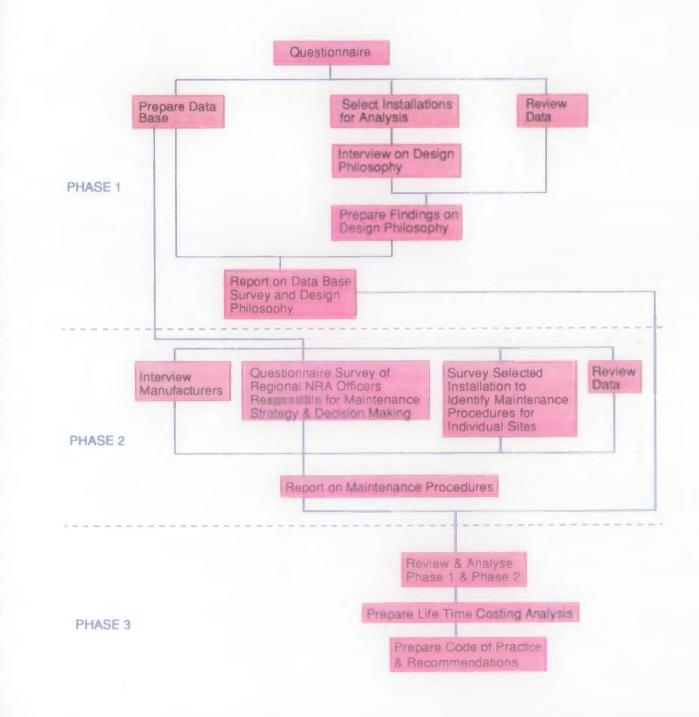
Phase 2 - To conduct a detailed survey into strategy and the decision making process in mechanical and electrical maintenance. Research samples in the field.

Phase 3 - Carry out a detailed analysis of Phase 1 and 2. Propose a code of practice and recommendations for design and maintenance investment applying any benefits from "Life Cycle Costing - A Radical Approach" (CIRIA Report 122). Publication of results and education in the field through to final implementation.

Phase 1 of the study has now been completed and this report presents a summary of the results from the survey of pumping plant and an interim report on design philosophy.

3.0 STUDY APPROACH

The approach to the study is summarised in the flow diagram overleaf and details of the methodology and approach for each phase of the study are provided on the following pages.


3.1 Phase 1 - The Data Base

The data base provides detailed information on National Rivers Authority pumping installations throughout England and Wales. For each pump installation general particulars have been collated, this comprises details of station layout and monitoring system, responsibility for design and specification, costs and any other relevant information.

In addition, more detailed information has been collected as indicated in the following categories:

National Grid Reference. Station Catchment Area. Total Capacity of Station. Number of pumps. Manufacturer. Date commissioned. Pump Type (Centrifugal, Axial, Mixed Flow or Screw). Size, Diameter. Housing (High building with crane, low building, removable roof, outdoor or submersible). Mounting (Horizontal or vertical). Capacity (per pump). Design Static Head.

National Rivers Authority PUMPING STATION RESEARCH PROJECT STUDY APPROACH

National Rivers Authority Pumping Station Research

Impeller Speed RPM. Drive (Diesel or Electric). HP. Supply voltage. Discharge type (Syphonic, Sluice or Sluice and Reflux).

The information was gathered by means of a simple questionnaire, the format is presented in Appendix A1. The first two sheets allow the recipient to insert general particulars and the third contains detailed information. The questionnaire was designed to be simple to complete to ensure a high response rate whilst containing enough information to permit meaningful analysis. The questionnaires were circulated and completed during early 1992, and the database was constructed on the information supplied.

The amount of information provided in the completion of the questionnaire was variable both by region and by individual station. Most of the information supplied relates to pump size and characteristics, the information relating to design and costs is generally less well covered. It is recognised that this information is difficult to recover as many of the stations are over twenty years old and original documentation is no longer available.

A summary of the data base information is presented as part of this report. The complete document is held by Mr A. Taylor, the Mechanical Services Manager of the NRA, North West Region. It can be inspected by request.

3.2 Design Philosophy

It was agreed at the start of the study that the analysis of current design philosophy would be based on interviews with the designers of a 10% sample of stations selected from each NRA region. These pumping stations were chosen from those recorded on the Data Base, to cover the widest possible range of size and type in current operation. Site visits were made by Bullen and Partners engineers during 1992, the interviewees were engineers with responsibility for design of mechanical and electrical plant and/or civil works and they were in the main current NRA engineers. Detailed questions were asked about the design, construction and operational history, a list of standard questions being used to ensure uniformity of approach in the various areas. The format for the standard questions is presented in Appendix A2, in addition, relevant documentation was also obtained such as tender documents, reports and specifications. Following the site visits and collation of relevant documents detailed reports were completed and design implications studied.

A number of manufacturers have been approached regarding their philosophy in respect of the design and supply of pumps for flood defence purposes. A questionnaire was again used to ensure uniformity in the information supplied. Several replies have been received, in particular detailed comments were provided by the Bedford Pump Company Ltd and KSB's London office.

An interim report on design philosophy based on these initial interviews and information from manufacturers is presented in sections 5.0 of this report.

3.3 Phase 2 - Maintenance Practices

The review of the strategy and decision making processes in mechanical and electrical maintenance will be based on a combination of questionnaires and interviews.

The questionnaire will be completed by regional or district managers, who are responsible for maintenance of pumping installations within their area. Typically the regional/district managers would be responsible for several installations, and so these questionnaires will give general information on strategy and decision making for maintenance adopted on an area basis. The questionnaire will be circulated to district managers within the Authority so that coverage of all installations will be achieved.

The suggested basis for the questionnaire is in Appendix A3. The first part giving general information on maintenance strategy followed by detailed questions on inspections and checks.

The questionnaire will be followed up by interviews with selected area managers and also first line supervisors who carry out maintenance duties at individual sites. Again standard format interview check lists will be used and the contents will be agreed with the Authority where appropriate.

Companies involved in the manufacture or maintenance of pumping plant will also be interviewed.

The field work will be complemented by a review of any information available to give background information for the final report.

This phase of the project is programmed to take place during the winter of 92/93.

3.4 Phase 3 - Detailed Analysis and Reporting

The results of Phase 1 and 2 will be analysed to provide a review of performance, suitability for purpose, design life and costs of pumps and ancillary equipment of various types and manufacture. Analysis will span the whole asset life cycle of the plant, which involves the activities of specification, design, manufacture, operation and maintenance and finally replacement.

Review of costs over the whole life cycle of an installation will enable conclusions to be made on the appropriateness of initial capital investment and ongoing maintenance expenditure.

The review of design practices will identify successful approaches and the report will provide guidelines to be used by engineers when specifying plant to ensure new methods and design criteria are examined and adopted when appropriate.

Design criteria, some of which have been adopted on an arbitrary basis, will be considered. These include pump peripheral speeds, bellmouth clearances, shaped sump backs, symphonic discharges and other features.

The final report will be in the form of a manual which will include recommendations on design practices and maintenance strategies to achieve optimum life cycle costing. The manual will provide guidance for design engineers and those responsible for the maintenance of land drainage pumping stations.

It is important that the information in the guide is widely circulated to practising engineers. This could be achieved by the holding of seminars in the National River Authority Regions, the publication of abstracts and papers, presentations at Conferences (Loughborough), and courses run by Water Training International and other similar bodies.

This phase of the project is programmed for 1993 with the review period for the final documentation during 1994.

4.0 DATA BASE PRELIMINARY REPORT

4.1 <u>Summary of Pump Data</u>

The data base information presented in this report Appendix B1 is a summary of the total information available. It provides basic data on geographical spread, numbers, size and type of the Authority's pumping plant. The information is presented on a Regional basis and a map is provided to show the location of installations in each region.

It should be noted that within the total number of 94 stations for Southern Region 28 are assets of Internal Drainage Boards which are operated and maintained by the NRA. In the Yorkshire Region 6 stations have been included which were constructed on behalf of the Coal Board for mining subsidence purposes, again these stations are operated and maintained by the NRA.

4.2 <u>Analysis by Capacity</u>

The number of stations by capacity are illustrated graphically for the whole country and by Region, Appendix B2.

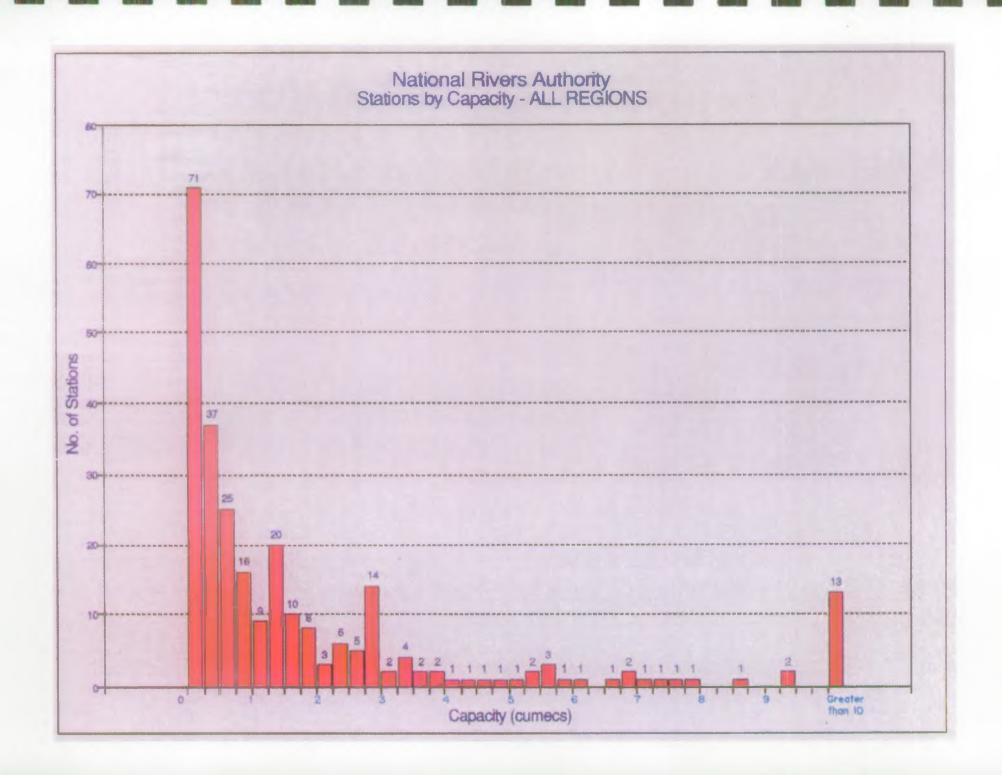
Presented overleaf is the analysis for the whole country and this indicates that the bulk of the stations have a capacity of 2 cumecs or less. This confirms that any standardization of designs should be concentrated on stations of this size.

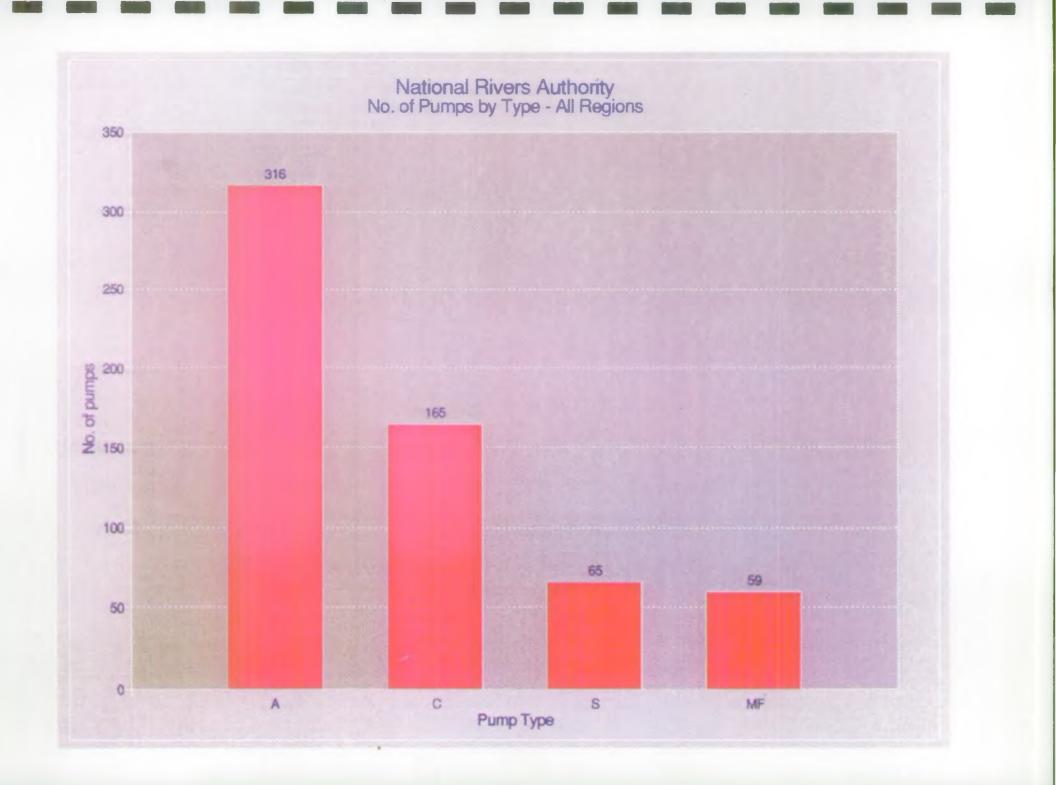
4.3 Analysis by Type

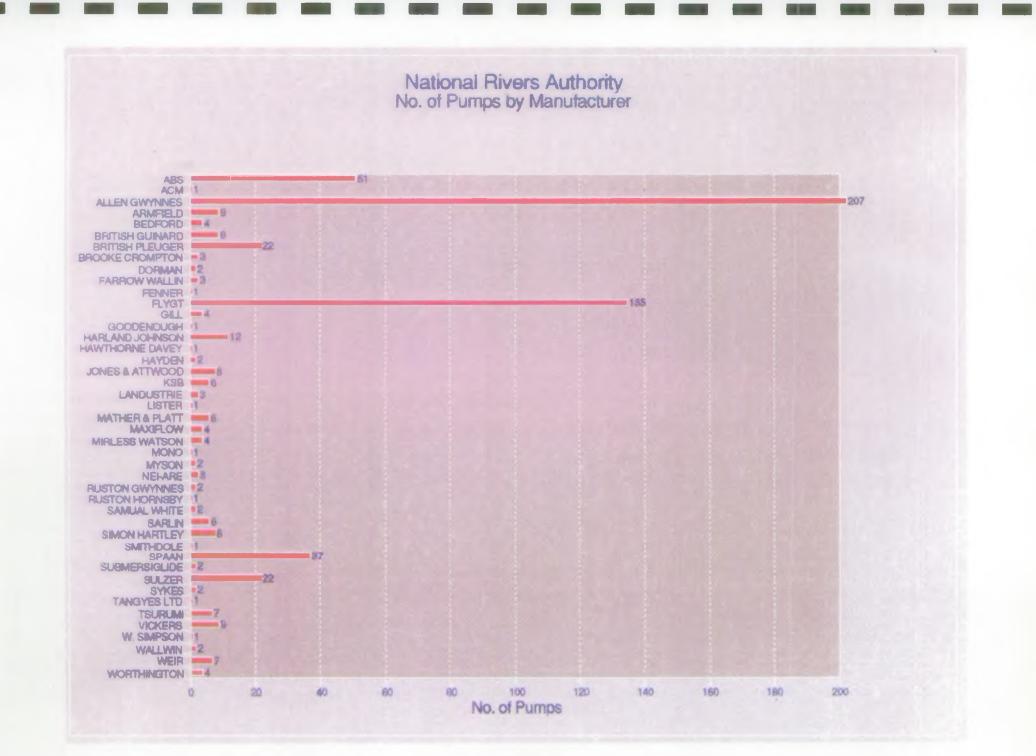
The number of pumps of different type are illustrated graphically for the whole country and by Region, Appendix B3.

Presented overleaf is the analysis for the whole country, this confirms that as expected the bulk of the installations use axial flow vertical lift pumps. A point to note is the high number of archimedean screw type pumps, the bulk of which are located in the Southern Region. Another unusual type of installation was the floating type, again in the Southern Region.

4.4 Analysis by Manufacturer


The number of pumps by Manufacturer are illustrated graphically for the whole country and by Region Appendix B4.


Presented overleaf is the analysis for the whole country which highlights that the bulk of the pumps were manufactured by the A.P.E. Allen Group which was generally known as "Allen Gwynnes". This company, which had a long association with the manufacture of land drainage pumping plant, is now no longer in existence. A large number of the modern small submersible stations were manufactured by Flygt. Spaan represent the archimedean screw type pumps.


4.5 Cost of Stations by Capacity

Although cost information could only be obtained for about 20% of the stations, this information does represent a reasonable sample to analyse costs of installations. The costs of pumping stations by capacity are indicated graphically in Appendix B5, also illustrated are costs for the Mechanical and Electrical (M&E) and Civil elements only.

All costs have been converted to 1992 prices and the best line has been fitted to a log/log plot. As would be expected, the best fit line is for the M&E element as this cost is less variable than the Civils aspect. It should be noted that more cost information is available for M&E as compared to Civils as a result of the number of recent replacements of M&E plant.

5.0 <u>PUMPING STATION DESIGN PHILOSOPHY - PRELIMINARY REPORT</u> 5.1 Summary

This interim report following discussions with senior engineers in the ten NRA regions indicates the generally accepted current approach to the design of flood defence pumping stations and outlines some of the topics and the problems that will be addressed in detail in the Manual.

5.2 <u>Introduction</u>

Since the first half of the nineteenth century, a large number of pumping stations have been constructed in England and Wales to drain some 900,000 hectares of land that cannot be drained effectively by gravity. A high proportion of this fertile and productive agricultural land is located in the fens of East Anglia, the Vale of York, the Kent and Sussex coastal lowlands, the Somerset Moors and Levels, and in the Lower Severn, Trent and the Mersey and Ribble estuaries.

Apart from the drainage of the above areas, pumping stations have also been constructed in Yorkshire, Lancashire, Staffordshire and in other areas where the effects of mining subsidence would have otherwise resulted in permanent flooding or waterlogging. Stations have also been constructed to facilitate the drainage of flat urban areas, particularly where the free discharge from tributary watercourses is impeded by high levels in the main arterial watercourse eg. the Foss at York.

5.3 <u>Historical Background</u>

Wind and Steam - The history of land drainage pumping and pumping station design in the United Kingdom has been one of continuous evolution, following technical innovations in the field. The earliest 17th and 18th century systems made use of windmills and scoop wheels. These, following Dutch practice, were often placed in a row, each unit raising the water some two or three feet. The 19th century saw the development of the steam engine, coupled to the low specific speed

centrifugal pump. Their high capacity and reliability, when compared to the wind driven units, gave rise to a great upsurge in the drainage of lowland areas and enabled land, well below sea level, to be reclaimed.

Gas and Oil - Although steam driven pumps were still in operation in some areas up to the Second World War the drive units had largely been replaced by slow running gas and oil engines linked to the low specific speed centrifugal pumps or with mixed flow or "bowl" type pumps where higher speed engines were employed.

Diesel, Electric and Axial Flow - Further progress was made with the development of the axial flow pump which has a higher specific speed than the earlier centrifugal and mixed flow units. Its greater rotational speed meant that it was capable of pumping large quantities of water at low head. It is lighter and smaller than a mixed flow unit of similar capacity and in consequence has been very widely adopted for land drainage use. In most stations it was driven by electric motors and despite the high electricity charges imposed by some electricity companies, this type of unit was almost universally adopted in the immediate postwar years.

The Outdoor Station - All the earlier pumping units, up to the 1960's were housed in purpose built pumping stations, most of the buildings being high enough to allow for the installation of lifting beams or travelling cranes for use when the pumps were initially installed and subsequently when they were dismantled or removed for maintenance or major repair. The buildings and lifting equipment were a major item of cost. In the early 60's "outdoor" type stations were introduced in the Middle Level I.D.B. by their Engineer, L.F.Fillingham. These made use of standard, shaft driven pumps, powered by a weatherproof motor fixed on an open slab at ground level, the switchgear being housed in a small

weatherproof cubicle close by. Whilst the outdoor stations with weather-proofed motors proved effective they can be at risk in vandal prone areas even though the exposed motors are protected by sealed cover plates.

The submersible Pump - The principle of the "outdoor" pumping station was developed still further in the late 60's and early 70's by the development of submersible pumps with capacities large enough for land drainage use. Although it has been claimed, and in some instances it is no doubt true, that their use can result in great savings over the traditional, shaft driven unit, there have been numerous cases of failure in service of this type of pump and evidence of short working lives in some marques.

Floating Pumping Stations - Floating pumping stations, many of them designed by Stephen Hawes, were constructed in some numbers in the 1960's but are now no longer in vogue. Advantages claimed are those of cheapness (half the cost of a conventional station), the fact that no foundation is required and their low profile presents no intrusion on the landscape. Disadvantages are the complicated arrangement necessary for discharge, the small size of weedscreen that can be provided (and the difficulty of keeping it clean), though this can be offset by the construction of a separate screen structure, on the channel, upstream of the pontoon. Problems can also arise in some instances by silt building up under the pontoon.

Archimedean Screw Pump - Another post-war innovation was the introduction of the screw pump for land drainage use. Although they have been employed in large numbers in the Netherlands and to a certain extent at sewage works in the U.K., it is only in the South East that they have been adopted in any number over 60 being located in the Anglian, Thames and Southern NRA Regions. They are best employed where there is little variation in discharge level and can deal with weed and the complete range of flows up to their maximum capacity. Critics

say that their installation can seldom be justified if initial cost and operational factors are taken into consideration. Their employment in such large numbers in the South East calls for a closer study.

Operation and Control - There have been considerable changes, over the years, in the methods used to operate and control pumps. Initially, starting and operating were entirely manually controlled. The impellers of many of the early pumps were not submerged and the pumps had to be primed by the use of "exhausters" prior to starting. The introduction of the axial or "propeller" type pump, driven by electric motor, with the impeller always submerged, lent itself to automatic operation. Early systems were switched by floats. These were followed in their turn by "no-flote" electrode systems, air bubblers and ultrasonic level switches. Control equipment is now often connected to a telemetry system that allows information on the equipment and its status to be monitored, and even operated, from a control room many miles away.

Screens - One of the constant problems in the past was dealing with the considerable quantity of weed and debris of all shapes and sizes that was carried to the pumping station in times of storm. This collected on the weed screen and up to comparatively recent times was always removed by hand raking - an arduous and unpopular job, at night or in inclement weather. Automatic, mechanical raking gear, capable of dealing with the wide variety of river debris has now been introduced from the Continent and is being installed in increasing numbers at both old and new stations.

Power Strikes and Motive Power - The general and almost universal move to larger electrically driven pumps in post-war years, prompted by improved electricity supplies, received a severe set-back in the late 1960's with the interference to supplies brought about by the strikes of power company workers and the miners' strike. The indication that this previously considered secure source of power was liable to be cut by industrial action prompted many authorities to install both diesel and electrically driven pumps in new medium

sized stations, to ensure that there would be some pumping capacity available under similar circumstances. Most authorities subsequently modified switchgear at existing stations to allow for the connection of a mobile generator. In recent times large mobile pumps have become available on the hire market and these could be used in case of emergency.

Siphonic Discharge - In most of the early pumping stations the discharge was through a reflux or flap valve that prevented reverse flow when the pump was stopped. A sluice valve was normally placed on the discharge side of the pump to allow the flap or reflux valve (or the pump) to be removed for repair or maintenance. Reflux valves and sluice valves are very expensive, particularly in the larger sizes, and from the 50's these have been largely replaced by the use of siphonic discharge pipes. A siphon breaker valve is incorporated to prevent reverse flow when the pump is stopped. This arrangement is cheap and effective and is still in general use at the present time.

5.4 Design Philosophy

Whilst some minor differences in approach were noted in the various Regions, the current consensus in the approach to flood defence pumping station design is:-

- i) that operational staff should play a part in the design team from the start to the finish of the project;
- ii) that the station must be capable of pumping all flows, up to its design capacity, with a high degree of reliability;
- iii) that the pumps must be able to deal with the weed and other river borne debris that can pass through the weedscreen;
- iv) that the station should be easy to operate, and where possible, automatic in operation and capable of being supervised by non-technical staff;

- v) that the equipment, whilst being secured against vandalism, should be accessible, easy to maintain, and should operate efficiently for long periods before requiring major maintenance or overhaul;
- vi) that the station must be environmentally acceptable, must not obtrude unduly on visual amenity, must not generate unacceptable noise levels or cause pollution of the watercourse;
- vii) that it should present no safety hazards to those working on, or in it, or to members of the public;
- viii) that the station should be constructed at the least possible overall cost commensurate with satisfying the above criteria.

Note:

- a) Whilst agreeing that pump and water efficiencies are important, it is generally accepted that in the case of flood defence pumping stations (where hours run are usually less than 500/annum), that reliability and the ability to deal with weed and other suspended solids take precedence.
- b) The concept of lifetime costing is readily accepted in the design of flood defence schemes and is required by MAFF for the economic analysis of schemes. However, MAFF will only grant aid the capital costs of a project.

5.5 <u>General Considerations</u>

The approach to pumping station design and construction requires specialised knowledge but involves the same four basic steps, common to all engineering design processes - "the brief", "analysis", "synthesis" and "implementation".

Too much emphasis cannot be placed on the need to involve operational staff in the project, from initial inception right through to final completion of the work. They must be encouraged to produce a clearly written brief of their requirements and in particular, should be asked for information about problems that may have been encountered at previous stations and to list any features they would like incorporating in the new structure.

It should be confirmed that there are no objections to the construction of a pumping station as the solution to the particular flood defence problem. Whilst it might appear to be a perfectly logical engineering answer, it may be unacceptable in environmentally sensitive wetlands.

The broad range of topics that must be considered during the design of a pumping station are shown in Figure 1. Although the "required capacity" is listed, and its calculations an essential step, the scope of the present research project is limited to the station itself - from the downstream side of the weedscreen to the discharge point on the delivery side. It is assumed for the purposes of this study that the run-off from the catchment and the hydraulic design of the approach channels to the station, have been carried-out in accordance with the methods outlined by Charnley (1987).

5.6 Selection of Pumps and Ancillary Equipment

A considerable number of options are open to the designer when choosing the equipment to install, and the method of housing it. These are shown in matrix form in Figure 2. The selection from among the various options is usually not as difficult as it might appear, as many of the choices are dictated by local conditions, the capacity of the station, the pumping head and planning or environmental constraints.

PUMPING STATION DESIGN CONSIDERATIONS

.

.

...

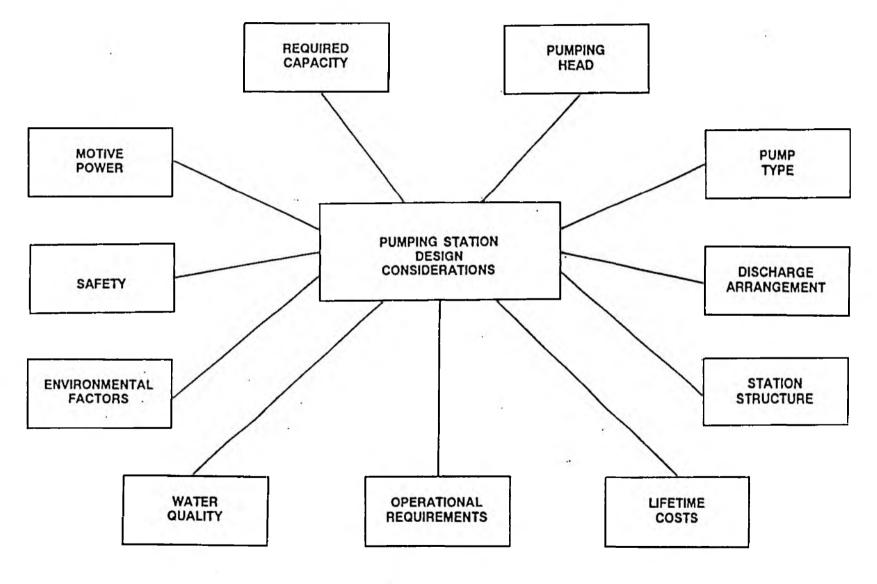


FIGURE 1.

PUMPING STATION OPTIONS

ALTERNAT Key Parameters	TIVES	. 1	2	3	4	5	6
MOTIVE POWER	A.	Electric Squirrel Cage	Diesel				
STARTER	в.	Direct On Line	Star Delta	Electronic Soft Start	Auto Trans - Former	Diesel - Compressed Air	Diesel - Electric Starter
PUMP TYPE	с.	Centrifugal	Axial Flow	Mixed Flow (bowl)	Mixed Flow (volute)	Archimedean Screw	
MOUNTING	D.	Horizontal	Vertical	Inclined			
DISCHARGE ARRANGEMENT	Е.	Free Discharge	Siphonic	Sluice	Sluice + Reflux Valve	Sluice and Flap	Flap
HOUSING	F.	High Bldg. With Crane	Low Bldg. Removable Roof	Low Building	Outdoor	Submersible	Floating
PUMP CONTROL	G.	Float	No - Flote	Ultrasonic	Pressure Transducer		

FIGURE 2.

Motive Power - For small or medium sized modern stations electrically driven pumps would normally be selected, providing that a power supply is available or could be brought to the site at reasonable cost. Consideration would of course have to be given to the tariff that the electricity board would charge. Where heavy maximum demand charges are likely to be faced, consideration would be given in preliminary investigation to the possibility of confining pumping to off-peak periods (providing sufficient storage was available) and increase the pump capacity to deal with the accumulated water.

Although slip-ring motors were sometimes specified in the past and are still in use in some stations, the squirrel-cage motor is now generally adopted. The squirrelcage is cheap, strong and simple in construction but has a high starting current and careful consideration must be given to the selection of the starter where high starting currents are not acceptable to the supply company.

Diesel engines, many of them turbo-blown, are mainly confined to very large stations and drive large capacity pumps through right-angle reduction gearboxes. They require heavy foundations, need fuel storage tanks, are very costly and required skilled operators. Although automatic starting is technically feasible, the risk of malfunction of associated equipment is such that it is not adopted for flood defence pumping. Without automatic starting, pumping at week-ends and outside normal working hours can result in heavy wage bills. In some stations it is now proving economical to replace diesel driven pumps with automatic electric units to overcome this difficulty.

Starters - The starter and motor combination is usually dictated by the limits on starting current set by the supply company. Where no restrictions apply, a direct on line starter and squirrel-cage motor can be employed. In the past when the starting current was restricted to 2.5 times the full load current, one option was to use a Wauchope starter, developed at Allen Gwynnes which could hold the

starting current close to this value. Present practice would favour the use of an electronic soft starter or an auto transformer starter that can reduce the starting current to a value between 1.5 and 3.5 times the full load current.

Pump Types - Five types of pumps are in current use in flood defence pumping stations, namely:-

- i) Centrifugal.
- ii) Axial flow.
- iii) Mixed flow (bowl).
- iv) Mixed flow (volute).
- v) Archimedean screw.

The centrifugal pump with a low specific speed was in universal use for many years and some large units are still in operation today. It has now been superseded by axial and mixed flow pumps where large capacity units are required, but is still continuing in use in some of the smaller submersible models.

The axial flow pump, with its high specific speed, is smaller in size and requires a smaller motor for a given head and discharge than other types. In many respects it is ideal for flood defence pumping duty up to a head of 6m. With its impeller set below water lever and no priming problems it lends itself to automatic operation. In small sizes problems may be experienced where weed is present due to the small clearance between the impeller blades. One experienced manufacturer always recommended the use of mixed flow bowl pumps when sizes less than 36cm were required (Terry, 1967). Whilst the axial flow pump can prove highly efficient at high rotation speeds in clean water, serious vibration and overloading can occur when the water contains weed and other debris - the typical river condition. Experience has shown that where these conditions are likely to be encountered, conservative values of tip speed (20m/sec) should not be exceeded.

The mixed flow, bowl type pump has many of the advantages of the axial, but has a lower specific speed and requires a larger pump and motor than the former for a given head and capacity. It is mainly employed where heads are in excess of 6m or as indicated above, in small sizes, where its ability to deal with weed is superior to that of a similar capacity axial flow unit.

The mixed flow, volute pump is generally capable of passing large solids and in the small sizes it can be used in similar situations to its bowl type counterpart. It is also used when a very large capacity is required, with the volute cast in-situ in concrete in the pumping station structure. In these large scale applications its small variation in power demand over its pumping range proves a worthwhile advantage.

The archimedean screw pump is better able to deal with large quantities of weed than any of the other types. Its disadvantages are that it cannot be employed efficiently where there are large variations in discharge level and that the slow speed of revolution of the screw necessitates the use of a gearbox. It has been claimed that the screw pump is unlikely to be cost effective for flood defence purposes, but this is belied by the large number of small units employed in the South East.

Mounting - Although many of the early centrifugal pumps were mounted horizontally this arrangement is now little used except for some submersible pumps. The inclined position was used for some large axial flow pumps in the past and is still adopted for some light-weight pumps developed for irrigation or stormwater use and for screw pumps. Suspending the pump vertically is the most widely used method, both for the traditional shaft driven pump and submersible units.

National Rivers Authority Pumping Station Research

Discharge Arrangements - A great variety of discharge arrangements are currently used. Since the early 1950's the use of siphonic discharge pipes, incorporating a siphon breaker valve, have been in widespread use. It is much cheaper and generally more effective than the earlier combination of a sluice and reflux valve - both very expensive in the larger sizes. Care must be taken to ensure that flow velocities on starting are not less than 2m/sec or the siphon may not prime. Some care is required in the design of the siphon if optimum performance is to be achieved (Charlton, 1972). Lack of maintenance and air leakage at the valve can seriously reduce the pumps output. Free discharge above maximum downstream flood level has been adopted in some case but involves the extra cost of pumping against a high head at all times. The minimum requirement of a discharge flap has been adopted on some small stations. Problems can be experience with slamming of the flap and velocities should be kept down to 2m/sec, by use of a taper pipe or a flap with a "dashpot" should be fitted. Where reliance is placed on a single flap, provision for stop logs should be made in the discharge bay for emergency use or repair of the flap.

Housing - The traditional pumphouse is no longer required when "outdoor" or submersible pumps are installed. A small cubicle or building is required to house the switchgear and this is sometimes made larger to store tools or other items for local use. For large stations a pumphouse building is still generally provided, to house the engines and ancillary equipment and control gear. An overhead crane is normally provided. In some instances the crane is omitted and a low building constructed with removable roof sections, to permit the use of a mobile crane when the pumps have to be removed for maintenance or renewal.

Pump Control - For very large diesel driven stations manual control is invariably used, although several phases of the starting sequence may be automated. In electrically powered stations the pump units are equipped for both manual and automatic operation, the latter being initiated by electrode systems of the "no-flote" variety. Alternatives are floats that may incorporate mercury tilting switches, or systems using "air bubblers" or pressure cells to gauge water

levels. In recent years ultra sonic equipment has been used to monitor levels and trigger pump starts. Connections can be made to telemetry systems to report the status of the station and to indicate whether it is fully functional.

5.7 Design Check List

The Design Check List (Appendix C2.) has been produced to indicate the major tasks and key events in the design of a flood defence pumping station. The list is not exhaustive and cannot show the overlap of activities that occur in practice. For completeness some of the early operations, which are outside the scope of this study, are included, namely items 3 to 7. For the guidance of readers brief mention of them will be made in the manual.

5.8 **Points for Further Study**

Several points of interest where further study will be undertaken as part of this study arose from interviews with designers and correspondence with pump manufacturers. They are as follows:-

- i) There would appear to be no general agreement on the sizing of pumps in a multiple pump station. Some engineers think that pumps of equal capacity and type should be selected to reduce the range and amount of spares required. Others are of the opinion that more than one size of pump should be used, a small one (or ones) to deal with dry weather flow and larger pumps to handle storm flows.
- ii) There are similar differences of opinion as to whether wear should be evenly distributed over all pumping units, by a periodic change in the "duty pump", or whether one pump should remain as "duty pump", so that possible failure or need for major overhaul of all the units should not occur at the same time.

- iii) There are conflicting reports about the performance and cost-effectiveness of screw pumps. The latest report by CIRIA on the design of low-lift pumping stations states that they are "not usually cost-effective when total installation and operational costs are considered; now therefore, they are not normally considered for new stations". In view of the very large number of small screw pumps installed in the Southern Region of the NRA, it is important that we find the reason for their widespread adoption in this particular locality and whether they are in fact cost-effective when compared with other small rotodynamic pumps.
- iv) Some engineers favour letting a single contract for a station to the main civil engineering contractor, leaving him to deal with the pump manufacturer as a nominated supplier. Other engineers prefer to let the work out as two separate contracts and co-ordinate the work themselves, on the grounds that they have more direct control over the mechanical and electrical work.
- v) The conservative value of tip speed for axial flow pumps of 20m/sec, recommended by Allen Gwynnes for many years, has been confirmed by research in Germany by KSB Pumps Ltd. The company do claim however that a new impeller that they have designed and are marketing, prevents weed and other streamer type debris from sticking to the blades, thus permitting a much higher tip speed without any problems. They have published a video of tests on a standard impeller but unfortunately it does not show pictures of the new impeller working under similar conditions.

National Rivers Authority Pumping Station Research

Appendix A

Study Approach

Contents

A1	Survey of Pumping Plant Questionnaire
A2	Survey of Pumping Plant Design Questionnaire
A3	Survey of Pumping Plant Maintenance Questionnaire

Bullen and Partners

National Rivers Authority Pumping Station Research

Appendix A1

Survey of Pumping Plant

Questionnaire

National Rivers Autho	mity.
-----------------------	-------

1-

L

T

Г

Г

ļ

SURVEY OF	LAND	DRAINAGE	PUMPING	PLANT	INSTALLATIONS
		QUEST	FIONNAIRE	, ,	

Add:			
Nan	e & Tel. No of person for further information		
	GENERAL DETAILS OF INSTALLATI	ON	
1.	Name & Location		
2.	National Grid Reference		
3.	Catchment Area Served (Sq.km)		
4.	Total Capacity (Cumecs)		
5.	Details of Pumps - *** Complete Appendix "A" ***		
6.	Are pumps separated in sump by dividing walls?	Yes/No	
7.	Dimensions of Screen (inc. Bar Sizes & Spacing)		
8.	Is there a gravity by-pass to station?	Yes/No	
9.	Is screen cleaned manually or automatically?	Yes/No	
10.	Does station operate automatically?	Yes/No	
11.	Is it manned during normal working hours?	Yes/No	
12.	Are pump running hours recorded?	Yes/No	
13.	Is station connected to a remote monitoring or control	system?	
	For water level recording?		
	For equipment status?		
	Can it be operated remotely?		

	DESIGN
5.	Who was responsible for the specification and design of the station?
6.	Are detailed M+E drawings and specifications available Yes/No
7.	Are detailed civils drawings and specifications available Yes/No
	COST
8.	What was the cost of the station?
	Civil £ Mech & Elec £ Date
	FURTHER INFORMATION
9.	Any further pertinent information or problems experienced
).	Any particular unique design features
).	Any particular unique design features
D.	Any particular unique design features
Э.	Any particular unique design features
Э.	Any particular unique design features

の一般で品語の読みまでのです。

1. 1.

d'a

Appendix "A"

National Rivers Authority

SURVEY OF LAND DRAINAGE PUMPING PLANT INSTALLATION

Pring-ing 30°ay non-Bauer......

NRA Region:....

.

. 11.

. . .

Pump No	Make	Dale Com.	Pump Type (1)	dine Diam.	liouminer fil)	Mounting (iii)	Capacity (cumecs)	Design Static Head (m)	Impeller Speed (R.P.M)	Drive (iv)	ዘ、ዮ	Supply Voltage	КVа	Discharge Type (V)	Hours Run/ Pump/year	100 A 5
1.																
2.																
44																- <u></u>
4.																
5.										•						
ú.																
3.																
÷.																

tiis leansater 111 Parts Type (iii) Meanting tivi Drive Gent ritmost. Rich Interstation a the Change ' HR ' "Borigontal . 11 -Diesel .1. 1140 'Vertical Axial low | big. or table Real 141 theet ric. 1001 Mixed Flow "MF" enit di ant 1581 Service. Stillane : " (1.) (v) Discharges 1311 Siphenia 2 1:11.* Inter Bluice & Rethus 1:58.1 .

Manager for consideration and the second states of the second states of the second states of the second states and the second states and the second states are second states and the second states are second states and the second states are s

Bullen and Partners

National Rivers Authority Pumping Station Research

Appendix A2

Survey of Pumping Plant Design

Questionnaire

	National Rivers Authority SURVEY OF LAND DRAINAGE PUMPING PLANT INSTALLATIONS
	SITE VISIT - QUESTIONS ON DESIGN AND DESIGN PHILOSOPHY
NRA	Region
Addı	ress
Nam	e & Tel. No of person interviewed
Pum	ping Station Name and Location
	INTERVIEW QUESTIONS
1.	Who was responsible for design?
	In house?
	Consultants?
2.	How was it carried-out?
	Intergrated part of drainage scheme?
	Seperate design package?
3.	Design Team
	(i) C.E. led with vetting by M & E engineers?
	(ii) Integrated C.E and M & E team?
	(iii) Project Engineer co-opting specialists?
4.	Who made the major decision in respect of design?
•	

.

Į

T

t

9

1

F

T

1

,

.

•

a .

.

-

....

.

;

5. Siting

Was siting dictated by catchment constraints? If large single station, was consideration given to use of several small peripheral stations?

6. Environmental considerations?

Did environmental considerations have a major influence on design - if so how?

7. Capacity

How was capacity of station arrived at?

Locally accepted run-off/ unit area?

Following detailed analysis of C.E. machinery, storage, power supply and operating costs?

Particular constraints on any of the above?

Need to confine pumping to off-peak periods?

8. Alternatives considered

Were alternative designs considered? ie. shaft driven indoor, outdoor, submersible, pontoon, archimedean screw?

9. What influcenced final choice?

Initial cost?

Lifetime cost?

Operating costs?

Reliability?

Previous experience of equipment or marque?

10. What basic information was given to pump manufacturer?

- a) Total capacity of pumps?
- b) Number of pumps?
- c) Capacity per pump?
- d) Max. suction W.L.?
- e) Max. discharge W.L.?
- f) Min. suction W.L.?

- g) Min. discharge W.L.?
- h) Lowest start level?
- i) Normal static duty head at design capacity?
- j) Prime mover type diesel, electric, mixed?
- k) Ground level at site?
- l) Max. flood level at site?
- m) Screen manual or machine raked?
- n) Other?
- 11. Weed, debris, solids?

Was pump supplier informed of potential problems in respect of weed, urban or other debris, silt abrasive material?

12. Discharge arrangement?

Was siphonic or other discharge arrangement specified?

13. M & E rerquirements specified to manufacturer?

Were specific requirements in respect of mechanical and electrical items (starters, switchgear, lubrication, cooling, bearings, motor speeds, tip speeds, discharge velocites, materials etc.) given to suppliers - if so what?

14. Performance tests?

What performance guarantees were given by pump manufucturer?

Estimated life - running hours?

Power consumption?

Maintenance spares requirement?

15. Performance guarantees?

What performance guarantees were given by pump manufactuere?

Estimated life - running hours?

Power consumption?

Maintenance spares requirement?

16. Pump control

Manual?

Automatic?

Float? No Float? Air bubbler? Pressure transducer? Ultrasonic? Other?

Are interlocks with time delays fitted to prevent simultaneous starts on power restoration after mains failure?

17. Instrumentation

What instrumentation is installed?

Ammeter? Hours run meter? U/S level and D/S level?

Other? What records are kept?

18. Telemetry

Is the station linked by telemetry to a control centre?

If so what parameters are monitored and what alarms given?

Power supply? Pump running? Water levels? Equipment status and serviceability - seals? Bearing temperature? Start and stop levels? Building security - fire, intruder?

19. Standby provision

What provision has been made in the event of power failure?

Installed standby generator? Mobile generator? Mixed diesel and electric pump units?

20. Provision for uprating?

Has provision been made for uprating the capacity of the station should this be required in the future?

21. Station performance

Has station performed in accordance with design expectations?

Any particular problems?

Any feature you would omit or include as a result of operational experience?

Bullen and Partners

National Rivers Authority Pumping Station Research

Appendix A3

Survey of Pumping Plant Maintenance

Questionnaire

	National Rivers Authority	
S	SURVEY OF LAND DRAINAGE PUMPING PLANT INS MAINTENANCE QUESTIONNAIRE	TALLATIONS
NRA	Region	
Addre	2SS	
Name	& Tel. No of person for further information	
	DETAILS OF MAINTENANCE	4
1.	Who is responsible for P.S maintenance?	
	÷	······
		
2.	Do you have written terms of reference establishing overall policy in respect of pumping station maintenance?	l strategy and Yes/No
3.	How often is the policy reviewed?	
4.	Are detailed records kept of all stations?	Yes/No
5.	Do these include: - (i) Individual pump running hours?	Yes/No
	(ii) Details of all maintenance?	
	(Planned and break-down) (iii) Dates of running checks and inspections?	Yes/No Yes/No
6.	Are these records kept on a data base?	Yes/No
7.	Are specific time intervals laid down for running tests and major maintenance i.e Monthly, Yearly, Three yearly (Dies manufacturers recommendations)?	

•

÷

.

......

į

}

Ţ

Ĩ

Ţ

, șt

Ţ

]

Ţ

1

-

	Are a	ll unit	s regularly tested on	load?			Yes/No
	If so a	at wha	at intervals?				
9.	What	checks	are carried-out?				
	(i)	All a	utomatic operations?				
	(ii)	Start	ing current?				
	(iii)	Runn	ing current?			<u> </u>	
	(iv)	Level	recorders?				
	(v)	Other	c?				
10.	Are t	hese cl	necks recorded on a s	standard re	eport shee	t?	Yes/No
11.	Are tl	hese cl	necked by the respons	sible M &	E officer?		Yes/No
12.			ecks are carried-out	what do tl	iese cover	?	Yes/No
	Mech.	(j)	Pumps				
			- 1 A. 1	·			<u></u>
		(ii)	Engines				
			- 1 A. 1				
		(ii)	Engines				
		(ii) (iii)	Engines Gearboxes				
		(ii) (iii) (iv)	Engines Gearboxes Pipework				
	Elec.	(ii) (iii) (iv) (v)	Engines Gearboxes Pipework Siphon breakers				
		 (ii) (iii) (iv) (v) (vi) 	Engines Gearboxes Pipework Siphon breakers Valves & sluices				
		 (ii) (iii) (iv) (v) (vi) (i) 	Engines Gearboxes Pipework Siphon breakers Valves & sluices Motors				
		 (ii) (iii) (iv) (v) (vi) (ii) (iii) 	Engines Gearboxes Pipework Siphon breakers Valves & sluices Motors Insulation tests				
		 (ii) (iii) (iv) (v) (vi) (ii) (iii) (iii) 	Engines Gearboxes Pipework Siphon breakers Valves & sluices Motors Insulation tests Earth continuity				
		 (ii) (iii) (iv) (v) (vi) (ii) (iii) (iiv) 	Engines Gearboxes Pipework Siphon breakers Valves & sluices Motors Insulation tests Earth continuity Cables				
		 (ii) (iii) (iv) (v) (vi) (ii) (iii) (iv) (v) 	Engines Gearboxes Pipework Siphon breakers Valves & sluices Motors Insulation tests Earth continuity Cables Heaters				
		 (ii) (iii) (iv) (v) (vi) (ii) (iii) (iv) (v) (vi) (vi) (vi) (vii) 	Engines Gearboxes Pipework Siphon breakers Valves & sluices Motors Insulation tests Earth continuity Cables Heaters Control equipment				

•

:

1

.

. . .

.

• •

i

. .

I

T

T

Ţ

,

]

•

ļ

I

ĩ

Ţ

1

T

T

T

T

T

T

Ţ

13.		tandard report and check sheets used for annual and major enance inspections?	Yes/No						
14.	Maior	maintenance inspections (3 years) (?)							
- 1.	What checks are carried-out?								
	(i)	Sump dewatered and cleared							
	(ii)	Bearing wear checked							
	(iü)	Impeller wear checked							
	(iv)	All couplings checked							
	(v)	Lub. system & pipes							
	(vi)	Seals							
	(vii)	Other							
			•••••						
15.		pumping plant is purchased is the manufacturer asked for a ntees in respect of: -	any						
	(i)	Consumable spares	Yes/No						
	(ii)	Power consumption	Yes/No						
	(iii)	Life of plant	Yes/No						
16.	Do yo power	ou carry-out post project appraisals to confirm design perform consumption and maintenance and operating costs?	ance, Yes/No						
17.		nalyses of past maintenance costs used in the selection of ne ing plant?	w Yes/No						
18.		urther comment on pumping station maintenance separate sheet if required)							

I

T

1

Ţ

Ţ

T

T

I

T

Γ

T

T

T

T

ş

Appendix B

Data Base

Contents

B 1	Summary of Pump Data and Location Maps by Regio	n
B2	Pump Analysis by Capacity	
B 3	Pump Analysis by Type	
B4	Pump Analysis by Manufacturer	
B 5	Costs of Station by Capacity	

Bullen and Partners

National Rivers Authority Pumping Station Research

Appendix B1

Summary of Pump Data

And

Location Maps by Region

Bullen and Partners

National Rivers Authority Pumping Station Research

<u>Contents</u>

I

I

Anglian Region	List of Stations Location Map fig 1 Pump Summary Sheets (Four Number)
Northumbrian Region	List of Stations Location Map fig 2 Pump Summary Sheet (One Number)
North West Region	List of Stations Location Map fig 3 Pump Summary Sheets (Four Number)
Severn Trent Region	List of Stations Location Map fig 4 Pump Summary Sheets (Three Number)
Southern Region	List of Stations (on two sheets) Location Map fig 5 Pump Summary Sheets (Seven Number)
South West Region	List of Stations Location Map fig 6 Pump Summary Sheet (One Number)
Thames Region	Lists of Station Location Map fig 7 Pump Summary Sheet (One Number)
Welsh Region	List of Stations Location Map fig 8 Pump Summary Sheets (Two number)
Wessex Region	List of Stations Location Map fig 9 Pump Summary Sheets (Two number)
Yorkshire Region	List of Stations Location Map fig 10 Pump Summary Sheets (Three Number)

REGION	SUB REGION	STN. NO	NAME
Anglian			= 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6
		032	CHAPEL - OLD & NEW
		033	CROFT LANE
		034	BUTTS ROAD
	Chelmsford	001	THORNEY BAY
		002	WINTER GARDENS
		003	DUTCH VILLAGE
		004	ANTLERS
		005	PITSEA HALL FLEET
		006	
			BECKNEY FARM
		007	BRIDGEWICK
		008	MARSH HOUSE
		009	LANDWICK
		010	MAY AVENUE
		011	KNIGHTSWICK
		012	WORLDS END
		013	ST.ANNES
		014	TILBURY MARSH
		015	LEIGH BECK
		016	CROPPENBURG
		017	RAIN BOW
		018	ST.JOSEPHS
		019	HILTON
	Norwich	020	ACLE
	Ipswich	021	HOLLESLEY
	-	022	BENACRE
	Lincoln	023	BLACKMOOR FARM
		024	MEADOW FARM
		025	BRANSBY
		026	TILL
		027	WITHAM
		028	BRANT
		029	SAND SYKE
		030	BRANSTON ISLAND
		031	BLACK SLUICE
	Peterborough	035	PADHOLME
	· · · · · · · · · · · · · · · · · · ·	036	PEAKIRK (ELECTRIC)
		037	PEAKIRK (DIESEL)
		038	BOURNE EAU
	Colchester	039	PARKESTON
	Kelveden	040	MELL HOUSE
	Ely	041	BOTTISHAM LODE
	1	042	SWAFFHAM LODE
		043	WELCHES DAM
		043	UPWARE
		045	SOHAM LODE
			Sourd Foresters and the second s

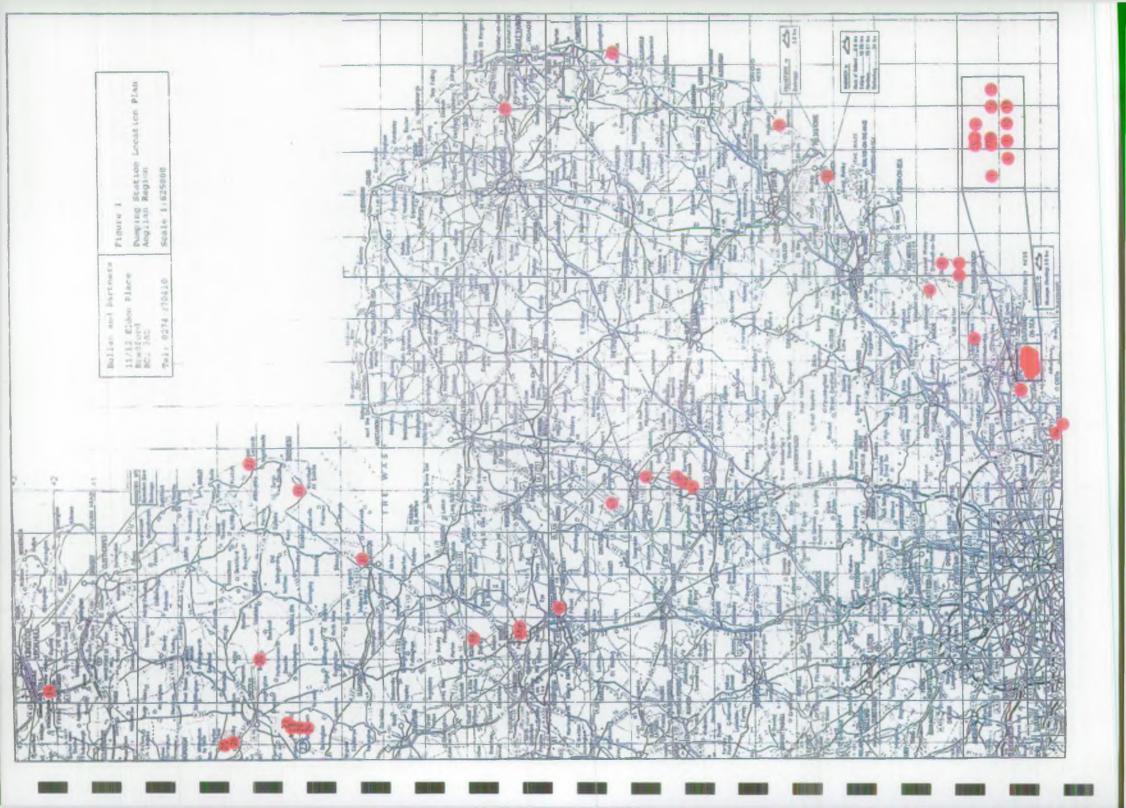
٠

4

· · · · ·

1

1


Т

Ţ

-

Ŧ

.

NRA - Survey of Pump Summary	Land Drainage	Pumping Plant	Installations	

.

. .

Stn. Stn. No. Name	National Grid Reference	Area (Sq.km)	Capacity (Cumecs)	of Pump		Year
Anglian						
DO1 THORNEY BAY	TQ 795 827		0.060			
					FLYGT	1968
				2	FLYGT	1968
DO2 WINTER GARDENS	10 790 840		0.060			
COL HINTEN UNRUENU			11000	1	FLYGT	1968
					FLYGT	1968
07 50750 0111455	TA 775 875		0 470			
103 DUTCH VILLAGE	TQ 775 838		0.620	1	SPAAN	1978
					SPAAN	1978
				-	÷	.,,,,
04 ANTLERS	10 789 827		0.060	-		
					FLYGT	1978
				2	FLYGT	1978
05 PITSEA HALL FLEET	TO 738 859		0.060			
			•	1	FLYGT	1980
			A 465			
06 BECKNEY FARM	10 852 962		0.100	1	FLYGT	1982
					FLYGT	1982
				-		
07 BRIDGEWICK	TM 030 004		0.510			
					SULZER	1949 1949
				۲	SULZER	1949
08 MARSH HOUSE	TM 032 046	248.63	2.970			
				-	ALLEN GWYNNES	1949
					ALLEN GWYNNES	1949
				3	ALLEN GWYNNES	1949
09 LANDWICK	TM 008 009	0.30	0,990			
,			-1//0	1	GILL	1961
					GILL	1961
10 MAY AVENUE	TQ 805 825		0.590			
TU MAT AVENUE	14 003 023		0.340	1	ALLEN GWYNNES	1968
					ALLEN GWYNNES	1968
					ALLEN GWYNNES	1968
			.			
11 KNIGHTSWICK	TQ 805 843		0.310	•		4.0.1.0
					ALLEN GWYNNES Allen gwynnes	1968 1968
					ALLEN GWYNNES	1968
				-	The set of the set	.,
12 WORLDS END	TQ 648 753		1.520			
					SAMUAL WHITE	1968
				2	SAMUAL WHITE	1968

ype	Size Diam.	HOUS.	Moun.	(cumecs)		Impel. Speed (R.P.M)	Urive	H.P.	Supply Voltage	Disc. Type
С	100 mm		•	0.03	1.60		E	3.0	415	SL
-	100 mm	SB	v	0.03	1.60	960	E	. 3.0	415	SL
C	100 mm	C D	v	0.03	1.35	960	ε	3.0	415	SL
Ċ	100 mm		•	0.03	1.35	960		3.0	415	SL
s	900 mm			0.31	2.60	20	ε	3.0	415	SR
S	900 mm		v	0.31	2.60	20	ε	3.0	415	SR
							-			
C	100 mm		v	0.03	1.50	960	E	3.0	415	SL
C	100 mm	ŞB	•	0.03	1.50	960	E	3.0	415	SL
с	75 mm.	SB	v	0.06	1.50	960	£	3.0	415	SL
с	100 mm	SB		0.05	2.55	960	£	3,0	415	SL
Ċ	100 mn		V	0.05	2.55	960	E	3.0	415	SL
A	406 mm	нВ	v	0.34	3.66	720	E	25.0	415	SR
Â	355 mm		v	0.17	3.66	960	Ē	14.0	415	SR
									3.0	
A	610 mm	HB	v	0.99	3.66			75.0	415	SL
A A	610 mm 610 mm	HB HB	V V	0.99 0.99	3.66 3.66	580 580	E E	75.0 75.0	415 415	SL SL
A A	508 mm 355 mm		H H	0.71 0.28	2.44 2.44	720 960	E	45.0 20.0	415 415	SR SR
С	300 mm	LB	v	0.28	2.20	960	E	10.0	415	SR
С	300 mm	L8	v	0.28	2.20	960	E	10.0	415	SR
С	248 mm	LB	v	0.03	2.20	960	E	5.0	415	SR
с	am 005	LB	v	0.14	1.60	960	E	10.0	415	SR
č	300 mm	LB	v	0.14	1.60	960	Ē	10.0	415	SR
Ċ	248 mm	LB	Ŷ	0.03	1.60	960	E	5.0	415	SR
	450 mm	00		0.76	2.88	720	E	140.0	415	SR
A A	450 mm	00	H	0.76	2.88	720	Ē	140.0	415	SK SR

•

•

:

•••

4

.

NRA - Survey of Land Drainage Pumping Plant Installations Pump Summary

.

Stn. Stn. No. Name	National Grid Reference	Catchment Area (Sq.km)	Total Capacity	No of	Manufacturer	Year
013 ST.ANNES			0.590		•••••	
=-				2	ALLEN GWYNNES Allen gwynnes Allen gwynnes	1978 1978 1978
D14 TILBURY MARSH	TQ 636 778		0.170			
				1	SPAAN	1974
015 LEIGH BECK	TO 821 830		0.300	_		
					BRITISH PLEUGER British pleuger	1978 1978
016 CROPPENBURG	TQ 816 833		0.560			
					ALLEN GWYNNES ALLEN GWYNNES	196 196
	TO 700 070		0.060			
017 RAIN BOW	TQ 799 838		U.U60	1	FLYGT	196
					FLYGT	196
018 ST.JOSEPHS	To 799 837		0.030			
				٦	FLYGT	1 9 6
019 HILTON	TQ 796 844		0.460	-	CD + - 11	<u>م</u> –
					SPAAN SPAAN	196) 196)
D20 ACLE	TQ 408 106	17.22	0.700			
· -				1	SMITHDOLE	1944
021 HOLLESLEY	TH 367 439	15.00	2.510			
					HARLAND JOHNSON HAWTHORNE DAVEY	1969 1940
				c	THE PARTY OF THE P	1741
022 BENACRE	TM 536 845	80.00	4.248	٦	ALLEN GWYNNES	1969
				2	SULZER	1955
				3	SULZER	1955
23 BLACKMOOR FARM	SK 946 628	0.05	0.015			
		-		1	SYKES	1989
24 MEADOW FARM	SK 933 589	0.01	0.013			
		1		1	SYKES	1989
25 BRANSBY	SK 904 788	1.00	0.180			
					FLYGT Flygt	1988 1988
		_	•	4		1400
DZ6 TILL	SK 910 763	3.00	1.600			
					FLYGT	1986

Ритр Туре	Size Diam.	Xous.	Moun.	Capacity (cumecs)	Stat. Kead (m)	Impel. Speed (R.P.M)	Drive	H.P.	Supply Voltage	Disc. Type

-

1.1					(m)	(R.P.M)				
•••••			••••			•••••					••••
С	300 mm	L8	v	0.28	2.30	960		10.0	415	SR	
С	300 mm	L8	v	0.28	2.30	960		10.0	415	SR	
C	244 mm	LB	v	0.03	2.30	960	E	5.0	415	SR	
s	900 mm	00	н	0.17	0.00	20	E		415	SL	
с	150 mm	I R	v	0.15	4.03	900	E	28.0	415	SR	
č	150 mm		v	0.15	4.03	900		28.0	415	SR	
	150 111		•	0.15	4.05	,		2010	412	Ģit	
~	76/			0.29	1 55	0/0	-	15 0	/ 15	cD.	
C C	254 mm 254 mm		V V	0.28 0.28	2.55 2.55	960 960		15.0 15.0	415 415	SR SR	
Ŀ	234 mm	18	v	0.20	2,33	900	E	12.0	413	24	
С	100 mm	58	v	0.03	1.12	960	E	3.0	415	SL	
C	100 mm		•	0.03	1.12	960		3.0	415	SL	
C	100 mm	S 8	v	0.03	1.71	960	Ε	3.0	415	SL	
	070		u	0.23	2.15	20	F	15 0	/ 15	c 0	
S S	838 mm 838 mm		H	0.23	2.15	20 20	E	15.0 15.0	415 415	SR SR	
3	NIN OCO	10	n	0.23	2.13	20	E	13.0	415	34	
A	450 mm	LB	v	0.70	3.00	725	E	55.0	415	SR	
A	406 mm	00	v	0.51	3.60	940		30.0	415	SL	
MF	914 mm	HB	H	2.00	3.13	315	E	110.0	415	SR	
A	600 mm	нв	v	0.85	5.79	585	E	100.0	415	SR	
MF	600 mm	HB	H	1.13	6.95	575	D	125.0		SR	
MF	900 mm	HB	H	2.26	6.80	440	D	247.0		SR	
C	100 mm	SB	v	0.01	4.00		E		415	SL	
с	100 mm	SB	v	0.01	4.00		E		415	SL	
_							_			•	
A	200 mm		v	0.09	3.00	1,450		8.9	415	S1	
A	200 mm	28	v	0.09	3.00	1,450	E	8.9	415	51	
A	460 mm	S 8	v	0.80	3.00	975	. E.	50.0	415	\$1	
A	460 mm	SB	v	0.80	3.00	975	E	50.0	415	S1	

-

-

-

......

				_			
						ay "ayaana" * Colle	-
Pum	- Survey of Land Drai p Summary						
	. Stn. Wame	National Grid Reference	Catchment Area (Sq.km)		No	Manufacturer	Year
027	W]THAM	SK 952 639	1.50	1.000	•••••	••••••••	
	WATHOUG	JR //2 03/	1.30	1.000	1		1989
					2	FLYGT	1989
028	BRANT	SK 948 625	4.00	2.800	1	FLYGT	1991
						FLYGT	1991
					-	FLYGT	1991
					4	FLYGT	1991
029	SAND SYKE	SK 943 601	2.50	1.800	1	FLYGT	1991
						FLYGT	1991
					3	FLYGT	1991
030	BRANSTON ISLAND	TF 103 703	0.80	0.110			
					1	GOODENDUGH	1962
031	BLACK SLUICE	TF 327 428	710.00	59.900			
						ALLEN GWYNNES ALLEN GWYNNES	1946 1946
					-	ALLEN GWYNNES	1946
					4	ALLEN GWYNNES	1965
					5	ALLEN GWYNNES	1965
032	CHAPEL - OLD & NEW	TF 560 729	66.00	14.790			
					1	NEI-ARE NEI-ARE	1986 1986
ļ					3	NEI-ARE	1986
					-	ALLEN GWYNNES	1948
ĺ					5	RUSTON HORNSBY	1948
					6	ALLEN GWYNNES	1948
033	CROFT LANE	TF 501 600	5.05	7.430	1	ALLEN GWYNNES	1971
I -					ż	ALLEN GWYNNES	1971
034	BUTTS ROAD	TA 030 226	2.02	1.050			
						ABS '	1985
						ABS ABS	1985
			_	_	د		1985
035	PADROLME	TL 229 984	8.02	3.000	1	HARLAND JOHNSON	1973
						HARLAND JOHNSON	1973
						HARLAND JOHNSON	1973
036	PEAKIRK (ELECTRIC)	TF 175 072		12.750			
	21					ALLEN GWYNNES	1973
						ALLEN GWYNNES Allen gwynnes	1973 1973
							-
	1,4 100						

===== Pump Type	size Diam.			Capacity (cumecs)	Stat.	Impel.		H.P.	Supply Voltage	Disc. Type
			••••		•••••		••••			
A	460 mm		v	0.50	3.00	725	E		415	SI
A	460 mm	SB	v	0.50	3.00	725	E	x	415	\$1
A	460 mm	SB	v	0.50	3.00	970	Ε		415	SI
A	460 mm	SB	v	0.50	3.00	970	Ε		415	SI
A	550 mm	SB	v	0.90	3.00	970	E		415	SI
A	550 mm	SB	v	0.90	3.00	970	E		415	S1
A	460 mm	S 8	v	0.50	3.00	725	E		415	S 1
A	460 mm	S8	v	0.50	3.00	725	E		415	S1
A	550 mm	S8	v	0.80	3.00	970	E		415	SI
C	200 mm	LB	н	0.11	3.35		D			SL
с	2540mm	нв	v	11.30	4.00	70	o	900.0	110	SL
С	2540mm	HB	ν.	11.30	4.00	70	0	900.0	110	SL
С	2540mm	HB	v	11.30	4.00	70	0	900.0	110	SL
C	2540mm	HB	v	13.00	4.00	70	0	975.0	110	SL
C	2540mm	HB	V	13.00	4.00	70	D	975.0	110	SL
A	1000mm	00	v	2.63	3.60	355	Ε	270.0	415	S1
A	1000mm	00	v	2.63	3.60	355	Ε	270.0	415	SI
A	1000am	00	V	2.63	3.60	355	E	270.0	415	12
A C	900 mm 1050mm	HB HB	v н	2.10 2.40	3.60 3.60	4 15 350	E D	160.0 156.0		SR SR
c		HB	X	2.40	3.60	350	D	156.0		SR
A	685 m	LB	v.	3.42		580	E	70.0	415	S1
A	450 mm	LB	V	4.00		735	E	40.0	415	21
s	300 mm	SB	v	0.35	10.40	950	ε	75.0	415	SR
S	300 mm	S8	V	0.35	10.40	950	ε	75.0	415	SR
S	300 mm	S8	V	0.35	10.40	950	E	75.0	415	SR
A	600 mm	00	v	1.00	6.54	985	E	135.0	440	st
A	600 mm	00	v	1.00	6.54	985	E	135.0	440	sr
A	600 mm	00	v	1.00	6.54	985	E	135.0	440	S1
A	750 mm	00	v	4.25	1.83	490	£	90.0	440	st
Â	750 mm	00	v	4.25	1.83	490	Ē	90.0	440	\$1 \$1
Ā	750 mm	00	v	4.25	1.83	490	Ē	90.0	440	SI

-

Stn. Stn. No, Name	National Grid Reference	Catchment Area (Sq.km)	Total Capacity (Cumecs)		Manufacturer	Year	Pump Type	Size Diam.	Hous.	Moun.	. Capacity (cumecs)	Stat. Head (m)	1mpel. Speed (R.P.M)	Orive	H.P.	Supply Voltage	Disc. Type
037 PEAKIRK (DIESEL)	TF 175 072	0	4.800													•••••••••••	
					FARROW WALLIN	1983	A	600 mm		v	1.60	2.80	600	D	180.0		\$1
			•		FARROW WALLIN FARROW WALLIN	1983 1983	A	600 mm 600 mm		v v	1.60 1.60	2.80 2.80	600 600	D D	180.0 180.0		S I S I
				-			~			•	1.00	2.00	000	U	10010		51
038 BOURNE EAU	TF 156 187	15.37	4.500	1	ALLEN GWYNNES	19	A	600 mm	HR	v	1.50	3.84	485	E	100.0	440	St
					ALLEN GWYNNES	19	Â	600 mm		v	1.50	3.84	485	E	100.0	440	51
				-	ALLEN GWYNNES	19	Ă	600 mm		v	1.50	3.84	485	Ē	100.0	440	st
D39 PARKESTON	TH 243 323	28.50	Z.820														
				. 1	GILL	1961	MF	750 mm		H	1.41	4.50		E	90.0	415	SL
				2	GILL	1961	MF	750 mm		н	1.41	4.50		E	90.0		SL
040 MELL HOUSE	TL 963 085	5.00	0.850														
					BRITISH PLEUGER	1972	A	450 mm		H	0.28	1.40		E	40.0	415	SL
				2	BRITISH PLEUGER	1972	A	530 mm	SB	н	0.57	1.40		E	70.0	415	SL
041 BOTTISHAM LODE	TL 510 658	72.20	4.000														
						1948	С	914 mm		v	2.00	5.10	237	0	150.0		SI
				2	WORTHINGTON 36	1948	с	914 mm	HB	v	2.00	5.10	237	0	150.0		12
042 SWAFFHAM LODE	TL 522 673	36.40	2.000	-													
					WORTHINGTON 24	1948	c	609 mm		H	1.00	1.00		0	95.0	240	51
				2	WORTHINGTON 24	1948	c	609 mm	HB	H	1.00	1.00		0	95.0	240	12
043 WELCHES DAM	TL 471 859	100.30	12.620											1			
					ALLEN GWYNNES	1948		1145mm		н	6.31	3.35	475	D	500.0	415	SL
				2	ALLEN GWYNNES	1948	MF	1145mm	HB	н	6.31	3.35	475	D	500.0	415	SL
044 UPWARE	TL 538 698	63.60	2.500														
					BEDFORD SA.80.04	1990	A	996 mm		V	1.25	2.25	485	E	46.0	415	SL
				Z	BEDFORD SA.80.04	1990	A	996 mm	SB	۷	1.25	2.25	485	E	46.0	415	SL
045 SOHAM LODE	TL 540 764	104.00	5.400														
					ALLEN GWYNNES ALLEN GWYNNES	1985 1985	A	1000mm 1000mm		v	2.70 2.70	1.45 1.45	420 420	E	90.0 90 .0	415 415	51 \$1

÷.

NORTHUMBRIAN

REGION	SUB REGION	STN. NO	 NAME
Northumbrian	Darlington .	001 002 003 004 005	MORDEN CARRS SWAN CARR SEAMER CARRS MAINSFORTH STELL VAN DIEMANS LAND
888888888888888888888888888888888888888	.=_============================	*********	aaeeeeeeeeeeeeeeeeeeeeeeeee

1

1

1

•

ł

1

1

1

1

I

1

1

.

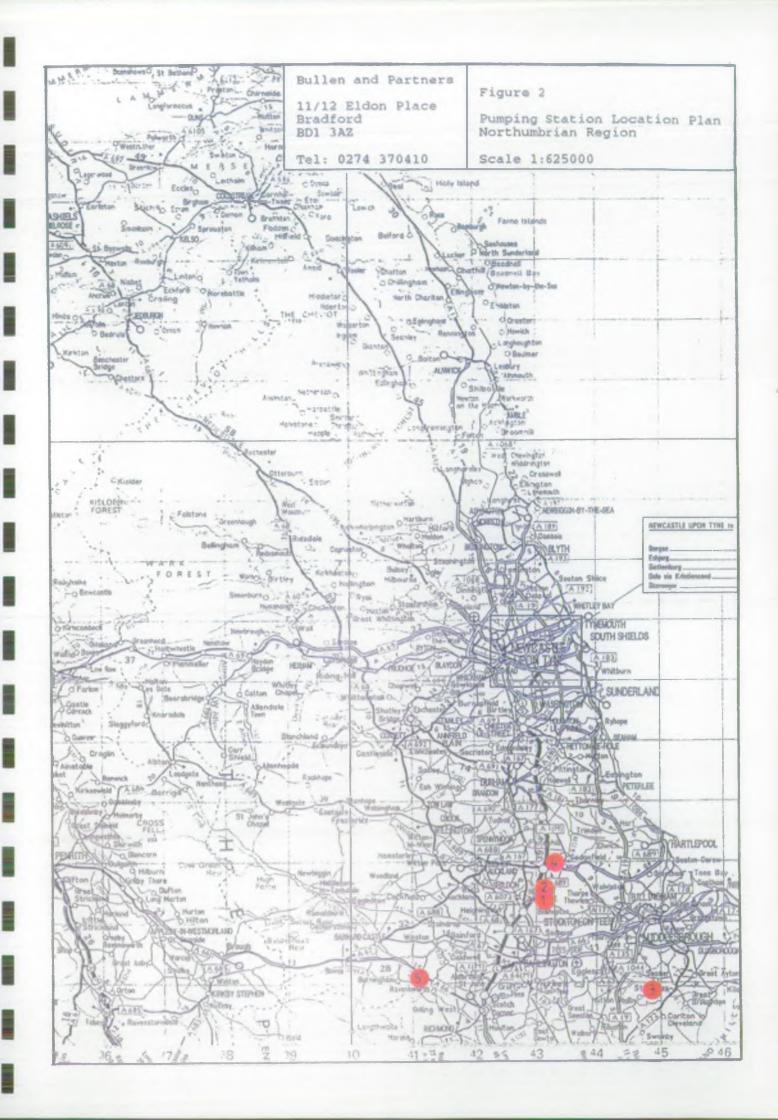
.. .

4.4

.

.

....


....

•

.........

• • •

i

Stn. Stn. No. Name	National Grid Reference	Catchment Area (Sq.km)	Total Capacity (Cumecs)	of	Manufacturer	Year	Pump Type	Size Díam.	Hous.	Moun.	Capacity (cumecs)	Stat. Head (m)	<pre>impel. Speed (R.P.M)</pre>	Drive	H.P.	Supply Voltage	Disc. Type
								•			•••••		•••••	• • • • • • • • •		•••••	
orthumbrian Di MORDEN CARRS	NZ 318 248	2.10	0.420														
	510 240	C1 10	01420	1	FLYGT LL3152	1986	A	450 mm	SB	v	0.20	2.20	950	F	12.0	415	SR
					FLYGT LL3152	1986	Â	450 mm		v	0.22	2.20	950	E	12.0	415	SR
02 SWAN CARR	NZ 311 255	1.60	0.200		1	100/	-							1.2			
				1	FLYGT LL3152	1986	A	450 mm	SB	v	0.20	2.20	950	E	12.0	415	SR
03 SEAMER CARRS	NZ 491 096	2.38															
				1	TANGYES LTD	1955	C	(UND	LB	v			715	E	10.0	415	SR
04 MAINSFORTH STELL	NZ 330 301	15.30	2.400											1.1			
				1	BRITISH GUINARD	1987	A	800 mm		V	1.20	3.00	750	E	100.0	415	SR
				2	BRITISH GUINARD	1987	A	mm 008	SB	v	1.20	3.00	750	E	100.0	415	SR
05 VAN DIEMANS LAND	NZ 114 128	4.97	1.340														
				1	A.B.S. VUP400	1985	A	700 mm	SB	v	0.67	2.00	960	E	40.0	415	SR
					A.B.S. VUP400	1986	A	700 mm		v	0.67	2.00	960	E	40.0	415	SR

.

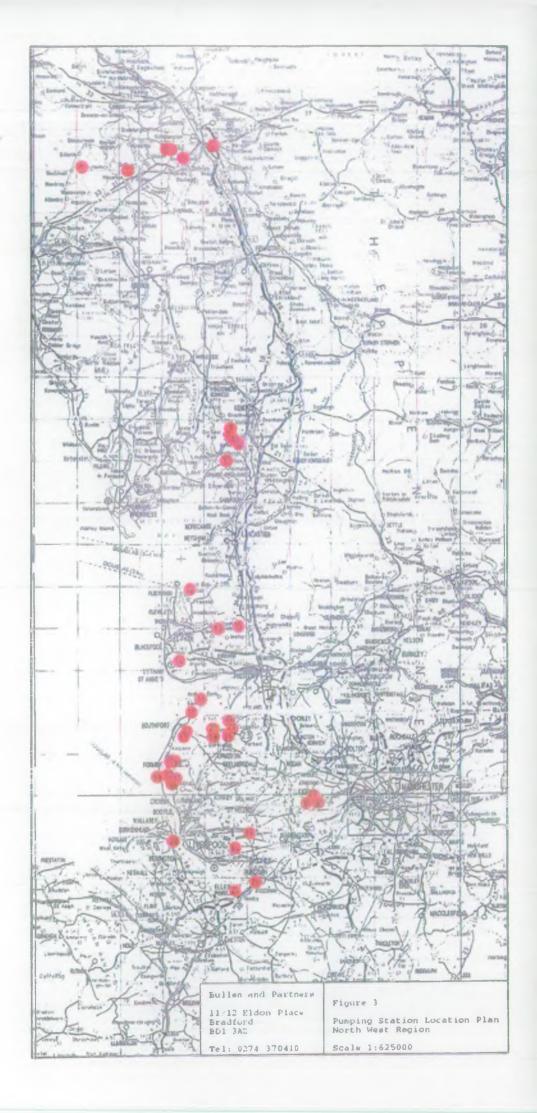
.

.....

•

.

1.1


-- -

.

.

NORTH WEST

=================		==================	
REGION	SUB REGION	STN. NO	
			===================================
<u>North_West</u>		- 001	
	North Cumbri		COLMIRE SOUGH
		002	DURRANHILL
		003	GAMELSBY
		004	RUMBLING BRIDGE
		005	THACKA BECK
	A	006	WOLSTY
	South Cumbri	-	JOHNSCALES
		008	LEVENS
		009	POOL BRIDGE
		010	SAMPOOL
	Newbly Tenes	011	ULPHA
	North Lancs	012 013	PREESALL
		-	RAIKES BROOK
		014 015	RED BRIDGE YOAD POOL
	Couth tores		
	South Lancs	016 017	BANKS MARSH
		018	BOUNDARY BROOK CLAY BROW
		019	CROSSENS
		020	CROSTON
		021	HOLMES WOOD
		022	KEW
		023	MAWDESLEY
		024	SOLLOM
		025	RUFFORD
	Cheshire	026	FRODSHAM
	0	027	INCE MARSH
		028	MORPETH
	North Manche		BEDFORD
		030	JENNETTS LANE
		031	PENNINGTON
	Merseyside	032	ALTCAR
	······································	033	ALTMOUTH
		034	DOG CLOG
		035	FINE JANE
		036	HEY COP
		037	INCE BLUNDELL
		038	NEW CUT
		039	PENDLEBURY
	==============		

stn.	, Stn.	National	Catchment	Total	No	Manufacturer
	Name	Grid Reference	Area (Sq.km)			
	th West					
001	COLMIRE SOUGH	INY 225 505	2.90	0.600		
				·		A.B.S.
						A.B.S.
'			A - -			
102	DURRANHILL	NY 421 562	0.32	0.360	-	
						FLYGT
						FLYGT Flygt
						FLYGT FLYGT
					4	
003	GAMELSBY	NY 326 553	0.59	0.090		
					1	FLYGT
					-	
004	RUMBLING BRIDGE	NY 315 552	0.97	0,085		
					1	FLYGT
			_			
005	THACKA BECK	NY 350 531	0.76	0.085		.
					1	FLYGT
		11W 447 PAP	7 7^	0 000		
1V6	WOLSTY	NY 114 515	3.30	0.800	•	ALLEN GWYNNES
						ALLEN GWYNNES
					د	NEELO UN(NAES
)07	JOHNSCALES	SD 468 868	0.29	1.080		
					1	A.B.S
						A.B.S
800	LEVENS	SD 487 849	3.83	0.700		
						FLYGT
					2	FLYGT
		PR / / / PPF	A 7/	1.700		
109	POOL BRIDGE	SD 464 885	U.34	1./00	1	A.B.S.
						A.B.S.
					C	
)10	SAMPOOL	SD 473 855	0.80	2.520		
						A.B.S.
						A.B.S.
					3	
			**			-5-
лı	ULPHA	SD 456 806	11.52	1.720		K C C
						K.S.B.
					۲	K.S.B.
112	PREESALL	SD 374 495	0 41	0.840		
	, ALLONLL	30 314 473	0.41	0.040	1	SARLIN
						SARLIN
					ć	
113	RAIKES BROOK	SD 434 402		0.660		
					1	FLYGT
						GUINARD

.

	Pump Type	Size Diam,	Hous.	Moun.	Capacity (cumers)	Stat.	impel. Speed (R.P.M)		H.P	Supply Voltage	Disc. Type	
			*****					· .			••••••	
978	A	300 mm	C R	н	0.30	2.54	960	E	20.0	415	SR	
978	Ä	300 nm			0.30	2.54	960	Ē	20.0	415	SR	
	-	200			0.09		4 /50	-	()	415	SR	
991 991	C C	200 mm 200 mm		V V	0.09	4.00	1,450 1,450	E E	6.0 6.0	415	SR	
991	c	200 mm		v	0.09	4.00	1,450	Ē	6.0	415	SR	
991	Ċ		58 58	v	0.09	4.00	1,450	Ē	6.0	415	SR	
975	C	200 mm	SB	v	0.09	3.35	1,450	E	6.0	415	SR	
974	C	200 mm	SB	v	0.09	3.79	1,450	E	6.0	415	SR	
974	c	200 mm	SB	v	0.09	3.35	1,450	E	6.0	415	SR	
982	A	400 mm	58	v	0.40	3.40	975	ε	43.0	415	SL	
982	A	400 mm	- +	V	0.40	3.40	975	E	43.0	415	SL	
984	A	550 mm	58	v	0.54	4.83	96 0	E	74.0	415	\$1	
984	A	550 mm		v	0.54	4.83	960	E	74.0	415	\$1	
987	A	300 mm	SB	v	0.35	2.80	725	E	30.0	415	SL	
987	Ä	300 mm		v	0.35	2.80	725	Ε	30.0	415	SL	
784	A	500 mm		V	0.85	5.18	720	E	120.0	415	\$1	
984	A	500 mm	S 8	v	0,85	5.18	720	E	120.0	415	SI	
791	A	500 mm		V	0.84	4.50	960	E	100.0	415	SR	
981	A	500 mm		H	0.84	4.50	960	ε	100.0	415	SR	
981	A	500 ຄກ	SB	H	0.84	4.50	960	E	100.0	415	SR	
789	A	500 m	SB	v	0.86	4.02	985	E	56.0	415	SR	
989	A	500 mm	S8	V	0.86	4.02	985	E	56.0	415	SR	
983	C	300 mm	S 8	v	0.42	2.90	720	£	36.0	415	SR	
983	С	300 mm	S B	v	0.42	2.90	720	ε	36.0	415	SR	

725

2.70

Ε

ε

A,

A

1984

19

300 mm SB 450 mm SB 0.30 0.36

V

v

and a second second

27.0

29.0

SR SR

415

<pre>#RA - Survey of Land Drainage Pumping Plant Installations Pump Summary </pre>									
Stn. Stn. No. Name	National Grid Reference	Area (So.ko)	Capacity (Cumecs)	of Pump	Manufacturer				
114 RED BRIDGE	SD 347 323	0.08	0.720	1	GUINARD GUINARD				
115 YOAD POOL	SD 482 416		0.300	1	FLYGT				
)16 BANKS MARSH	SD 396 231	4.45	1.600		ALLEN GWYNNES ALLEN GWYNNES				
17 GOUNDARY BROOK	SD 351 144		1.500		K.S.B. K.S.B.				
18 CLAY BROW	SD 424 149	0.81	0.260		FLYGT FLYGT				
119 CROSSENS	SD 376 206	143.94	23.770	2 3 4 5 6 7 8 9 10 11 12	ALLEN GWYNNES (L.L. SULZER (L.L.) SULZER (L.L.) SULZER (L.L.) ALLEN GWYNNES (L.L. ALLEN GWYNNES (L.L. ALLEN GWYNNES (H.L. ALLEN GWYNNES (H.L. ALLEN GWYNNES (H.L. ALLEN GWYNNES (H.L. ALLEN GWYNNES (H.L. ALLEN GWYNNES (H.L. ALLEN GWYNNES (H.L.				
20 CROSTON	SD 468 163	5.53	0.864		MIRLESS WATSON MIRLESS WATSON				
21 HOLMES WOOD	SD 424 162	4.46	0.460		A.B.S A.B.S				
22 KEW	SD 361 153	0.65	0.600		A.8.S A.B.S				
23 HANDESLEY	SD 468 158	6.66	1.360		ALLEN GWYNNES ALLEN GWYNNES				

· .

-1

· ---

1

. .

1961 C 609 mm HB H 0.85 6.86 465 0 143.0 SR 1961 C 609 mm HB V 0.85 6.98 743 E 100.0 415 SR 1989 A 500 mm HB V 0.85 6.98 743 E 100.0 415 SR 1989 A 500 mm HB V 0.85 6.98 743 E 100.0 415 SR 1961 C 609 mm HB H 0.85 6.86 465 D 138.0 SR 1961 C 609 mm HB H 0.85 6.86 465 D 138.0 SR 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 S1 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 S1 1961 A 1067mm HB V 2.97 5.33 <td< th=""><th></th><th>Ритр Туре</th><th>Size Diam.</th><th>Hous.</th><th>Moun.</th><th>Capacity (cumecs)</th><th>Stat. Head (m)</th><th>Impel. Speed (R.P.M)</th><th>Drive</th><th>H.P.</th><th>Supply Voltage</th><th></th><th></th></td<>		Ритр Туре	Size Diam.	Hous.	Moun.	Capacity (cumecs)	Stat. Head (m)	Impel. Speed (R.P.M)	Drive	H.P.	Supply Voltage		
1980 A 450 mm SR V 0.36 2.70 E 29.0 415 SR 1985 A 300 mm SB V 0.30 3.70 730 E 27.0 415 SR 1987 A 600 mm SB V 0.80 1.40 730 E 43.0 415 SL 1987 A 600 mm SB V 0.80 1.40 730 E 43.0 415 SL 1988 A 500 mm SB V 0.75 2.10 980 E 26.0 415 SL 1988 A 500 mm SB V 0.13 E 26.0 415 SL 1986 C 200 mm SB V 0.13 E 100.0 415 SR 1986 C 200 mm HB 0.85 6.86 465 D 143.0 SR 1981 C 609 mm HB 0.65 6.66 465 D 138.0 SR<		•••••	••••			• • • • • • • • • • • •	•••••					••••••	
1980 A 450 mm ss V 0.36 2.70 E 29.0 415 SR 1985 A 300 mm S8 V 0.30 3.70 730 E 27.0 415 SR 1987 A 600 mm S8 V 0.80 1.40 730 E 43.0 415 SL 1987 A 600 mm S8 V 0.80 1.40 730 E 43.0 415 SL 1988 A 500 mm S8 V 0.75 2.10 980 E 26.0 415 SL 1988 A 500 mm S8 V 0.13 E 415 SL 1986 C 200 mm S8 V 0.13 E 415 SL 1986 C 200 mm H8 H 0.85 6.86 465 D 143.0 SR 1981 C 609 mm H8 H 0.85 6.66 465 D 138.0	1980	A	450 mm	SB	v	0.36	2.70		ε	29.0	415	SR	
1987 A 600 mm 53 V 0.80 1.40 730 E 43.0 415 SL 1988 A 500 mm 50 V 0.75 2.10 980 E 26.0 415 SL 1988 A 500 mm 58 V 0.75 2.10 980 E 26.0 415 SL 1988 A 500 mm 58 V 0.13 E 415 SL 1986 C 200 mm 58 V 0.13 E 415 SL 1961 C 609 mm HB H 0.85 6.86 465 D 143.0 SR 1989 A 500 mm HB V 0.85 6.98 743 E 100.0 415 SR 1989 A 500 mm HB V 0.85 6.68 465 D 138.0 SR 1981 C 609 mm HB H 0.85 6.64 455 D 138.0 SR	1980				v	0.36	2.70			29.0	415		
1988 A 500 nm S0 V 0.75 2.10 980 E 26.0 415 S1 1988 A 500 nm S8 V 0.75 2.10 980 E 26.0 415 S1 1986 C 200 nm S8 V 0.13 E 415 S1 1986 C 200 nm S8 V 0.13 E 415 S1 1986 C 200 nm S8 V 0.13 E 415 S1 1986 C 200 nm HB H 0.85 6.86 465 D 143.0 S8 1989 A 500 nm HB V 0.85 6.86 465 D 143.0 S8 1989 A 500 nm HB V 0.85 6.86 465 D 138.0 S8 1961 C 609 nm HB H 0.85 6.86 465 D 138.0 S8	1985	A	300 mm	SB	v	0.30	3.70	730	E	27.0	415	SR	
1988 A 500 nm S0 V 0.75 2.10 980 E 26.0 415 S1 1988 A 500 nm S8 V 0.75 2.10 980 E 26.0 415 S1 1986 C 200 nm S8 V 0.13 E 415 S1 1986 C 200 nm S8 V 0.13 E 415 S1 1986 C 200 nm S8 V 0.13 E 415 S1 1986 C 200 nm HB H 0.85 6.86 465 D 143.0 S8 1989 A 500 nm HB V 0.85 6.86 465 D 143.0 S8 1989 A 500 nm HB V 0.85 6.86 465 D 138.0 S8 1961 C 609 nm HB H 0.85 6.86 465 D 138.0 S8	1987	A	600 mm	S B	v	0.80	1.40	730	E	43.0	415	SL	
1986 C 200 mm SB V 0.13 E 415 SL 1966 C 200 mm SB V 0.13 E 415 SL 1961 C 609 mm HB H 0.85 6.86 465 0 143.0 SR 1989 A 500 mm HB V 0.85 6.98 743 E 100.0 415 SR 1989 A 500 mm HB V 0.85 6.98 743 E 100.0 415 SR 1961 C 609 mm HB H 0.85 6.86 465 D 138.0 SR 1961 C 609 mm HB H 0.85 6.86 465 D 138.0 SR 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 </td <td>1987</td> <td>A</td> <td></td> <td></td> <td>v</td> <td>0.80</td> <td>1.40</td> <td>730</td> <td>E</td> <td>43.0</td> <td>415</td> <td>SL</td> <td></td>	1987	A			v	0.80	1.40	730	E	43.0	415	SL	
1986 C 200 mm SB V 0.13 E 415 SL 1966 C 200 mm SB V 0.13 E 415 SL 1961 C 609 mm HB H 0.85 6.86 465 0 143.0 SR 1989 A 500 mm HB V 0.85 6.98 743 E 100.0 415 SR 1989 A 500 mm HB V 0.85 6.98 743 E 100.0 415 SR 1961 C 609 mm HB H 0.85 6.86 465 D 138.0 SR 1961 C 609 mm HB H 0.85 6.86 465 D 138.0 SR 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 </td <td>1988</td> <td>A</td> <td>500 mm</td> <td>50</td> <td>v</td> <td>0.75</td> <td>2.10</td> <td>980</td> <td>ε</td> <td>26.0</td> <td>415</td> <td>S1</td> <td></td>	1988	A	500 mm	5 0	v	0.75	2.10	980	ε	26.0	415	S 1	
1986 C 200 mm SB V 0.13 E 415 SL 1961 C 609 mm HB H 0.85 6.86 465 D 143.0 SR 1961 C 609 mm HB H 0.85 6.86 465 D 143.0 SR 1989 A 500 mm HB V 0.85 6.98 743 E 100.0 415 SR 1989 A 500 mm HB H 0.85 6.98 743 E 100.0 415 SR 1961 C 609 mm HB H 0.85 6.86 465 D 138.0 SR 1961 C 609 mm HB H 0.85 6.86 465 D 138.0 SR 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 S1 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 S1	1988	A	500 mm	SB	v	0.75	2.10	980	E	26.0	415		
1986 C 200 mm SB V 0.13 E 415 SL 1961 C 609 mm HB H 0.85 6.86 465 D 143.0 SR 1981 C 609 mm HB H 0.85 6.98 743 E 100.0 415 SR 1989 A 500 mm HB V 0.85 6.98 743 E 100.0 415 SR 1989 A 500 mm HB H 0.85 6.98 743 E 100.0 415 SR 1961 C 609 mm HB H 0.85 6.86 465 D 138.0 SR 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 S1 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 S1 1961 A 1067mm HB V 2.97 5.33 365 D 288.	1986	с	200 mm	58	v	0.13			E		415	SL	
1961 C 609 mm HB H 0.85 6.86 465 D 138.0 SR 1961 C 609 mm HB H 0.85 6.86 465 D 138.0 SR 1961 C 609 mm HB H 0.85 6.86 465 D 138.0 SR 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 0.43 6.40 960 E 0.0 41	1986	C	200 mm	SB	v	0.13					415		1
1961 C 609 mm HB H 0.85 6.86 465 D 138.0 SR 1961 C 609 mm HB H 0.85 6.86 465 D 138.0 SR 1961 C 609 mm HB H 0.85 6.86 465 D 138.0 SR 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 0.43 6.40 960 E 0.0 41	1961	с	am 906	нв	н	0.85	6.86	465	0	143.0		SR	
1961 C 609 mm HB H 0.85 6.86 465 D 138.0 SR 1961 C 609 mm HB H 0.85 6.86 465 D 138.0 SR 1961 C 609 mm HB H 0.85 6.86 465 D 138.0 SR 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 0.43 6.40 960 E 0.0 41		C			Н			465	D	143.0		SR	
1961 C 609 mm HB H 0.85 6.86 465 D 138.0 SR 1961 C 609 mm HB H 0.85 6.86 465 D 138.0 SR 1961 C 609 mm HB H 0.85 6.86 465 D 138.0 SR 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 0.43 6.40 960 E 0.0 41					-			743	ε	100.0	415		
1961 C 609 mm HB H 0.85 6.86 465 0 138.0 SR 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1964 A 400 mm LB V 0.43 6.40 960 E 0.0 41								743	ε		415		
1961 C 609 mm HB H 0.85 6.86 465 0 138.0 SR 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1961 A 1067mm HB V 2.97 5.33 365 D 288.0 SI 1964 A 400 mm LB V 0.43 6.40 960 E 0.0 41								465	D				
1961 A 1067mm HB V 2.97 5.33 365 0 288.0 51 1944 A 400 mm LB V 0.43 6.40 960 E 0.0 415 SR 1944 A 400 mm LB V 0.43 6.40 960 E 0.0 415 SR 1989 C 300 mm SB V 0.23 8.20 950 E 44.0 415 SR 1989 C 300 mm SB V 0.23 8.20 950 E 44.0 415 SR 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1986 A 508 mm HB								407	U O				
1961 A 1067mm HB V 2.97 5.33 365 0 288.0 51 1944 A 400 mm LB V 0.43 6.40 960 E 0.0 415 SR 1944 A 400 mm LB V 0.43 6.40 960 E 0.0 415 SR 1989 C 300 mm SB V 0.23 8.20 950 E 44.0 415 SR 1989 C 300 mm SB V 0.23 8.20 950 E 44.0 415 SR 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1986 A 508 mm HB								402	U D			54	
1961 A 1067mm HB V 2.97 5.33 365 0 288.0 51 1944 A 400 mm LB V 0.43 6.40 960 E 0.0 415 SR 1944 A 400 mm LB V 0.43 6.40 960 E 0.0 415 SR 1989 C 300 mm SB V 0.23 8.20 950 E 44.0 415 SR 1989 C 300 mm SB V 0.23 8.20 950 E 44.0 415 SR 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1986 A 508 mm HB						2 97	5,33	365	D				
1961 A 1067mm HB V 2.97 5.33 365 0 288.0 51 1944 A 400 mm LB V 0.43 6.40 960 E 0.0 415 SR 1944 A 400 mm LB V 0.43 6.40 960 E 0.0 415 SR 1989 C 300 mm SB V 0.23 8.20 950 E 44.0 415 SR 1989 C 300 mm SB V 0.23 8.20 950 E 44.0 415 SR 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1986 A 508 mm HB					-	2 07	5 77	365	D				
1961 A 1067mm HB V 2.97 5.33 365 0 288.0 51 1944 A 400 mm LB V 0.43 6.40 960 E 0.0 415 SR 1944 A 400 mm LB V 0.43 6.40 960 E 0.0 415 SR 1989 C 300 mm SB V 0.23 8.20 950 E 44.0 415 SR 1989 C 300 mm SB V 0.23 8.20 950 E 44.0 415 SR 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1986 A 508 mm HB					v	2.97	5.33	365	Ď	288.0			
1961 A 1067mm HB V 2.97 5.33 365 0 288.0 51 1944 A 400 mm LB V 0.43 6.40 960 E 0.0 415 SR 1944 A 400 mm LB V 0.43 6.40 960 E 0.0 415 SR 1989 C 300 mm SB V 0.23 8.20 950 E 44.0 415 SR 1989 C 300 mm SB V 0.23 8.20 950 E 44.0 415 SR 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1986 A 508 mm HB		A	1067mm	HB	V	2.97	5.33	365	D	288.0			13
1989 C 300 mm SB V 0.23 8.20 950 E 44.0 415 SR 1989 C 300 mm SB V 0.23 8.20 950 E 44.0 415 SR 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1986 A 508 mm HB V 0.68 6.86 750 E 60.0 415 SI	1961	A	1067mm	KB	v	2.97	5.33	365	Ð	288.0		SI	1
1989 C 300 mm SB V 0.23 8.20 950 E 44.0 415 SR 1989 C 300 mm SB V 0.23 8.20 950 E 44.0 415 SR 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1986 A 508 mm HB V 0.68 6.86 750 E 60.0 415 SI		A			v			960	£			SR	
1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1966 A 508 mm HB V 0.68 6.86 750 E 60.0 415 SI	1944	A	400 mm	LB	۷	0.43	6.40	960	E	0.0	415	SR	
1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1966 A 508 mm HB V 0.68 6.86 750 E 60.0 415 SI	198 9	с	300 mm	S 8	v	0.23	8.20	950	E	44.0	415	SR	
1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1966 A 508 mm HB V 0.68 6.86 750 E 60.0 415 SI	1989	С	300 mm	SB	v	0.23	8.20	950	E	44.0	415	SR	
1982 A 350 mm SB H 0.30 2.97 960 E 25.0 415 SI 1966 A 508 mm HB V 0.68 6.86 750 E 60.0 415 SI		A			H	0.30	2.97	960	E	25.0	415	51	
1966 A 508 mm HB V 0.68 6.86 750 E 60.0 415 SI 1966 A 508 mm HB V 0.68 6.86 750 E 60.0 415 SI	1982	A	350 mm	SB	H	0.30			E	25.0		51	
1966 A 508 mm HB V 0.68 6.86 750 E 60.0 415 SI									E				
	1966	A	508 mm	HB	V	0.68			E	60.0	415	SI	

stn. Stn.	National	Catchment				Year
No. Name	Grid Reference	Area (Sq.km)				
024 SOLLOM	SD 466 182	7.27	1.440			
					PLEUGER	1977
					PLEUGER NIRLESS WATSON	1977
					MIRLESS WATSON	1941
025 RUFFORD	SD 461 151	0.67	0.180		01 51105D	10//
					PLEUGER PLEUGER	1966 1966
				-	- CLOUER	1,00
026 FRODSHAM	SJ 523 791	10.93	1.800			
					ALLEN GWYNNES	1938
				2	ALLEN GWYNNES	1938
027 INCE MARSH	SJ 465 774	17:42	1.120		10 C	
					ALLEN GWYNNES	1938
					ALLEN GWYNNES	1938
					ALLEN GWYNNES Allen gwynnes	1946 1946
				-	ALLEN GWINNLS	1740
028 MORPETH	SJ 328 895	64.80	10.160			
					ALLEN GWYNNES	1964
					ALLEN GWYNNES ALLEN GWYNNES	1964 1964
					ALLEN GWYNNES	1964
029 BEDFORD	SD 669 001	26.93	9.430			10/2
					ALLEN GWYNNES ALLEN GWYNNES	1962 1962
					ALLEN GWYNNES	1962
					ALLEN GWYNNES	1962
				5	ALLEN GWYNNES	1962
				-	ALLEN GWYNNES	1962
				7	ALLEN GWYNNES	1962
030 JENNETTS LANE	SJ 671 981	6.50	0.220			
					PLEUGER	1971
				2	PLEUGER	1971
071 0500100500	01 //7 00F	1 77	0.700			
031 PENNINGTON	SJ 647 985	1.36	0.700	1	FLYGT	1991
					FLYGT	1991
032 ALTCAR	SD 319 053	16.20	0.650			100-
					A.B.S.	1991
					A.B.S.	1991

.

.

-

----- (1996) ----- (1996)

-

Pump	Size	Hous.	Moun.	Capacity	Stat.	fmpel.	Drive		Supply	Disc.
Type	Diam.	•••••		(cumecs)	Head (m)	Speed (R.P.M)			Voltage	Туре
A	450 mm	SB	v	0.34 0.34 0.38 0.38	6.55	1.450	E	55.0	415	SL
A	450 mm	SB	v	0.34	6.55	1,450	Ε	55.0	415	SL
Α	385 mm	LB	v	0.38	6.50	960	E	45.0	415	SL
A	385 mm	LB	V	0.38	6.50	960	E	45.0	415	SL
A	203 mm	\$8	v v	0.09	1.50	1,650 1,650	E	5.0	415	Free
A	203 mm	SB	V	0.09	1.50	1,650	E	5.0	415	Free
A	609 mm		v	0.90		585		60.0		SR
A	609 mm	HB	v	0.90		585	E	60.0	415	SR
A	356 mm	HB	v	0.28		580	Ε	26.0	415	SR
A	356 mm 356 mm	HB	V	0.28		580 580	ε	26.0	415	SR
A				0.28				26.0		SR
A	356 mm	нв	v	0.28		580	Ε	26.0	415	SR
MF	1016mm	НВ	v	2.54			E	400.0		st
MF MF	1016mm	N0 1	· V	2.34	5.50 5.50		E	400.0 400.0		S (S (
MF	1016mm	H8	v	2.54 2.54 2.54 2.54			E	400.0	7	SI
MF	305 mm	НВ	v	0.15	8.31	940	E	25.0	415	\$I
MF	686 mm	HB	v	1.13	8.31	586	ε	160.0	415	\$1
MF	838 mm	HB	v	2.29 2.29	8.31	494 494	E	654.0 654.0	415	SI
MF	838 mm	HB	V	2.29	8.31	494	E	654.0	415	SI SI
MF	838 mm	HB	v	2.29	8.31	494 F 97	E	654.0 160.0	415	SI
MF MF	305 mm	1115 1112	v	2.29 1.13 0.15	8.31 8.31	00C 010	E	654.0 160.0 25.0	415 415	S1 S1
nr	חחו כסב	n 0	•	1.17	0.31	740	Ľ	23.9	415	51
С	305 mm	SB	v	0.11		2,950	ε	14.0	415	SI
C	305 mm	SB	V	0.11	6.25	2,950	£	14.0	415	\$1
C	300 mm	S 8	v	0.35	8.52	725	E	50.0	415 ·	SR
С	300 mm	SB	V	0.35	8.52	725	E	50.0	415	SR
С	300 mm	SB	v	0.30	4.50	960	E	50.0	415	SR
C	300 mm	SB	v	0.30	4.50	960	E	50.0	415	SR
A	150 mm	SB	v	0.05	4.50	728	E	11.5	415	SR

--

33 ALTMOUTH			51.84		••••	••••••	
				1 C			
						VICKERS	
					2	VICKERS	197
					3	VICKERS	197
						VICKERS	197
						VICKERS	197
						VICKERS	197
						VICKERS	197
						VICKERS	197
34 DOG CLOG	SJ 471	i 878	7.94	0.070			
					1	FLYGT	197
						FLYGT	197
35 FINE JANE	SD 328	3 088	14.17	2.600			
					1	ALLEN GWYNNES	195
						ALLEN GWYNNES	195
						ALLEN GWYNNES	195
					4	ALLEN GWYNNES	195
36 HEY COP	SD 338	040	6.80	3.390			
						ALLEN GWYNNES	197
						ALLEN GWYNNES	197
					3	ALLEN GWYNNES	197
37 INCE BLUNDELL	SD 329	046	4.46	0,660			
						TSURUHI	198
			4		2	TSURUMI	198
38 NEW CUT	SD 333	080	5.30	0.900			
	VP	•••		.	1	TSURUMI	198
						TSURUMI	198
39 PENDLEBURY	SJ 516	913	2.17	0.740			
d/ flibleddi.		• • •		··· ·	1	ALLEN GWYNNES	19
						ALLEN GWYNNES	19
						ALLEN GWYNNES	19

.

.

Ритр Туре	Size Diam.	Hous.	Moun.	Capacity (cumecs)	Head	Impel. Speed (R.P.M)	Drive		Supply Voltage	Туре
		•••••		••••••				• • • • • • • • • •		
A	686 mm	к8	v	1.13	6.10	735	E	160.0	415	SI
A	484 mm	uр	V	1.13	6.10	735	E	160.0	415	SI
A	686 mm 686 mm 2210mm 2210mm	HB	V	1.13	6.10	735	Ε	160.0	415	S 1
A	686 mm	ΗВ	v	1.13	6.10	735	Ε	160.0	415	\$ I
A	2210mm	HB	v	19.80	6.10	195	D	1,800.0		SL
A	2210mm	HB	v	19.80	6.10	195	D	1,800.0		SL
A	2210mm 2210mm	HB	v	19.80 19.80	6.10	195 195	D	1,800.0		SL
A	2210mm		۷	19.80	6.10	195	D	1,800.0		SL
С	152 am	SB	v	0.04			E		415	SR
C	152 mm	SB	v	0.04			E		415	SR
A	254 mm	HR	v	0.15	0.00		E	12.0	415	SI
Ā	508 mm	HR	v	0.59	0.00		Ē	50.0	415	SI
Ā	508 mm	HB	v	0.59	0.00		Ē	50.0		SI
A	508 mm 508 mm 914 mm	НВ	v	1.27	0.00				415	SI
A	686 mm	18	v	1.13	4.57		E	132.0	415	S 1
A	686 mm	LB	v	1.13 1.13	4.57		Ē	132.0	415	SI
A	686 mm 686 mm 686 mm	LB	V	1.13	4.57		E	132.0	415	S1
с	300 mm	SB	v	0.33	7.75	1,000	E	60.0	415	S 1
C	300 mm	58	V	0.33	7.75	1,000	E	60.0	415	S1
С	400 mm	SB	v	0.45	7.50	1,000	E	60.0	415	S1
C	400 mm		V	0.45		1,000	Ë	60.0		S1
A	254 mm	HB	v	0.17	4.10		E		415	S 1
Â	254 mm		v	0.17	4.10		Ē		415	S1
A	406 mm	HB	v	0.40	4.10		ε		415	SI*

•

SEVERN-TRENT

· • • • • • • •

•

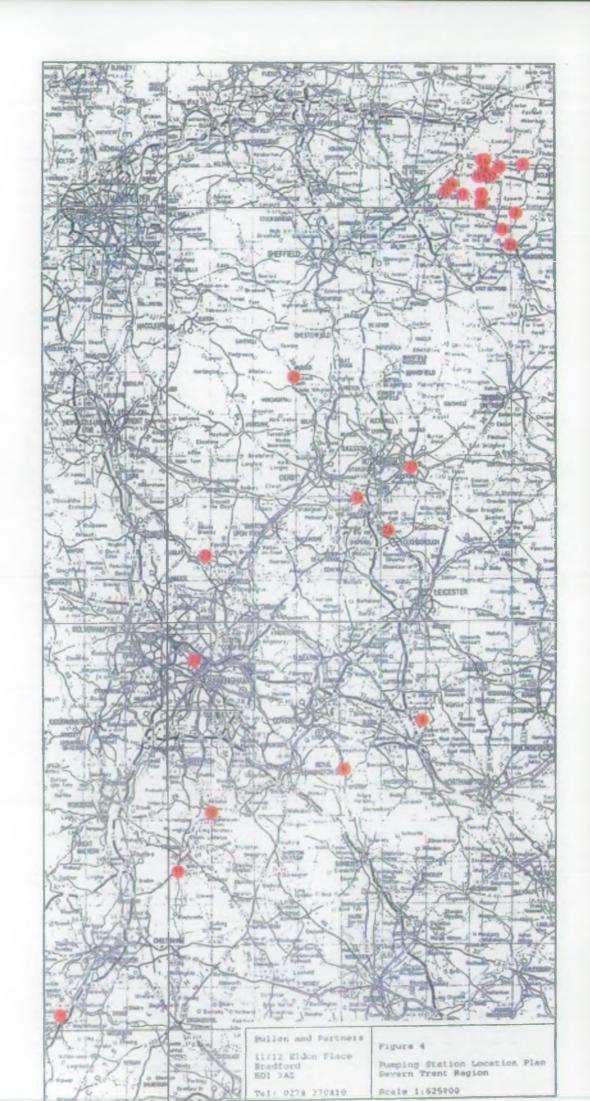
REGION	SUB REGION	STN. NO	NAME
Severn-Trent			
	Lower Trent	001	TUNNEL PITS
		002	SNOW SEWER
		003	NEW ZEALAND
		004	MEDGE HALL
		005	LOW BANK
		006	KEADBY
		012	WOODCARR
		013	WEST STOCKWITH
		014	WATERTON FARM
		015	GOODCOP
		016	DIRTNESS
		017	CANDY FARM
		018	BULL HASSOCKS
		019	BELTON GRANGE
		020	BECKINGHAM
		021	ARMTHORPE RESERVOIR
		024	SHARDLOW
		025	KNOWLESTON PLACE
		026	NORMANTON
		027	GREYTHORNE DYKE
	Lower Severn	007	CAM
		008	LONG ITCHINGTON
		009	CLAY COTON
		010	BARTON
		011	SEDGEBERROW
	Upper Trent	022	PERRY HALL FIELDS
	A COLUMN AND A COLUMN	023	HIGH BRIDGE

.

ł

•

1


٦

1

T

т

ļ

NRA - Survey of	Land Drainage	Pumping	Plant	Installations
Pump Summary				

and the state of t

.

Stn	. Stn.	National	Catchment	Total	No	Hanufacturer	
	Name	Grid Reference	(Sq.km)	Capacity (Cumecs)			
Seve	ern-Trent						
001	TUNNEL PITS	SE 735 041	17.01	1.480	-		
						ALLEN GWYNNES Allen Gwynnes	1963 1963
						ALLEN GWYNNES	1963
						ALLEN GWYNNES	1963
002	SNOW SEVER	SK 813 994	34.27	2.850			
			3.12.	2.070	1	SULZER	1976
						SULZER	1976
					3	SULZER	1976
003	NEW ZEALAND	SE 734 122	15.37	1.850			
						ALLEN GWYNNES	1981
					2	ALLEN GWYNNES	1941
004	MEDGE HALL	SE 748 123	6.23	0.480	-		
						ALLEN GWYNNES	1941
					2	ALLEN GWYNNES	1941
005	LOW BANK	SE 739 085	8.90	2.130			
						BRITISH PLEUGER	1977
						BRITISK PLEUGER Britisk pleuger	1977 1977
004	KEADBY	SE 835 114	177 00	32,280			
000	NEAUD1	35 033 114	511.00	32.200	1	ALLEN GWYNNES	1940
						ALLEN GWYNNES	1940
						ALLEN GWYNNES	1940
						ALLEN GWYNNES	1940
						ALLEN GWYNNES Allen Gwynnes	1940 1940
007	CA.M.	co 7/4 o/f	15 00	1 500			
007	LAR	SO 746 045	45.00	1.500	1	FLYGT	1980
						ALLEN GWYNNES	1980
					3	ALLEN GWYNNES	1980
008	LONG ITCHINGTON	SP 412 651	1.00				
						FLYGT	1970
					2	FLYGT	1970
009	CLAY COTON	SP 592 769	1.00	0.213			
					1	FLYGT	1982
0 10	BARTON	SP 108 513	1.00	0.095			
					1	FLYGT	1981
011		CD 034 704	1 00	0 700			
011	SEDGEBERROW	SP 026 386	1.00	0.300	1	FLYGT	1982
					•		

.

уре Ууре		Hous.	Moun,	Capacity (cumecs)			Drive	H.P.	Supply Voltage	Disc. Type
A	457 mm	KB	v	0.37			ε	35.0	415	S 1
Α	457 mm	KB	V.	0.37			E	35.0	415	S 1
A	457 mm		V				E	35.0	415	S 1
A	457 mm	HB	v	0.37			E	35.0	415	S1
MF	610 നന	HB	v	0.95			D	165.0		SE
MF	610 mm	HB	v	0.95			D	165.0		SE
MF	610 mm	HB	v	0.95			D	165.0		SE
A	610 mm	HB	v	1.00		585	E	84.0	415	SE
A	560 mm	HB	v	0.85		580	E	60.0	415	SE
A	355 mm		v	0.24			E	15.0	400	SL
A	355 mm	HB	v	0.24			E	15.0	400	SL
A		SB	н	0.71	6.18		ε	100.0	415	S I
A		SB	н	0,71	6.18		E	100.0	415	SI
A		SB	н	0.71	6.18		E	100.0	415	\$1
MF	1524mm		н	5.38		1,440	D	420.0	400	SR
MF	1524mm		н	5.38		1,440	D	420.0	400	SR
MF	1524mm		н	5.38		1,440	D	420.0	400	SR
MF	1524mm	H8	н	5.38		1,440	D	420.0	400	SR
MF	1524mm		H	5.38		1,440	D	420.0	400	SR
MF	1524mm	HB	H	5.38		1,440	D	420.0	400	SR
A	250 mm	HB	v	0.15			£	12.0	415	SL
A	500 mm	HB	v	86.0	2.75		E	46.0	415	SL
A	500 mm	HB	v	0.68	2.75	730	E	46.0	415	SL
		SB	v			1,440	E	4.1	415	SR
		S8	v		-	1,440	ε	4.1	415	SR
A		SB	v	0.21	3.35	965	£	33.0	440	SR
A	410 mm	SB	v	0.09	2.30		E	8.0	415	SR
A	500 mm	S B	v	0.30	4.00	950	E	12.0	415	SR

.

-

Stn. Stn. No. Name	National Grid Reference	Catchment Area (Sq.km)		No of	Manufacturer	Year
012 WOODCARR	SE 754 088	2.38	0.630		ARMFIELD ARMFIELD	1978 1978
				3		1978
013 WEST STOCKWITH	SK 787 952	842.00	35.400		1510	1980
					WEIR	
					WEIR	1980
					WEIR WEIR	1980 1980
	AF (/7 A//	10 / 2	2.931			
014 WATERTON FARM	SE 663 066	10.02	2.931	4		1977
					ALLEN GWYNNES Allen gwynnes	1977
				3		1977
				2	ALLEN GWINNES	1917
D15 GOODCOP	SE 736 083	31.77	4.610			1007
					FLYGT	1983
				_	FLYGT	1983
				3 4	ALLEN GWYNNES ALLEN GWYNNES	1965 1965
016 DIRTNESS	SE 747 097	19,80	3.640			1050
	1.00				ALLEN GWYNNES ALLEN GWYNNES	1952 1952
				•	ALCEN GRINNES	1756
017 CANDY FARM	SE 698 031	23.25	3.160			10/0
		1.4.1			ALLEN GWYNNES	1940
				3	ALLEN GWYNNES ALLEN GWYNNES	1940 1940
					ALLEN UNINNES	1940
018 BULL HASSOCKS	SE 732 016	27.35	5.610			
					ALLEN GWYNNES	1941
				2		1941
				3	ALLEN GWYNNES	1941 1988
				4	FLYGT	1900
019 BELTON GRANGE	SE 771 105	1.54	0.210			40.70
				1	ARMFIELD	1979
D20 BECKINGHAM	SK 801 915	21.17	2.830			
					RUSTON/ALLEN GWYNNES	
				2	RUSTON/ALLEN GWYNNES	1945
021 ARMTHORPE RESERVOIR	SE 658 048		0.450			
				1	BRITISH PLEUGER	19
				2	BRITISH PLEUGER	19
D22 PERRY HALL FIELDS	SP 062 919			1	FLYGT	19
				•	I EI VI	

1.0											
Pump	Size Diam.			Capacity (cumecs)	Stat.	Impel. Speed		H.P.	Supply Voltage	Disc. Type	
					(m)	(R.P.M)					
_							_				
A	250 mm		v	0.20	5.50		E	25.0	415	SI	
A	250 mm	-	V	0.20	5.50		E	25.0	415	SI	
A	250 mm	00	۷	0.20	5.50		E	25.0	415	SI	
A	2440mm	КВ	v	12.70		273	£	1,400.0	33,000	51	
Â	2440mm	HB	v	12.70		273	Ē	1,400.0	33,000	SI	
Â	1520mm	HB	-	4.96		330	Ē	600.0	33,000	SI	
A		нB	v	4.96		330	Ē	600.0	33,000	SI	
	(10	~		0.07	4.91		-	57.6	415		
A	610 mm		v	0.97 0.97	4.91		E	57.6	415		
A	610 mm 610 mm	00	V V	0.97	4.91		Ē	57.6	415		
A	0 (U mn	00	v	0.97	4.71		E	57.0	413		
A	975 mm	HB	v	1.60			E	73.0	415		
A	975 mm	KB	v	1.60			E	73.0	415		
A	500 min	HB	۷	0.71			E	40.0	415		
A	500 mm	HB	V	0.71			E	40.0	415		
A	915 mm	НВ	v	1.82	7.00		E	105.0	400	SI	
A	915 mm	нB	v	1.82	7.00		E	105.0	400	S 1	
С	840 mm	KB	н	1.44			D	103.0	400	sv	
Ċ	686 mm	HB	н	0.71			D	57.0		sv	
Ċ	686 mm	HB	H	1.01			D	78.0	415	SE	
-							-	-			
с	914 mm	ИD	н	1.64			Ð	100.0		sv	
c	914 mm	HB	n H	1.64			. D	100.0		1 61	
c	914 mm	KB	ĸ	1.64			· D	100.0		' SV	
Ā	675 mm	SB	v	0.68	0.00		Ĕ		415		
		••	•				- 1 T				
										4	
A	250 mm	LB	v	0.21		1,465	E	25.0	415		
~	915 mm	KВ	u	1 / 7			•	114.0	230	6.0	
C C	915 mm	NB K8	H H	1.42			Ð	114.0	230	SR SR	
L	חוון כוא	no	п	1.42			U	1 (4.U	230	24	
A	375 mm	SB	v	0.30			E	40.0	415	2	
A :	225 mm		v	0.15			E	25.0	415		
A		S 8	v				E		415	SR	

hiters

J

itn. Stn. Io. Name	National Grid Reference	Catchment Area (Sq.km)	Total Capacity (Cumecs)	of	Manufacturer	Үеаг	Pump Type	Size Diam.	Hous.	Moun,	Capacity (cumees)	Stat. Head (m)	Impel. Speed (R.P.M)	Orive	H.P.	Supply Voltage	0isc. Type
23 HIGH BRIDGE	SK 091 167		3.600	•••••	••••••			•••••		* - • • • • •	••••••				· · · · · · · · · · · · · · · · · · ·		
				1	FLYGT	1986	A	600 mm	SB	v	0.60	6.00	965	Ε	30.0	415	SR
				Z	FLYGT	1986	A	mn 006	S 8	٧	0.60	6.00	965	E	30.0	415	SR
				3	FLYGT	1986	A	600 mm	S8	v	0.60	6.00	965	Ε	30.0	415	SR
				.4	FLYGT	1986	A	600 mm	SB	v	0,60	6.00	965	Ε	30.0	415	SR
				5	FLYGT	1986	Α	600 mm	SB	v	0.60	6.00	965	Ε	30.0	415	SR
				6	FLYGT	1986	A	600 mm	SB	v	0.60	6.00	965	E	30.0	415	SR
24 SHARDLOW	SK 448 306																
				1	ARMFIELD	19	A		00	V			1,450	Ε	24.0	415	
				2	ARMFIELD	19	A		00	v			1,450	ε	24.0	415	
				3	ARMFIELD	19	A		00	v			1,450	E	24.0	415	
				4	ARMFIELD	19	A		00	v			1,450	E	24.0	415	
5 KNOWLESTON PLACE	SK 301 599		6.100														
				1	WEIR	1984	A		LB	V	2.00	3.75	585	E	130.0	415	
				2	WEIR	1984	A		LB	v	2.00	3.75	585	E	130.0	415	
				3	WEIR	1984	A		LB	V	2.00	3.75	585	Ē	130.0	415	
				4	ABS	1991	C		5 8	v	0.10	6.20	2,850	Ē	3.0	415	
6 NORMANTON	SK 520 225		0.076														
				1	FLYGT	1991			SB	٧.	0.05	2,00	1,440	E	4.1	415	
				2	FLYGT	1991			S B	v	0.03	2.00	935	E	1.2	415	
7 GREVTHORNE DYKE	SK 573 374	306.00	1.300														
				1	ABS	1992	с	300 mm	SB	۷	0.32	5.00	960	E	30.0	415	S I
					ABS	1992	C	300 mm	SB	V	0.32	5.00	960	E	30.0	415	SI
				3	A85	1992	C	300 mm		v	0.32	5.00	960	Ē	30.0	415	SI
				4	ABS	1992	c	300 mm		v	0.32	5.00	960	Ĕ	30.0	415	SI

P 20 412

.

6 mm

4.

.

.

.

SOUTHERN

REGION	SUB REGION	STN. NO	NAME	
sessessesses Southern				******
	-	042	CRAVEN	
		045	EBONY	
	Chichester	054 001	* KITSBRIDGE IDB * APPLESHAM	
	curchescer	002	* ANNINGTON	
		003	* BEEDING BROOKS	
		004	* NORTHOVER	
		005	PULBOROUGH	
		006 007	* HARDHAM * GREATHAM	
		008	* HOUGHTON	
		009	* BURY	
		010	FELPHAM	
		011	FERRY	
	Tunbridge	012 013	BAXTER FELL HAMS HILL	
		014	LEIGH	
		015	G.E.C.	
		016	NORTHFLEET NO.2	
		017	NORTHFLEET NO.1	
		018 019	BOWATER NO.2 BOWATER NO.1	
		019	BOWATER NO.1 Robins creek	
		021	SHELL	
		022	TOWER DRAIN	
		023	BRITANNIA LEAD	
		024 025	M+B DREDGING M+B ROYALE	
		025	M+B ROTALE EMPIRE PAPER NO.2	
		027	EMPIRE PAPER NO.1	
		028	BENDIGO WHARF	
		029	WHITE HART	
		030 031	EVERARDS	
		031	GRAVESEND ALEXANDRA	
		033	MILL MARSH	
	Rye	034	APPLEDORE	
	-	035	BILSINGTON	
		036	BLACKWALL EAST	
		037 038	BLACKWALL NORTH BLACKWALL SOUTH	
		039	BOONSHILL	
		040	* BRACK IDB	
		041	COURT LODGE	
		043	DIMSDALE	
		044 046	DIXTER GREATSTONE	
		040	HERONDEN	
		048	HEXDEN NORTH	
		049	HEXDEN SOUTH	
		050	* ICKLESHAM	
			* INDRAFT IDB	
		052 053	JESSON KENT DITCH	
		055	KNELLE	
		056	* LODGELAND IDB	
		057	MAYTHEM	
		058	NEWBRIDGE NORTH	
		059 060	NEWBRIDGE SOUTH * NEWHOUSE	
		061	NORTHPOINT	
		062	POTMANS HEATH	
		063	READING SEWER	
		064 .	SHIRLEY MOOR	
		065 066	UNION WAREHORNE	
		066	WILLOP	
		068	WOODSIDE	· · · ·
		069	SARRE	
		070	ASH LEVEL	
1.00		071 072	SEASALTER	
		072	NORTH POUDLERS MINSTER	
		074	STOURMOUTH	
		075	RECULVERS	
		076	BUTTERFLY	
		077	COOPER STREET	
	Pevensey	078 079	MILE END HONEYCROCK	
	rerensey	080	* DROCKMILL	
=======				

÷

.

1

Ij I

:

ļ

٩

٩

1

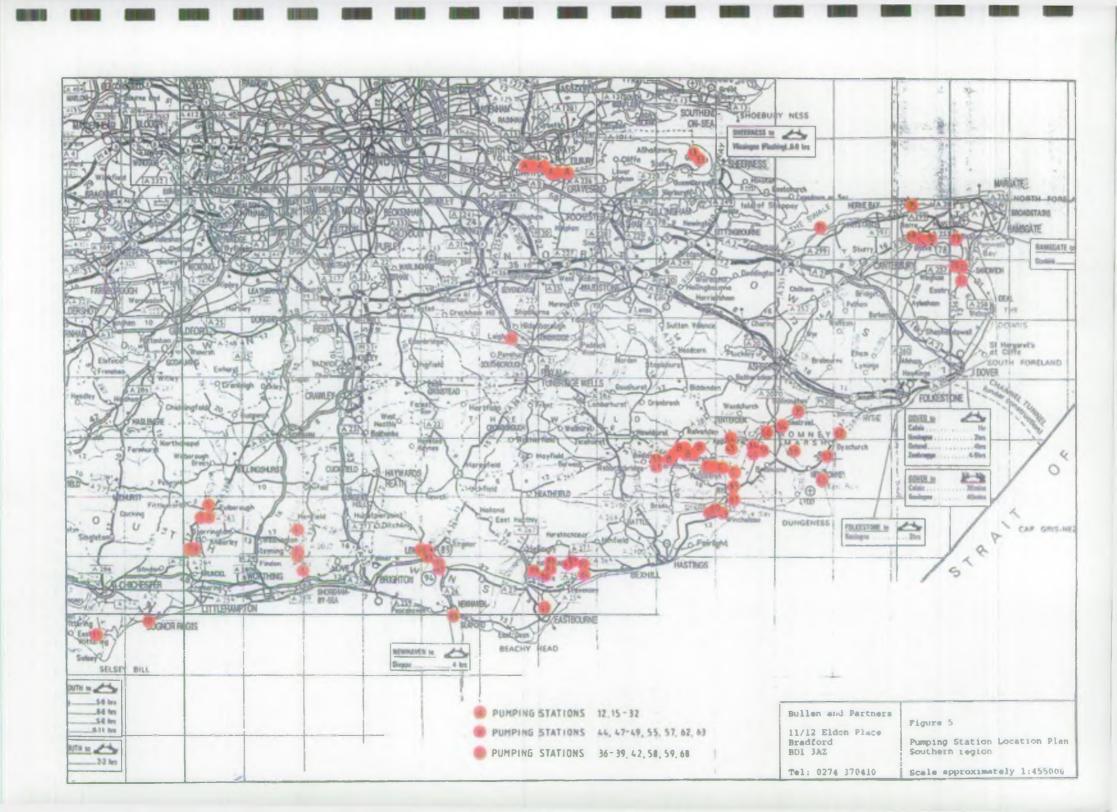
ļ

-

I

	081	* MALLING BROOKS
	082	* MANXEY
	083	* RICKNEY
	084	* STAR INN
	085	* HORSEBRIDGE
	086	* NEWBRIDGE
	087	* RODMEL
	088	* NEWHAVEN
	089	* STONEHAM
	090	* OFFHAM
	091	* RANSCOOMBE
	092	* BARNHORN
	093	* LOTTBRIDGE
	094	BEDDINGHAM

•


•

.

1

-

	Stn. Name	National Grid Reference				Manufacturer
 		•••••			•••••	
	APPLESHAM	TA 200 075	5.10	0,100		
•		14 200 015			1	MAXIFLOW TYPE4
2 1	ANNINGTON	TO 193 100	1.30	0.400		C1 407
					-	FLYGT FLYGT
					2	1,101
3 ,	BEEDING BROOKS	TO 191 110	5.00	0.400		
~					1	MAXIFLOW TYPE4
					2	MAXIFLOW TYPE4
			A 1A			
4 '	NORTHOVER	TO 196 144	0.40	0.100	•	MAXIFLOW TYPE4
					I	PHAITLUW ITPE4
5 F	PULBOROUGH	TQ 046 185	0.10	0.200		
			•••		1	WALLWIN
					2	WALLWIN
5 '	HARDHAM	TQ 045 168	1.20	0.200	•	FLYGT
					-	FLYGT
					-	
7 •	GREATHAM	TO 037 165	1.20	0.300		
						FLYGT
						FLYGT
					2	FLYGT
g •	HOUGHTON	TO 023 117	1.50	0.100		
-					1	ARMFIELD
9 1	* BURY	TQ 016 125	2.60	0.100	4	F1 VA7
					1	FLYGT
0 1	FELPHAM	SZ 947 992	5.50	2.700		
						ALLEN GWYNNES
						ALLEN GWYNNES
					3	ALLEN GWYNNES
	CODY	SZ 856 963	10 70	2,400		4
	ERRY	2010 20	10.70	2.400	1	ALLEN GWYNNES
					•	ALLEN GWYNNES
2 8	BAXTER FELL	Ta 617 752		0.100		
					1	FLYGT
	AMS HILL	TQ 868 773		0.225		
	INNO TILL			V.22J	1	FLYGT
						· - · - ·
				4 / 00		
4ι	EIGH	TQ 550 461	1.00	1.400		

1

.....

ľ

Acres werenes

:

.....

.

Year Pump Size Hous. Moun. Capacity Stat. Impel. Drive H.P. Type Diam. (cumecs) Head Speed Supply Oisc. Voltege Type (m) (R.P.M) 250 mm LB V 0.10 4,00 1,440 E 15,0 415 SL 1968 A 1979 C 00 ۷ 0.20 3.60 Ε 30.0 415 12 415 12 1979 Ċ 00 v 0.20 3.60 Ε 30.0 415 SL 1973 A 250 mm 00 н 0.20 4.30 1,450 E 15.0 415 250 mm 00 0.20 4.30 1,450 Ε 15.0 SL 1973 A Н 415 SL 1972 250 mm LB ۷ 0.10 4.00 1.440 E 15.0 A 0.10 st 3.40 580 £ 5.0 415 1967 С LB v 0.10 580 5.0 415 SI 1967 С LB v 3.40 ε 0.10 5.00 8.0 415 SL 19 C SB ۷ Ε

SB

S8

SB

SB

00

00

HB

HB

HВ

00

00

SB

LB

2162mm HB

V.

v

۷

V.

v

V.

v

v

V

v

v

v

v

19

19

19

19

19

1991

1961

1961

1961

1975

1975

1979

19

1979

С

С

Ċ

C

A

C

A

A

A

A

A

C

C

S

0.10

0.10

0.10

0.10

0.10

0.10

0.90

0.90

0.90

1.20

1.20

0.10

0.23

1,40

5.00

5.00

5.00

5.00

4.00

4.90

4.90

4.90

3.90

3.90

7.50

2.24

3.15

3.50 1,450

580

580

580

490

490

950

31

1,450

Ε

Ε

Ε

ε

E

E

£

Ε

ε

E

E

Ε

Ε

E

8.0

8.0

8.0

8.0

15.0

8.0

84.0

84.0

84.0

160.0

160.0

20.0

12.0

100.0

415

415

415

415

415

415

415

415

415

415

415

415

415

415

SL

SL

SL

SL

SL

SL

S1

SI

SI

SL

SL

SR

S1

SŤ

NRA - Survey of Land Drainage Pumping Plant Installations Pump Summary

. .

.....

1,

Stn. Stn. No. Name	National Grid Reference	Catchment Area (Sq.km)	Total Capacity (Cumecs)	of	Manufacturer	Үеаг	Type
	TO (7/ 7//	0.10					
015 G.E.C.	TQ 636 744	0.10	0.200		FLYGT Flygt	1979 1979	C C
DIG NORTHFLEET NO.2	TQ 634 745	0.10-	0.100	1	FLYGT	1979	C
D17 NORTHFLEET NO.1	TQ 630 746	0.10	0.100	1	FLYGT	1979	С
DIB BOWATER NO.2	TQ 628 746	0.10	0.100	1	FLYGT	1979	с
019 BOWATER NO.1	TQ 627 747	0.10	0,100	1	FLYGT	1979	С
D20 ROBINS CREEK	Ta 619 750	0.10	0.200		CCD/ABS	1981	с
					CCD/ABS	1981	c
D21 SHELL	TO 617 752	0.10	0.200		CCD/ABS CCD/ABS	1981 1981	c
22 TOWER DRAIN	TQ 616 754	0.10	0.300	1	CCD/ABS	1981	c
				2	CCD/ABS CCD/ABS	1981 1981	C C
23 BRITANNIA LEAD	10 613 756	0.10	0.200		CCD/ABS	1981	с
)24 M+B DREDGING	TQ 613 758	0.10	0.100	2	CCD/AB\$	1981	C
)25 M+B ROYALE	TQ 612 759	0,10	0.200	1	CCD/ABS	1981	c
		0.10	0.200		CCD/ABS CCD/ABS	1981 1981	c c
26 EMPIRE PAPER NO.2	ta 594 754	0.10	0.100	1	FLYGT	1978	с
27 EMPIRE PAPER NO.1	TQ 592 753	0.10	0.100	1	FLYGT	1978	с
28 BENDIGO WHARF	TQ 588 753	0.10	0.200				-
					FLYGT FLYGT	1978 1978	с с

St. 5. 2 -

- -

٠

Б. К. К.

		2							
Size Diam.		Moun.	Capacity (cumecs)	Stat.				Supply Voltage	Disc. Type
		•••••							
	SB	v	0.10	5.00	1,450	E	20.0	415	SR
	SB	v	0.10	5.00	1,450	E	20.0	415	SR
						_			
	SB	۷	0.10	6.80	1,450	E	20.0	415	SR
	SB	v	0.10	6.80	1,450	E	20.0	415	SR
	SB	v	0.10	7.00	1,450	E	20.0	415	SR
	SB	V	0.10	7.40	1,450	E	20.0	415	SR
	SB	v	0.10	5.50	9 50	E	24.3	415	SR
	S8	v	0.10	5.50	950	Ē	24.3	415	SR
	SB SB	v v	0.10 0.10	9.70 9.70	950 950	E E	24.3 24.3	415 415	SR SR
	58 88	v	0.10	10.50	950	£	24.3	415	SR
	SB Sb	v v	0.10 0.10	10.50 10.50	950 950	E E	24.3 24.3	415 415	SR SR
	50	•	0.10	10.20	,,,,,	-	6413	112	UN
	S8	v	0.10	7.80	950	£	24.3	415	SR
	S 8	v	0.10	7.80	950	£	24.3	415	SR
						_			
	SB	v	0.10	7.80	950	E	24.3	415	SR
	S8	v	0.10	7.80	950	E	24.3	415	SR
	SB	v	0.10	7.80	950	E	24.3	415	SR
	~~		0.10	4 70	1 (50	~	70.0	/45	C D
	S8	V	0.10	0. <i>1</i> V	1,450	E	20.0	415	SR
	SB	v	0.10	7.10	1,450	E	20.0	415	SR
	SB	v	0.10	8.40	1,450	E	20.0	415	SR
	SB	V	0.10	8.40	1,450	E	20.0		SR

NRA - Survey of Land Orainage Pumping Plant installations Pump Summary

τ

÷İ.

G,

*** ***

1

.

....

Stn, Stn, No. Name	National Grid Reference	Catchment Area (Sq.km)	Capacity (Cumecs)	of Pump		Year
029 WHITE HART	ta 586 752	0.10	0.300			• • • • • • • • •
					FLYGT	1978
					FLYGT	1978
				3	FLYGT	1978
30 EVERARDS	TQ 585 752	0.10	0.100			
				1	FLYGT	1978
031 GRAVESEND	TQ 652 745	0.10	0.100			
				1	HAYDEN	1982
32 ALEXANDRA	TO 652 745	0.10	0.100			
JSE ALEXANDKA	IN 032 143	0.10	0.100	1	HAYDEN	1982
					·····	
33 MILL MARSH	TQ 871 763	2.00	0.100	•	fi vet	1983
				I	FLYGT	1983
34 APPLEDORE	TQ 960 295		1.220			
9.1					ALLEN GWYNNES	1950
				2	ALLEN GWYNNES	1950
35 BILSINGTON	TR 046 340		1.000			
				-	SPAAN	1969
				2	SPAAN	1969
36 BLACKWALL EAST	TQ 886 258	2.27	0.350			
				1	SPAAN	1970
37 BLACKWALL NORTH	TQ 885 259	4.33	1,420			
		1.23	1.420	1	SPAAN	1970
		•				
38 BLACKWALL SOUTH	TQ 885 258	7.73	2,830	1	SPAAN	1970
					SPAAN	1970
	to 075 314		0 700	_		
39 BOONSHILL	ta 935 246	1.87	0.350	1	SPAAN	1969
				•		1707
40 * BRACK IDB	TO 969 275	4.54	0,380	-		
				1	ALL'EN GWYNNES	19 3
41 COURT LODGE	TQ 803 257	2.85	0.570			
				1	SPAAN	19 72
	70 07/ 5/7	D 74	1 700			
2 CRAVEN	TO 934 247	8.24	1.300	1	SIMON HARTLEY	1974
				•		
43 DIMSDALE	TQ 914 173	4.24	0,400			4074
					MYSON MYSON	1976 1976
				2	niouni	1910

. .

.---

• • •

+ ++

· · ·

-

Pump Type	Size Diam.	Hous.	Moun.	Capacity (cumecs)		Impel. Speed (R.P.M)	Drive	H.P.	Supply Voltage	Disc. Type
	•••••			0 10						
C C		58 58	V V	0.10 0.10	6.10	1,450 1,450	E E	20.0 20.0	415 415	SR SR
C		SB	v	0.10	6.10	1,450	E	20.0	415	SR
C		SB	v	0.10	6.80	1,450	E	20.0	415	SR
C		S 8	v	0.10	3.80		E	1.5	415	SR
с		SB	v	0.10	3.80		E	1.5	415	SR
С		SB	۷	0.10	2.00		E	1.5	415	SR
A	610 mm	KB	н	0.61	3.35		D			SR
A	610 mm	КВ	H	0.61	3.35		D			SR
s	1400 am s		-	0.50		35	ε	25.0	415	SR
S	1400mm	LB	-	0.50		35	E	25.0	415	SR
s	1200mm	LB	•	0.35	1.90	41	E	25.0	415	SR
s	2150mm	LB	•	1.42	1.98	29	E	100.0	415	SR
s	2150mm		_	1.42	1.37	29	E	125.0	415	SR
S	2150mm		•	1.42	1.37	29	Ē	100.0	415	SR
s	1200mm	LB		0.35	2.80	41	E	25.0	415	SR
A	225 mm	LB	H	0.38	0.00		E	25.0	415	SR
\$	1500mm	LB	-	0.57	3.22	35	E	50.0	415	SR
S	2000mm	LB	-	1.30	2.55	30	E	100.0	415	SR •
							1			e l
	300 mm	SB SB	V	0.20 0.20			ି E	33.0	415	SR

NRA - Survey of	Land Drainage	Pumping Plant	Installations
Pump Summary			

Stn. Stn. No, Name	National Grid Reference		Capacity	of	acturer	Year
044 DIXTER	TQ 835 270	2.91	0.570	1 SPAAN		1972
045 EBONY	ta 937 291	8.98	1.300	1 SIMON	HARTLEY	1975
046 GREATSTONE	TR 082 237	1.34	0.215		R & PLATT	1962
047 HERONDEN	TQ 828 269	2.13	0.300	2 MATHE	R & PLATT	1962
048 HEXDEN NORTH	TQ 854 287	6.22	1.000	1 SPAAN		1972 1972
049 HEXDEN SOUTH	TQ 841 283	1.29	0.300	1 SPAAN		1972
050 * ICKLESHAM	TQ 891 176	5.86	0.920		AND ATTWOOD	1976
051 • INDRAFT IDB	TQ 981 285	1.30	0.150	1 SPAAN		19 1971
052 JESSON	TR 090 273	25.35	2.800		AND ATTWOOD AND ATTWOOD	1980 1980
053 KENT DITCH	TO 801 260	3.76	0.570	1 SPAAN		1972
054 * KITSBRIDGE IDB	TR 016 329	4.05	0.427	1 ALLEN	GWYNNES	1963
OSS KNELLE	TQ 850 269	9.75	2.000	1 SPAAN 2 SPAAN		1972 1972
056 * LODGELAND 108	TR 031 281	2.57	0.250	1 SIHON	HARTLEY	1983
057 MAYTHEM	TQ 865 276	1.88	0.300	1 SPAAN		1972
058 NEWBRIDGE NORTH	TQ 915 254	4.28	0.710	1 SPAAN		1969
059 NEWBRIDGE SOUTH	TQ 914 253	1.13	0.212	1 SPAAN		1969

Pump Type	Size Diam.	Hous,	Moun.	Capacity (cumecs)	Stat.	Impel.			Supply Voltage	Disc. Type
s	1500mm	LB		0.57	2.92	35	E	50.0	415	SR
S	2100mm	LB	•	1.30	2.54		E	100.0	415	SR
A	450 mm		v	0.11	2.10	730	E	20.0	415	SR
A	450 mm	HB	v	0.11	2.10	730	E	20.0	415	SR
\$	1100mm	LB	-	0.30	3.32	46	E	25.0	415	SR
s	1900mm	LØ	•	1.00	3.10	30	E	75.0	415	SR
S	1100mm	LB		0.30	3.55	46	E	25.0	415	SR
S	1730mm	LB LB	÷	0.90	2.00 0.00	37	E	50.0 0.0	415 415	SR
S	840 mm	LB	-	0.15	6,20	53	E	12.0	415	SR
s	2162mm	1.8		1.40	4.20		E	120.0	415	SR
\$	2162mm		•	1.40	4.20		E	120.0	415	SR
s	1500mm	LØ	•	0.57	3.37	35	E	50. 0	415	SR
A	450 mm	HB	v	0.43	4.20	725	E	22.5	415	SR
s s	1900mm 1900mm	LB	÷	1.00 1.00	2.71 2.71	30 30	E	75.0 75.0	415	SR
3	TYCOM	10	-	1.00	2.11	20	E	75.0	415	
S	950 mm	00	-	0.25	1.37	55	E	15.0	415	SR
S	1100mm	LB	•	0.30	3.07	46	E	25.0	415	SR
S	1600mm	L8	•	0.71	2.40	33	E	50.0	415	SR
s	950 mm	LB		0.21	2.87	47	E	15.0	415	SR

N

-

		**********	********	;======	246263222226222228822	222262
Stn. Stn. Io. Name	National Grid Reference	Catchment Area (Sq.km)	Capacity		Manufacturer	Yea
060 * NEWHOUSE	TQ 901 180	5.73	1.260			
				1 2	JONES AND ATTWOOD FLYGT	197 19
061 NORTHPOINT	TO 932 200	2.63	0.300	•		
				1	SPAAN	198
062 POTMANS HEATH	TO 872 281	7.96	1.415	1	SPAAN	197
63 READING SEWER	T9 876 288	15.09	2.830			
				1 2	SPAAN SPAAN	197 197
64 SHIRLEY MOOR	TQ 935 301	41.20	6.600			
				1 2	SIMON HARTLEY SIMON HARTLEY	197 197
065 UNION	TQ 938 225	66.97	7.000			
					ALLEN GWYNNES ALLEN GWYNNES	196
	i.				ALLEN GWYNNES	196
166 WAREHORNE	TQ 990 320		1.420	-		
				1	SIMON HARTLEY	197
067 WILLOP	TR 118 311	16.20	1.660	•		107
				1 2	SPAAN SPAAN	197 197
)68 WOODSIDE	TO 900 251	9.69	1.530			
	. – .		· • ·	1	SPAAN	196
69 SARRE	TR 245 649	21.60	1.100			
				1	FENNER	197
70 ASH LEVEL	TR 269 633	25.70	2.400			
					ALLEN GWYNNES ALLEN GWYNNES	19 19
					ALLEN GWYNNES	19
71 SEASALTER	TR 076 650		2.920			
					ALLEN GWYNNES	19
					ALLEN GWYNNES Allen gwynnes	19 19
72 NORTH POUDLERS	TR 321 588	4.50	0.500			

•

Pump Type	Size Diam.			Capacity (cumecs)	Head (m)	Speed (R.P.M)		H.P.	Supply Voltage	Disc. Type
s	2030mm	LB	- i i	1.24	1.93	32	ε	75.0	415	SR
•			V	0.02					415	
S	1100mm	L8	-	0.30	3.85	46	E	29.0	415	SR
s	2150mm	LB	-	1.41	2.97	29	ε	125.0	415	SR
S	2150mm	L.8		1.41	2.67	29	E	125.0	415	SR
S	2150mm	LB	•	1.41	2.67	29	E	100.0	415	SR
s	3000mm	18		3.30	2.54		E	250.0	415	SR
S	3000mm			3.30	2.08		E	250.0	415	SR
-							-			
A	10 67 mm	00	v	2.80	5.79	3. C	E	220.0	415	51
A	1067am		v	2.80	5.79		Ε	220.0	415	51
A	686 mm	00	v	1.40	5.79		E	115.0	415	\$1
S	2100mm	LB	-	1.42	1.45	32	E	75.0	415	SR
s	1700mm	I R		0.83	3.52	34	E	75.0	415	SR
S	1700mm		2	0.83	3.52	34	E	75.0	415	SR
S	2100mm	LB	•	1.53	3.12	28	E	100.0	415	SR
s	1800mm	LB	•	1.10	2.13	33	E	60.0	415	SR
A	500 mm	HB	v	0.79	2.40	725	E	60.0	415	\$1
Â	500 mm		۷	0.79	2.40	725	E	60.0	415	SI
A	500 mm	КВ	V	0.79	2.40	725	E	60.0	415	\$I
A	600 mm	LB	v	0.98	3.63	585	E	85.0	415	SI
A	600 mm	LB	Ŷ	0.98	3.63	585	Ē	85.0	415	SI
A	600 mm	LB	v -	0.98	3.63	585	E	85.0	415	\$1

.

.

i

-

-1

-

Stn. Stn. No. Name	National Grid Reference	Catchment Area (Sq.km)	Capacity	of	Manufacturer	Year	Pump Type
073 MINSTER	TR 310 632		•••••	•••••		•••••	• • • • •
			_ 1.1.70		ALLEN GWYNNES	19	A
					ALLEN GWYNNES	19	A
					ALLEN GWYNNES	19	A
074 STOURMOUTH	TR 250 630	200.00	5.600				
				1	ALLEN GWYNNES	19	A
				-	ALLEN GWYNNES	19	A
					ALLEN GWYNNES	19	A
		•		4	ALLEN GWYNNES	19	A
075 RECULVERS	TR 230 693	4.70	0.311	•	ACM	1972	s
				1	ACH	1772	3
076 BUTTERFLY	TR 320 592	0.30	0.100				
				1	JONES AND ATTWOOD	19	S
077 COOPER STREET	TR 313 597	3.60	0.450				
				1	JONES AND ATTWOOD	1977	s
078 MILE END	TR 265 639		0.450				
				1	FLYGT	19	A
079 HONEYCROCK	TQ 596 072	13.40	3.200				
					ALLEN' GWYNNES	1979	A
					ALLEN GWYNNES	1979	A
				3	ALLEN GWYNNES	1979	A
080 * DROCKHILL	TO 618 069	4,10	0.800				
				1	FLYGT	1969	A
				2	FLYGI	1969	A
081 * MALLING BROOKS	· TQ 418 106	0.20	1.200				
				1		1991	C
				2	SUBMERSIGLIDE	1991	C
082 * MANXEY	TO 655 084	17.30	1.200				
				1		1975	A
				2	ALLEN GWYNNES	1975	A
083 * RICKNEY	TQ 627 070	10.50	2.200				
				1	SIMON HARTLEY	1973	S
				2	SIMON HARTLEY	1973	S
084 * STAR INN	TQ 682 062	7.30	1.300				
					SPAAN	1976	
				2	SPAAN	1976	S
085 * KORSEBRIDGE	TQ 669 090	9.20	1.600				
085 * HORSEBRIDGE	TQ 669 090	9.20	1.600	1	HARLAND JOHNSON	1964	A

....

Size Diam.	Hous.		Capacity (cumecs)			Drive	H.P.	Supply Voltage	Disc. Type		
	• • • • • •		• • • • • • • • • •		•••••		•••••		-		
450 mm	00	v	0.39	2.90	730	E	19.0	415	SI		
450 mm		v	0.39	2.90	730	E	19.0	415	SI		
450 mm	00	۷	0.40	2.90	730	E	19.0	415	SI		
500 mm		۷	1.40		725	E	75.0	415	SI		
500 mm		V	1.40		725	E	75.0	415	SI		
500 mm	ĸв	v	1.40		725	E	75.0	415	\$I		
500 mm	KB	v	1.40		725	E	75.0	415	SI		
1100mm	LB	•	0.31	3.12	47	E	18.0	415	SR		
690 mm	HB	•	0.10	2.17	68	E	4.1	415	SR	t	
1297mm	HB	•	0.45	2.30	40	E	15.0	415	SR		
	00	v	0.45			E	17.0	415	•	9.4	
		•				-					
385 mm	00	v	0.40	3.00	970	E	40.0	415	SI		
613 mm	00	v	1.40	3.00	585	Ē	130.0	415	SI		
613 mm	00	v	1.40	3.00	585	Ē	130.0		SI		
			-			-	• • •	415			
	00	v	0.40	2.70	730	E	29.0	415	SL		
	00	V	0.40	2.70	730	E	29.0	415	SL	•	
	00	v	0.60	5.90		E	50.0	415	SI		
	00	v	0.60	5.90		E	50.0	415	S I		
	00	ν	0.60	2.50	980	E	43.0	415	S 1		
	00	V	0.60	2.50	980	E	43.0	415	. SI		
	HB	-	1.10	2.10	38	E	50.0	415	SL		
1900mm	нB	•	1.10	2.10	38	E	50.0	415	SL		
1500mm	HB		0.60	4.60	38	E	75.0	415	SL		
1500nm	нв	•	0.60	4.60	38	E	75.0	415	' SL		
450 mm	00	н	0.80	4.50		ε	56.0	415	S1		
450 mm	00	Н	0.80	4.50		ε	56.0	415	SI		

n. Stn. . Name	National Grid Reference	Catchment Area (Sq.km)		No of	Hanufacturer	Year	Ритр Туре	Size Diam.			Capacity (cumecs)		Impel. Speed (R.P.M)		H.P.	Supply Voltage	Disc. Type
5 * NEWBRIDGE	TQ 626 098	6.80	0.800	•		1048	•		~						76 0		
					HARLAND JOHNSON HARLAND JOHNSON	1968 1968	A A		00 00	V V	0.40 0.40	4.50 4.50	970 970	E E	35.0 35.0	415 415	S1 S1
* RODMEL	OMEL TO 432 070	1.90	0.700														
				1	HARLAND JOHNSON	1964	Α.	450 mm	00	H	0.70	4.50		E	56.0	415	SL
* NEWHAVEN	TO 453 007	3.60	0.400	1	HARLAND JOHNSON	1970	٨	250 mm		v	0.20	3.50	1,460	E	20.0	415	SI
					HARLAND JOHNSON	1970	Â	250 mm		v	0.20	3.50	1,460	E	20.0	415	51
* STONEHAM	TQ 418 117	3.20	0.300														
				-	FLYGT	1976	C		SB	V.	0.10	2.00	1,450	E	8.0	415	SL
				_	FLYGT FLYGT	1976 1976	C C		58 58	vv	0.10 0.10	2.00 2.00	1,450 1,450	E E	8.0 8.0	415 415	SL SL
• OFFHAM	TQ 405 117	1.80	0.100														
				1	FLYGT	1971	C		S8	v	0.10	5.70	1,450	E	8.0	. 415	SL
* RANSCOOMBE	ISCOOMBE TO 442 082 2.50	2.50	0.400	-								_					
					FLYGT	1977	C		S8	<u>v</u>	0.10	3.00	1,450	E	7.0	415	S1
					FLYGT	1977	C C		SB	V	0.10	3.00	1,450	E	7.0	415	SI
				-	FLYGT FLYGT	1977 1977	C		58 58	V V	0.10 0.10	3.00 3.00	1,450 1,450	E E	7.0 7.0	415 415	51 51
* BARNHORN	Ta 689 082	0.60	0.300														
					FLYGT	1975	C		SB	V	0.10	3.70	1,450	Ε	8.0	415	SL
					FLYGT	1975	С		SB	v	0.10	3.70	1,450	E	8.0	415	SL
				د	FLYGT	1975	С		SB	v	0.10	3.70	1,450	E	8.0	415	SL
* LOTTBRIDGE	TQ 615 013	2.80	0.400					_									
				1	HARLAND JOHNSON	1964	A	450 mm	00	-	0.40	3.10		E	25.0 b	415	SL
BEDDINGHAM	TQ 443 081	62.00	9.300	•	ALLEN GWYNNES	1971	A		00	v	3.10	3.40	365	E	220.0	415	SL
					ALLEN GWINNES	1971	A		00	v	3.10	3.40	365	Ē	220.0	415	SL
				_	ALLEN GWYNNES	1971	Â		00	v	3.10	3.40	365	Ē	220.0	415	SL

.

1

and the second s

1

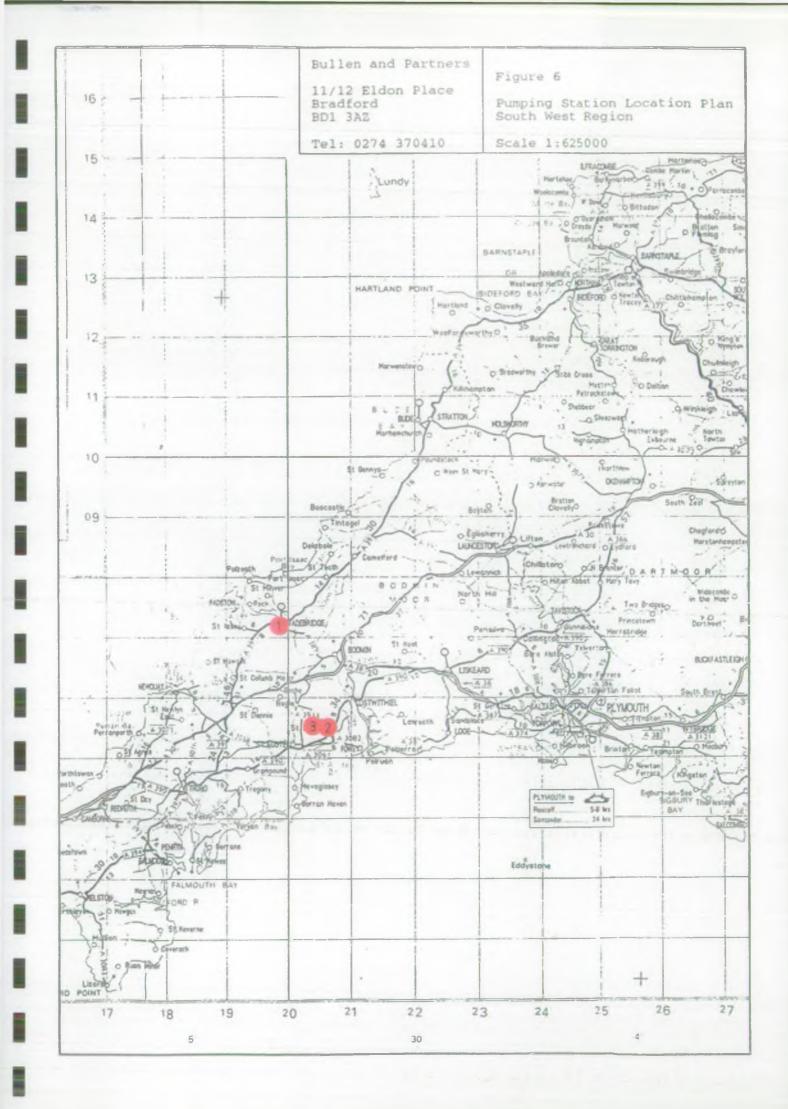
And the second se

:

.

10.1

.


SOUTH WEST

1

			-	
REGION	SUB REGION	STN. NO	======================================	
224=22======				
<u>South West</u>	Exeter	001 002 003	POLMORLA ST.BLAZEY MIDDLEWAY	

•

- £

	Grid Reference	Area (Sq.km)	Capacity (Cumecs)		Manufacturer	Year	Ритр Туре	Size Diam,	nous.	moun.	Capacity (cumecs)	Head (m)	Impel. Speed (R.P.M)	UFIVE	H.P.,	Supply Voltage	Disc. Type
South West SW 991 72	SU 001 724	15.20	5.400					••••									
TULNORLA	JN /// 124	19.20	3.400	1	ABS	1990	A	750 mm	58	v	1.80	2.30	710	Ε	119.0	415	Flap
				-	ABS	1990	Ä	750 mm		v	1.80	2.30	710	Ē	119.0	415	Flap
				3	ABS	1990	A	750 mm	SB	v	1.80	2.30	710	ε	119.0	415	Flap
ST.BLAZEY	SX 075 536	2.20	1.710														
				1	FLYGT	1984	A	800 mm	S8	v	0.57	1.00	733	E	22.8	415	Flap
				2	FLYGT	1984	A	800 mm	SB	v	0.57	1.00	733	E	22.8	415	Flap
				3	FLYGT	1984	A	800 mi	SB	v	0.57	1.00	733	Ε	22.8	415	Flap

-

÷

.

5

.

.

.

.

.

THAMES

REGION	SUB REGION	STN. NO	NAME
Thames	_	 001	GREAT BREACH
		002	GALLIONS (LAKE 5)
		003 004	TRIPCOCK (LAKE 4) GREEN LEVEL
azzzzzzzzz	=======================================	;=====================================	GREEN LEVEL

120 Whitwell LUTON Stagoon Knebworth - Tokeley Hotfield Coggesin STORTFORD Huch Hoshan 1 01 Watton at Stone White Notkyo O Kimpton . Kelvedor Brood Oak O High Roding 110 A 602 O Widford Terling A 130 HABRENDEN WAFE Wheathamp SAWEHEDGEWUNZH WITHAM Great ï Lecden Little A 1081 12 Roding WELW Woltham ST LBANS 120 Hotfield Peverel 414 HABLOW GARDEN CIT Étle ATFIELDO Berkhomst Moreton CHELNSEORD Danbury Writtleo Fyfield TAAL 29 Greg CHESHLINT WALTHAM CHIPPING ONGAR a 9 EPPING Raplett POTTERS BAR ABBEY WATEORD Bore ngotestoner 3 2 O Stock ENFIELD Lo in South We Ferrers BILLERICAY AIO Battlesbridge CHIGWELL WICKFORD BRENTWOOD OHO 42 BASILDON ROMFORD BENFLER -DAGENHAM 40 # RAINHAM? d, gorsetto ... le of Allhallowso a. coad. O Cliffe TILBURY Stoke 1 1 2 S BEXLEY DARTFORD Gaucer A 226 aham GRAVESEND WIMB Noo-St Werburgh 56 A787 Siganley BÉCKENHAM OFerningham ROCHESTER 24 RINGTON 28 Snode and URLEY Biggin Hill N 2 10g O WARLINGHAM 2 Ighthop 1 8 CATERHAM Maline 1-1 MAIDST SEVENOAKS LEATHERHE Weiterham 240 100 C Horsley in Mereworth 74 С ated Shippourne C Crockham Hill 0054 Godgtone Yaldina DORKIN O Hilderbor rugh Sutton REIGATE (o 8,50 TONBRIDGE Leighoi Leigto N Ecenbridge 11: oddbck Head vood-A 25 O,Panshur QUEY A 21 Marden BAIWICK Charlwo SOUTHBOROUGH Lingfield taplehurs ROYAL rst Capel Goudhurst GRINSTEAD TUNBRIDGE WELLS anleigh Ockle CRAWLEY 5 Cranbrook Forest C Frant Lamberhurst Har thela O Rudgw Row West HoothlyO н D E E - . A 22 CROWBOROUGH O Wodhurst Hawkhurst Balcombe H.M. Horsted 70 O Rotherfield Ticehurst 24 O Keynes Bodiam Mayfield O --- Nor Mareafield Burwash Rober babridge-CUCKFIELD O BLLINGSHURS HAYWARDS] HEATH 10 O-Uckfield HEATHFIELD Newich? borough Hú Atpie field Bullen and Partners Figure 7 1Q 17 11/12 Eldon Place 6Washington A 21 Finning ley Pumping Station Location Plan Bradford BD1 3AZ Thames Region Folm Scale approximately 1:455000 Tel: 0274 370410 WORTHING

Stn. Yo.	Stn. Name	Hational Grid Reference	Catchment Area (Sq.km)	Total Capacity (Cumecs)	of	Manufacturer	Year	Ритр Туре	Size Diam		, Moun	. Capacity (cumecs)	Stat. Head (m)	Impel. Speed (R.P.M)	Drive	H.P.	Supply Voltage	Disc. Type
<u>I han</u>		TO /07 807	0.00															
01	GREAT BREACH	TQ 493 807	9.00	1.710	1	BROOKE, CROMPTON	1982	A	45 m	n HB	v	0.57	7.00	730	F	87.0	415	SR
					ź	BROOKE, CROMPTON	1982	Â		n HB	v	0.57	7.00	730	Ē	87.0	415	SR
					3	BROOKE, CROMPTON	1982	A		n HB	v	0.57	7.00	730	ε	87.0	415	SR
02	GALLIONS (LAKE 5)	ta 449 798	4.00	0.940														
					1	Flygt B2250	1978	C		LB		0.23	7.30		E		415	SR
					2	Flygt B2250	1978	С		LB		0.23	7.30		E		415	SR
							1978	С		LB		0.23	7.30		E		415	SR
					4		1978	С		LB		0.23	7.30		E		415	SR
003	TRIPCOCK (LAKE 4)	TQ 464 810	18.00	8.510														
					1	MATHER & PLATT	1977	S	2900m	n KB		2.13	8.36	1,500	E		11,000	SL
					2	MATHER & PLATT	1977	S	2900m	n KB		2.13	8.36	1,500	Ε		11,000	SL
					3	DORMAN DIESEL	1977	S	2900m	n HB		2.13	8.36	1,500	E		11,000	SL
					4	DORMAN DIESEL	1977	S	2900m	n HB		2.13	8.36	1,500	D		11,000	SL
04	GREEN LEVEL	ta 508 796	3.00	0.690														
					1	METROPOLITAN VICKERS	1959	Α		HB		0.43	6.10		E		415	
					2	LISTER DIESEL	1972	С		LB		0.26			0			

.

:

1

.

...

EGION	SUB REGION	STN. NO	NAME
elsh			
	Buckley	001	BALDERTON
	-	004	WERN Y.DAVY
		005	DOL ERION
		006	FINGERPOST
		007	DOG KENNEL
		008	GWERN Y TO
		009	QUEEN FERRY
		010	THORNLEIGH PARK
		011	BURTON PUDDINGTON
		012	ROWLEYS GUTTER
		013	GREEN MOOR
		014	COLLISTER PILL
		015	TREVALYN MEADOW
		021	SEALAND MAIN
	Rhuddlan	002	RHYL
		003	CLWYD
		016	TALACRE
		017	GRONNANT
		018	BELGRAD
		019	BODORYN
		020	GYPSY LANE

ŧ

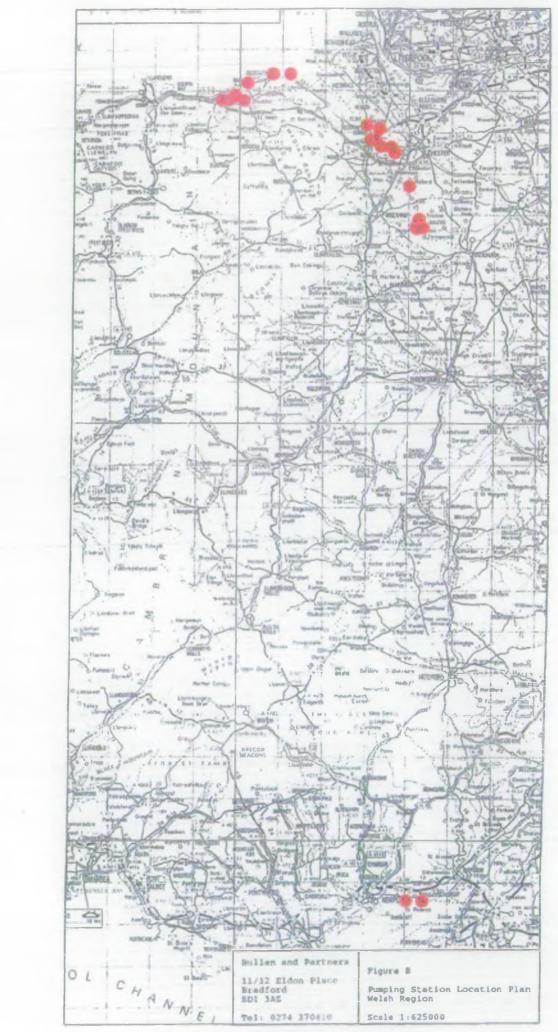
•

1

1

1

1


I

Т

T

Ī

ī

Stn. Stn. No. Name	National Grid Reference	Catchment	Total	No	Manufacturer	Year
Weish 001 BALDERTON	SJ 378 652	30.00				
					A.B.S. A.B.S.	19 19
DOZ RHYL	SJ 029 825	10.23	2.800		· · · •	
					ALLEN GWYNNES	19
					ALLEN GWYNNES	19
				_	ALLEN GWYNNES	19
				4	ALLEN GWYNNES	19
003 CLWYD	SH 999 797	563.00	2.770	1	ALLEN GWYNNES	19
					ALLEN GWYNNES	19
				_	ALLEN GWYNNES	19
004 WERN Y.DAVY	SJ 423 494	255.00	0.150		3	
				1	FLYGT	19
005 DOL ERION	SJ 432 476	320.00			TOURINI	10
					T SURUMI T SURUMI	19 19
006 FINGERPOST	SJ 307 723		0.220			
				1	MATHER & PLANT	19
				2	MATHER & PLANT	19
007 DOG KENNEL	SJ 424 480	170.00				
				1	FLYGT	19
DOB GWERN Y TO	SJ 424 473	210.00	0.153		7010101	
				1	TSURUMI	19
009 QUEEN FERRY	SJ 323 685	275.00	2.800			
					ALLEN GWYNNES	19
				2	ALLEN GWYNNES	19
010 THORNLEIGH PARK	SJ 364 662	24.00	1.500			••
					A.B.S A.B.S	19 19
11 BURTON PUDDINGT	N CI 220 710		0.350			
TO DOKTOR PUDDING	on 34 330 /10		0.330	1	KSB	19
					K S B	19
12 ROWLEYS GUTTER	SJ 316 689	14.85				
					SPAAN	19
				2	SPAAN	19
013 GREEN MOOR	ST 405 863					
				1	MONO	19

ŧ

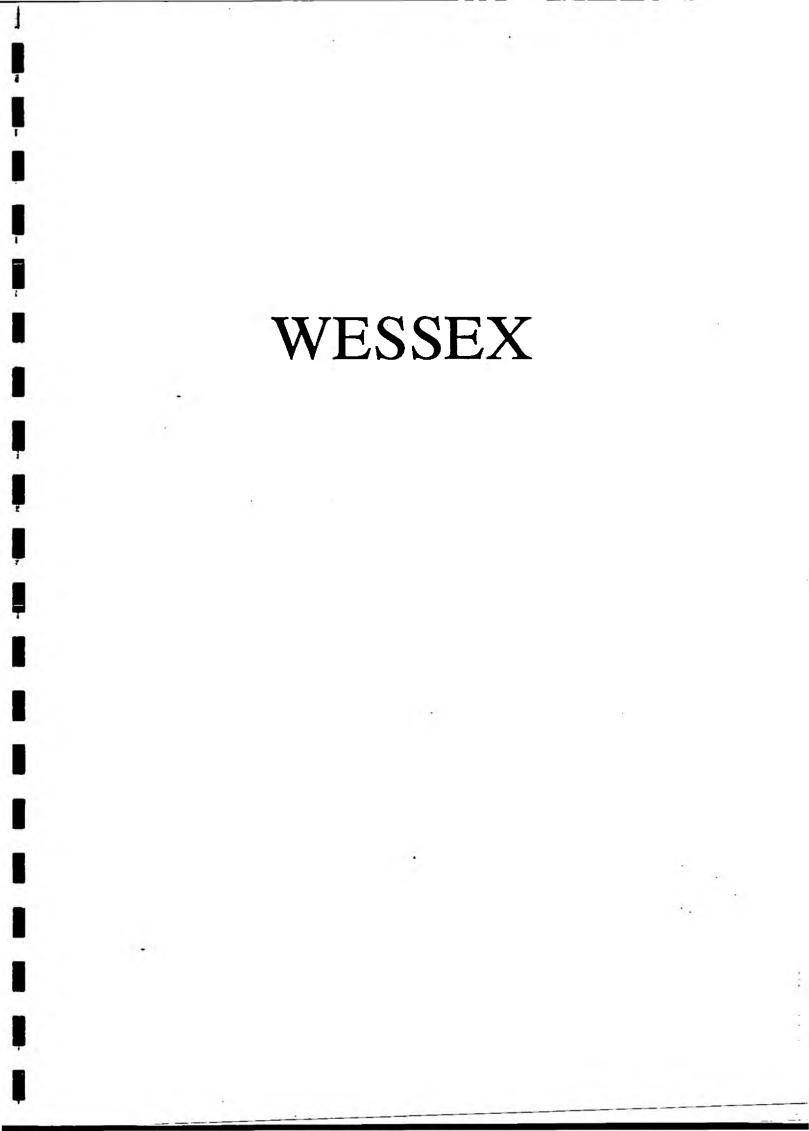
===== Pump Type	Siz Dia				Capacity	Stat.	Impel.	Drive		Supply Voltage	Disc. Type
• • • • • •	•••••		•••••	•••••	•••••		••••••				
A	700 i 700 i		58 58	H H			720 720	E E	0.0 0.0	415 415	
A	508 (508 (anna	K8 KB	V V	0.70			E	0.0	415 415	
A A	508 i 508 i		нв Нв	V V	0.70 0.70			E	0.0 0.0	415 415	
A	609 (609 (m	KB K8	v v	0.92			E	0.0 0.0	415 415	51 51
A	609 (m	KB	v	0. 9 2			E	0.0	415	SI
С	250 (mm	58	H	0.15		950	E	0.0	415	
с с	250 (250 (SB SB	H H			1,500 1,500	E E	0.0 0.0	415 415	
A A	304 i 304 i		К8 К8	v v	0.11 0.11		945 945	E E	7.0 7.0	415 415	
С	250 1	m	SB	H			950	E	0.0	415	
С	250 i	m	SB		0.15		1,500	E	0.0	415	
A	762 (76 2 (КВ Кв	v	1.40 1.40		487 487	E E	105.0 105.0	415 415	
A A	500 i 500 i		LB LB	H H	0.75 0.75		960 960	E E	0.0 0.0	415 415	
A A	350 i 350 i		58 58	v v			740 740	E E	0.0 0.0	415 415	
2 2		nn nn	00 00				30 30	E E	0.0 0.0	415 415	
A	ſ	nn	00	v			ē	E	0.0	415	SR

k

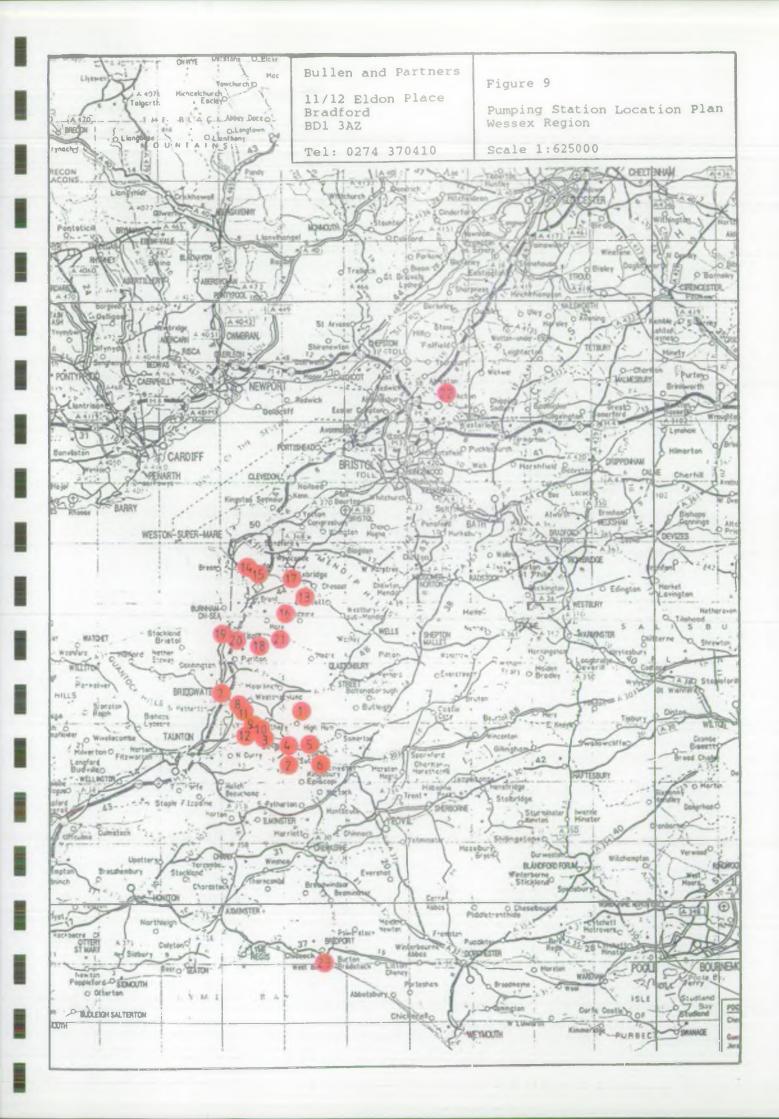
	n. Stn. Name	National Grid Reference	Catchment Area (Sq.km)	Capacity	of	Manufacturer	Yea
014	COLLISTER PILL	ST 446 866		0.070			
						PLEUGER A.B.S	19 19
•••					-		
015	TREVALYN MEADOW	SJ 402 576	30.09	1.400	1	ALLEN GWYNNES	19
						ALLEN GWYNNES	19
016	TALACRE	SJ 125 847	31.00				
•			21144		1	SARLIN	19
017	GRONNANT	SJ 087 840	11.03	0.021			
				-		ALLEN GWYNNES	19
						ALLEN GWYNNES ALLEN GWYNNES	19 19
					د	ALLEN GWINNES	17
018	BELGRAD	SH 961 788	1.60	0.700	4		-
						ALLEN GWYNNES Allen gwynnes	19 19
_			-		-	MLLEA UNIANES	••
019	BODORYN	SH 985 786	14.85		,	• 	10
						A.B.S A.B.S	19 19
					-		,.
020	GYPSY LANE	SJ 011 786		0.220	1	SARLIN	19
						SARLIN	19
021	SEALAND MAIN	SJ 339 677	74.00	1,500			
v					1	A.B.S	19
					2	A.B.S	19

•

.


итр уре	Size Diam.	Hous,	Moun,	Capacity (cumecs)	Stat. Head (m)	Impel. Speed (R.P.M)	Drive	H.P.	Supply Voltage	Disc. Type
A A	475 mm 475 mm		R H	0.07	5.12	965 720	E E	100.0 75.0	415 415	SR SR
b	558 mm 558 mm		H H	0.70 0.70		750 750	E E	55.0 55.0	415 415	
C	152 mm	SB					E		415	
A A A	558 mm 558 mm 558 mm	HB	v v v	0.07 0:07 0.07			E E E		415 415	
A A	355 mm 355 mm	нв HB	v v	0.35 0.35			E E		415 415	
	ann mm	58 58					E E		415 415	
	mm mm	SB SB		0.11 0.11			E E			
A A	500 mm 500 mm		H H	0.75 0.75		960 960	E E		415 415	

The submission of the second s


A REAL PARTY OF TAXABLE PARTY OF TAXABLE PARTY.

-

•

EGION	SUB REGION	STN. NO	NAME
lessex			
		001	HENLEY
	-	002	MIDELNEY
		003	WEST SEDGEMOOR
		004	WESTOVER
		005	HUISH EPISCOPI
		006	LONG LOAD
		007	STOCKMOOR
		008	NORTHMOOR
		009	SALTMOOR
		010	STANMOOR
		011	WESTON ZOYLAND
		012	CURRY MOOR
		013	CLEWER
		014	SOUTH HILL
		015	WHITEHOUSE
		016	BLACKFORD
		017	CROSSMOOR
		018	GOLD CORNER
		019	SLOWAY LANE
		020	WITHYDROVE
		021	NORTH DRAIN
	Bath	022	LADDEN BROOK
	Blandford	023	WEST BAY,
============			

Stn. Stn. No. Name	National Grid Reference		t Total Capacity (Cumecs)	of	Manufacturer p	Year	Ритр Туре	Size Diam.	Hous.	Moun.	Capacity (cumees)	Stat. Head (m)	Impel. Speed (R.P.M)	Drive	H.P.	Supply Voltage	Disc. Type	
essex	184 868													4				
01 HENLEY	ST 436 327		0.220	1	PLEUGER	1971	۵		5B	v	0.11	2.28	1,450	E	7.5	415	SI	
		70		•	PLEUGER	1971	A		58 58	v v	0.11	2.28	1,450	Ē	7.5	415	S1	
02 MIDELNEY	ST 416 235	22.50	3.300												•			
				1	ALLEN GWYNNES	1963	C	750 mm		V	1.10	3.35	486	E	95.0	415	\$1	
					ALLEN GWYNNES	1963	C		HB	V	1.10	3.35		Ē	95.0	415	S1	
				2	ALLEN GWYNNES	1963	C	750 mm	нв	v	1.10	3.35		E	95.0	415	\$1	
003 WEST SEDGEMOOR	ST 376 286	44.50	6.800										- <u>-</u>					
					ALLEN GWYNNES	1945	C	1000mm		V	2.20	2.59	265	D	132.0		SL	
					ALLEN GWYNNES	1945	C MC	1000mm 700 mm		v	2.20	2.59	265	D	132.0	/10	SL	
					ALLEN GWYNNES Allen Gwynnes	1986 1986		700 mm 700 mm		V V	1.20 1.20	3.00 3.00	800 800	E		415 415	SL SL	
		1.1		•	Atten Garmes		•••	100	30	•	1.24	3.00	0	-		~ 10	JL	
004 WESTOVER	ST 416 265	9.80	1.860				-		_	-				_				
				1		1966		550 mm		V	0.62	1.20	730	E	50.0	415	SI	
				_	ALLEN GWYNNES Allen gwynnes	1966 1966	A A	550 mm 550 mm		V V	0.62 0.62	1.20	730 730	E E	50.0 50.0	415 415	S1 S1	
					ALLEN GWINNES		~	JJV	ñ6	•	V.UL			•		717	¥ 4	
DD5 HUISH EPISCOPI	ST 441 262	27.50	5.100			10/3			· · _			~		_				
					ALLEN GWYNNES	1963 1963	A	900 mm		V	1.70	3.35	420	E	130.0	415	S1	
					ALLEN GWYNNES Allen gwynnes	1963	A A	900 mm 900 mm	-	V V	1.70 1.70	3.35 3.35	420 420	E	130.0 130.0	415 415	SI SI	
					ALLEN GATHINGS	1	<i>.</i>	700	11 G	•				-		• • -	v .	
006 LONG LOAD	ST 468 237	32.60	7.200						_	-	- ••						_	
						1977	A	1050mm		V.	2.40	4.00	375	E	200.0	415	SI	
					ALLEN GWYNNES Allen gwynnes	1977 1977	A	1050mm 1050mm		v	2.40 2.40	4.00 4.00	375 375	E	200.0 200.0	415 415	51 SI	
					ALLEN UWINNES	17	~	10.1000	00	٠	2.90	4.00		E	200.0		31	
007 STOCKMOOR	ST 306 357	7.30	1.420		_								_			•		
				-	ALLEN GWYNNES	1977	A	600 mm		V	1.00	3.85	585	E	94.0	415	S1	
				2	ALLEN GWYNNES	197 7	A	450 mm	00	v	0.42	4.17	980	E	47.0	415	SI	
DOB NORTHMOOR	ST 332 330	20.70	2.200															
				1	ALLEN GWYNNES	1942		675 mm		H	1.10	2.44	265	D	66.0		SR	2.4
				2	ALLEN GWYNNES	1942	С	675 mm	HB	H	1.10	2.44	265	D	66.0		SR	
009 SALTMOOR	ST 353 308	2.50	0.925															
JUY SALIMUUN	21 222 200	6.30	V.72J		ALLEN GWYNNES	1942	С	500 mm	ND	4	0.42	3.05		D	34.0		SL	
					BEDFORDS	1942		400 mm		v	0.42	3.67	730	Ĕ	18.0	415	SI	
					BEDFORDS	1991		400 mm		v	0.25	3.67	730	Ē	18.0	415	SI	
	7/1 200	4 40	A 005															
D10 STANMOOR	ST 361 298	4.10	0.905		ALLEN GWYNNES	1942	r	450 mm	10	u	0.45	2.44	310	•	34.0		SR	
					ALLEN GWYNNES	1942		430 Hen	00	n V	0.45	2.44	960	F	20.0	415	SX SL	
					ALLEN GWYNNES	1967			00	v	0.22	3.05	960	Ē	20.0	415	SL	
	7/0 700	- 10																
D11 WESTON ZOYLAND	ST 340 328	8.10	1.000			10/7		400 mm	un	ц	• ••	E 40	1 400		120.0		C 1	
					W.SIMPSON	1947	C	600 mm	no	н	1.00	5.60	1,600	D	129.0		SL	

-

-

Stn. Stn. Io. Name	National Grid Reference	Catchment Area (Sq.km)	Total Capacity (Cumecs)	of	Manufacturer	Year	Рытр Туре	Size Diam.	Hous.	Moun.	Capacity (cumecs)	Stat. Head (m)	Impel. Speed (R.P.M)	Drive	H.P.	Supply Voltage	Disc. Type
112 CURRY MOOR	ST 345 288	15.50	3.470														
				1	SULZER	1955	C	900 mm		¥	1.56	3.50	320	D	136.0		SL
				23	SULZER LANDUSTRIE	1955 1983	C S	900 mm 1300mm	HB OO	V	1.56 0.35	3.50 3.50	320 44	DE	136.0 23.0	415	SL
							•	1900				2,20		-	2310		
13 CLEWER	ST 438 515	34.50	6.000	•		1969		900 mm	00	v	2.00	2.59	415	E	120.0	415	SI
				2	ALLEN GWYNNES Allen Gwynnes	1969	Â	900 mm	00	v	2.00	2.59	415	E	120.0	415	SI
					ALLEN GWYNNES	1969	Ä	900 mm		v	2.00	2.59	415	Ē	120.0	415	sı
14 SOUTH HILL	ST 346 564		0.720														
14 SOUTH ALL	51 240 204		0.720	1	PLEUGER	1963	A		SB	v	0.36	1.83	960	E	20.0	415	SI
				2	PLEUGER	1963	A		S8	V	0.36	1.83	960	E	20.0	415	SI
15 WHITEHOUSE	ST 362 552		0.720														
				1	PLEUGER	1963	A		5 8	v	0.36	1.83	960	E	20.0	415	S 1
				2	PLEUGER	1963	A		SB	v	0.36	1_83	960	E	20.0	415	SI
16 BLACKFORD	ST 401 485	1.90	0.260														
				1	LANDUSTRIE	1973	S	950 mm	•	•	0.26	1.52	48	E	10.0	415	-
17 CROSSMOOR	ST 415 544	1.40	0.720														
				1	LANDUSTRIE	1980	S	1645mm	00	•	0.72	2.20	36	E	3 0.0	415	•
18 GOLD CORNER	ST 368 431	104.10	17.500														
				1	SULZER	1942	A	1500mm	HB	H	4.38	2.59	250	E	315.0	415	SL
					SULZER	1942	A	1500mm	XB	н	4.38	2.59	220	0	240.0		SL
					SULZER	1942	A	1500mm	XB	H	4.38	2.59	220	D	240.0		SL
				4	SULZER	1942	A	1500mm	KB	H	4.38	2.59	220	D	240.0		SL
19 SLOWAY LANE	ST 302 451	16.20	0.132											_			
				1	FLYGT	1991	C	200 mm		V.	0.07	6.00		E		415	SL
				2	FLYGT	1991	C	200 mm	SB	V	0.07	6.00		E		415	SL
20 WITHYDROVE	ST 326 441	16.20	0.132	•	14		•							-			-
				1	FLYGT	1990	C	200 mm 200 mm		v	0.07	6.00		E		415 415	SL
				2	FLYGT	1990	C	200 mm	20	¥	0.07	6.00		£		413	SL
21 NORTH DRAIN	ST 398 448	35.10	5.520			•											
					ALLEN GWYNNES	1960	A	900 mm		N.	1.84	3.66		-	136.0	415	SI
				2	ALLEN GWYNNES Allen gwynnes	1960 1960	Å	900 mm 900 mm		v	1.84	3.66 3.66		D D	136.0 136.0	415 415	S1 S1
				3	ALLEN GWINNES	1700	~	900 am	ΠĢ	v	1.84	3.00		0	130.0	415	21
22 LADDEN BROOK	ST 667 840	41.00	2.000	-							4 65			-			
					SPAAN	1980	S	1800mm	SB		1.00			E		415	SL
				2	SPAAN	1980	\$	1800mm	28		1.00			E		415	SL
23 WEST BAY,	SY 463 905	1.70	1.500														
-				1	FLYGT	1984		920 mm	LB/SB	٧	1.53	2.50	585	Ε		415	s t

•

1

YORKSHIRE

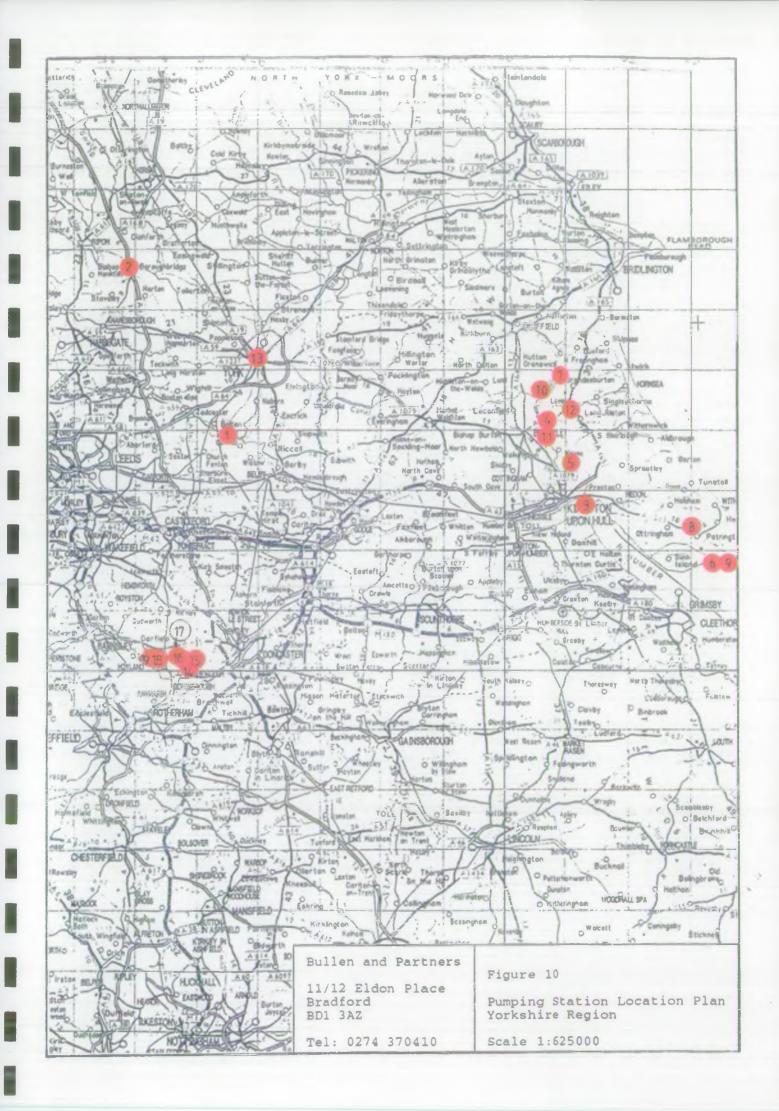
EGION	SUB REGION	STN. NO	NAME
		********	***************************************
orkshire		01	
		014	* PASTURES ROAD P.S.
		015	* BARNBORGH GRANGE
		016	* MILL LANE
		017	* ADWICK-ON-DEARNE
		018	* BOLTON INGS P.S.
		019	* OLIS MOOR
	York 1	001	FLEET
	York 2	002	BOROUGHBRIDGE
		013	FOSS BARRIER
	Humberside	003	EAST HULL
		004	TICKTON
		005	GREAT CULVERT
		006	WINESTEAD OUTFALL
		007	HEMPHOLME
		008	WINESTEAD BOOSTER
		009	SKEFFLING
		010	WILFHOLME
		011	WATERSIDE
		012	ARNOLD AND RISTON

·......

!

ł

ţ


4.10 1

.....

***.*.*

. .

.....

	Stn.	Stn. Name	National Grid Reference	Catchment Area (Sg.km)	Total Capacity (Cumecs)	No	Hanufacturer	
		shire				****	•••••••••••	••
	001	FLEET	SE 555 398	32.00	2.200	1	SULZER	
							SULZER	
	002	BOROUGHBRIDGE	SF 396 670		1.050			
	UUL						A.B.S. VOP 400/8RB	
						2	A.B.S. VOP 400/BRB	
	003	EAST KULL	TA 130 284		22.600			
						1	NO INFORMATION	
	004	TICKTON	TA 074 425	0.55	2.550			
	004	TERION		0.33	2.330	1	ALLEN GWYNNES	
						2	ALLEN GWYNNES	
						3	ALLEN GWYNNES	
	005	GREAT CULVERT	TA 115 355	5.50	12.720			
		9				1	ALLEN GWYNNES	
							ALLEN GWYNNES	
							ALLEN GWYNNES	
						4	ALLEN GWYNNES	
	006	WINESTEAD OUTFALL	TA 335 185		7,540			
							ALLEN GWYNNES	
						2	ALLEN GWYNNES	
	007	HEMPHOLME	TA 095 495	9.92	1.870			
							ALLEN GWYNNES	
Ì							ALLEN GWYNNES ALLEN GWYNNES	
							ALLEN GWINNES	
	800	WINESTEAD BOOSTER	TA 301 234		3.390			
ļ							ALLEN GWYNNES	
l						ŝ	ALLEN GWYNNES Allen Gwynnes	
l						_		
ì	009	SKEFFLING	TA 369 184		2.400	•	CHI 350 0000	
							SULZER BROS SUUZER BROS	
1						-	SULZER BROS	
1								
	010 1	WILFHOLME	TA 062 472	1.09	8.000	1	ALLEN GWYNNES	
						2	ALLEN GWYNNES	
						3	ALLEN GWYNNES	
						4	ALLEN GWYNNES	
	011	WATERSIDE	TA 057 393		4,000			
	ייוטן	MICKJING	14 071 373		000	1	ALLEN GWYNNES	
	1						ALLEN UWINNES	

									÷			
Year	Pump Type	Size Diam.			Capacity (cumecs)	Stat.		Drive	H.P.	Supply Voltage	Disc. Type	
••••						•••••						
1975	MF	450 mm		۷	1,13	6.10	725	E	130.0	415	SL	
1975	ĦF	450 mm	HB	V	1.13	6.10	725	E	130.0	415	SL	
1988	A	400 mm		v	0.50	3.30	9 50	E		415	SL	
1988	A	400 mm	LB	v	0.50	3.30	950	E		415	SL	
19	-		•	-	4			-			•	
1077		FDF			0.85	5 00	776	-	55.0	415	SI	
1972 1972	A A	525 mm 525 mm	нв Кв	V V	0.85 0.85	5.00 5.00	735 735	E	55.0	415	SI	· · ·
1972	A	525 mm	KB	v	0.85	5.00	735	Ē	55.0	415	S 1	
1969	A	1050mm		v	3.18	9.00	328	E	250.0	415	SI	
1969	A	1050mm	00	V	3.18	9.00	328	E	250.0 250.0	415	SI	
1969 1969	A A	1050mm 1050mm	00 00	v v	3.18 3.18	9.00 9.00	328 328	E E	250.0	415 415	S1 S1	
1977	A	1067mm	HB	v	3.77	3.80	321	E		415	SL	
1977	A	1067mm	HB	v	3.77	3.80	321	£		415	SL	
1974	A	525 mm		V	0.60	12.50	735	÷	41.0	415	SI	
1974 1974	A A	525 mm 525 mm	KB KB	v v	0.60 0.67	12.50 6.25	735 735		41.0 29.0	415 415	S1 S1	
1978	A	675 mm	HB	v	1.13	4.10	585	E		415	SL	
1978	Ä	675 mm	HB	v	1.13	4.10	585	Ε		415	SL	
1978	A	675 mm	HB	v	1.13	4.10	585	E		415	SL	
1982	A	675 mm		v	0.80	4.50	580	E		415	SR	
1982 1982	A A	675 ສກ 675 ສກ	LB	v v	0.80 0.80	4.50 4.50	580 580	E E		415 415	· SR SR	
1702	Ŷ	0,2,41		•	0.00	4.30	J 00	•		4,5	UN	
1981	MF	900 mm	HB	v	2.00	6.35	420	E		415	51	
1981	MF	900 mm	HB	۷	2.00	6.35	420	E		415	S 1	
1981	MF	900 mm	HB	V	2.00	6.35	420	E		415	S1.	
1981	MF	900 mm	HB	v	2.00	6.35	420	E		415	\$1	
1982	MF	900 mm	KB	v	2.00	7.00	420	E		415	\$1 \$1	
1982	MF	900 mm	K8	V	2.00	7.00	420	E		415	S1	

statessessessessesses Stn. Stn.			Catchment			Manufacturer
Yo. Name	Grid Refe		Area (Sq.km)	• •		
312 ARNOLD AND RISTON	TA 1	07 434	*****	0.730		
						SULZER SULZER
13 FOSS BARRIER	SE 6	05 512	125.00	30.000		
						FLYGT
					_	FLYGT
					-	FLYGT Flygt
					•	FLYGT
					-	FLYGT
					-	- · - ·
					8	FLYGT
14 * PASTURES ROAD P.S.	SE 4	96 009	4.00	0.440		
						FLYGT CP3300 Flygt CP3300
)15 * BARNBORGH GRANGE	SE 4	92 016		0.040		
	~~	• -		-	•	GUINARD ER1000C617
					2	GUINARD ER1000C617
016 * MILL LANE	SE 4	80 018		0.080		
					-	BRITISH GUINARD BRITISH GUINARD
17 * ADWICK-ON-DEARNE	SF 6	73 023	1.00	0,132		
IT ADDICK ON DEADING			1100	V. 156	1	FLYGT CP3151
						FLYGT CP3151
018 * BOLTON INGS P.S.	SE 4	39 022	0.30	0.066		
						FLYGT CP3101MT
					2	FLYGT CP3101MT
019 * OLIS MOOR	SE 4	35 021	0.30	0.120		
						FLYGT CP3126
					23	FLYGT CP3126 FLYGT CP3127HT 430

*** ****

A DESCRIPTION OF A DESC

The state state of a

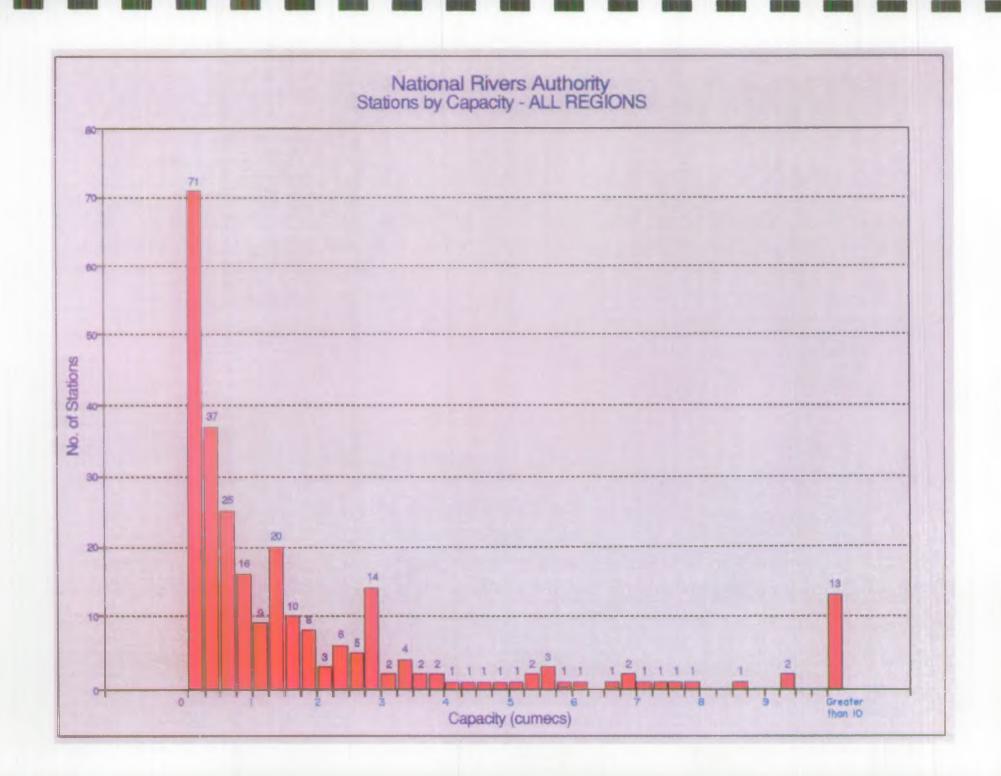
82228	======	*======								***********	
fear	Pump Type	Size Diam.	Hous,	Moun,	Capacity (cumecs)	Head	Speed	Orive	H.P.	Supply Voltage	Oisc. Type
						(m)	(R.P.M)				* * • • • • • • • • • • • • • • • • • •
980	MF	400 mm		v	0.36	5.40	970	E		415	SR
980	MF	400 mm		v	0.36	5.40	970	Ë.		415	SR
,	ru	400 110	20	•	0.30	2.40	,			412	
988	MF	930 mm	SB	v	3.80	3.70	490	E		415	SL
988	MF	930 mm		Ŷ	3.80	3.70	490	Ē		415	SL
988	MF	930 mm	SB	v	3.80	3.70	490	. E		415	SL
988	MF	930 mm	SB	v	3.80	3.70	490	Ε		415	SL
988	MF	930 mm		Ŷ	3.80	3.70	490	E		415	SL
988	MF	930 mm		v	3.80	3.70	490	E		415	SL
988	MF	930 mm		v	3.80	3.70	490	Ε		415	SL
988	MF	930 mm		v	3.80	3.70	490	E		415	SL
979	MF		SB	v	0.22	7.75		E		415	SL
979	MF		SB	۷	0.22	7.75		E		415	SL
991	MF	80 mm	SB	н	0.02	4.20		Ε	2.0	220	SL
991	MF	mm 08	SB	-H	0.02	4.20		Ε	2.0	220	SL
982	MF	100 mm	SB	v	0.04	3.40	1,450	E		415	SL
982	MF	100 mm	SB	Ŷ	0.04	3.40	1,450	Ē		415	SL
							•				
970	MF		SB	H	0.07	5.80		ε	15.0	440	SL
970	MF		SB	ĸ	0.07	5.80		ε	15.0	440	SL
974	MF		S 8	v	0.03	5.87		E	4.0	415	SL
974	MF		SB	V	0.03	5.87		Ε	4.0	415	SL
974	A		SB	v	0.06	6.10		E	8.0	415	SL
974									8.0		
986	A		SB	v	0.06	6.10		E	8.0	415	SL

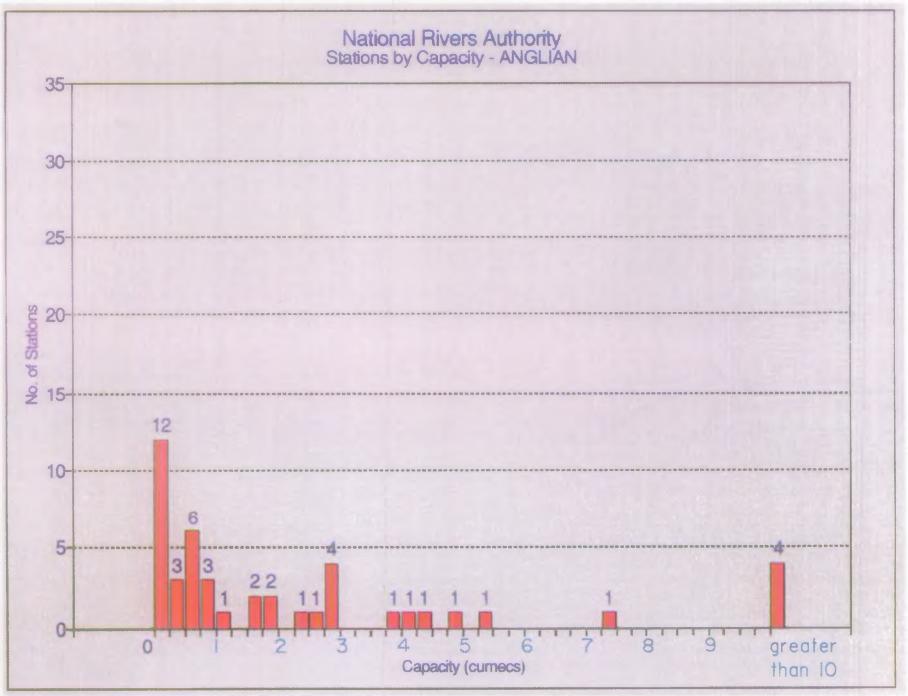
.

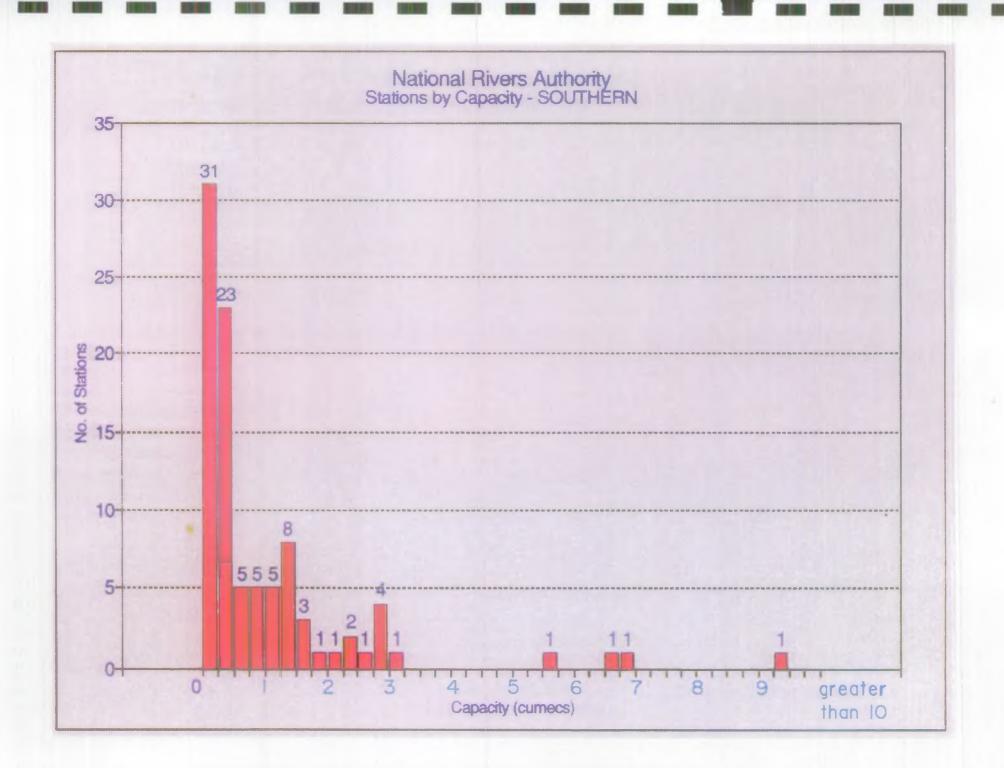
ł

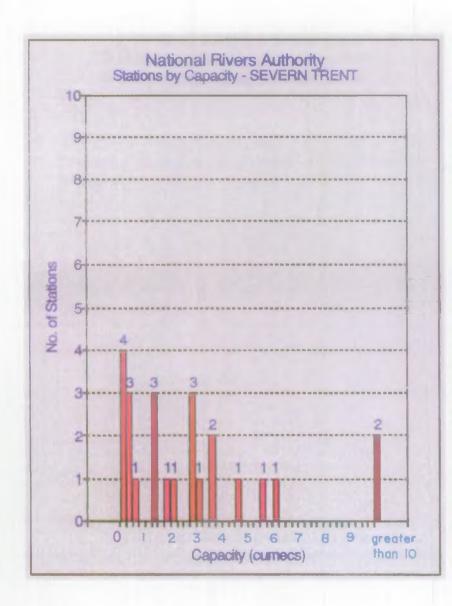
.

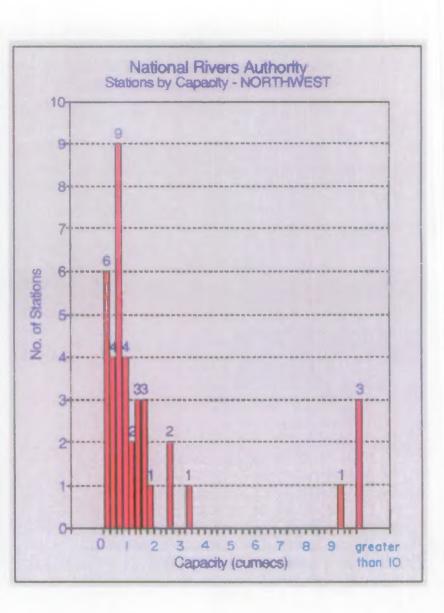
Bullen and Partners

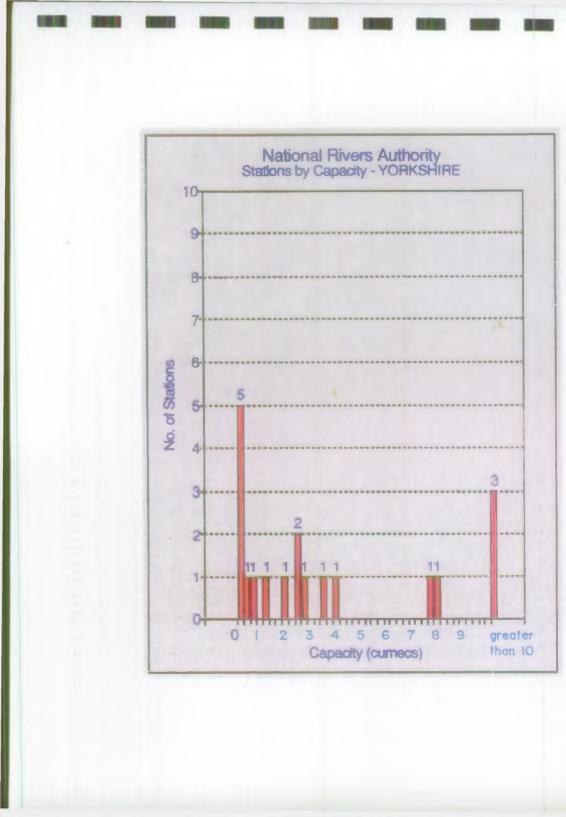

National Rivers Authority Pumping Station Research

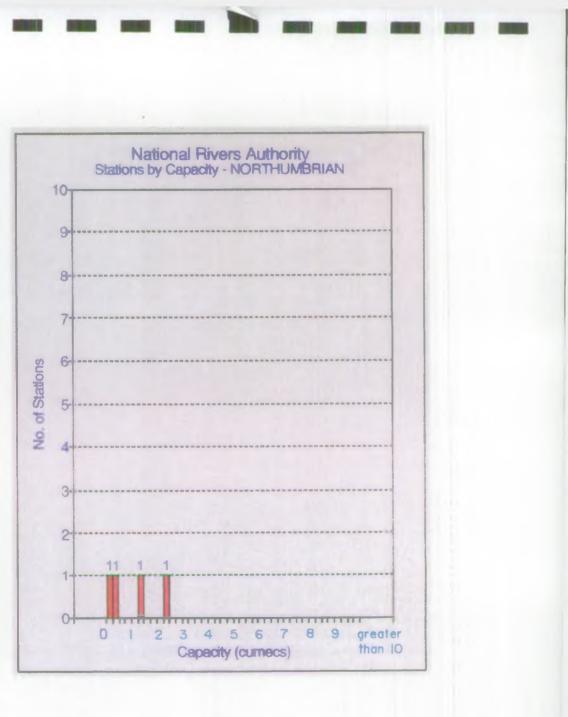

Appendix B2 Pump Analysis Listed by Capacity

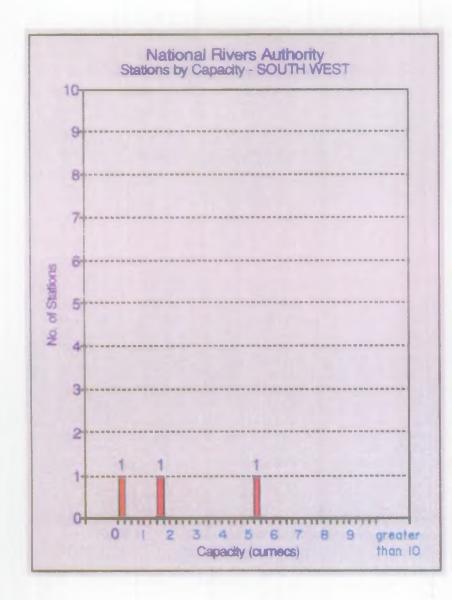

Contents

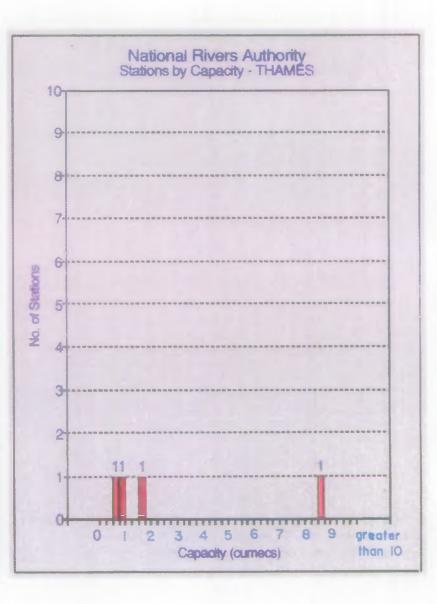

Stations by Capacity	All Regions
Stations by Capacity	Anglian Region
Stations by Capacity	Southern Region
Stations by Capacity	Severn Trent and Northwest Regions
Stations by Capacity	Yorkshire and Northumbrian Regions
Stations by Capacity	South West and Thames Regions
Stations by Capacity	Welsh and Wessex Regions

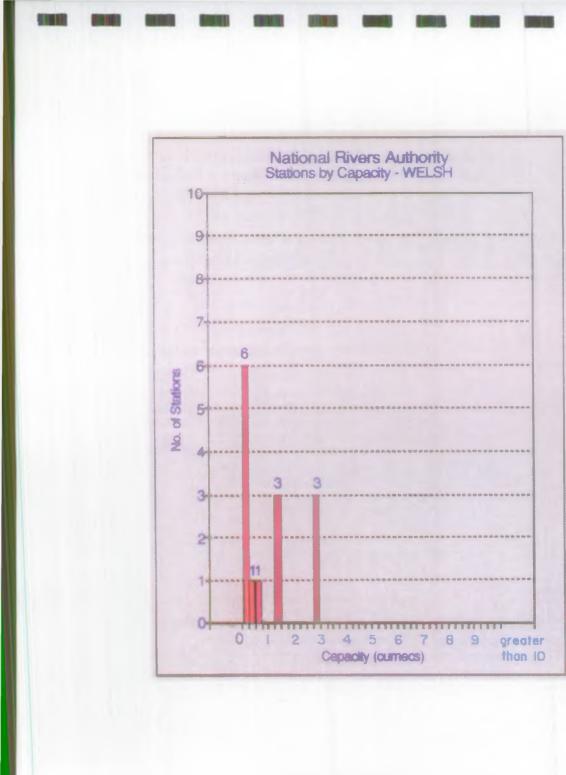

Ref: VH/91742/001/B

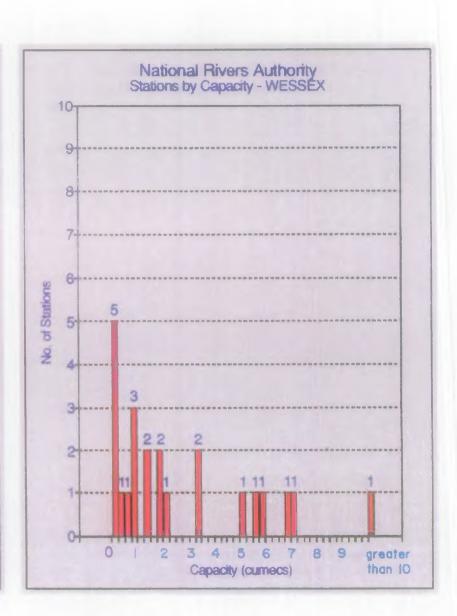






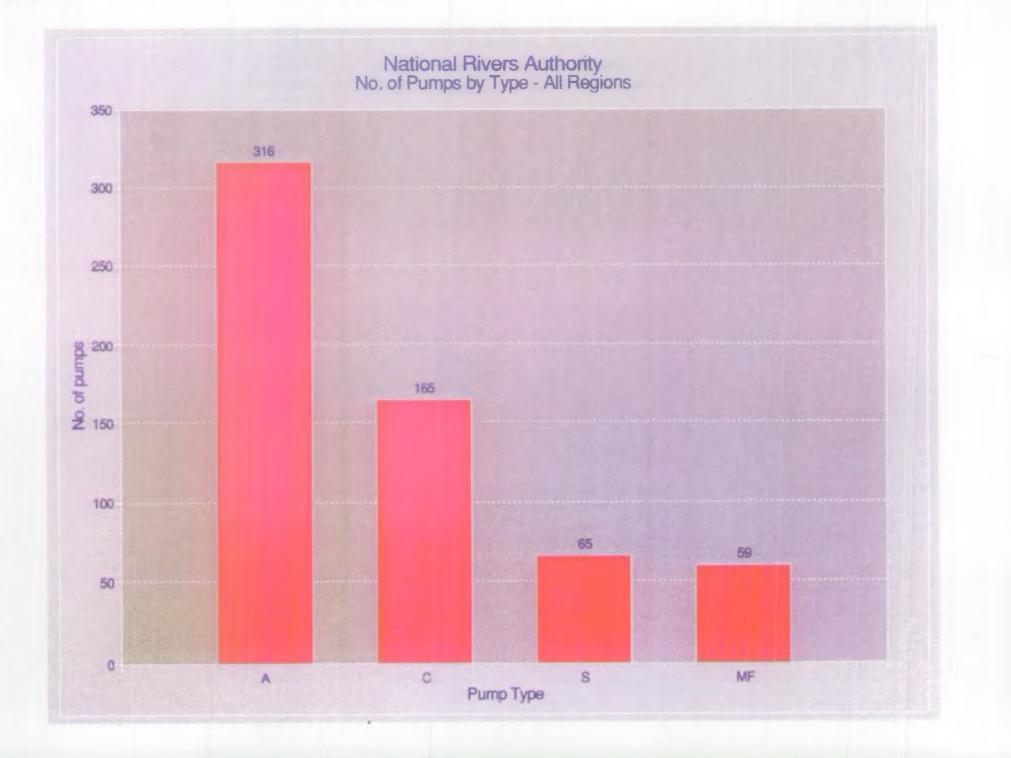


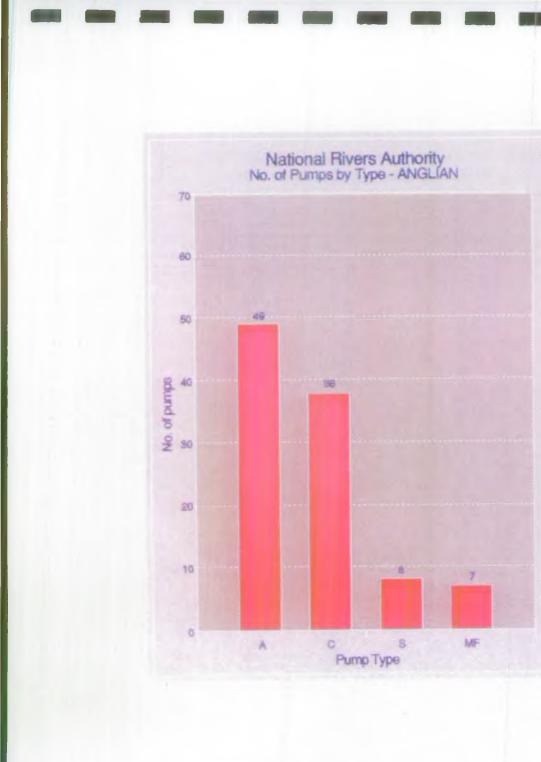


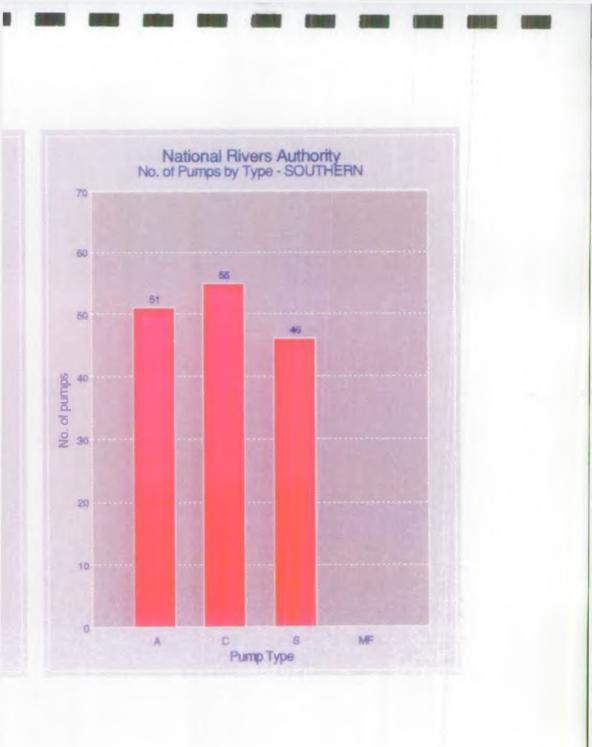


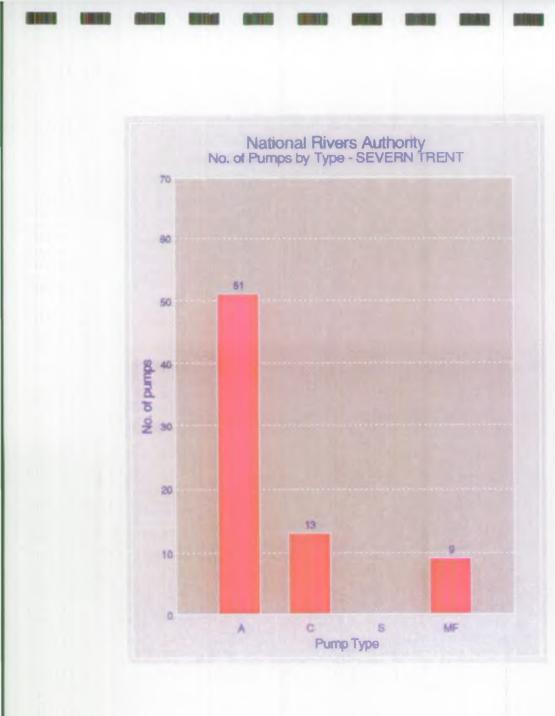
Bullen and Partners

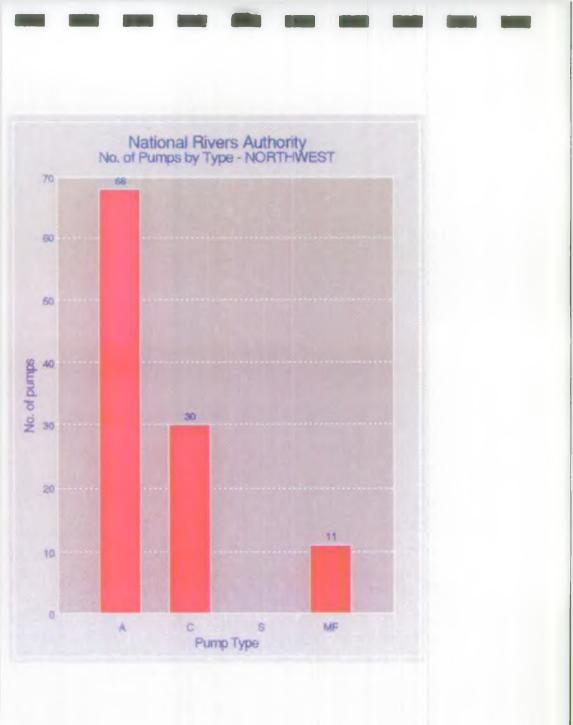
1

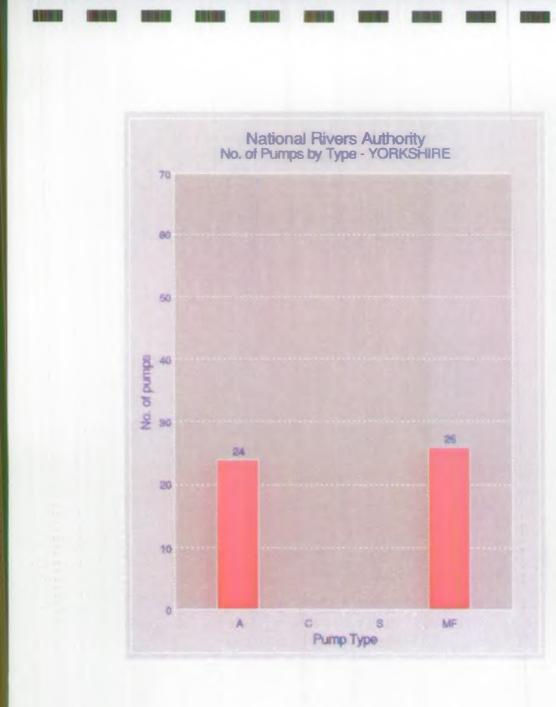

National Rivers Authority Pumping Station Research

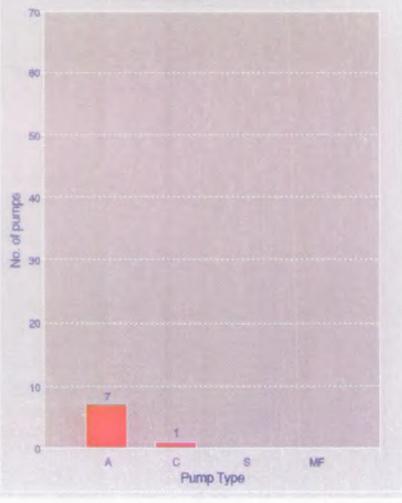

Appendix B3 Pump Analysis Listed by Pump Type

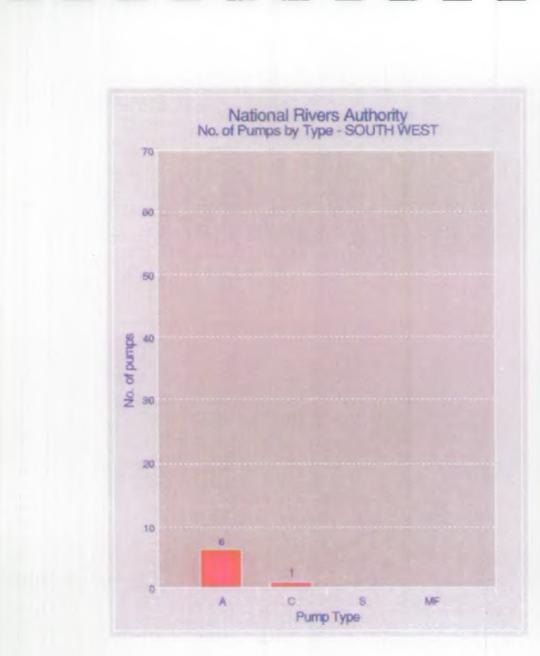

Contents

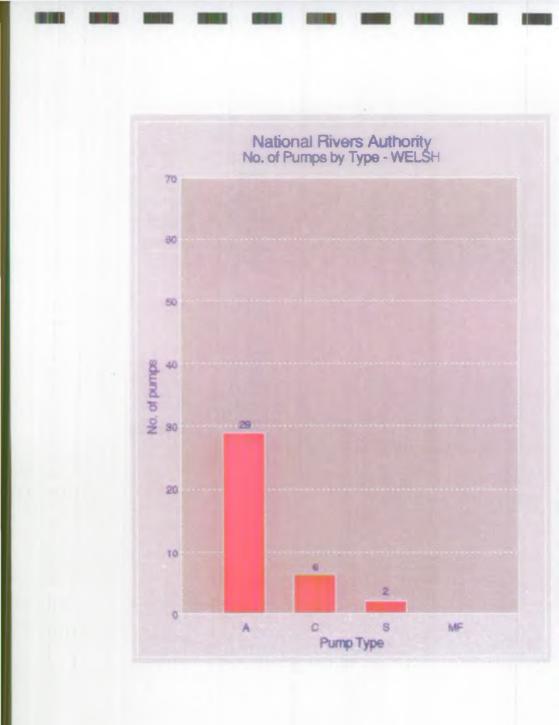

Pumps by Type	All Regions
Pumps by Type	Anglian and Southern Regions
Pumps by Type	Severn Trent and Northwest Regions
Pumps by Type	Yorkshire and Northumbrian Regions
Pumps by Type	South West and Thames Regions
Pumps by Type	Welsh and Wessex Regions

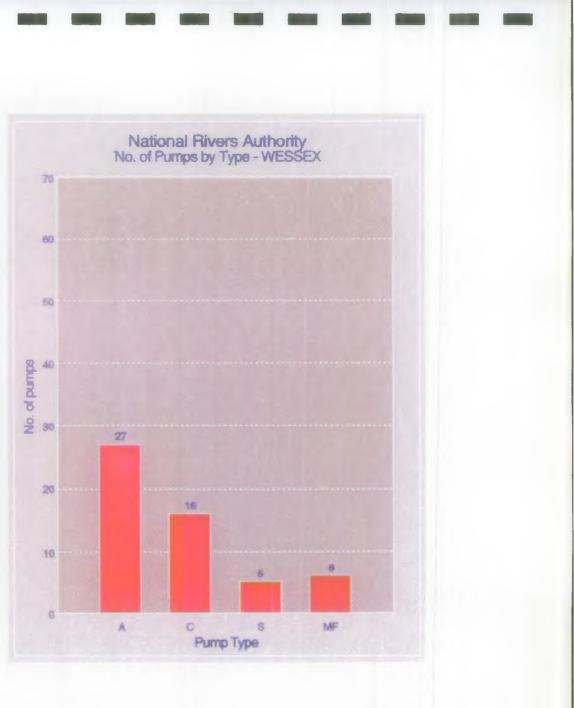

Ref: VH/91742/001/B





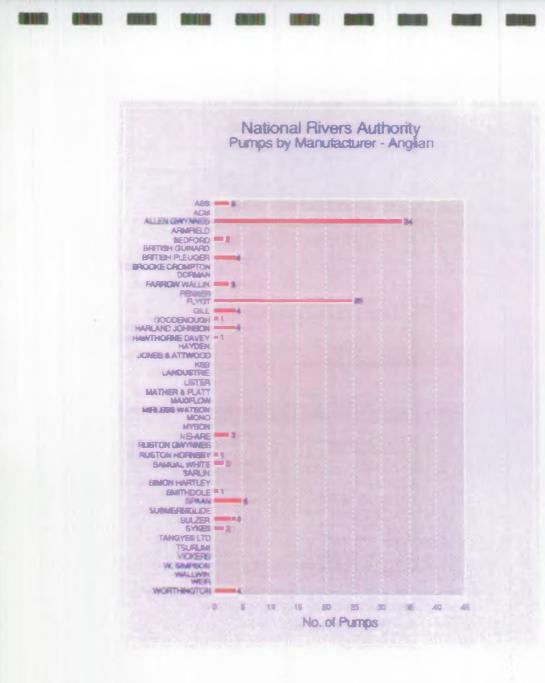




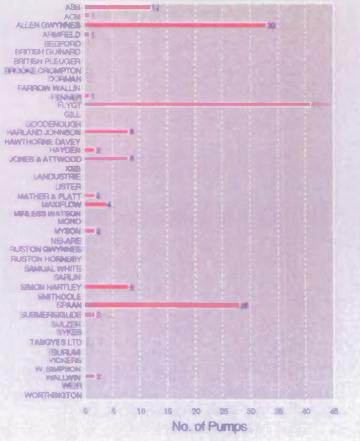

National Rivers Authority No. of Pumps by Type - NORTHUMBRIAN

National Rivers Authority Pumping Station Research

Appendix B4


Pump Analysis

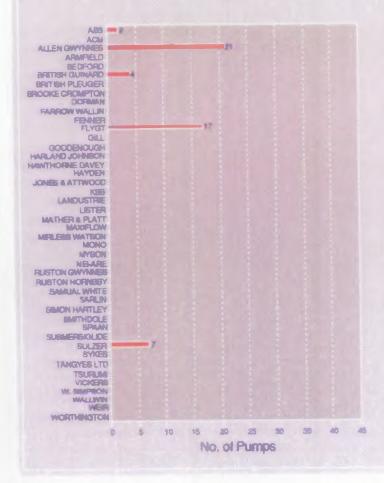
Listed by Manufacturer

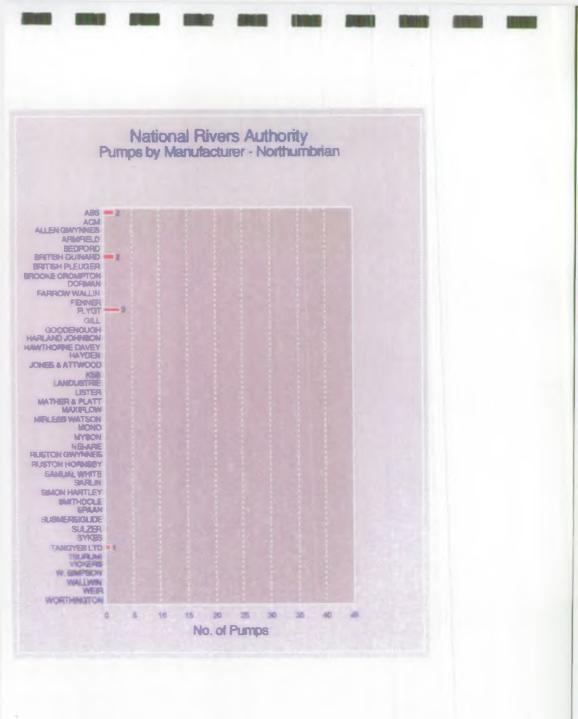

Contents

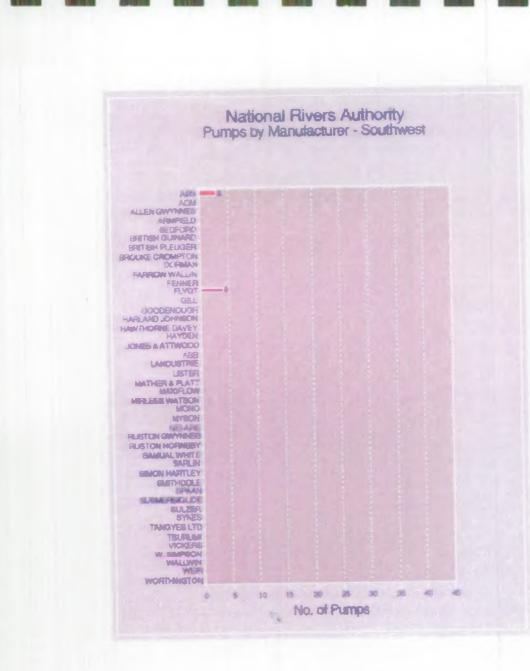
Pumps by Manufacturer	All Regions
Pumps by Manufacturer	Anglian and Southern Region
Pumps by Manufacturer	Severn Trent and North West Regions
Pumps by Manufacturer	Yorkshire and Northumbrian Regions
Pumps by Manufacturer	South West and Thames Regions
Pumps by Manufacturer	Welsh and Wessex Regions

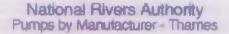
National Rivers Authority No. of Pumps by Manufacturer 51 ABS ACM 1 207 ALLEN GWYNNES ARMFIELD 9 BEDFORD BRITISH GUINARD BRITISH PLEUGER 22 BROOKE CROMPTON =3 DOFMAN 2 FARROW WALLIN = 3 FENNER 1 135 FLYGT GILL . GOODENOUGH HAWTHORNE DAVEY 1 HAYDEN 2 JONES & ATTWOOD KSB -8 LANDUSTRIE =3 LISTER 1 MATHER & PLATT ----- 8 MAXIFLOW =4 MIRLESS WATSON 4 MONO 1 MYSON ... NELARE RUSTON GWYNNES 12 RUSTON HORNSBY 1 SAMUAL WHITE 12 SMITHDOLE 37 SPAAN . SUBMERSIGLIDE 2 SULZER 22 SYKES 2 TANGYES LTD TSURUM ----7 VICKERS -9 W. SIMPSON 1 WALLWIN -2 WEIR -7 WORTHINGTON -100 0 20 40 80 80 120 140 160 180 200 No. of Pumps

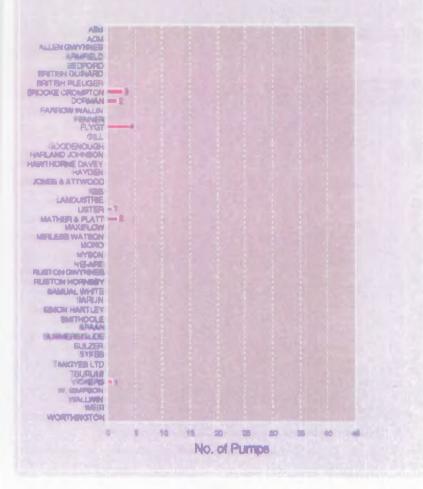
National Rivers Authority Pumps by Manufacturer - Southern

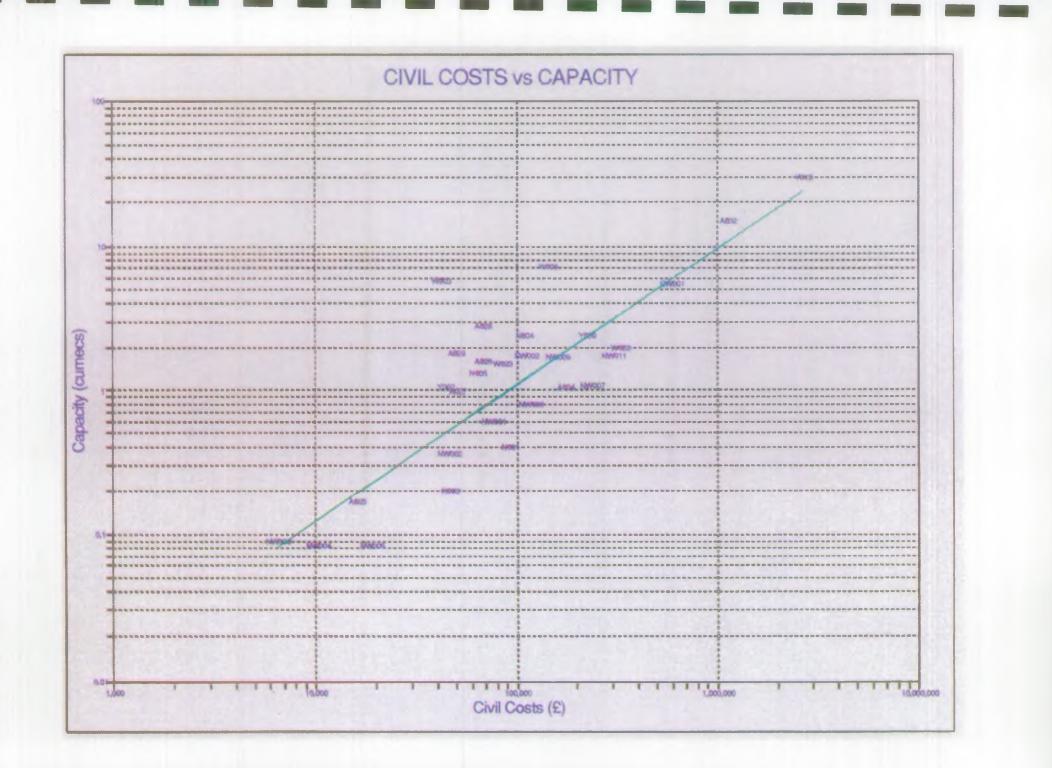






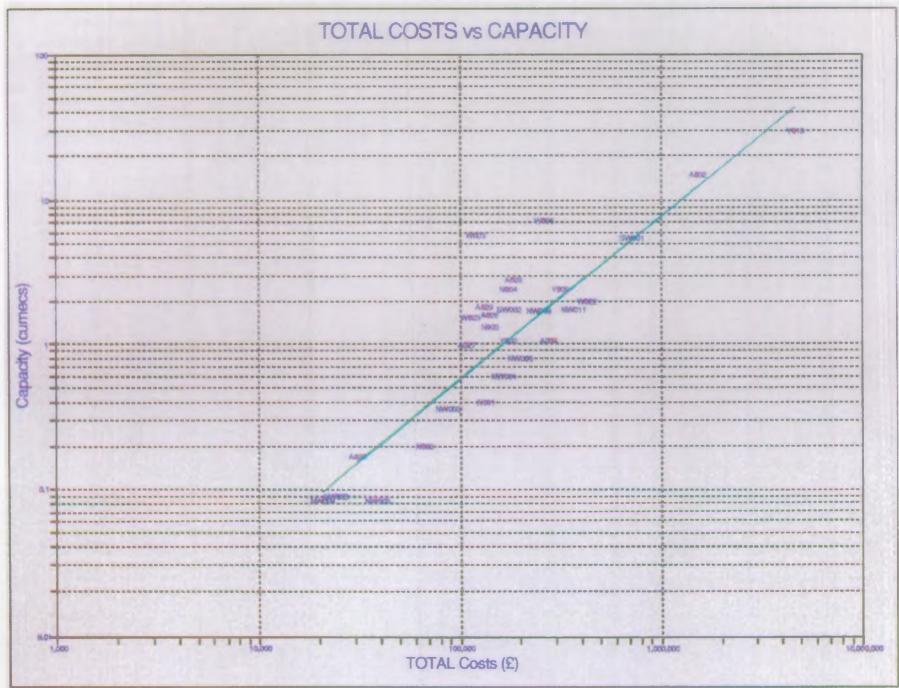



National Rivers Authority Pumps by Manufacturer - Yorkshire


National Rivers Authority Pumping Station Research

Appendix B5

Cost of Stations by Capacity


Contents

Total Cost Against Capacity Mechanical and Electrical Cost Civil Cost

§ <mark></mark>	Capacity (cumecs)	+ + + + + + + + + + + + + + + + + + + +
		M+ECOSTS vs CAPACITY

National Rivers Authority Pumping Station Research

Appendix C

Design Philosophy

Contents

C1 Design Considerations

C2 Checklist

NRA PUMPING STATION RESEARCH PROJECT

DESIGN CONSIDERATIONS

REQUIRED CAPACITY

Catchment	
Characteristics :	- Size.
	- Topography.
	- Impermeability.

- Rainfall.

Design standard :

- Channel storage. - Channel conveyance.

- Power supply constraints.
- Gravity by-pass.

PUMPING HEAD

Low :	- Axial flow. Screw pump.
High :	- Mixed flow - bowl type centrifugal.

Range of heads - maximum, minimum, duty head.

-

-

Duty head - maximum efficiency at this head if pump design allows.

PUMP TYPE

Head and size

- Axial low heads (less than 6 metres).
- Mixed flow higher heads small size pumps.
- Centrifugal higher heads.
 - Concrete volute large capacity.
- Screw low heads, fixed discharge level.

Pump Type (Contd/...)

Clearances

Axial pumps not suitable in small sizes below 360mm dia., small space between rotor blades can lead to "balling" of weed and choking of pump. Where weed is present use a mixed flow bowl unit in these circumstances.

Impellers must pass suspended solids - preferably up to 75mm dia., without blockage, damage, or undue wear.

Mounting Position

Can be horizontal, vertical or inclined. A number of problems experienced with horizontal submersible units of different manufacture - one pump firm has ceased production. Vertical position preferable.

Axial Pumps Impeller Tip Speeds

Problems of vibration and overloading can be experienced with axial flow pumps having high impeller tip speeds. Conservative values are recommended. One experienced manufacturer gives an upper limit of 20.0m/sec. The same manufacturer also recommends a maximum axial velocity through the rotor of 5.0m/sec. Liable to 'choke' on weed in small sizes - use mixed flow bowl or volute type if less than 36cm required.

Pump characteristic curves

Curves of typical performance of the various types of pump can be found in pump manufacturers literature and technical publications.

Cavitation

Testing

Can be a problem - need for adequate submergence of the impeller - related to suction lift, vapour pressure and pump speed. Causes vibration, increased power demand and can cause pitting and erosion of the impeller.

All units should normally be tank tested and the tests witnessed, prior to delivery. Very large pumps cannot be tank tested -preliminary estimates of performance are normally made with a model and prototype performance measured by gauging on site, after erection.

DISCHARGE ARRANGEMENTS

Alternatives

- Siphonic.
- Sluice and reflux valve.
- Sluice and flap.
- Flap.
- **Free discharge**.
 - The various alternatives can have a marked effect on the pumping station structure and cost. Sluice valves and reflux valves are costly in the larger sizes and siphonic discharge pipes with siphon breaker valves are now usually adopted.

Problems

Siphon breakers can jamb, though this is not a common occurrence, and can allow water to flow into the catchment and might cause damage to the pump by contra rotation. They can also freeze and provision now usually made for heating in cold weather.

Where a siphonic discharge is used it is important that the velocity of discharge at on start at maximum head is greater than 2m/sec or the siphon may not prime -motor must be of adequate power to ensure this. Required pump priming head can be reduced by inclusion of priming aid in the siphon downstream leg. Charlton, J.A. 1972. Journal I.W.E., Vol.26, No.1.

Hammer can take place where flaps are used as a discharge control. The possibility of this can be reduced by keeping velocities through it low (not greater than 2m/sec.).

MOTIVE POWER

Electric

Most modern small to medium sized stations have electrically driven pumps which lend themself to automatic operation and supervision by less skilled staff than diesel powered units. Provision should be made for connecting a portable generator should the mains supply be disrupted for any length of time or provision made for bringing in mobile pumps.

Need for agreement with supply company on tariff.

Motive Power (Contd/...)

Power factor correction.

Limits on starting current can dictate type of starter or motor used.

Need for regular motor and starter maintenance.

Diesel

Used almost exclusively for the largest flood defence pumps, driving the pump through a right angle gearbox. The engine might be turbo blown and will require a skilled operator and maintenance personnel. Fuel storage tanks required and suitable road access for fuel tankers.

Following the Miners Strike and strike of power workers, many of the subsequent medium sized stations have been designed with half their pumps diesel powered and half electric powered to guarantee some pumping capacity under similar conditions.

WATER QUALITY

General

Flood defence pumps must be capable of dealing with river water that will normally contain quantities of weed, mud, sand and various floating debris. The pump manufacturer must be made aware of this. The pump should be capable of dealing with these conditions for long periods without undue wear or blockage. Chemical composition should be checked for possible adverse effects on pump materials.

As indicated above (Pump Type) clearances on small axial flow pumps are such that weed can cause problems and mixed flow, bowl pumps are preferable

for small pumps where weed is present.

Weed

Bearings

The presence of sand, grit and coal dust can cause lower bearing problems and special precautions are required - proper sealing, pumped lubrication, cutlass rubber bearings etc. Where pumped grease lubrication is used for lower bearings these should be sealed and a return provided to prevent pollution of watercourse.

STATION STRUCTURE

Type

- High house and crane.
- Low building removable roof section.
- Low building.
- Outdoor type weather proof motors.
- Submersible pump sump & switchgear cubicle or house.
- Housing for screw pump.
- Floating station.

Ground Conditions

- These can influence design.
- Check for flotation when sump dewatered.
- -> Pressure relief valves in floor?
- Earth loading on sump.
- Ground water affect on concrete?
- Presence of gypsum ditto
- Good foundation material?
- Need for bearing piles?
- Coffer dam battered excavation.
- Need for dewatering?

-

- Steel sheet pile sump.
 - Steel sheet pile with R.C. lining.

Sump design

Guidance - Prosser - "Design of pump sumps and intakes" CIRIA/BHRA and other publications - see refs. Even with guidance model tests advisable in all but smallest stations. Checks should be made during construction to ensure sump conforms to design drawing.

Access

Adequate access to station required for installation and removal of equipment for repair. Turning space for vehicles.

Geotextile reinforcement for access roads on poor soils.

Station Structure (Contd/...)

Screens

Adequate area - width 4 times the diameter of pumps

Bar spacing approx. 6cm. - spacing to be confirmed by pump manufacturer. Angle 60 to 70 degrees to facilitate raking. Any bracing to be set back from rear of screen on spacer bars to allow free raking.

Galvanized finish advisable.

Screen preferably "rolled over" at screen bridge to prevent debris falling back. Fabricate in sections for stiffness and reduced weight for installation and removal for repair or maintenance.

Use of automatic screen cleaning gear "Bosker" on large stations and others where economically justified.

Security

Need to make station vandal proof will vary with locality but must be considered.

ENVIRONMENTAL FACTORS

- Visual amenity
- Can be very important in National Parks and other areas.
- Consider use of submersible pump station. Where house required model it on local farm building. Screen by planting. Keep profile below adjoining embankment - local raising of floodbank for this purpose, if necessary.

Consider possibility of several small, less obtrusive stations where this might be possible (might also reduce depth of excavation in poor ground, required for channel works).

Over head electricity cables sometimes objectionable, possible underground feed at higher cost.

Adverse visual effect of asphalt or concrete access roads and paving round stations can be reduced by use of "grasscrete" or other perforated concrete blocks.

Environmental Factors (Contd/...)

Noise

- Can be problem with large diesel stations near residential property.
- Good silencers and enclosure of exhausts can reduce noise to acceptable limits.

OPERATIONAL REQUIREMENTS

- Vary with circumstances and siting.
- Reliability always paramount.
- Easy to operate.
- Automatic operation.
- Operational procedures.
- Long interval between need for major overhaul.
- Easy to maintain.
 - Automatic screen cleaning.
- Good access.

-

- Adequate lighting (inside and out).
- Adequate warning instruments.
- Proper hand over including all maintenance and operating manuals.
- Presence at commissioning.
- Telemetry link to remote operations room.
- Self diagnostic instrumentation.
- Adequate fire fighting equipment.
- Pump hours run meters.
- U/s and d/s level recorders.
 - Need for post project appraisal confirm design assumptions and obtain information for improvement of subsequent stations.

SAFETY

- All equipment and the complete station must comply with the requirements of the Health and Safety at work Act 1974 and any subsequent legislation and with all Board of Trade and Home Office Regulations which may be applicable.
- Close co-operation with local Safety Adviser is required from early stages of design right through to completion and commissioning.

LIFETIME COSTING

The basic objective of the designer is to provide a pumping station that will pump all flows up to the maximum design flow, reliably and at minimum cost for the whole of the pumping station's life. This implies that all costs must be considered and not just the initial costs of the structure, pumping and ancillary equipment. These should include:-

Equipment capital cost.

Structure capital cost.

- Routine operating.
 - Power

Labour

Routine maintenance and inspection.

Materials

Labour

Preventative maintenance.

- Materials
- Labour

Repair and replacements.

Materials

- Labour
- Other

-

Major overhauls.

Materials

Labour

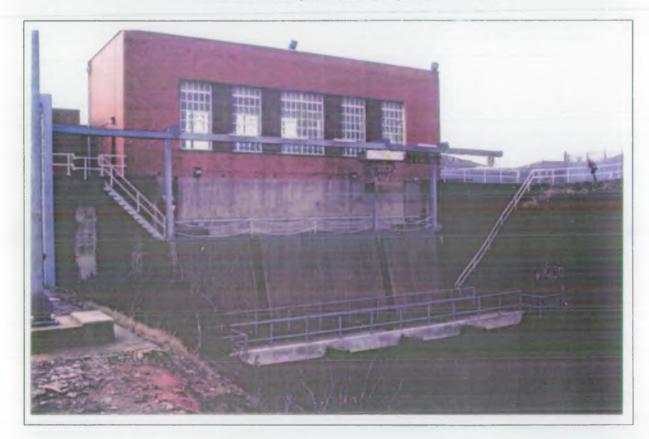
- Other
- In the absence of detailed records from a similar station with similar equipment, subjective estimates will have to be made for some of these items.

There is a need to ensure that sufficiently detailed records are kept by operational staff to ensure that data is available to make more accurate assessments of lifetime costs in the future. More information and longer guarantees on the maintenance and replacement requirements, and performance of their products should be demanded from suppliers.

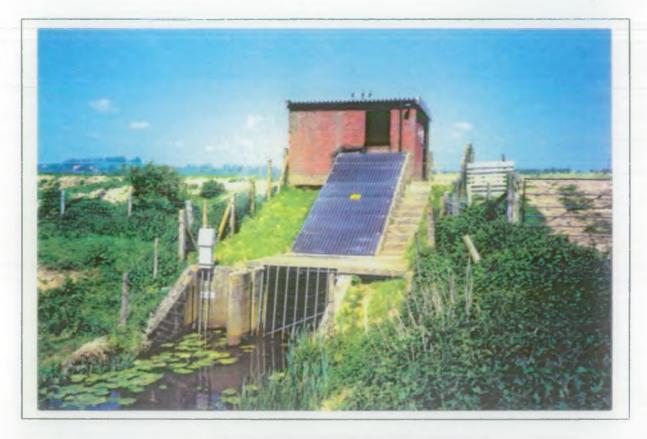
National Rivers Authority Pumping Station Research

Appendix D

Photographs


Altmouth Pumping Station - North West Region Axial Flow Vertical Lift Station Capacity 84 cumecs

Altmouth Pumping Station - North West Region Internal Layout



Wolsty Pumping Station - North West Region Submersible Pump Installation Capacity 0.80 cumecs

Bedford Pumping Station - North West Region Capacity of Pumps Recently Upgraded

I

Court Lodge Pumping Station - Southern Region Archimedean Screw Pump Installation

Rodmell Pumping Station · Southern Region Floating Pump Installation

National Rivers Authority Pumping Station Research

Appendix E

References

:

PUMPS AND PUMPING STATIONS

REFERENCES

- 1. Clark, R.G. (1936) St.Germains sluice and pumping station. London: Journal I.C.E., No.6, April.
- 2. Clay, C. (1945) Pumping stations with special reference to land drainage and storm water disposal. London: Journal I.C.E. No.5, March.
- 3. Lupton, H.R. (1949) Pumping machinery. London: Journal I.C.E., Vol.31, No.4, February.
- 4. Farran, C.E. (1952) The effects of mining subsidence on land drainage. London: Journal I.W.E., Vol vi. No.7, November.
- 5. Iverson, H.W. (1953) Studies of submergence requirements of high specificspeed pumps. Transactions A.S.M.E., May.
- 6. Addison, H. (1955) Centrifugal and other rotodynamic pumps. London: Chapman and Hall.
- 7. Brewer, D. (1957) Vortices in pump sumps. Bedford: The Allen Engineering Review, March.
- 8. Stepanoff, A.J. (1957) Centrifugal and axial flow pumps (2nd Ed.). New York: John Wiley & Sons.
- 9. Addison, H. (1958) The pump users handbook. London: Pitman.
- 10. Prus-Chacinski, T.M. and Harris, W.B. (1963) Standards for lowland drainage of peat lands with special reference to the Crossens scheme. London: Proc. I.C.E., Vol.24 February.
- 11. McLeod, G. (1965) Land drainage pumping stations. London: Chapter 23, River engineering and water conservation works (Ed. Thorn, R.B.). London: Butterworth.
- 12. Terry, J.B. (1967) Land drainage pumps. Bedford: Allen Gwynnes Publication, A.G.P. 6128.
- 13. Charlton, J.A. (1972) The priming of pump siphonic discharge lines. London: Journal of the Institution of Water Engineers, Vol.26, No.1, Feb. 1972.
- 14. Hockin, D.L. (1973) The River Alt improvement scheme. London: Association of River Authorities Year Book and Directory, 1973.

-

- 15. Noonan.G.A. (1973) Considerations made in choosing the type and layout of pumping machinery for Altmouth pumping station. London: Conference on Pumping Equipment, Institution of Mechanical Engineers.
- 16. Hydraulic Institute Standards, 13th Ed. (1975). Cleveland, U.S.A.
- 17. Prosser, M.J. (1977) The hydraulic design of pump sumps and intakes. London: CIRIA/BHRA, Report Ref.UDC 621.65.03.
- 18. Radford, J.D. and Richardson, D.B. (1977) The management of manufacturing systems, Chpt.8, maintenance and replacement. London: Macmillan Press Ltd.

- 19. Sweeny, C.E. and Hay, D. (1982) Pump sump design experience:summary. U.S.A.: Hydraulics Division, A.S.C.E. Vol.108, No.HY3, March.
- 20. Charnley, P.L. et Al (1987) Lowland drainage. London: Chapter 6. Water practice manual No.7. River Engineering, Pt. 1, design principles. Institution of Water and Environmental Management.
- 21. Sansby, J.T. et Al (1989) Maintenance and general operations. London: Water Practice Manual No.8. River Engineering, Pt.2, structures and coastal defence works, ps.249,250. Institution of Water and Environmental Management.
- 22. Marshall,D.C.W. (1989) Toward optimal land drainage pumping (paper not published). Wallingford: Institute of Hydrology.
- 23. Prosser, M.J. (1992) Design of low-lift pumping stations. London: CIRIA Report 121, Construction Industry Research and Information Association.
- 24. "Life Cycle Costing" A Radical Approach. London CIRIA Report 122. Construction Industry Research and Information Association.

Ref: VH/91742/R03/j2

Dissemination and Uptake Note

...

This note provides details of how the attached output from the R&D programme is to be disseminated to the enduser and details of how the customer wishes the output to be taken up.

		an de la companya andre andre a de la companya da de		200 C 200 200 200 200 200 200 200 200 20	0C	
mmission	[+LOOD	BEFENCE		Topic Area	KINER ST	WOLTURES.
	363	1	4. A.	H Tours	Region	NORTH WES
oject Number	203	Project Leader	MLMN	H. TAYLOR		INDICITY WES
<u>Ovtput</u>						
le	PUMPING	STATION - EF	FICIENCE	H OF OPERU FESPAN, SURI	ATTON AND NOT OF PUMB	COSTS FOR A
erence	R-33	63	1999 1973	Output Type'	ALOJECT RU	Report
tribution Inst	ructions			\overline{V}_{i}	THECC (IN ME	A UCENSOLA)
	SINCE MAN	AGerg	Rry (Co-ORDINATO	4	
blosect LE				ECTION H.O.		
Bunision	we.		TEAM	Mangers.		
A RLD H	JOTE WH	FLOOD) v seminars, "training ove (PHAREI) ich UIL CO MICH UIL CO	Sessions or WILL DWTULIN	Working Group of Form PART Guildwice	OF THE I	BUSIS FOR
505100						
. <u>Core Function</u>	/Customer Au	horization		ic Leader		
. <u>Core Function</u> roject Leader	/Customer Au	horization blogger	Тор	ic Leader		
. <u>Core Function</u>	/Customer Au	horization blbJg/		ic Leader 19 Chairman ²		
. <u>Core Function</u> roject Leader	/Customer Au	horization blbfq				

R&D Note 1