ENVIRONMENTAL DEPARTMENT CORNWALL AREA

FINAL DRAFT REPORT

RIVER TAVY EC FRESHWATER FISH DIRECTIVE FAILURE - 1993

May 1995
INV/95/001
Author: Peter Long
Investigations Technician

National Rivers Authority South Western Region

Rob Robinson Area Manager

RIVER TAVY

CROWNDALE INVESTIGATION

EC Fish Directive Failure (1993)

AN ASSESSMENT OF RIVER WATER QUALITY IN THE AREA OF CROWNDALE SEWAGE TREATMENT WORKS AND CROWNDALE TIP FOLLOWING AN EC FISH DIRECTIVE FAILURE IN 1993.

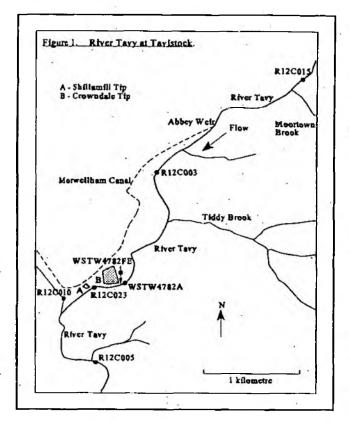
INV/95/001

Peter S. Long
Investigations Team
Environmental Protection
NRA South Western Region
Cornwall Area
Sir John Moore House
Bodmin

1 INTRODUCTION

1.1 Background

The River Tavy at R12C023, (downstream of Crowndale sewage treatment works), is a designated salmonid site for the EC Freshwater Fish Directive.


In 1993 the site failed the 0.78 mg/l standard for total ammonia. There is a history of water quality problems in this area, with previous work indicating sewage and urban runoff as the major sources.

A previous investigation in 1991, (FWI\91\015), concluded that the Crowndale landfill site was having no impact on the water quality and that the principal cause of total ammonia failure at R12C023 was the effluent from Crowndale Sewage Treatment Works (STW).

This report recommended monitoring the effectiveness of planned capital work to Crowndale STW.

1.2 Objectives

To identify all significant inputs of contamination from Crowndale Tip and assess the impact of Crowndale STW on the River Tavy between site WSTW4782A and the point of confluence with the River Lumburn, in order to determine the cause of the total ammonia failure at site R12C023.

2 METHODS

The following methods were adopted in this investigation:

- i Review of archive data and previous investigative work.
- Preliminary survey using in situ methods of assessment; primarily the use of water quality monitors, the identification of aquatic macroinvertebrate indicators of pollution, and a visual assessment of the biome; (especially with respect to the presence of sewage fungus communities (Figure 2).
- Extensive chemical sampling survey of the relevant section of river to account for all identified potential sources of contamination; (Figure 3).
- iv Follow-up chemical sampling at the sewage treatment works to monitor the final effluent and it's effect on the receiving waters; (Figure 4.).

3 RESULTS

Summaries of the water quality monitor results, the macroinvertebrate biological assessment and water chemistry data are contained in Tables 1-2.

The STW chemical spot sampling data are summarised and illustrated in Figure 5; the raw data being presented in Appendix 1.

4 DISCUSSION

The preliminary survey showed the River Lumburn to be of relatively good water quality; allowing this tributary to be eliminated from any further investigation.

Ochrous leachate was found to be entering the River Tavy from several point sources along the perimeter of Crowndale Tip. Although this leachate was of relatively high conductivity and ammonium content, the volume discharging from these seepages was considered too minor to cause significant impact on the main river. It is nevertheless noted that inputs such as these will have a cumulative effect on water quality.

The main River Tavy was found to be of general good water quality, but varying densities of sewage fungus community infestation were encountered throughout the section (Table 1). No sewage fungus was recorded upstream of the STW but in the area immediately downstream of the final effluent discharge it was very abundant. One of the major constituent organisms forming the sewage fungus was identified as Carchesium polypinum, an indicator of sewage pollution. The extent of the sewage fungus cover was seen to fluctuate markedly with changes in flow conditions; spate water removing much of the growth, which would then grow back, in relative abundance, during low flow periods.

It was evident that the effluent was not significantly mixing for a considerable distance downstream of the discharge. This resulted in a distinct partitioning of the river for several hundred metres. The results of the tripartite transect chemical survey (Table 2) showed that the effluent was not properly mixed until Site E (Figure 3).

The chemical survey confirmed that the STW discharge was having some effect on the receiving watercourse, but the 0.78mg/l total ammonia standard was only exceeded in one sample. This was taken from the unmixed effluent fraction, downstream of the final effluent discharge, at site G. None of the samples taken downstream of the mixing zone exceeded the standard (Table 2).

The series of spot checks on the STW effluent, together with samples from the appropriate up and downstream sites, confirmed that, although the discharge appeared to remain within it's consent during this survey period, a significant volume of untreated waste was regularly finding it's way into the river via the work's storm overflow. This was observed to flow strongly and quite frequently, generally continuing to flow for some period after rain-fall events. The total ammonium recorded in the storm overflow discharge was in excess of 6 times that of the final effluent.

The total ammonia standard was not exceeded at site R12C023 in any of the samples taken during the entire period of the survey.

5 CONCLUSIONS

- 5.1 Biological and visual assessment of the River Tavy downstream of Crowndale STW indicated an impact on the river water quality.
- 5.2 The final effluent from Crowndale STW was not found to exceed it's 7mg/l total ammonia consent in any of the samples taken during this investigation.
- 5.3 The 0.78mg/l total ammonia standard in the main river was only exceeded in one sample; this was shown to have been within the mixing zone.
- 5.4 The STW storm overflow was observed to flow frequently and for prolonged periods after rainfall. The total ammonia content of this discharge was recorded as being >6 times that of the final effluent.
- 5.5 Leachate was found to be entering the River Tavy at several points from Crowndale Tip. This was not, however, considered to be causing more than a local impact.

- 5.6 Although absent upstream of the STW, sewage fungus was common throughout the downstream section. The most extensive area of growth was along the right bank, within the mixing zone.
- 5.7 The mixing zone was shown to reach a considerable distance downstream, the effluent not mixing fully until very near to the sampling site R12C023.

6 RECOMMENDATIONS

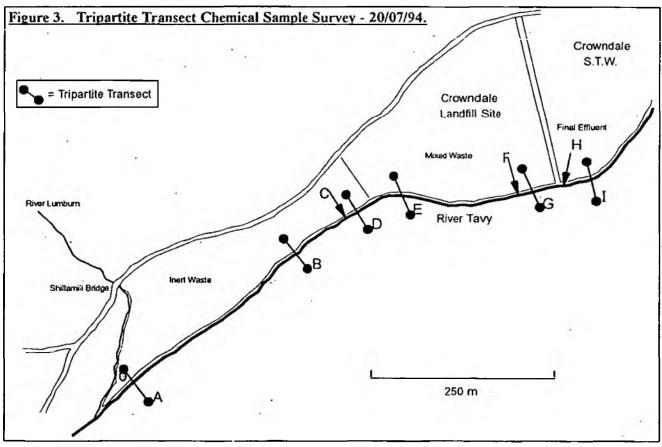
- 6.1 Water quality monitors to be installed during low flow period to monitor the final effluent and storm overflow discharges, along with upstream and downstream sites.

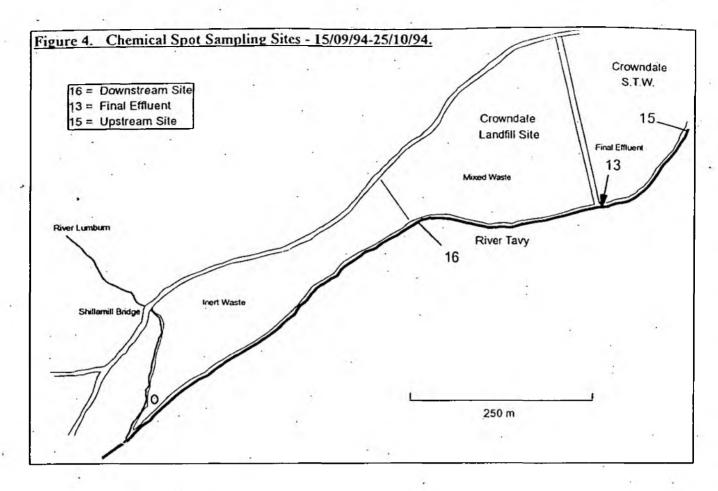
 Action Investigations Team
- 6.2 The operating regime of the storm overflow to be investigated in relation to river flow.

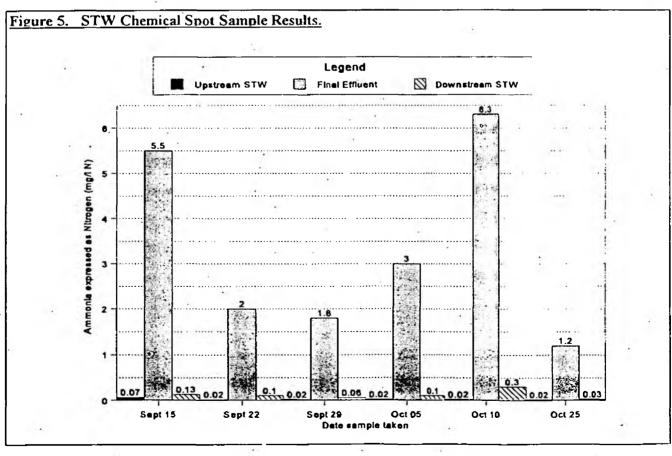
 Action Investigations Team
- 6.3 Seepage of leachate from Crowndale tip to be investigated and resolved. Action SWQO (East)
- 6.4 Downstream routine monitoring site for STW to be taken at the currently dormant site R12C004, Shillamill above River Lumburn (NGR SX 4680 7190) as some samples taken at R12C023 would appear to have fallen within the mixing zone.

 Action Survey Officer

Table 1. Results of Preliminary Survey - 13/7/94


Site	Description	Time	Temperature	Dissolved Oxygen	рН	Ammonium	Turbidity	Conductivity
	*	Hrs	٠ _C .	% Sat.		Гуди	FTU	uS
14	U/S S.T.W.	15:49	21.20	108	7.35	0.0	1	112
13	Final Effluent	15:44	18.00	53	6.50	7.1	26	390
12	D/S S.T.W.	15:37	21.10	108	7.05	0.5	8	143
11	Ochrous Seepage	15:33	14.80	53	6.40	15.0	3	510
10	Mine Leat	14:58	15.40	78	7.50	0.1	0	173
9	Spring/Ochrous Seepage	14:23	13.20	21	6.30	38.0	11	620
8	Downstream Site 9	14:23	•	•	-		•	41
7	Ochrous Seepage	14:00	14.70	26	6.20	2.2	35	400
6	D/S Ochrous Seepage	14:06	20.00	100	6.90	0.3	2	135
5	U/S Confluence R.Lumburn	13:28	19.10	99	7.00	0.3	0	138
1	D/S Confluence R.Lumburn	10:53	16.90	82	7.00	0.2	.0	137
3	R.Lumburn U/S Landfill Site	11:54	16.00	8.7	7.40	0.0	0	201
2	R.Lumburn U/S Confluence	11:33	15.80	86	7.45	0.1	1	203
4	Pond at lowest point of tip	10:28	18.00	47	6.60	0.1	0	320


Site	Biological Assessment BMWP Score - W.Q. Category	Visual Assessment
14	199 - Good Quality	Good/Very Good - Water & substrate clean; no visible sewage fungus growth
13	• •	Poor - Turbidity high
12	-	Poor - Turbid; substrate choked with fine organic material; excessive sewage fungus
11	- 000	Leachate clear, but extensive Ochrous deposits; moderate flow
10	-	Leachate clear, flow negligible
9	•	Leachate clear, but extensive Ochrous deposits; substantial flow
8	. 112 - Good Quality	Moderate - sewage fungus abundant in run immediately d/s of site 9
7		Leachate clear, but extensive Ochrous deposits; moderate flow
6	4.	Moderate/Poor - Substrate choked with fine organic material; excessive sewage fungus
5	-	Moderate - Some sewage fungus visible on surface of substrate & on macrophytes
1	191 - Good Quality	Moderate/Good - Water & substrate clean; no excessive sewage fungus growth
3	115 - Good Quality	Good - Water & substrate clean, although some siltation; no visible sewage fungus growth
2	121 - Good Quality	Good - Water & substrate clean; no visible sewage fungus growth
4		Lentic habitat; extensive macrophytic growth; diverse macroinvertebrate community


Table 2. Results of Tripartate Transect Chemical Sample Survey - 20/7/94

Site	Description	Tune	BOD (ATU)	COD	рН	Ammonium	Turbidity	S. Solids	Conductivity
		Hrs	mg/l	mg/1	l	mg/l	FTU	Ngm	uS
Al	Right Bank	16:10	1.8	<15	8.1	0.26	2	2.1	124
A2	Mid-Channel	16:13	1.7	<15	7.9	0.27	3	2.1	126
А3	Left Bank	16:16	1.6	<15	7.8	0.23	3	<2.00	124
B1	Right Bank	16:40	1.6	<15	7.8	0.36	3	2.5	125
B2	Mid-Channel	16:43	1.4	<15	7.8	0.33	3	2.7	124
В3	Left Bank	16:45	1.6	<15	7.8	0.34	2	2,5	124
С	Tip Leachate	16:50	3.9	26	6.7	22.5	102	. 7	592
DI	Right Bank	16:52	1.5	<15	7.6	0.28	2	<2.00	124
D2	Mid-Channel	16:55	1.5	<15	7.8	0.3	2	<2.00	126
D3	Left Bank	17:00	1.5	<15	7.8	0.3	2	3.6	125
EI	Right Bank	17:05	1.7	<15	7.8	0.32	3	2.5	126
E2	Mid-Channel	17:07	1.5	<15	7.8	0.3	2	2.9	124
E3	Left Bank	17:10	1.6	<15	7.8	0.3	2	2.9	125
·F	Tip Leachate	17:15	1.6	24	7.1	10.4	49	25	466
Gl	Right Bank	17:20	3.2	17	7.5	0.95	4	4.2	162
G2	Mid-Channel	17;22	2.2	15	7.6	0.58	3	4	140
G3	Left Bank	17:25	<1.00	<15	7.9	0.04	1	<2.00	. 111
н	Final Effluent	17:30	11.6	76	6.8 -	4.8	17	23	366
11	Right Bank	17:33	<1.00	76	7.6	<0.02	1	<2.00	110
12	Mid-Channel	17:35	1.4	<15	7.8	<0.02	1	<2.00	110
13	Left Bank	17:38	<1.00	<15	8	<0.02	1	<2.00	111

APPENDIX 1

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 3rd Apr 1995

Sample Analysis Run Report 03-nov-94

Laboratory Ref.: E384248 Sampling Point : WSTW4782A Date/Time Taken: 03-NOV-94 12:30 Date/Time Received: 04-NOV-94 06:31

River Tavy Upstream Of Tavistock (Crowndale) Stw

Address : U/S Stw

Det.	Code Description	Result	7
*61 , *62	pH Conductivity at 20 C microsiemens/cm	7.2000 76.0000	pH Microsiemens/cm
*68 ⁻	Turbidity		Turbidity FTU
76	Temperature degrees C (in-situ)	No Result	•
81	Oxygen dissolved % Saturation (in-situ)	No Result	
82 ∗85	Oxygen dissolved (Calculated) BOD ATU	No Result No Result	4
رن	Worksheet Overlooked	NO VESUIC	
*92	Chemical Oxygen Demand	< 15.0000	mg/1 O
*111	Ammonia expressed as Nitrogen	< 0.0200	
*116	Total Oxidised Nitrogen as Nitrogen	1.0000	
★117	Nitrate expressed as Nitrogen (Calculated)	0.9940	mg/l N
*118	Nitrite	0.0060	ma/l N
119	Ammonia non-ionised (Calculated)	No Result	
*135		6.4000	mg/l
*143	Solids non-volatile 500C	No Result	() 2
*172 *180		11.0000	
*180 *182	Ortho-Phosphate Silicate Reactive dissolved	< 0.0200	mg/l P mg/l SiO2
*183	Sulphate	6.0000	

Indicates that Laboratory Determination Method is NAMAS Accredited.

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 11th Apr 1995

Sample Analysis Run Report 15-sep-94

Sampling Point

: R12C023

Date/Time Received: 17-SEP-94 06:52

Leboratory Ref.: E365982
Dete/Time Taken: 15-SEP-94 14:30
River Tavy D/S Crowndale Stw

dress : D/S Stw

100	Code Description	Result
*61	рн	7.5000 pH
*62.	Conductivity at 20 C microsiemens/cm	74.0000 Microsiemens/cm
* B	Turbidity	42.2000 Turbidity FTU
6	Temperature degrees C (in-situ)	12.2000 Celsius
81	Oxygen dissolved % Saturation (in-situ)	98.0000 % O
22	Oxygen dissolved (Calculated)	10.5000 mg/l O
* 5	BOD ATU	2.4000 mg/1 O
* 92 * 92	Chemical Oxygen Demand	29.0000 mg/1 O
*111		0.1300 mg/l N
1111	Motal Oridical Nitrogon as Nitrogon	0.9000 mg/l N
* 10	Total Oxidised Nitrogen as Nitrogen Nitrate expressed as Nitrogen	
******	Nitrate expressed as Nitrogen (Calculated)	0.8750 mg/l N
.110		0.0350 ma/1 N
*118		0.0250 mg/l N
19	Ammonia non-ionised (Calculated)	0.0009 mg/l NH3
*T35		43.0000 mg/l
*143	Solids non-volatile 500C	35.0000 mg/l
* 72	Chloride ion	10.0000 mg/l Cl
*80	Ortho-Phosphate	0.0700 mg/l P
*182		3.7000 mg/l SiO2
*183		7.0000 mg/l

^{*&#}x27; Indicates that Laboratory Determination Method is NAMAS Accredited.

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 11th Apr 1995

Sample Analysis Run Report 15-sep-94

Laboratory Ref.: E365984 Sampling Point : WSTW4782A

Date/Time Taken: 15-SEP-94 14:00 Date/Time Rec River Tavy Upstream Of Tavistock (Crowndale) Stw Date/Time Received: 17-SEP-94 06:52

Address : U/S Stw

Det.	Code	Description		34	Result	4.
*61 ·	pH				7.4000	pH
*62		ivity at 20 C microsier	mens/cm			Microsiemens/cm
*68	Turbidi					Turbidity FTU
76		ture degrees C (in-sit	u)			Celsius
81		dissolved % Saturation			98.0000	
82		dissolved (Calculated)	,		10.5000	
*85	BOD ATU				2.8000	mg/1 0
*92		l Oxygen Demand			46,0000	
*111	Ammonia	expréssed as Nitrogen	•			mg/l N
*116		xidised Nitrogen as Nit			0.6000	
*117	Nitrate (Calcul	expressed as	Nitrogen		0.5750	mg/l N
*118	Nitrite				0.0250	mg/l N
119		non-ionised (Calculate	ed)			mg/l NH3
		ed solids 105C			84.0000	
		non-volatile 500C			67.0000	
						mg/l Cl
*180		hosphate				mg/l P
		e Reactive dissolved	a W			mg/l SiO2
*183	Sulphat				6.0000	

Indicates that Laboratory Determination Method is NAMAS Accredited.

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 11th Apr 1995

Sample Analysis Run Report 15-sep-94

boratory Ref.: S365983 Sampling Point WSTW4782FE te/Time Taken: 15-SEP-94 13:30 Date/Time Received: 17-SEP-94 06:52
Tavistock (Crowndale) S T W - Effluent

ntact : South West Water Services Ltd

Peninsula House

Rydon Lane

Exeter Devon Ex2 7hr

dress : Stw Fe

Dot.	Code Description	Result	
*61	рН	7.1000 pH	
*62	Conductivity at 20 C microsiemens/cm	322.0000 Microsiemens/cm	α
	Turbidity	18.0000 Turbidity FTU	
***8 6	Temperature degrees C (in-situ)	14.9000 Celsius	
81	Oxygen dissolved % Saturation (in-situ)	51.0000 % 0	
	Oxygen dissolved (Calculated)	5.1400 mg/1 O	
* 5	BOD ATU	12.8000 mg/l O	
* 5 * 92	Chemical Oxygen Demand	67.0000 mg/l O	
*111	Ammonia expressed as Nitrogen	5.5000 mg/l N	
*16	Total Oxidised Nitrogen as Nitrogen	10.3000 mg/l N	
* 17	Nitrate expressed as Nitrogen	n 9.8000 mg/l N	
•	(Calculated)	14.	
*18	Nitrite	0.5000 mg/l N	
1 9	Ammonia non-ionised (Calculated)	0.0187 mg/1 NH3	
* 735	Suspended solids 105C	18.0000 mg/l	
*143	Solids non-volatile 500C	No Result	
* 72	Chloride ion	32.0000 mg/l Cl	
* 80		2.9000 mg/l P	

Indicates that Laboratory Determination Method is NAMAS Accredited.

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 11th Apr 1995

Sample Analysis Run Report 22-sep-94

Laboratory Ref.: E368561
Date/Time Taken: 22-SEP-94 00:01
River Tavy D/S Crowndale Stw

Sampling Point : R12C023
Date/Time Received : 23-SEP-94 06:54

Address : D/S Stw

Det.	Code	Description		Result	
*61 /				7.6000	pH
*62	Conducti	vity at 20 C microsieme	ens/cm	76.0000	Microsiemens/cm
*68	Turbidit				Turbidity FTU
	Temperat	ure degrees C (in-situ)	12.8000	
81		lissolved % Saturation		93.0000	% O
82		lissolved (Calculated)	`		mg/1 0
* 85	BOD ATU	,		< 1.0000	
*92		. Oxygen Demand		< 15.0000	
		expressed as Nitrogen			mg/l N
		idised Nitrogen as Nit	rogen	1.0000	
*117	Nitrate	expressed as			mg/l N
.110	(Calcula	itea)		0.0100	/1 N
*118	Nitrite		23		mg/l N
119		non-ionised (Calculated	a)		mg/l NH3
*135		ed solids 105C	1	3.2000	mg/l
		non-volatile 500C		No Result	4
	Chloride			12.0000	mg/l Cl
*180	Ortho-Ph		3	0.0300	
		Reactive dissolved			mg/l SiO2
*183	Sulphate	2		6.0000	mg/l

^{&#}x27; Indicates that Laboratory Determination Method is NAMAS Accredited.

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 11th Apr 1995

Sample Analysis Run Report 22-sep-94

boratory Ref. : E368563 te/Time Taken : 22-SEP-94 00:03 Sampling Point : WSTW4782A

Date/Time Received: 23-SEP-94 06:54

River Tavy Upstream Of Tavistock (Crowndale) Stw

Address : U/S Stw

Det.	Code	Description		Result	
*61	Hq			7.5000	pH
*62	Conductivit	y at 20 C microsie	mens/cm	74.0000	Microsiemens/cm
+ 3 3	Turbidity	-	1	2.0000	Turbidity FTU
* B	Temperature	degrees C (in-sit	u)		Celsius
81	Oxygen diss	olved % Saturation		97.0000	% O
* 6	Oxygen diss	olved (Calculated)		10.2000	mg/1 O
* 5	BOD ATU	•		< 1.0000	mg/1 O
*4/	- Chemical Ux	ygen Demand	4.00	< 15.0000	mg/1 O
*111	Ammonia exp	ressed as Nitrogen sed Nitrogen as Ni expressed as		< 0.0200	
* 16	Total Oxidi	sed Nitrogen as Ni	trogen	0.9000	mg/l N
* 17	Nitrate	expressed as	Nitrogen	0.8930	mg/l N
	(Calculated		-		_
* 18	(Calculated Nitrite Ammonia non			0.0070	mg/l N
19	Ammonia non	-ionised (Calculat	.ed)	0.0001	mg/l NH3
*I35	Suspended s		•	3.8000	
		volatile 500C		No Result	-
	Chloride io			11.0000	mg/l Cl
	Ortho-Phosp			< 0.0200	
*182		active dissolved		4.8000	mg/l SiO2
* ** 83				5.0000	

^{*&#}x27; Indicates that Laboratory Determination Method is NAMAS Accredited.

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 11th Apr 1995

Sample Analysis Run Report 22-sep-94

Laboratory Ref.: S368562 Sampling Point : WSTW4782FE
Date/Time Taken: 22-SEP-94 00:02 Date/Time Received: 23-SEP-94 06:54
Tavistock (Crowndale) S T W - Effluent

Contact : South West Water Services Ltd

Peninsula House

Rydon Lane Exeter Devon Ex2 7hr

Address : Stw Fe

Det.	Code Description		Result	
*61	pH		7.0000	Hq
*62	Conductivity at 20 C microsiemens/cm			Microsiemens/cm
* 68	Turbidity			Turbidity FTU
76	Temperature degrees C (in-situ)			Celsius
81	Oxygen dissolved % Saturation (in-situ)		53.0000	% O
82	Oxygen dissolved (Calculated)		5.2900	mg/1 0
* 85	BOD ATU		6.2000	mg/1 O
*92	Chemical Oxygen Demand		38.0000	mg/l O
*111	Ammonia expressed as Nitrogen		2.0000	mg/l N
*116	Total Oxidised Nitrogen as Nitrogen		11.2000	mg/l N
*117	Nitrate expressed as Nitrogen		10.8000	mg/l N
	(Calculated)			
*118	Nitrite		0.4000	mg/l N
119	Ammonia non-ionised (Calculated)	47.0	0.0056	mg/l NH3
*135	Suspended solids 105C		10.0000	mg/l
*143	Solids non-volatile 500C		No Result	
*172	Chloride ion		29.0000	mg/l Cl
* 180	Ortho-Phosphate		1.9000	mg/l P

Indicates that Laboratory Determination Method is NAMAS Accredited.

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 11th Apr 1995

Sample Analysis Run Report 29-sep-94

Laboratory Ref.: E370989
Late/Time Taken: 29-SEP-94 12:40 Sampling Point : R12C023

Date/Time Received: 30-SEP-94 06:23

River Tavy D/S Crowndale Stw

dress : D/S Stw

Det.	Code Description	1	Result	
$\frac{1}{\sqrt{2}}$	рН		7.4000	рн
* 62	Conductivity at 20 C micr	osiemens/cm		Microsiemens/cm
-8 -	Turbidity		1.0000	Turbidity FTU
8 6	Temperature degrees C (in		12.6000	Celsius
81	Oxygen dissolved % Satura		93.0000	
82 5 2	Oxygen dissolved (Calcula			mg/1 0
4 5	BOD ATU		< 1.0000	
	Chemical Oxygen Demand		18.0000	
	Ammonia expressed as Nitr			mg/l N
16 17	Total Oxidised Nitrogen a		1.2000	
17	Nitrate expressed a (Calculated)	s Nitrogen	1.1900	mg/l N
* 118	Nitrite		0.0120	mg/l N
19	Nitrite Ammonia non-ionised (Calc Suspended solids 105C	culated)		mg/l NH3
4 35	Suspended solids 105C	•	< 2.0000	
*143	Solids non-volatile 500C		o Result	-
			12.0000	mg/l Cl
1 72 80	Ortho-Phosphate		0.0700	
*18 2	Silicate Reactive dissolv			mg/l SiO2
*183	Sulphate		9.0000	

^{*&#}x27; Indicates that Laboratory Determination Method is NAMAS Accredited.

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 11th Apr 1995

Sample Analysis Run Report 29-sep-94

Laboratory Ref.: E370991 Sampling Point Date/Time Taken: 29-SEP-94 12:50 Date/Time Record River Tavy Upstream Of Tavistock (Crowndale) Stw Sampling Point : WSTW4782A

Date/Time Received: 30-SEP-94 06:23

Address : U/S Stw

Det.	Code Description	 Result	
*61 /	рн	 7.6000	Н
*62	Conductivity at 20 C microsiemens/cm	84.0000	Microsiemens/cm
*68	Turbidity		Turbidity FTU
76	Temperature degrees C (in-situ)	12.6000	
.81	Oxygen dissolved % Saturation (in-situ)	100.0000	
82	Oxygen dissolved (Calculated)	10.6000	
*8 5	BOD ATU	< 1.0000	
*92	Chemical Oxygen Demand	< 15.0000	
*111		< 0.0200	
	Total Oxidised Nitrogen as Nitrogen	1.0000	
*117	Nitrate expressed as Nitrogen	0.9960	
,	(Calculated)		. ,
*118	Nitrite	< 0:0040	ma/l N
	Ammonia non-ionised (Calculated)		mg/l NH3
	Suspended solids 105C	< 2.0000	
	Solids non-volatile 500C	No Result	9, ~
	Chloride ion		mg/l Cl
	Ortho-Phosphate	< 0.0200	
	Silicate Reactive dissolved		mg/l SiO2
	Sulphate	8.0000	

Indicates that Laboratory Determination Method is NAMAS Accredited.

\$₩4001F Release 3

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 . 11th Apr 1995

Sample Analysis Run Report 29-sep-94

boratory Ref.: S370990 Sar te/Time Taken: 29-SEP-94 12:30 Dat Tavistock (Crowndale) S T W - Effluent

Sampling Point: WSTW4782FE
Date/Time Received: 30-SEP-94 06:23

ntact : South West Water Services Ltd

Peninsula House

Rydon Lane

Exeter

Devon

Ex2 7hr

dress : Stw Fe

Pet.	Code Description		Result	
1	рН		6.5000	pH
* 62	Conductivity at 20 C microsiemens/cm		295.0000	Microsiemens/cm
	Turbidity		7.0000	Turbidity FTU
8 6	Temperature degrees C (in-situ)		15.0000	Celsius
81	Oxygen dissolved % Saturation (in-situ)		43.0000	% O
82	Oxygen dissolved (Calculated)		4.3200	mg/1 O
82 5 2	BOD ATU			mg/1 O
- 2	Chemical Oxygen Demand		31.0000	mg/1 O
*111	Ammonia expressed as Nitrogen			mg/l N
1 16	Total Oxidised Nitrogen as Nitrogen		12.9000	
16 17	Nitrate expressed as Nitrogen	1	12.5000	mg/l N
	(Calculated)			
<u>*1</u> 18	Nitrite			mg/l N
*118 119	Ammonia non-ionised (Calculated)	1		mg/l NH3
₹ 35	Suspended solids 105C		9.9000	mg/l
*143	Solids non-volatile 500C		No Result	2
1.72	Chloride ion			mg/l Cl
80	Ortho-Phosphate	5:	3.5000	mg/l P

Indicates that Laboratory Determination Method is NAMAS Accredited.

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 11th Apr 1995

Sample Analysis Run Report 05-oct-94

Sampling Point : R12C023

Laboratory Ref.: E372917
Date/Time Taken: 05-OCT-94 13:00

Date/Time Received: 06-OCT-94 06:35

River Tavy D/S Crowndale Stw

Address : D/S Stw

Det.	Code	Description	£.		Result		**
*61 <i>></i>	рН	17			7.6000	pH	
*62	Conducti	vity at 20 C microsi	emens/cm			Microsiem	ens/cm
* 68	Turbidit					Turbidity	
76		ure degrees C (in-si	tu)			Celsius	
81		lissolved % Saturatio)	100.0000		
82		lissolved (Calculated		•	11.4000		
* 85	BOD ATU	, , , , , , , , , , , , , , , , , , , ,	•			mq/1 0	
		. Oxygen Demand			< 15.0000		
*111	Ammonia	expressed as Nitroge	n		0.1000	mg/l N	
*116		idised Nitrogen as N			1.6000	mg/l N	
*117		expressed as		n		mg/l N	
	(Calcula	ited)	_			_	
*118	Nitrite				0.0190	mq/l N	1.
119	Ammonia	non-ionised (Calcula	ted)		0.0007	mg/l NH3	
*135	Suspende	ed solids 105Č	·		< 2.0000		
		on-volatile 500C			No Result		
	Chloride					mq/l Cl	
*180	Ortho-Ph	nosphate			0.1300		
		Reactive dissolved				mq/l SiO2	
*183	Sulphate				8.0000		

^{&#}x27;*' Indicates that Laboratory Determination Method is NAMAS Accredited.

4001F Release 3

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 11th Apr 1995

Sample Analysis Run Report 05-oct-94

River Tavy Upstream Of Tavistock (Crowndale) Stw

|dress : U/S Stw 🕆

Det.	Code Description	Result	
*62 *8 *66 *81 *82 *55 *2 *111	Conductivity at 20 C microsiemens/cm Turbidity Temperature degrees C (in-situ) Oxygen dissolved % Saturation (in-situ)	< 1.0000 10.0000 96.0000 10.8000	Microsiemens/cm Turbidity FTU Celsius % O mg/l O mg/l O mg/l O
116 117		1.2000	mg/l N mg/l N
*118 19 35 *143	Ammonia non-ionised (Calculated) Suspended solids 105C		mg/l N mg/l NH3 mg/l
4 .72	Chloride ion Ortho-Phosphate	14.0000 0.0200	mg/l Cl mg/l P mg/l SiO2 mg/l

^{*} Indicates that Laboratory Determination Method is NAMAS Accredited.

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 11th Apr 1995

Sample Analysis Run Report 05-oct-94

Laboratory Ref.: S372918 Sampling Point: WSTW4782FE Date/Time Taken: 05-OCT-94 13:00 Date/Time Received: 06-OCT-94 06:35

Tavistock (Crowndale) S T W - Effluent

Contact: South West Water Services Ltd

Peninsula House

Rydon Lane Exeter Devon-

Ex2 7hr

Address: Stw. Fe.

Det.	Code Description		Result	
*61	рН		7.0000	pH Hq
*62	Conductivity at 20 C microsiemens/cm		318.0000	Microsiemens/cm
*68	Turbidity			Turbidity FTU
76	Temperature degrees C (in-situ)			Celsius
81	Oxygen dissolved % Saturation (in-situ)		45.0000	% O
. 82	Oxygen dissolved (Calculated)		4.7600	mg/l O
*85	BOD ATU		7.6000	mg/1 O
*92	Chemical Oxygen Demand		47.0000	mg/l O
*111	Ammonia expressed as Nitrogen		3.0000	mg/l N
*116	Total Oxidised Nitrogen as Nitrogen		13.4000	mg/l N
*117	Nitrate expressed as Nitrogen		12.9000	mg/l N
	(Calculated)			16
*118	Nitrite		0.5000	mg/l N
119	Ammonia non-ionised (Calculated)		0.0069	mg/1 NH3
	Suspended solids 105C		9.7000	mg/l
*143	Solids non-volatile 500C	3-	No Result	
*172	Chloride ion	E.	30.0000	mg/l Cl
*180	Ortho-Phosphate			mg/l P

^{&#}x27;*' Indicates that Laboratory Determination Method is NAMAS Accredited.

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 11th Apr 1995

Sample Analysis Run Report 10-oct-94

Laboratory Ref. : E374519
Date/Time_Taken : 10-OCT-94 15:10

Sampling Point

: R12C023

Date/Time Received: 11-OCT-94 06:23

River Tavy D/S Crowndale Stw

dress : D/S Stw

H		7.6000	рН
Conductivity at 20 C microsiem	ens/cm		Microsiemens/cm
		1.0000	Turbidity FTU
	1)		
	,		
Ammonia expressed as Nitrogen			
Potal Oxidised Nitrogen as Nit	rogen		
			.
	**	0.0430	mg/l N
Ammonia non-ionised (Calculate	ed)		mg/l NH3
			ma/l Cl
			mg/1 SiO2
Sulphate		10.0000	
に同じののは、一切などので	onductivity at 20 C microsiem urbidity emperature degrees C (in-situxygen dissolved % Saturationxygen dissolved (Calculated) OD ATU hemical Oxygen Demandmmonia expressed as Nitrogen otal Oxidised Nitrogen as Nititrate expressed as Calculated) itrate expressed as Calculated itrite mmonia non-ionised (Calculated) itrite olids 105C olids non-volatile 500C hloride ion rtho-Phosphate ilicate Reactive dissolved	onductivity at 20 C microsiemens/cm urbidity emperature degrees C (in-situ) xygen dissolved % Saturation (in-situ) xygen dissolved (Calculated) OD ATU hemical Oxygen Demand mmonia expressed as Nitrogen otal Oxidised Nitrogen as Nitrogen itrate expressed as Nitrogen Calculated) itrite mmonia non-ionised (Calculated) uspended solids 105C olids non-volatile 500C hloride ion rtho-Phosphate ilicate Reactive dissolved	onductivity at 20 C microsiemens/cm urbidity emperature degrees C (in-situ) xygen dissolved % Saturation (in-situ) xygen dissolved (Calculated) OD ATU hemical Oxygen Demand mmonia expressed as Nitrogen otal Oxidised Nitrogen as Nitrogen itrate expressed as Nitrogen Calculated) itrite mmonia non-ionised (Calculated) uspended solids 105C olids non-volatile 500C hloride ion rtho-Phosphate ilicate Reactive dissolved 1.0000 100.00000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.00000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.00000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.00000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.000

^{&#}x27;*' Indicates that Laboratory Determination Method is NAMAS Accredited.

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 11th Apr 1995

Sample Analysis Run Report 10-oct-94

Laboratory Ref.: E374521 Sampling Point: WSTW4782A
Date/Time Taken: 10-OCT-94 15:20 Date/Time Received: 11-OCT-94 06:23
River Tavy Upstream Of Tavistock (Crowndale) Stw

Address : U/S Stw

Det.	Code Description	Result	
*61 -		7.7000	
* 62	Conductivity at 20 C microsiemens/cm	103.0000	Microsiemens/cm
*68	Turbidity	< 1.0000	Turbidity FTU
76	Temperature degrees C (in-situ)	12.7500	Celsius
81	Oxygen dissolved % Saturation (in-situ)	95.0000	% O
82	Oxygen dissolved (Calculated)	10.0000	mq/1 O
* 85	BOD ATU	< 1.0000	
*92	Chemical Oxygen Demand	< 15.0000	
*111	Ammonia expressed as Nitrogen	< 0.0200	
*116	Total Oxidised Nitrogen as Nitrogen	1.1000	
*117	Nitrate expressed as Nitrogen		
	(Calculated)		3
*118	Nitrite	0.0070	mg/l N
119	Ammonia non-ionised (Calculated)		mg/l NH3
*135	Suspended solids 105C	< 2.0000	
*143	Solids non-volatile 500C	No Result	5 . –
	Chloride ion	12.0000	mg/l Cl
	Ortho-Phosphate	< 0.0200	mg/l P
	Silicate Reactive dissolved	6.3000	mg/l SiO2
*183	Sulphate	8.0000	

Indicates that Laboratory Determination Method is NAMAS Accredited.

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 11th Apr 1995

Sample Analysis Run Report 10-oct-94

Laboratory Ref.: S374520 Dite/Time Taken: 10-OCT-94 15:00 Sampling Point : WSTW4782FE

Date/Time Received: 11-OCT-94 06:23

Tavistock (Crowndale) S T W - Effluent

ntact : South West Water Services Ltd

Peninsula House

Rydon Lane Exeter

Devon Ex2 7hr

ress : Stw. F.E

Dat.	Code	Description				Result			
*01	 _H					6.9000	На		
*62		y at 20 C mi	crosieme	ens/cm		361.0000		osiemens/	cm/
*	Turbidity			100				idity FT	
6	Temperature	degrees C (in-situ)			14.0000			
81 82 **5 **2		olved % Satu				35.0000	% O		
82	Oxygen diss	colved (Calcu	lated)	Francis		3,6000	mg/1	0	
* 5	BOD ATU		·	4		10.6000	mg/l	0	
+92	Chemical Ox	ygen Demand			4	53.0000	mg/l	0	
*111		ressed as Ni				6.3000	mg/l	N	
* 16 * 17	Total Oxidi	ised Nitrogen	as Nitr	rogen		13.3000			
* 17		expressed	as	Nitrogen		12.7000	mg/l	N	
	(Calculated	l).				4			
* 118	Nitrite		-1			0.6000			
19	Ammonia non	n-ionised (Ca solids 105C	lculated	1)		0.0127		NH3	
₹ 35	Suspended s	solids 105C		4.5		13.0000	mg/l		
*143	Solids non-	volatile 500	C			No Result			
7 2	Chloride ic					43.0000			
48 0	Ortho-Phosp	hate		1979		5.1000	mg/l	P	

Indicates that Laboratory Determination Method is NAMAS Accredited.

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 11th Apr 1995

Sample Analysis Run Report 25-oct-94

Laboratory Ref.: E381301
Date/Time Taken: 25-OCT-94 00:01
River Tavy D/S Crowndale Stw Sampling Point : R12C023 Date/Time Received: 27-OCT-94 06:23

Address : D/S Stw

Det.	Code	Description		1.0		 	Result			
*61 /	рн	24 =					7.1000	pН		
*62		ity at 20 C mic	rosiem	ens/cr	n		61.0000			
*68	Turbidity	_					5.0000			FTU
76		re degrees C (i					12.0000		ius	
81		ssolved % Satur		(in-s	itu)		90.0000			
82	Oxygen di	ssolved (Calcul	ated)				9.6800			
* 85	BOD ATU						1.8000			
*92	Chemical	Oxygen Demand					25.0000			
*111		xpressed as Nit		1.			0.0300			
*116		dised Nitrogen					0.5000			
*117		expressed	as	Nitro	ogen		0.4870	mg/l	N	
	(Calculat	.ed) ·				+				3.
*118	Nitrite						0.0130			30.0
119		on-ionised (Cal	culate	:d)			< 0.0001			
*135		solids 105C					6.5000	mg/1		
*143		n-volatile 500C					No Result			
* 172							11.0000			
* 180	Ortho-Pho						0.0200			
		Reactive dissol	ved				3.0000		SiO2	
*183	Sulphate						6.0000	mg/l		

^{&#}x27;*' Indicates that Laboratory Determination Method is NAMAS Accredited.

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 11th Apr 1995

Sample Analysis Run Report 25-oct-94

Laboratory Ref.: E381303 Sampling Point: WSTW4682A
Dete/Time Taken: 25-OCT-94 00:03 Date/Time Received: 27-OCT-94 06:23
River Lynher Upstream Middlewood Stw

dress : U/S Stw

Det.	Code	Description		Result	
***1	рН			7.1000	рН
*62	Conductivity	at 20 C microsiemens/cm			Microsiemens/cm
*18	Turbidity	*		6.0000	Turbidity FTU
6	Temperature	degrees C (in-situ)		11.0000	Celsius
* 8 6 81	Oxygen disso	lved % Saturation (in-situ	ı)	90.0000	
82 * 5 * 2	Oxygen disso	lved (Calculated)	•	9,9000	mg/l O
* 5	BOD ATU	,		1.3000	
+ 52	Chemical Oxy	gen Demand		27.0000	mg/l O
*111		essed as Nitrogen		< 0.0200	mg/l N
16 17	Total Oxidis	ed Nitrogen as Nitrogen			mg/l N
★ 17	Nitrate e	xpressed as Nitroge	en .	0.3910	mg/l N
_	(Calculated)				
	Nitrite		4	0.0090	mg/l N
19	Ammonia non-	ionised (Calculated)		< 0.0001	mg/l NH3
₩ 35	Suspended so	lids 105C		7.2000	mg/l
	Solids non-v			No Result	
72	Chloride ion Ortho-Phosph	1.0		11.0000	mg/l Cl
				< 0.0200	
*182		ctive dissolved			mg/l SiO2
*183	Sulphate			5.0000	mg/l

Indicates that Laboratory Determination Method is NAMAS Accredited.

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 11th Apr 1995

Sample Analysis Run Report 25-oct-94

Laboratory Ref.: S381302 Sampling Point: WSTW4782FE
Date/Time Taken: 25-OCT-94 00:02 Date/Time Received: 27-OCT-94 06:23

Tavistock (Crowndale) S T W - Effluent

Contact: South West Water Services Ltd

Peninsula House

Rydon Lane

Exeter Devon

Ex2 7hr

Address : Stw Fe

Det.	Code Description	Result
*61	р Н	6.8000 Hg
*62	Conductivity at 20 C microsiemens/cm	284.0000 Microsiemens/cm
* 68	Turbidity	9.0000 Turbidity FTU
76	Temperature degrees C (in-situ)	13.0000 Celsius
81	Oxygen dissolved % Saturation (in-situ)	35.0000 % O
82	Oxygen dissolved (Calculated)	3.6800 mg/l O
* 85	BOD ATU	6.2000 mg/1 O
* 92	Chemical Oxygen Demand	49.0000 mg/l O
	Ammonia expressed as Nitrogen	1.2000 mg/1 N
*116	Total Oxidised Nitrogen as Nitrogen	12.3000 mg/l N
*117	Nitrate expressed as Nitrogen (Calculated)	11.9000 mg/l N
*118	Nitrite	0.4000 mg/l N
	Ammonia non-ionised (Calculated)	0.0018 mg/1 NH3
*135	Suspended solids 105C	15.0000 mg/l
	Solids non-volatile 500C	No Result
*172	Chloride ion	28.0000 mg/l Cl
*180	Ortho-Phosphate	2.4000 mg/l P

Indicates that Laboratory Determination Method is NAMAS Accredited.

574001F Release 3

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 11th Apr 1995

Sample Analysis Run Report 03-nov-94

Sampling Point = : R12C023

Laboratory Ref.: E384246 Late/Time Taken: 03-NOV-94 14:00

Date/Time Received: 04-NOV-94 06:31

River Tavy D/S Crowndale Stw

dress : D/S Stw

Pet.	Code Description	R	esult	-		
*01 /	рН		7.3000	рН		•
*62	Conductivity at 20 C microsiemens/cm			Microsi	emens/cn	n
	Turbidity			Turbidi		
8	Temperature degrees C (in-situ)	No	Result			
81	Oxygen dissolved % Saturation (in-situ)	No	Result			
82	Oxygen dissolved (Calculated)	No	Result			
₩35	BOD ATU	No	Result			
\$2 5 2	Chemical Oxygen Demand		15.0000	mg/l 0		
*111	Ammonia expressed as Nitrogen	4.0	0.0400	mg/l N		
16	Total Oxidised Nitrogen as Nitrogen		1.0000	mg/l N		
16 17	Nitrate expressed as Nitrogen	141	0.9910	mg/l N		
	(Calculated)			_		
±1 18	Nitrite Ammonia non-ionised (Calculated)	< 1	0.0090	mg/l N		
19	Ammonia non-ionised (Calculated)	No	Result	_		
135	Suspended solids 105C	130	5.3000	mg/1		
*143	Solids non-volatile 500C	No	Result	_		
172	Chloride ion		11.0000	mg/l Cl		
180			0.0200	mg/l P		
* 182	Silicate Reactive dissolved		4.7000	mg/l Si	02	
*183	Sulphate		7.0000			
						•

Indicates that Laboratory Determination Method is NAMAS Accredited.

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 11th Apr 1995

Sample Analysis Run Report 03-nov-94

Laboratory Ref.: E384248 Sampling Point: WSTW4782A Date/Time Taken: 03-NOV-94 12:30 Date/Time Received: 04-NOV-94 06:31

River Tavy Upstream Of Tavistock (Crowndale) Stw

Address : U/S Stw :

Det.	Code	Description		Result		
*68 76 81 82	Conduct: Turbidit Temperat Oxygen o Oxygen o	ivity at 20 C microsiemens/cm cy cure degrees C (in-situ) dissolved % Saturation (in-situ) dissolved (Calculated)	12.		pH Microsieme Turbidity	
*85 *92 *111 *116 *117	Ammonia Total Ox	l Oxygen Demand expressed as Nitrogen kidised Nitrogen as Nitrogen expressed as Nitroger		No Result < 15.0000 < 0.0200 1.0000 0.9940	mg/1 N mg/1 N	
*172 *180	Nitrite Ammonia Suspende Solids i Chloride Ortho-Pl	non-ionised (Calculated) ed solids 105C non-volatile 500C e ion nosphate e Reactive dissolved		0.0060 No Result 6.4000 No Result 11.0000 < 0.0200 4.7000 6.0000	mg/l Cl mg/l P mg/l SiO2	

Indicates that Laboratory Determination Method is NAMAS Accredited.

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 11th Apr 1995

Sample Analysis Run Report 03-nov-94

Sampling Point : WSTW4782FE

Laboratory Ref.: S384247 Dite/Time Taken: 03-NOV-94 12:05 Date/Time Received: 04-NOV-94 06:31

Tavistock (Crowndale) S T W - Effluent

htact : South West Water Services Ltd

Peninsula House

Rydon Lane Exeter

Devon Ex2 7hr

dress : Stw F.E.

Dot	Code Description	Result	
*01	рН	7.0000	рН
*62	Conductivity at 20 C microsiemens/cm	205.0000	Microsiemens/cm
4 ■8	Turbidity	10.0000	Turbidity FTU
* 8 6	Temperature degrees C (in-situ)	No Result	·
81	Oxygen dissolved % Saturation (in-situ)	No Result	- 4
82	Oxygen dissolved (Calculated)	No Result	
→ 5	BOD ATU	9.1000	mg/1 0
\$2 5 2	Chemical Oxygen Demand	42.0000	mg/l O
*111		< 0.5000	mg/l N
1 16	Total Oxidised Nitrogen as Nitrogen	5.2000	mg/l N
17	Nitrate expressed as Nitrogen	5.0000	mg/l N
	(Calculated)		
<u>±</u> 118	Nitrite Ammonia non-ionised (Calculated)	0.2000	mg/l N
19	Ammonia non-ionised (Calculated)	No Result	
4 35	Suspended solids 105C	17.0000	mg/l
*143	Solids non-volatile 500C	No Result	
1 72	Chloride ion		mg/l Cl
180		1.2000	mg/l P

Indicates that Laboratory Determination Method is NAMAS Accredited.

MENSAR V2.0.5 NRA Exeter Regional Laboratory

Page 1 of 1 11th Apr 1995

Sample Analysis Run Report 03-nov-94

Laboratory Ref.: S384249 Sampling Point: WSTW4782FE Date/Time Taken: 03-NOV-94 12:10 Date/Time Received: 04-NOV-94 06:31

Tavistock (Crowndale) S T W - Effluent

Contact: South West Water Services Ltd

Peninsula House

Rydon Lane Exeter Devon

Ex2 7hr

Address : Stw

NOTE: SAMPLE TAKEN FROM STORM

Det.	Code Description	Result
*111 *116 *117	pH Conductivity at 20 C microsiemens/cm Turbidity Temperature degrees C (in-situ) Oxygen dissolved % Saturation (in-situ) Oxygen dissolved (Calculated) BOD ATU Chemical Oxygen Demand Ammonia expressed as Nitrogen Total Oxidised Nitrogen as Nitrogen Nitrate expressed as Nitrogen (Calculated)	7.0000 pH 239.0000 Microsiemens/cm 17.0000 Turbidity FTU No Result No Result 23.8000 mg/l O 74.0000 mg/l O 3.1000 mg/l N 3.7000 mg/l N
	Nitrite Ammonia non-ionised (Calculated) Suspended solids 105C	0.2000 mg/l N No Result 31.0000 mg/l
*143 *172	Solids non-volatile 500C Chloride ion Ortho-Phosphate	< 20.0000 mg/l 21.0000 mg/l Cl 1.3000 mg/l P

Indicates that Laboratory Determination Method is NAMAS Accredited.