NRA Wales \$494

MRA SUR

NRA WELSH REGION

A SURVEY OF FERRUGINOUS MINEWATER IMPACTS

IN THE WELSH COALFIELDS.

EQ POL/AMW WELSH OFFICE CONTRACT (No. WEP 100/138/11)

SOUTH EAST ENVIRONMENTAL APPRAISAL UNIT

AUTHORS: DARREN BUTLER, MARTIN MILLS,
GILLIAN DAVIES, GILLIAN BOURN
AND DORYN FOOLCHAND.

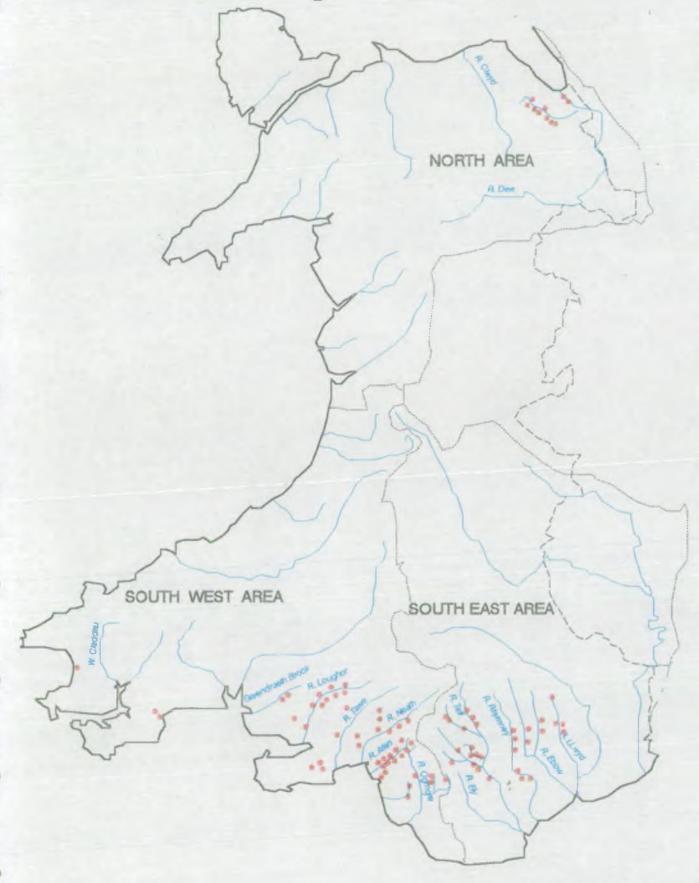
FEBRUARY 1994.

ENVIRONMENT AGENCY

EXECUTIVE SUMMARY

- 1. Ferruginous minewater discharges from abandoned coal mines in the South and North Wales coalfields have been causing problems to receiving watercourses for many years (eg. Pelenna catchment). The rapid contraction of coal mining in the South Wales coalfield resulted in the closure of many of the remaining pits during the 1980's, leaving Tower colliery, near Aberdare, and Bettws colliery, near Ammanford, the last remaining deep mines in South Wales. The spate of mine closures, in recent years, has resulted in several new ferruginous discharges to a number of rivers, particularly in the eastern area of the coalfield and the effects of these discharges on the aquatic environment are of growing public concern (eg. R. Rhymney at Hengoed).
- 2. Though the problem of ferruginous minewater discharges is well documented, the true extent of the problem in the Welsh region of the NRA was unknown prior to this study. The aims of this survey were to locate all ferruginous discharges within the coalfield areas and to assess their impact upon receiving watercourses. The project was carried out in two stages. The first stage of the assessment of all minewaters involved analysis of the discharges and the receiving watercourse for iron, aluminium, suspended solids, pH, dissolved oxygen, conductivity, sulphate and temperature. Visual assessments of the area of river bed affected by iron hydroxide (ochre) deposition, the level of deposition and physical characteristics of the receiving watercourse, such as flow and width, were also made at sites affected by discharges.
- 3. Stage 1 of the survey located 90 discharges and found that the total length of river impacted by ferruginous discharges in Wales was 59.4 km and an area of 220 x 10^3 m² was affected by iron hydroxide deposits.
- 4. A ranking method, incorporating the physical / chemical determinands, was developed to assess the comparative impact discharges were having on receiving watercourses. Area impacted was the most important criterion, though length affected and water quality criteria were also included.

- 5. A total of 33 of the top ranked discharges (20 to classified watercourses and 13 to unclassified watercourses) having the highest environmental impact were selected and chemical, biological and fisheries impact assessments were carried out on these discharges in stage 2 of the project.
- 6. Samples of benthic invertebrates were taken immediately above and below the discharges and at intermediate points downstream until a return to upstream conditions was reached. Samples were assessed to give Biological Monitoring Working Party (BMWP) scores. Expected invertebrate quality in the absence of polluting discharges was predicted for each site using the computer model RIVPAC's (River InVertebrate Prediction And Classification System).
- 7. Quantitative electrofishing surveys were carried out upstream and downstream of discharges. Impact was determined using the Regional Juvenile Salmonid Monitoring Programme classification (RJSMP) to assign a class to the fishery above and below the discharge, based upon the numbers of juvenile salmonids caught in a given area. The computer model HABSCORE (Salmonid habitat score) was used to assess the quality of the habitat for salmonids and the degree of utilisation of the habitat by salmonids.
- 8. Minewater discharges are often referred to as acid mine drainage, but many of the discharges in the Welsh coalfields were found to have pH values near neutral. There were exceptions, for example a number of acid discharges entered the Pelenna causing damage to the biota. Where the discharges were acidic they were, generally, rapidly neutralised by the receiving watercourses and pH was not a major problem downstream. This had implications for the amount of dissolved aluminium downstream of discharges. The toxicity and solubility of aluminium increases when the water becomes more acidic, but at pH 6-8 the solubility of aluminium and thus its toxicity are limited. As most of the discharges and many of the receiving watercourses were in this pH range, dissolved aluminium levels were not elevated at the majority of sites.
- 9. The Environmental Quality Standard (EQS) of 2 mg/l total iron was exceeded on at least one sampling occasion at eleven of the thirty three highest ranked sites. The precipitation of iron hydroxide, which caused a


blanketing and binding of the substrate and subsequent loss of benthic habitat, was the single most important factor affecting the biota downstream of minewater discharges.


- 10. Minewaters can be low in dissolved oxygen following the oxidation of pyrites below ground. Further oxidation of iron hydroxides in the receiving watercourse also requires oxygen and a small reduction in oxygen concentration downstream of a discharge occurred at the majority of sites. The oxygen capacity of the receiving watercourses were, however, sufficient to meet the oxygen demands of the minewater and the dissolved oxygen level at most sites, remained above 70 % oxygen saturation (considered important for salmonids) downstream of the discharges.
- 11. Suspended solid concentrations downstream of discharges were generally at a level (<25 mg/l) which would not affect the biota. Since, during high flow events, there will be high suspended solid concentrations due to general erosion of land and river bed, the resuspension and transport of ochre deposited on the river bed would probably not be a significant addition.
- 12. Biological impact was assessed on the basis of absolute loss and/or reduction in density of pollution sensitive taxa over significant areas of river bed. Of the 33 sites assessed in stage 2, a high biological impact was shown at 10 sites. Three of these discharges to classified waters and two to unclassified waters were also ranked highly on physical / chemical impact (based upon stage 1 data) indicating a relationship between the physicochemical characteristics assessed in stage 1 and biological impact assessed in stage 2. Medium biological impact was demonstrated at 13 sites and 9 sites showed no biological impact.
- 13. At a number of sites fisheries impact was not easily demonstrated because of poor baseline water quality in the receiving watercourse. This was particularly evident in a number of the S.E area rivers which suffer from intermittent storm sewage discharges which affect salmonids. Other streams had poor upstream fisheries because of low pH, as already described above. Where the water quality of receiving watercourses was poor it is considered that the full impact of the discharges on fisheries was masked. However, fisheries impacts were demonstrated in a number of cases. For example on a

tributary of the R. Llynfi, where a good nursery stream with an excellent upstream salmonid population was reduced by two classes to a moderate fishery according to the Regional Juvenile Salmonid Monitoring Programme classification.

- 14. In summary, a total of 90 ferruginous discharges impacted on 59.4 km of river. Impact assessment of 33 of the worst discharges showed high biological impact below 10 discharges, medium impact below 13 discharges and no impact at 9 sites. Fisheries surveys of 19 discharges indicated high impact at 3 sites, medium impact at 5 sites and no demonstrable impact at 11 sites.
- 15. It is important to emphasise that this survey represents a snapshot of the position in 1993, and there was some evidence that the situation was changing even during the survey period. The scale of British Coal's deep mining operations in Wales has now almost stabilised with one remaining colliery in S. Wales. However a large number of small private mines extract coal and may be the source of future mine discharges. In addition, further polluted minewater discharges from recently abandoned mines may emerge in an unpredictable way as the groundwater recharges. These discharges will continue to pollute, unless preventative or remedial action can be carried out.
- 16. The NRA is currently using the information gathered during this survey to produce a list of the worst case minewater discharges that will be included in a study to scope possible remedial solutions.

Minewater Discharges in the Welsh Coalfields

Ferruginous minewater discharge to the R. Sirhowy (6) at Pontllanfraith.

Ferruginous minewater entering a tributary of the River Llynfi (15).

CONTENTS

SECTION		PAGE
1.	Introduction.	1.
1.1	Background.	1.
1.1.1	Chemical processes leading to ferruginous minewaters	2.
1.2	Objectives of the study	2.
2.	Stage 1 methodology.	3.
2.1	Desk study.	3.
2.2	Survey procedures.	3.
2.3	Ferruginous sites.	4.
3.	Stage 1 results.	5-6.
4.	The ranking of minewaters located in stage 1 of the survey	7.
4.1	Method.	7-8.
4.2	Description of impact criteria.	8.
4.2.1	Area and length affected.	8.
4.2.2	Substrate quality.	8.
4.2.3	Iron deposition.	9.
4.2.4	Iron concentration in receiving water.	9.
4.2.5	Other chemical criteria.	9.
5.	Results of ranking exercise - Stage 1.	10.
6.	Stage 2 methodology.	11.
6.1	Survey procedures.	11.
6.1.1	Biological impact assessment	11-12.
6.1.2	Fisheries impact assessment	13-14.
6.1.3	Water sampling.	14.
6.1.4	Flow gauging.	14.
7.	Stage 2 results.	15.
7.1	Water quality and Flow	15.
7.1.1	Temperature.	15,
7.1.2	Dissolved oxygen.	15-16.
7.1.3	pH.	16.
7.1.4	Iron.	17.
7.1.5	Aluminium.	17-18
7.1.6	Suspended solids.	18
7.1.7	Sulphace and Alkalinity	18
7 1 8	Flows	19

7.2	Biological impact.	19.
7.2	.1 Discharges having a high biological impact.	19-22.
7.2	.2 Discharges having medium biological impact.	22-25.
7.2	.3 Discharges having no biological impact.	25-26.
7.2	.4 Biological sensitivity to minewaters.	26-27.
7.3	Fisheries impact.	27-30.
8.	Ranking method for stage 2 data.	31.
9.	Results of stage 2 ranking.	31.
9.1	Some points about ranked minewaters.	31.
10.	Override for stage 2 ranking.	33.
11.	Discussion.	35-37.
12.	Conclusions.	38-39.
13.	References.	40.
14.	Appendix	
List	of tables in the text	
Table		
	A A	45
1.	Number and occurrence by catchment of ferruginous sites	in Wales. 5.
2.	Grading of physicochemical data from stage 1 surveys.	7.
3.1	The scale of impact of ferruginous minewaters on Welsh	
	classified rivers.	•••
3.2	The scale of impact of ferruginous minewaters on Welsh	
	unclassified rivers.	
4.	Stage 2 ranking results.	32.
5.	Stage 2 ranking results using override.	34.

1 INTRODUCTION

This is the final report for the joint Welsh Office and NRA funded study of ferruginous minewater impacts in Wales (Ref. WEP/100/138/11). The study took place between October 1992 and October 1993.

1.1 BACKGROUND

Ferruginous discharges from both active and abandoned coal mines have caused pollution problems in Wales for many years (eg. the Pelenna catchment), often resulting in significant deterioration in water quality and subsequent detrimental effects on aquatic life. Recent closures of many deep coal mines, particularly in the South Wales coalfield have resulted in additional discharges to a number of rivers (eg. Rhymney, Ebbw, Sirhowy, Neath) and a rise in public concern over this issue.

The NRA sets water quality objectives for classified river stretches. At present 25 % of classified river stretches in South Wales do not meet their long term water quality objectives. A proportion of these stretches are affected by ferruginous minewater discharges together with other sources of pollution such as storm sewage. Ferruginous discharges are therefore an important factor in the NRA's urbanised river recovery programme and, as other sources of pollution are removed, will become the limiting factor.

In addition to classified reaches, the true extent of the impact of ferruginous minewaters on the smaller, unclassified streams and rivers was unknown, prior to this study. Such watercourses are essential nursery areas for fish breeding and provide genetic pools of organisms which are necessary for the maintenance of a healthy, diverse aquatic ecosystem and associated terrestrial fauna.

At the Welsh Affairs Committee (11 March 1992) hearing into water pollution from abandoned coal mines, a recommendation made in the Flowers Report of 1981 that 'there was an urgent need to establish the extent of the pollution and range of costs of the necessary remedial treatment' was raised. Since this recommendation had not been properly addressed in the intervening period this project to determine the extent of the ferruginous minewater problem in Wales was carried out.

1.1.1 Chemical processes leading to ferruginous minewaters

During mining operations the mineral pyrite, or iron sulphide, which is often found in the coal seam, is exposed. When exposed to air and water pyrite is oxidised to ferrous sulphate and sulphuric acid, a process which may be catalysed by the presence of chemosynthetic bacteria. These are bacteria which form organic material by means of energy derived from chemical changes. Pumping operations ensure that active mines are kept free of groundwater and the pyrite exposed during mining operations which is in contact with the air on exposed surfaces may be subject to such processes. When mines are closed pumping operations typically cease, water builds up within the mines, dissolves the available oxidised ferrous salts and acid, and may overspill into surrounding watercourses. This drainage may be acidic or may have been neutralised during passage through surrounding base rock (eg. limestone). When minewater enters a watercourse further oxidation occurs and ferrous sulphate is converted to The ferric hydroxide precipitates out as an orange ferric hydroxide. flocculant deposit (Ochre) on the river bed. Such minewaters are described as being ferruginous.

At high concentrations ferrous and ferric iron may be toxic to the aquatic biota, while the precipitated iron hydroxide may smother habitats and organisms. Blanketing of the riverbed by ferruginous deposits is particularly detrimental to salmonid reproduction for which clean, well aerated gravels are essential.

1.2 OBJECTIVES OF THE STUDY

To identify all ferruginous discharges emanating from or connected with abandoned coal mines in the Welsh region of the National Rivers Authority and to determine their impacts on the water quality, biological quality and fisheries status of the receiving waters.

The project was carried out in two stages. In the first stage discharges were located and their impact upon the receiving watercourses was assessed by visual observation and from water quality analysis. The second stage of the project involved full impact assessment of 33 of the worst case discharges using biological and fisheries surveys and further water quality analysis.

2. STAGE 1 - METHODOLOGY

2.1 Desk study

The Welsh coalfield areas to be covered by the study were determined from geological maps and marked on OS 1:10,000 maps. Rivers, tributaries, mines, collieries, shafts and levels were identified within these areas in advance of survey work.

2.2 Survey procedures

An initial survey to identify the sources and determine the extent of ferruginous discharge impacts was carried out by visiting sites on all the main rivers and tributaries in the coalfield areas to visually assess the presence or absence of ferruginous deposits.

The rivers were visited at a minimum frequency of one site every km along their lengths within the coalfield area. All tributaries were visited at a minimum of one site, usually within one km of the confluence with the main river, plus additional sites on larger tributaries.

Sections with known or suspected minewater discharges, or where vehicular access was unsuitable were walked. All sites visited and lengths walked were marked on both 1:10,000 and 1:50,000 OS maps, and ferruginous sites were identified.

2.3 Ferruginous sites

Length of river affected.

pH.

For the purpose of this survey, sites were regarded as lengths of rivers affected by minewater discharges, even if there were multiple discharges (within a short distance of each other) into that reach. The downstream impact was measured as a sum of the discharges and multiple discharges within a reach were counted as one site.

Ferruginous sites were sampled as follows:

The following data were determined, either in the field or in the laboratory, for upstream and downstream of the discharge, and for the discharge itself.

Field Data Laboratory data

Width of river. pH.

Suspended solids (mg/l). Dilution of ferruginous input where Total alkalinity (mg/l). it enters the watercourse, visual

assessment (eg. 10:1, 100:1, 1000:1)

% Bed affected. Dissolved sulphate (mg/l).

Surface area affected (calculated from length x average width x % bed affected). Total aluminium (mg/l).

Dissolved aluminium (mg/l). Colour intensity and degree of

flocculant deposit. Total iron (mg/l).

Dissolved iron (mg/l). Dissolved oxygen (mg/l).

Conductivity (uS). Dissolved oxygen (% saturation). Water temperature (^UC)

3. STAGE 1 RESULTS

Between October 1992 and April 1993 stage 1 of the ferruginous minewaters project was completed. A total of one thousand and sixty five sites were visited and 90 ferruginous sites were identified as follows.

Table l Number	and occurre	ence by catchm	ent of Ferruginous	Sites in Wales
Catchments No	. of Ferru	ginous Sites	Length of	Surface Area
Surveyed	Fo und	Sampled	River Affected	
			(Km)	(1000 m2)
South East Area			· · · ·	
Llwyd	4	4	3.2	13.8
Sirhowy	2	2	2.2	17.4
Ebbw	2	2	2.4	10.8
Rhymney	6	5	4.2	38. 3
Taff	15	15	6.8	21.9
Ely		4	-	
			18.8	102.2
South West Area				
Ogmore	5	4	4.4	10.6
A.Cynffig	2	2	4.5	13.5
Afan/Pelenna	13	13	16.1	52.4
Neath	9	6	3.3	14.8
Tawe	2	2	1.5	3.2
Loughor	11	11	8.9	18.3
Gwendraeth Fawr	2	2	0.3	0.3
Gower	3	3	0.6	4.0
			• • • • •	
			39.6	117.1
Pembrokeshire	3	3	0.6	0.6
North				3.
Dee/Alyn	11	8	0.4	0.4
* *				
GRAND TOTAL	90	82	59.4	220.3

A total length of 59.4 km of river within the South, Pembrokeshire, and North Wales coal measures were found to be affected by ferruginous minewaters (Table 1).

Rivers in the South West area accounted for 39.6 km of the total length; the Afan/Pelenna catchment being the worst in the area. The rivers of the South East area were affected over a distance of 18.8 km; the Taff/Rhondda catchments being the worst affected in this area. Rivers in the smaller Pembrokeshire and North Wales coal measures were affected over 0.6 km and 0.4 km length respectively. The size and extent of the problem in these areas compared to the South East and South West areas is considered to be small.

A total area of 220.3 x $10^3 m^2$ of river bed was visually affected by ferruginous minewaters in Wales (Table 1). The Rhymney and Taff/Rhondda catchments in the South East, and the Afan/Pelenna and Loughor catchments in the South West account for most of the total area of affected river in the Welsh coalfields. The area of river bed affected in the Pembrokeshire and the North Wales coalfields was much smaller in comparison (Table 1).

200

4. THE RANKING OF MINEWATERS LOCATED IN STAGE 1 OF THE STUDY

The data collected in stage 1 of the minewaters survey were reviewed and assessed and a ranking method for the impact of minewater discharges on rivers was developed. The ranking was used to identify which sites should be fully assessed in stage 2.

4.1 METHOD

The following criteria (listed in order of importance as indicators of environmental impact) were used to describe the impact of ferruginous minewater discharges on receiving waters. Each impact criterion was graded high, medium or low based either on absolute ranges or on distributionally derived ranges which are described further below.

Table 2. Grading of Physicochemical Data From Stage 1 Surveys

	IMPACT CRITERIA	HIGH (A)	MEDIUM (B)	LOW (C) NO	IMPACT (D)
	(In Decreasing Order				
	of Importance)				
1.	AREA AFFECTED (m ²)	> 2,500	10-2,500	< 10	100
2.	LENGTH AFFECTED (Km)	> 0.5	0.01-0.5	< 0.01	
3.	SUBSTRATE QUALITY FOR	ROCKS/	BEDROCK/	ARTIFICIAL	•
	SALMONID REPRODUCTION	STONES/	BOULDERS/	CHANNEL :	
		GRAVEL	ROCKS	SAND/SILT	
4.	IRON DEPOSITION (VISUAL)	HIGH	MEDIUM	LOW	- E
5.	TOTAL IRON (mg/l)	> 3.0	2 - 3	< 2.0	-
6.	pH, DO (%), TOTAL Al (mg/l)	3 FAILURES	2 FAILURES	1 FAILURE	NO FAILURES

The ranking was perfomed in a specific order, so that rivers and streams which received an A rating for area of river bed affected appeared at the top of the list, followed by all those receiving a B rating etc. to give three main groups. These were then ranked according to the second criterion, length of river affected, to give three sub-groups per main group. Each sub-group was then ranked according to quality of substrate and so on for the remaining parameters. For example, a site with an A rating for area affected but a B rating for all other parameters appears above a site with a B rating for area affected and an A rating for all other parameters.

This dichotomous method of ranking was derived, following a series of trials with various scoring techniques, as the best assessment of the data.

The discharges were ranked separately for classified and unclassified stretches so that the most severe cases could be identified for each of the two types according to the number of A, B, and C ratings. A number of discharges to both classified and smaller, unclassified rivers were selected from these lists for the second stage assessment as it was considered important to assess ferruginous minewater impacts on headwater streams as well as on main rivers.

4.2 DESCRIPTION OF IMPACT CRITERIA

4.2.1 Area and length affected

Both the area and length of river bed affected by iron hydroxide deposition were used to indicate potential loss of aquatic habitat and were therefore considered to be the two most important measures of impact. However the area affected was considered to be the best overall measure of potential loss of habitat to the aquatic fauna. Area can be large even when the length affected is relatively short, if the channel is wide and the percentage cover is high. Area was therefore considered the most important criterion and was calculated from the actual length of river affected by visible evidence of ferruginous deposits x the average width of river channel x the percentage cover of the bed. Length of river affected is more a measure of the scale of visual impact and, although it may not always reflect ecological impact as well as area, it is important to the public perception of impact.

4.2.2 Substrate Quality

Substrate was classified according to its potential to support diverse fauna and salmonid reproduction. Absolute classes were used, based upon the critical criteria from the HABSCORE and RIVPACS computer models. Classification of the quality of substrate is similar in the two models and requires visual assessment of the substrate based upon the percentage composition of bedrock, boulders, cobbles, gravel, silt and sand.

4.2.3 Iron Deposition

A visual assessment of the depth and amount of ferruginous material (ochre) was performed in the field. This gave a comparative measure of the physical blanketing and binding of the substrate by iron hydroxide precipitation and was subjectively assessed as high, medium or low. This is a relative measurement which was applied across the region with photographic evidence to support it.

4.2.4 Iron concentration in receiving water

The ranges for the bands describing iron concentration downstream of the discharge were based on a proposed Environmental Quality Standard of 2 mg/l total iron (annual average) for surface waters supporting salmonids (Mance G. and Campbell J.A. 1988)

4.2.5 Other chemical criteria

pH, dissolved oxygen and aluminium concentration were grouped together so that a combined score was given based on how many parameters were adversely affected by discharges at each site. Failures for each parameter were established, if the following values occurred in the receiving water downstream of a discharge:

pH values less than 7

DO values less than 70% saturation

Total aluminium concentration downstream of discharge greater than the EQS of 1 mg/l (ie. The EQS for surface waters of pH 6-8).

5. RESULTS OF RANKING EXERCISE - STAGE 1

Tables 3.1 and 3.2 are ranked lists of all the identified ferruginous minewaters discharging to classified and unclassified rivers with the discharges having the greatest impact appearing at the top of the tables. It can be seen from tables 3.1 and 3.2 that there is a good spread of sites showing high (A), medium (B) and low (C) impact for the determinands used in the ranking.

The selection of sites for full impact assessment, in stage 2, was based upon impact demonstrated in stage 1 of the study as shown in tables 3.1 and 3.2. The top 19 discharges to classified waters had high or medium impacts on the area and length of river to which they discharged. Impact upon substrate, and water quality was also typically high and these sites were selected for study in stage 2. 10 discharges to unclassified waters which also had a high impact upon the area and length of river affected and a significant effect upon the other determinands used in the ranking were selected for study in stage 2. A further 4 discharges to the Afan/Pelenna catchment were included for study because of the remedial work planned for that catchment.

Summarising, a total of 33 discharges were selected for full impact assessment in stage 2 of the study and included the top 19 discharges to classified waters, the top 10 discharges to unclassified waters and 4 additional sites on the Afan/Pelenna (See Tables 3.1 and 3.2). This gave a realistic number of sites to survey in stage 2 selected from a range of classified and unclassified streams, ensuring that discharges throughout the coalfield measures were studied.

The discharge to the Neath canal near Ynysarwed (62) which arose in spring 1993 was assessed after stage 2 had commenced. Details of this most recent discharge are included in Appendix 3.

Table 3.1 Table Showing the Scale of Impact of Perruginous Minewaters to Welsh Classified Rivers

RANK	SITE NO.	CATCHMENT	RECEIVING WATER	LAB REFERENCE	SCORE FOR AREA APFECTED	SCORE FOR LENGTH AFFECTED	SCORE FOR QUALITY OF SUBSTRATE	SCORE FOR DEPOSITION	SCORE FOR TOTAL IRON DOWNSTREAM OF DISCHARGE	SCORE FOR PE DO ALUNINIUM	WIDTH O RIVER CHANNEL
1	24/25	AFAN	HAFT BLAEN PELENNA	E 248125	λ	Α	λ	A	A	c	HEDIUH
2	30	LOUGHOR	HORLAIS	E 253202	A	A	λ	A	A	D	HEDIUM
3	26	APAN	TRIB OF GWENPPRWD	E 248122	λ	A	A	۸	A	D	SHALL
- 4 İ	5	SIRHOWY	SIRHOWY	E 250287	A	A	A	Α	C	C	LARGE
5 İ	16	KENFIG	HANT CRAIG Y ABER	E 251699	A	A	A	λ	c	D	SHALL
6	1	LLWYD	A.LLYWD	E 245758	λ	A	λ	A	C	D	MEDIUM
7	23	AFAN	FFRWD WYLLT	E 248826	٨	A	λ	A	c	D	MEDIUM
8	7	RHYMNEY	RHYHNEY	E 250770	A	A.	В	A	В	D	V.LARGE
9	19	APAN	NAME GWYNFI	E 251087	A	A	В	А	В	D	SHALL
10	4	EBBA	RBBA	E 246784	∖ ⊼	A	B	A	C	P	HEDIUH
11	21	afan	A.CORRWG	E 246118	A	A	В	٨	C	מ	HEDIUN
12	2	TTMAD	LTAXD	E 250291	A	٨	В	A	C	D	LARGE
13	3	TTMAD	TTMXD	E 245761	, A	A	В	В	C	D	LARGE
14	6	SIRHOWY	SIREOWY	E 246320	A	В	A	A	C	D	V.LARGI
15	13	TAFF	RHONDDA	E 250776	A	В	B	В	В	D	LARCE
16	34	DEE	BROUGHTON BROOK	E 165767	B	В	A	A	, A	C	V.SHAL
17	9	TAFF	UNNAMED TRIB	E 249926	B	В	λ	A stop	C	D	SKALL
18	10	TTAAD	UNNAMED TRIB	E 233777	В	В	A	A	C	D	BHALL
19	22 67	APAN	FFRWD WYLLT	E 251696	В	В	A	В	c	D	SHALL
21	54	Lougeor Neath	LOUGHOR	E 254179 E 254182	B	B B	A A	B	C	D D	LARGE
22	83	DEE .	CECIDOG	E 165674	B	B	A	c	c	D	SMALL
23	47	TAPF	TRIB OF CYNON	E 249923	B	В	λ	c	C	D	SHALL
24	20	APAN	AFAN	E 251090	. B	8	Ä	č	c	D	HEDIUH
25	53	AFAN	AFAN	E 251687	B	В	В	В	c	D	HEDIUH
26	85	DEE	ALYN	E 165680	В	В	В	c	A	٥	LARGE
27	63	TAVE	A.TWRCH	E 254349	В	8 0	В	č	Ĉ	ם	LARGE
28	84	DEE	DEE	E 165764	8	c	A	Ä	В	0	V.LARG
29	37	REYMNEY	RHYNNEY	E 246787	c	c	A	В	Ċ	ā	LARGE
30	79	DEE	R.TERRIG	E 165671	c	c	A	В	l c	מ	SHALL
31	55	NEATH	CLYDACH	-	č	l č	λ	В	Č	D	LARGE
32	81	DEE	ALYN	E 165668	Č	c	A	Ĉ	A	c	SHALL
33	72	CWENDRAETH	CWENDRAETH FAWR	E 252759	c	c	A	c	c	α ا	HEDIUH
34	36	RHYMNEY	RHYHNEY	i -	c	İc	A	c	c	D	LARGE
35	51	OGHORE	N. GARW	-	Ċ	c	Ä	ادّ	l c	م ا	KEDIUH
36	78	ALYN	ALYN] -	Ċ	c	A	l c	c	م ا	SMALL
37	86	DEE	ALYN	i	С	c	λ	l c	c	מ	HEDIUN
38	87	DEE	ALYN	E 165677	c	c	A	c	l c	۵	KEDIUK
39	48	TAFF	RHONDDA FACE	E 249930	c	c	В	c	c	۵	LARGE
40	57	NEATH	DULAIS	! -	c	c	В	İc	İc	D	LARGE
41	58	NEATH	NEATH	-	С	c	В	c	c	D	LARGE

able 3.2 Table Showing the Scale of Impact ofFerruginous Minewater

rank	SITE NO.	CATCEMENT	RECEIVING WATER	LAB REFERENCE	SCORE FOR AREA AFFE
1	31	GOWER STREAMS	CLYNE TRIB.	E 253388	A
2	33	TAVE	UNNAMED TRIB	E 254517	A
3	29	LOUGEOR	CATHAN	E 253391	A
4	12	TAPP	Y-FFRWD	E 247257	A
5	15	OCHORE	LLYNPI TRIB.	E 245148	A
6	14	OCNORE	OGWR FACH	T 251084	A
7	69	LOUGEOR	UNNAMED TRIB	E 253008	A
8	18	APAN	A.CORRWG FECHAN	E 248112	A
9	11	TAFF	CWN CLYDACH	E 247254	A
10	17	APAT	A.CORRWG	E 248115	A
11	62	NEATH	NEATH CANAL	E 281139	A
12	64	LOUGEOR	UNNAMED TRIB	£ 253554	В
13	6 8	LOUGHOR	UNNAMED TRIB	E 253545	B
14	56	NEATH	CRYNANT	E 256703	В
15	28	ayan	NANT-Y-FEDW	E 251684	В
16	43	TAFF	UNNAMED TRIB	T 251082	В
17	65	LOUGEOR	UNNAMED TRIB	E 252762	В
18		SHAMMEA	RUDRY BROOK	E 246326	В
19		TAFF	UNNAMED TRIB	T 249927	В
20	32	LOUGEOR	NANT MELYN	E 254346	В
21	70	LOUGEOR	UNNAMED TRIB	E 253548	В
22	71	GWENDRAETH	UNNAMED TRIB	E 253006	В
23	44	TAFF	UNNAMED TRIB	E 247251	B
24	41	TAFY	NANT CAEACH	E 256853	В
25	4.5	TAFF	LLYS NANT	E 247260	8
26	50	OCHORE	GARW FECHAN	E 245145	В
27	66	LOUGEOR	NANT-Y-CI	E 253551	B
28	27	AFAN	TRIB OF NANT CREGAN	E 251690	В
29	76	PENBROKESHIRE	CRESSWELL	E 253952	В
30	35	EBBW	NANT CYFFIH	T 250288	В
31	77	Pembrokeshire	Unnahed Stream	E 253955	В
32	19	TAFF	UNNAMED TRIB	T 251083	В
33	73	COWER STREAM	UNNAMED TRIB	T 253204	B
34	60	NEATE	CARWED BROOK	E 256697	В
35	59	NEATH	CLYDACH BROOK	E 256694	B
36	40	RHYMMEY	UNNAMED TRIB	T 256850	8
37	75	PEMBROKEGHIRE	UNNAMED TRIB	E 253949	č
38	42	TAFF	UNNAMED TRIB	E 246323	č
39	52	OGHORE	NANT CYNFFIG	T 251700	c
40	61		R.GWRACH	E 256700	c
41 !	74	GOVER STREAM	· = ·		
42		1	UNNAMED TRIB	E 253384	C
	80	DEE	UNNAMED TRIB	E 165595	C
43	38	RHYMNEY	UNNAMED TRIB	T 250284	C
44	82	DEE	UNNAMED TRIB	-	c

KD	SCORE FOR LENGTH AFFECTED	SCORE FOR QUALITY OF SUBSTRATE	BCORE FOR DEPOSITION	SCORE FOR TOTAL IRON DOWNSTREAM OF DISCHARGE	CUMULATIVE BCORE FOR pH DO ALUMINIUM	WIDTH OF RIVER CHANNEL
	A	A	A	۸	В	SHALL
	 A	A	A	В	c	SHALL
	A	A	A	Ċ	С	SMALL
	 A	A	λ	c	D	SHALL
i	A	A	A	İc	D	SHALL
l	Ä	 A	В	C	۵	MEDIUM
	A	A	B	c	D	V.SHALL
	٨	B	A	В	D	MEDIUM
- 1	A	В	A	l c	D	HEDIUM
1	A	B	A	c	ם	HEDIUH
- 1	A	C	A	A	D	KEDIUH
j	A	A	A	В	c	SHALL
į	A	A	A	В	ם	BHALL
	A	Α	A	l c	C	MEDIUM
	λ	A	A	∤ c	D	SHALL
i	A	A	A	c	מ	SHALL
i	Α	λ	A	l c	D	SHALL
l	λ	A	B .	8	D	SHALL
Į	λ	A	В	c	D	GHALL
	A	A	В	C	D	SHALL
- 1	Α	λ	C	C	D	SKALL
	B	A	A	В	C	V.SHALL
- }	В	A .	A	В	۵	SHALL
	B	Α	λ	ļ c	D	SHALL
	В	٨	٨	C	D	SHALL
ĺ	В	A	A	c	D	SHALL
J	В	A	A	C	ם	V. SMALL
	В	A	В	B	D	SHALL
ļ	В	A	В	В	D	V.SHALL
	В	A	Ð	c	D	V. SMALL
- 1	В	A	С	C	В	V.SHALL
	В	A	C	C	D	SHALL
ı	B	, A	c	l c	D	V.SHALL
- 1	В	В	A	A	B	HOICH
į	Ð	В	A	c	ם	HEDIUH
Į	8	¢	A	С	ם	V.SMALL
	В	Α	С	l c	D	V.SHALL
ì	c	A	A	С	D	SHALL
1	Ċ	A	В	c	D	SHALL
	č	A	C	c	ם	SMALL
í	Č	A	c	İc	ם	HEDIUH
- }	c	Ĉ	В	В	D	V.SHALL
	c	C	Č	č	D	V.SMALL
1	C	Č	c	č	D	V.SMALL

6. STAGE 2 METHODOLOGY

6.1 Survey procedures

A total of 33 sites (see catchment maps Appendix 1) identified and assessed in stage 1 of the minewaters study were selected for full impact assessment in stage 2 of the study, 20 of these sites were located in SW area, 12 were in SE area, and 1 in the Northern area.

6.1.1 Biological impact assessment

Biological assessments were carried out at each site by taking upstream, immediate downstream and subsequent downstream samples, at short intervals, to a point where the visible effects of iron deposition had ended. sampling point was considered to represent a point of recovery. Biological sampling produced a total of 112 samples from the 33 sites. These samples were obtained using the standard Institute of Freshwater Ecology (IFE) 3 x 1 minute kick sampling methodology and were processed in the laboratory to give a Biological Monitoring Working Party (BMWP) score for each sample. involved identifying invertebrates to family level and then allocating each family a score between 0 and 10 according to its sensitivity to pollution. Those with the greatest sensitivity scored 10. The BMWP score is designed particularly for organic pollution but it is also sensitive to other types. The scores for each taxon were totalled to give the BMWP score which provides a numerical estimate of biological quality. Abundance of invertebrate taxa was also estimated on a logarithmic scale of 1-10, 11-100, 101-1000 and used in determining biological impact (See below).

The River Invertebrate Prediction And Classification System (RIVPACS) is a computer model developed by IFE to predict the invertebrate fauna one would expect to find in a variety of natural river types under pristine water quality conditions. The model requires that data on channel width, mean depth, substrate composition and hardness, are collected for each site. Also, the slope and altitude of the site are calculated from 1:50,000 maps as is the distance from source. A grid reference allows the model to locate the site geographically and, in conjunction with the above data, the package can be used to predict the expected fauna and BMWP score of a site assuming it was in pristine condition. The model uses biological survey data from sites all over the country to achieve these predictions. The ratio of the observed (0) to the expected (E), BMWP scores can be used as an Environmental Quality Index (EQI). See section 10 for further information on the EQI.

The impact of a minewater discharge was considered to be significant when a reduction in BMWP score of \geq 40% occurred between the upstream and immediate downstream sites. Additionally, a reduction in \log_{10} abundance of 4 or more high scoring families (i.e. \geq 6) was used to reflect more subtle changes in species abundance (See Appendix 10C worked example). A combination of these two criteria was used to grade the biological impact as follows:

HIGH IMPACT (A) A reduction in BMWP score \geq 40 % between the upstream and immediate downstream site AND a reduction in \log_{10} abundance between the upstream and downstream sites of 4 or more families scoring \geq 6 on the BMWP system.

MEDIUM IMPACT (B) Either:A reduction in BMWP score ≥40 % between upstream and downstream site;

Or A reduction in log₁₀ abundance between the upstream and downstream site of 4 or more families scoring ≥6 on the BMWP system.

NO IMPACT (C) Neither of the criteria in A or B.

...

Biological data was also used to indicate the area of river bed impacted by a minewater discharge by measuring the surface area of bed affected between the discharge and the first point downstream at which the biological quality (C) was the same or better than upstream of the discharge. The area affected was graded into high (A), medium (B) or low (C) impact categories and the band sizes for each category were the same as applied in the stage 1 ranking for area of river bed affected, viz:-

IMPACT		AREA AFFECTED (m ²)
High	(A)	> 2,500
Medium	(B)	10 - 2,500
Low	(C)	< 10

6.1.2 Fisheries Impact Assessment

Quantitative electrofishing surveys were carried out upstream and immediately downstream of the minewater discharges at 15 sites in SW area and 4 sites in SE area. A number of sites were not electrofished, for a variety of practical reasons. For example, the Tawe tributary (33) and Broughton brook (34) had very low flow upstream of the discharges and were considered to be unsuitable for salmonids. The site at Newbridge on the R. Ebbw (4) was not surveyed because of continuing reclamation of the adjacent colliery site and the recent re-channelisation of the river (see stage 2 results).

HABSCORE is a computer model which predicts the numbers of fry (0+) and parr (>0+) (which are both stages of growth <1 year old) at a site, based upon the physical characteristics of unpolluted sites in Wales (Milner & Wyatt 1991). The model requires field data to be collected which includes; for each 10 m section electrofished, measurements of the channel width, depth and substrate composition (similar to RIVPACS). The stretch is described as riffle, run etc and the bankside vegetation, important to salmonids for cover, is also classified along with land use. The slope, gradient, catchment area, altitude and distance from source are calculated from 1:50,000 maps. The conductivity of the site is recorded in the field using portable meters. HABSCORE was used to quantify the potential of the fishery habitat, called the Habitat Quality Score (HQS) and the Habitat Utilisation Index (HUI) (see Appendix 12).

Fisheries data were assessed according to the method used by the NRA for the Regional Juvenile Salmonid Monitoring Programme (RJSMP) as shown below.

Fish densities for fry (0+) and parr (>0+) (< 1 year old) age groups are divided into five categories as follows:-

ABUNDANCE CATEGORIES (Number per 100 m²) FOR JUVENILE SALMONIDS FOR QUANTITATIVE RUNS

	Fry (0+)	Parr (>0+)
Excellent	>100	>25
Good	50.01-100	15.01-25
Moderate	25.01-50	5.01-15
Poor	0.01-25	0.01-5
Absent	0	0

These abundance categories are then combined to give a classification matrix as follows:-

CLASSIFICATION MATRIX FOR JUVENILE SALMONIDS

		(Fry (0+)						
	Excellent Good Moderate Poor							
0.0								
	Excellent	Α	Α	Α	В	С		
	Cood	Α	Α	В	В	С		
Parr	Moderate	Α	В	В	С	D		
(>0+)	Poor	В	В	С	D	D		
	Absent	С	С	D	D	E		

Reductions in regional juvenile salmonid monitoring programme (RJSMP) class between the upstream and downstream sites were used as a measure of the impact of minewaters on fisheries as follows.

A reduction of 2 classes between u/s and d/s - A (High impact)

A reduction of 1 class between u/s and d/s = B (Medium impact)

No change in class between u/s and d/s - C (No impact)

The HABSCORE indices (HQS and HUI) were also used in the interpretation of significant changes (Appendix 12) and to determine where habitat quality was more limiting than water quality.

6.1.3 Water sampling

All 33 sites were sampled chemically a second time when the biological surveys were carried out, and a third time during the fishery surveys using the same methods and for the same parameters as in stage 1 of the survey (See section 2.3).

6.1.4 Flow gauging

The flow of the minewater discharges were gauged by SE area and SW area hydrology departments using standard flow gauging methods. Results are cited in Appendix 9.

7. STAGE 2 RESULTS

7.1 WATER QUALITY AND FLOW

All the 33 minewater sites selected for full impact assessment were sampled on three occasions in the periods: November 92 - April 93, June 93 and July - October 93 except for Broughton Brook (34) in the North which was sampled on two occasions. Results are tabulated in appendices 5-7. Chemical analysis data is summarised in Appendix 8 and flow measurements for the discharges are summarised in Appendix 9

7.1.1 Temperature

The results for mean temperature indicate that in all cases there was little difference between the discharge and the receiving watercourse. However, the discharge temperatures tended to be fairly constant throughout the year so that during the winter period they were approximately $2^{\circ}C$ higher than the temperature of the receiving water. Small increases in temperature were observed at many downstream sites, though these increases are not considered to be high enough to significantly affect the biota.

7.1.2 Dissolved oxygen

Before they discharge, minewaters can be low in dissolved oxygen due to absorption of oxygen during the oxidation of pyrites below ground. Further rapid oxidation to iron hydroxide which precipitates in the receiving watercourse, also requires oxygen. The results show that at the majority of sites only a small reduction in oxygen concentration occurred downstream of the discharge. The oxygen capacity of the receiving waters was sufficient to meet the oxygen demand of the minewater discharges without the dissolved oxygen falling to levels which could be deleterious to the aquatic biota. A value of 70 % oxygen saturation was considered to be the value below which salmonid fisheries and sensitive invertebrate taxa might start to be affected (Proposed statutory water quality objective).

Sites at which the dissolved oxygen of the receiving water was affected included Broughton Brook (34), in North Wales, where the stream is composed almost entirely of minewater. There was a large reduction in dissolved oxygen downstream of this discharge, to a mean of 36% saturation (Appendix 8). At this level the stream could not support salmonids and the low oxygen saturation would also affect many invertebrate taxa. Moderate reductions in downstream

dissolved oxygen were also noted on the A. Corrwg fechan (18), R. Morlais (30), R. Clyne (31) and the N. Melyn (32).

In a small stream near Saundersfoot (site 75) the minewater caused a substantial reduction in dissolved oxygen from 98.6 % saturation upstream to 39.2 % saturation downstream of the discharge in the spring (Appendix 3). The levels of oxygen at this site were clearly unsatisfactory and would effect the survival of salmonids. However, dissolved oxygen levels at most sites were not significantly reduced and low oxygen below the minewater discharges was generally not a problem.

7.1.3 pH

A low pH is often associated with mine drainage due to the chemical processes occurring underground. Such discharges are also frequently referred to as acid mine drainage. However, the results of sampling ferruginous minewaters in the South and North Wales coalfields demonstrate that most of these discharges were not particularly acidic. Only four of the 33 discharges had a mean pH less than 6. These were the discharges to the Nant Blaenpelenna (25), the Gwenffrwd (26), the R. Cathan (29) and the Tawe tributary (33) (Appendix 8). The discharge to the Gwenffrwd (26) compounds the pH problems of the receiving watercourse which was acidic upstream of the discharge on all sampling occasions (Appendix 6). The absence of salmonids from sites (18) and (26) is a reflection of this impact (Appendix 11). The effects of acid pH were also evidenced by the impoverished macroinvertebrate fauna of sites (18), (25) and (26) both upstream and downstream of the discharges (Appendix 10, 10a).

It is assumed that the majority of minewaters had been neutralised by the limestone which is associated with the South Wales coal measures, especially in the eastern area, before they emerged to the surface. As a result precipitation of iron hydroxide occurred quickly at or near the point of entry to the watercourse. Where pH of the minewater discharge and the receiving watercourse were more acidic the rate of precipitation was slower. This was the case for the N. Blaenpelenna (25) and explains why the visual intensity of deposition increased several hundred metres below the discharge. Part of the reason why such a long stretch of the river is affected is that the iron is taking longer to come out of solution. In the SE area the rivers are near neutral and the discharges are generally less acidic than in SW area. result of this the rate of precipitation of iron was generally faster and the area affected was relatively less but the degree of deposition of iron hydroxide was generally greater near to the discharge.

7.1.4 Iron

The iron content of the minewaters was the most important chemical criterion affecting the downstream water quality of the rivers. The Environmental Quality Standard (EQS) of 2 mg/l total iron was exceeded on at least one sampling occasion at eleven of the highest ranked sites including the R. Sirhowy at Pontllanfraith (6), R. Rhymney at Hengoed (7) N. Craig yr Aber (16), N. Blaenpelena (25) and the R. Morlais (30) where the volumes of minewater are relatively large (Appendix 9). Iron concentrations above 2 mg/l can be harmful to fish and may impact on the fishery (See fishery results and discussion section). The N. Gwynfi (19) and the N. Melyn (32) also failed the EQS for iron on at least one sampling occasion.

High concentrations of total iron were observed downstream of the discharge in the N. Craig yr aber (16) 3.17 mg/l, N. Blaenpelenna (25) 5.81 mg/l, the Gwenffrwd (26) 4.21 mg/l, R. Morlais (30) 16.46 mg/l, R. Clyne (31) 5.37 mg/l, Tawe tributary (33) 3.06 mg/l and Broughton Brook (34) 6.26 mg/l. Alabaster & Lloyd (1980) suggest that for iron hydroxide 'there is no evidence that average concentrations less than 25 mg/l have done any harm to fish or fisheries.' These findings refer to the direct toxicity of iron on fish and not the indirect effects of loss of food organisms or spawning gravels which result from the precipitation of iron hydroxide and which may have an impact upon the status of the fishery. However, Alabaster and Lloyd (1980) note a case whereby iron hydroxide precipitating, from acid solutions containing 3 mg/l iron onto the gills of trout was acutely toxic when pH values rose above 5.5. This suggests that the actual process of iron precipitation is damaging to fish.

7.1.5 Aluminium

The amount of dissolved aluminium, the toxic component, in freshwater is dependant upon the pH of the water. Between pH 5-8 aluminium is least soluble and has a low toxicity to the biota. At many of the sites in this survey the pH values were within this range. When the pH becomes more acidic the amount of dissolved aluminium increases causing a subsequent increase in the toxicity. It was found that aluminium did not exceed the EQS of 1 mg/l at pH 6 - 8 at any of the sites receiving full impact assessment. The discharge to the Gwenffrwd (26) contained 0.969 mg/l dissolved aluminium on one sampling occasion but downstream the concentration was 0.031 mg/l at pH 6.4 which is within the EQS for aluminium.

Garwed Brook, (60) which is a tributary of the R. Neath, received a minewater discharge which contained 22.38 mg/l of dissolved aluminium and had a pH of 3.07. The high aluminium concentration of this discharge is compounded by the receiving watercourse also being acidic (pH 5.73) and downstream of the discharge the dissolved aluminium concentration considerably exceeded the EQS (6.9 mg/l at a pH of 3.59). However, the site was not ranked highly on the other criteria (physical/visual) in stage 1 and so was not surveyed in stage 2.

7.1.6 Suspended solids

Suspended solids at concentrations of less than 25 mg/l are considered to have no direct impact upon freshwater fisheries (Alabaster & Lloyd, 1980). concentrations of suspended solids (SS) downstream of most minewater discharges generally remained well below 25 mg/l. In the range of 25-80 mg/l SS Alabaster and Lloyd (1980) suggest sites should support moderate or good fisheries. all of the sites included in the impact assessments, the maximum concentrations of suspended solids did not exceed the above concentrations downstream of the discharge eg. R. Corrwg (21) 28 mg/l, Nant y fedw (28) 35 mg/l, R. Morlais (30) 74 mg/l, R. Clyne (31) 50 mg/l and the Tawe tributary (33) 34 mg/l. It is important to note that increases in the level of suspended solids, over a short distance below a discharge, were not unusual due to the precipitation of iron hydroxide. During high flow events scouring of the ochreous deposits from the river bed may result in much higher suspended solid concentrations occurring in the areas of ferruginous deposition, but these have not been measured. High suspended solid concentrations during rainfall events are in any case a 'natural' phenomenon and fish and invertebrates are generally well adapted to cope with them.

7.1.7 Sulphate and Alkalinity

Sulphate and Alkalinity were measured to enable a better understanding of the hydrogeology of the coalfield and the quality of the minewater discharges. They are however not particularly relevant to the biology or fisheries components of this study.

Mine drainage may contain high concentrations of sulphates due to the oxidation of pyrites. In 32 of the 33 sites sampled, on more than one occasion it was found that downstream sulphate concentrations were increased, often by as much as several hundred percent.

7.1.8 Flows

Minewater discharges were flow gauged to provide information on the volume of minewater entering a watercourse. A minewater discharge large in volume may, for example, enter a small stream and cause significant ecological impact. However, the discharge may be important to the baseline flow of that stream. Flow gauging of the discharges provided information useful for explanation of ecological impact but was also important to the understanding of the hydrogeology of the system.

7.2 BIOLOGICAL IMPACTS

In this section, the biological impact assessments are reviewed and compared with the results of chemical analysis carried out in stage 2. Details on criteria for assigning the level of impact are given in sections 6.1.1 and 8.0. Biological assessments are listed in Appendix 10.

7.2.1 Discharges having a high biological impact

A high (A) biological impact was shown at 10 sites, which included the 3 most significant discharges to classified waters and the top 2 discharges to unclassified waters, as ranked at the end of stage 1 (Tables 3.1 and 3.2). This indicates a correlation between physical/chemical impact (stage 1) and actual biological impact as demonstated in stage 2. Of the top 10 sites showing a high biological impact, 7 are located in S.W area and 3 are located in S.E area.

The site at which the greatest environmental impact occurred was below the discharge from Morlais colliery, Llangennech, Llanelli. This discharge drains minewater from the old Brynlliw colliery and discharges to the R. Morlais near to the confluence with the R. Loughor. The site is near to the tidal limit of the Loughor estuary. A riffle site was sampled downstream of the discharge but further downstream sampling was not possible because of the physical changes in substrate at the tidal limit. However, the 82 % reduction in BMWP score between the upstream and immediate downstream site was highly significant and the minewater was having a dramatic impact upon the invertebrate fauna. The number of taxa scoring ≥ 6 (i.e. those taxa scoring 6 or more in the BMWP score, see Appendix 10B) fell from 9 at the upstream site to 1 at the downstream site. The degree of deposition of iron hydroxide at the site was very high and the

downstream iron concentration (max. 26.42 mg/l) was the highest of the 33 sites studied and well in excess of the environmental quality standard (EQS) for total iron. Such a high iron loading had a highly deleterious impact upon the invertebrate fauna causing a complete loss of 14 families and a reduction of 3 families at the site immediately downstream of the discharge. These losses scoring Heptageniidae, Chloroperlidae, included high Sericostomatidae, Goeridae and Rhyacophilidae. Other families, Gammaridae, Hydroptilidae, Hydropsychidae, Tipulidae, Simuliidae, Planariidae, Hydrobiidae and Baetidae also suffered loss. The ferruginous deposits impacted upon a wide range of families some of which are recognised as tolerant of other forms of pollution (eg. sewage).

Although the Nant Craig yr Aber (16) and Y Ffrwd (12) receive discharges in afforested stretches of their catchments, the 0:E RIVPACS ratio (the EQI) for the control site on the Y ffrwd was 0.99 and for the N. Craig yr Aber 0.8 which indicated that the upstream biological quality was close to the optimum for these sites. The upstream site on the N. Gwynfi (19), however had an RIVPACS EQI of 0.59 which is significantly poorer and suggests that the upstream water quality of this site is not pristine. The cause of this poor upstream quality is not evident but it may be due to the smaller diffuse sources of iron which occur upstream in the catchment. However, there were no visible affects of iron at the upstream site during site visits. Although in an afforested section of the catchment acidification of this watercourse was not evident from the water quality data, pH values being near neutral. The values for iron and aluminium at the upstream site were also below the EQS's.

At sites (16 and 19) the area of river bed biologically impacted was high and downstream water quality was poor with the mean iron concentration exceeding the EQS of 2 mg/l at site 16 (3.17 mg/l). On one occasion the EQS for iron was also exceeded at site 19 (Appendix 6). In the N. Craig yr Aber (16) 10 families were lost below the discharge and there was a reduction in abundance of 3 families. A reduction in the abundance of Chironomidae at this site was particularly unusual as this family is considered to be less sensitive to many types of pollution than most other invertebrate families. At site 19 a reduction in Oligochaeta and Chironomidae was also noted. Reductions in the abundance of the stonefly Leuctridae were observed and Sericostomatidae were lost from both sites below the discharges.

In the Y Ffrwd (12), a tributary of the R. Clydach, 8 taxa were lost downstream of the discharge and a reduction in BMWP score of 62 % was observed. The EQS for total iron was not exceeded downstream of the discharge on any sampling occasion.

The major discharges to the Gwenffrwd (26) and the Nant Blaenpelenna (25) caused a high biological impact over a large area of river bed. discharges were ranked numbers 3 and 1 respectively in stage 1 of the study. Both are in upland areas with substantial afforestation. On the Nant Blaenpelenna (25) 10 families were found at the upstream site giving a BMWP score of 58. Only Leuctridae and Chloroperlidae represented those families scoring 10 and taxa scoring a range of BMWP scores made up the rest of the fauna. A reduction in diversity at the downstream site to just 4 families resulted in a significant reduction (69%) in BMWP score. The RIVPACS EQI values for the upstream samples at both sites were indicative of poor water quality (being 0.62 for the N. Blaenpelenna (25) and 0.53 for the Gwenffrwd (26)). The mean pH of both discharges was < 6 but as the pH of the receiving watercourses was already acidic (<7 in the Gwenffrwd on all 3 sampling occasions and < 7 on one occasion in the N. Blaenpelenna at the upstream site) the impoverished fauna at the upstream sites was probably attributable to episodes of low pH.

The discharges to the Gwenffrwd (26) had a similar effect on the biota. A total of 10 families at the upstream site were reduced to 5 families downstream of the discharges. At both site 25 and 26 the low pH of the receiving watercourse meant that the rate of precipitation of iron from solution was delayed and, in conjunction with the high loading of iron in the discharge, explains why such extensive lengths of river were visually impacted.

The discharges to the Tawe tributary (33) and the R. Clyne tributary (31) are to headwater streams with narrow channels and small flows. The impact of minewater discharges on these streams was high due to the heavy deposition of ferruginous precipitates. Further downstream the impact remained high and the area impacted was substantial even though channel width was relatively small. The Tawe tributary (33) saw a loss of 9 taxa below the discharge and a 75 % reduction in BMWP score. No \geq 6 scorers were found at the first downstream site. The R. Clyne tributary (31) supported 17 families upstream of the discharge but this was reduced to only 4 families at the site immediately downstream of the discharge. However, recovery occurred at the subsequent downstream site, 1.2 km below the discharge, where 18 families were present.

The discharge to the R. Llwyd at Pontnewydd (2) also had a high biological impact. Here the RIVPACS EQI of 0.88 suggests that the invertebrate fauna had not been degraded significantly at the upstream site. The high biological impact occurred over a medium area and was demonstrated by a 45 % reduction in

BMWP score between the upstream and immediate downstream sites together with a loss of 5 families scoring 6 or more. The families lost included the high scoring Perlodidae, Leuctridae and Caenidae; additionally reductions in abundance of Gammaridae and Chironomidae were observed at the downstream site.

The discharge to the R. Llwyd (10) at Blaenavon had a high impact with a 98 % reduction in BMWP score downstream of the discharge. A total of 23 taxa were lost below the discharge and the diversity of the upstream site was not realised at subsequent downstream sites.

7.2.2 Discharges having a medium biological impact

A total of 13 discharges were found to cause a medium biological impact and of these, 8 discharges caused a medium impact over a large area (Table 5). At some sites upstream biological quality was relatively poor, as indicated by the RIVPACS EQI, and difficulty was experienced in assessing the true impact of the ferruginous discharges.

The discharges to the A. Corrwg (17) and A. Corrwg fechan (18) had volumes of 0.0249 cumecs and 0.0051 cumecs respectively (Appendix 9). They are similar in that they discharge to their respective watercourses on different sides of the same hill, and at a similar altitude. This suggests that these discharges, which arise from old mines, may be hydrogeologically linked.

The RIVPACS EQI values for the upstream sites on the A. Corrwg (17) of 0.44 and the A. Corrwg Fechan (18) of 0.38 were significantly less than 0.7 and suggest that an impoverished fauna exists at the upstream sites. This may be a result of poor upstream water quality, though the limited water quality data do not indicate there are problems. However, despite the poor upstream quality the impact of the minewater discharges at both sites was still significant and 52 % and 69 % reductions in BMWP scores were recorded at sites 17 and 18 respectively. These impacts resulted in the downstream sections of these watercourses having very limited macroinvertebrate faunas. For example on the A. Corrwg (17) 10 taxa were observed at the upstream site whilst at the first downstream site only 5 taxa remained. Downstream of the discharge to the A. (Baetidae and Polycentropidae). fechan (18)2 taxa remained Polycentropidae was also found downstream of the discharge to the A. Corrwg (17) which suggests this family of caddis is relatively tolerant of ferruginous pollution.

The discharge to the R. Cathan (29), a tributary of the R. Loughor, had a dramatic aesthetic impact on the river down as far as the confluence with the R. Loughor, below which impact was minimal. The pH of the discharge was found to be < 6 on each sampling occasion but at the downstream site the receiving watercourse remained near neutral. Aluminium was not a problem in the discharge, whilst iron was found on one sampling occasion to be just below the EQS at 1.9 mg/l (mean of 1.63 mg/l). The discharge had a medium biological impact based upon the reduction in abundance of high scorers; the reduction in BMWP score was not significant at 12 %.

The discharges to the R. Ebbw (4), R. Sirhowy (5), R. Sirhowy (6) and the R. Rhymney (7) are considered as a group because they are believed to be hydrogeologically linked to the same mining system. The discharge to the R. Rhymney (7) at Hengoed has been the subject of recent litigation against British Coal. The most recent discharge to the R. Sirhowy (5) at Blackwood was first observed in November 1992 and its close proximity to the R. Sirhowy (6) discharge at Pontllanfraith, which is 2 kilometres downstream, suggests it may also be hydrogeologically linked to the aforementioned minewaters.

All 4 discharges were shown to have a medium biological impact upon the receiving water but the area biologically impacted was high. These minewater discharges are large (see appendix 9) particularly those to the R. Rhymney (7), and the resulting deposition of iron over large areas of riverbed cause substantial aesthetic impacts.

The discharge to the R. Ebbw at Newbridge (4) arises from the old North Celynon mine at the site where three shafts were sunk. During 1993 reclamation of the colliery site has caused major changes to the river channel which have affected the biota. Firstly the river was rechannelised from a culverted to an open section and secondly capping of the shafts changed the point of entry of minewater to the river. All minewater now discharges from two adjacent culverts on the left bank. General water quality in this area is poor and sewage litter was recorded at the site on each sampling occasion. The RIVPACS EQI (0.49) for the upstream site indicates the paucity of the upstream fauna due to the poor water quality. Nevertheless despite the problems with upstream water quality due to storm sewage discharges the minewater caused a medium biological impact at this site due to the reductions in the abundance of sensitive invertebrate taxa. pH, aluminium and iron concentrations were all within the recommended EQS limits indicating again that the impact was due to the deposition of ferruginous precipitates.

A total of 4 taxa were lost downstream of the discharge to the R. Sirhowy at Blackwood (5) and at Pontllanfraith (6) 3 taxa were lost, resulting in reductions in BMWP score of 24 and 27 % respectively. At site 6 the upstream RIVPACS EQI of 0.61 suggests that an impoverished invertebrate population existed upstream of the minewater due to poor water quality. Again, evidence of pollution, in the form of sewage litter, was prevalent at this site. Still, despite other pollution problems the area impacted biologically was high at both sites indicating that the minewater discharges cause an additional effect over a large area. The EQS for iron was exceeded on one sampling occasion at site 6 when it reached 3.5 mg/l at the downstream site.

The R. Rhymney (7) at Hengoed also suffers from water quality problems associated with storm sewage and the RIVPACS EQI of 0.64 indicates the degree of impact on the upstream fauna. However, the ochre, deposited over up to 3 kilometres of the R. Rhymney, impacted on the biota over a very large area. Iron failed the EQS at the downstream site when it reached 2 mg/l on one occasion. The mayfly family Heptageniidae were lost at the first downstream site and were reduced in abundance at subsequent downstream sites. Other normally less sensitive families such as Hydroptilidae, Gammaridae, Dytiscidae, Elminthidae and Erpobdellidae were also lost at the first downstream site.

The discharge to the R. Llwyd at Pontypool (3) had a medium biological impact causing a reduction in the abundance of high scoring taxa. The RIVPACS EQI of 0.82 suggests that the Llwyd upstream was not significantly polluted. However, the minewater discharge is also close to a storm sewer overflow which discharges frequently just upstream and may be exacerbating the impact of the minewater on the invertebrate fauna.

At five sites discharges were having a medium biological impact over a medium sized area (B and B respectively). These included minewater from old levels entering the R. Llynfi tributary (15) which impacted on a stream of excellent biological quality where the upstream BMWP score was higher than the predicted (EQI >1.0). The discharge caused a 35 % reduction in score between upstream and immediate downstream sites, which, although not considered significant was an appreciable reduction in biological quality.

The R. Clydach tributary (11) is a similar stream to the R. Llynfi tributary discussed above. The minewater discharge to this stream had a medium impact on the invertebrate fauna causing a significant reduction in the abundance of high scoring taxa. The reduction in BMWP score of 38 %, although again not quite

significant, was substantial and indicated that the discharge was affecting the stream invertebrates. The loss of Heptageniidae, Perlodidae, Sericostomatidae, Philopotamidae and Tipulidae together with reductions in the abundance of Leuctridae, Rhyacophilidae, Baetidae and Oligochaeta illustrate the range of taxa affected.

The discharge to the N. Blaenpelenna (24) from middle mine has a medium biological impact upon the Blaenpelenna with a 46 % reduction in BMWP score downstream of the discharge and a loss of 4 taxa.

The one site surveyed in the North Wales coalfield concerned a discharge to Broughton Brook where the minewater was up to 10 times greater in volume than the flow of the receiving stream. The effects of this were a very high deposition of iron hydroxide downstream of the discharge and a 67 % reduction in BMWP score between the upstream and immediate downstream sites. A wide range of taxa were affected including the loss of Sericostomatidae, Tipulidae, Simuliidae, Asellidae, Hydrobiidae and Lymnaeidae plus reductions in Oligochaeta and Chironomidae below the discharge.

7.2.3 Discharges having no biological impact

Discharges to a total of 9 sites were shown to have no biological impact. The degree of aesthetic impact to the R. Afan (20), the N. Cregan tributary (27), Nant y Fedw (28) and the N. Melyn (32) suggested that the biological impact would not be significant and this was confirmed by the biological data.

The discharges to the R. Rhondda (13) and to the A. Corrwg WDA site (21) which are relatively large watercourses, did not have as significant an aesthetic impact as for example, the discharge to the R. Rhymney (7). Significant biological impacts were not demonstrable at either site as shown by only a 3 % reduction in BMWP scores between the upstream and immediate downstream site on the A. Corrwg (21). The discharge to the R. Rhondda was at a point where sewage litter was evident and the RIVPACS EQI of 0.48 suggests that the upstream fauna was affected by poor water quality, probably as a result of storm sewer overflow discharges. However, the reduction in BMWP score of 30 % between the upstream and downstream site suggests that the minewater was affecting the invertebrate fauna.

Minewater discharging to a small tributary of the R. Dare (9) had no demonstrable biological impact on the receiving watercourse, the 21 % reduction in BMWP score below the discharge and the loss of 3 taxa not being significant.

The minewater discharges to the Ffrwd Wyllt (23) at Goytre and at Bryn (22) had no biological impact as shown by the minimal reduction in BMWP scores between the upstream and downstream sites of 7 % and 2 % respectively.

7.2.4 BIOLOGICAL SENSITIVITY TO MINEWATERS

A more detailed examination of the susceptibility of invertebrates to iron deposition follows:

Across the region a total of 12 taxa were apparently eliminated from the immediate downstream sites by iron hydroxide deposition. They included the mayfly Leptophlebiidae which was lost from only one site, downstream of the discharge to the R. Clyne (31). Its occurrence at only one site is an indication of its rarity in rivers within the coalfield area. Cased caddis larvae of the taxa Goeridae, Odontoceridae and Lepidostomatidae, which are all high scorers in the BMWP index, were absent below a number of discharges. The blanketing effect of iron hydroxide on the substrate may have a threefold effect on cased caddis larvae. Firstly by physically reducing available habitat, secondly by reducing the availability of materials for case building and thirdly by affecting the availability of suitable food. Helodidae and Dryopidae, which score 5 in the BMWP system, were also absent at 100 % of the immediate downstream sites. The lower scoring taxa which were impacted 100 % by minewaters included members of the Gastropoda. viz. Lymnaeidae and Planorbiidae which are likely to be affected by the loss of epilithon (algal layer on substrate) on which these gastropods graze. Sphaeriidae (bivalve) which was lost at 100 % of sites, is a filter feeder and precipitation of iron hydroxide may interfere with this process. In the BMWP scoring system these taxa receive a low score because they show a degree of tolerance to organic Minewater discharges do not organically enrich the receiving watercourse and the blanketing of substrate by iron hydroxide explains why these taxa were absent below discharges.

Where taxa were present at a reasonable number of upstream sites (ie. >5) they were considered to be ubiquitous in the rivers surveyed and complete loss and/or reductions in abundance of these taxa suggests they are particularly sensitive to ferruginous minewaters. On this basis the following taxa are deemed to be sensitive to minewater discharges; Perlodidae, Chloroperlidae, Sericostomatidae, Cordulegasteridae, Philopotamidae, Limnephilidae, Hydroptilidae, Dytiscidae, Hydrobiidae and Erpobdellidae (Appendix 10A). These

taxa score at all levels in the BMWP index (Appendix 10B) suggesting that the blanketing and binding of substrate by iron hydroxide is highly deleterious to a wide range of invertebrate taxa.

The above taxa could be used as indicators of the impact of ferruginous minewaters either in addition to the BMWP scoring system or as an alternative.

7.3 FISHERIES IMPACT

Quantitative electrofishing surveys were carried out at 19 sites. The aim of the surveys was to identify impacts, if any, on the fishery status of sites receiving minewater discharges.

The upstream fishery quality of the majority of sites was moderate (C) to poor (D). However, at the following sites populations were excellent (A) or good (B):- The Llynfi tributary (15) (A), R. Cathan (29) (B), N. Melyn (32) (B) and the R. Llwyd at Abersychan (1) (B) (Appendix 11). The Llynfi tributary is a small stream with good gravels and the large numbers of fry caught result in the excellent classification. The sites classified as good by the RJSMP classification support moderate to good populations of fry and parr. For the three above sites the good classification was due to the numbers of parr as none of these sites supported large numbers of fry.

The generally moderate to poor fishery quality of many of the receiving waters suggests either that the habitats are unsuitable for salmonid populations or that upstream water quality may be limiting the success of salmonids. These points are considered later.

The R. Clydach tributary (11), N. Craig yr aber (16), A. Corrwg (17), A. Corrwg (21), Ffrwd Wyllt (23), A. Morlais (30) and the R. Clyne (31) all had moderate upstream quality fisheries. These sites, with the exception of site 11 in S.E area, are all located in S.W area. They are located throughout the coalfield and represent all river types from small tributaries to main river channels and from headwaters to site 30 which is near an estuarine confluence.

No fish were caught on the Gwenffrwd (26), in the Pelenna catchment, either upstream or downstream of the discharge. The low pH observed upstream and downstream of the minewater discharge is believed to be detrimental to salmonids, contributing to their absence at this site. No fish were caught at

site (18) on the R. Corrwg Fechan which is also in an upland afforested area. There is also a long steep culverted section downstream which may inhibit fish movement up to this site, but this does not readily explain the absence of the non migratory salmonids.

At 11 sites there was no reduction in RJSMP class due to the minewater discharges. Of these 11, 8 sites showed no change in class and 3 sites had better fish populations downstream of the discharges than upstream. These included two sites where no fish were caught either upstream or downstream (no change), sites where more fish were caught downstream than up and sites where the upstream water quality was poor. In this last type poor upstream quality may mask the true effects of the minewaters on the fish populations of the receiving watercourses (Appendix 11).

Reductions of 2 RJSMP classes were observed below discharges at three sites. The discharges to the R. Llynfi (15) affected this nursery stream by impacting on the excellent upstream fry population. The reduction of 2 RJSMP classes indicated high (A) fisheries impact. A reduction of the status of the juvenile salmonid population was noted downstream of the discharge to the N. Melyn (32) where no fry (0+) were caught. Downstream of the discharge to the R. Morlais (30) no fish were caught indicating the severity of the impact of this discharge on juvenile salmonids.

Reductions of 1 RJSMP class, from good (B) to moderate (C) were noted below the discharges to the R. Llwyd at Abersychan (1) and the R. Cathan (29). These moderate changes in class indicate the degree of impact below these discharges where the suitability of habitat is reduced by the blanketing of the substrate by iron hydroxide.

The RJSMP class of the N. Craig yr Aber (16), A. Corrwg (17) and the A. Corrwg at the WDA site (21) was reduced by 1 from moderate (C) to poor (D) between the upstream and downstream sites again indicating the deleterious nature of ferruginous minewater.

The numbers of fish at any one site are dependent upon a range of complex factors which include water quality, the availability of food and the suitability of the habitat. Habscore, a computer model for predicting the suitability of a site for salmonids, was applied to 17 of the 19 sites electrofished to assess their suitability and to predict the salmonid populations which the habitat should support.

The Habscore model requires the measurement of physical, natural features in the field. Habscore can be used to produce a Habitat Utilisation Index (HUI) for fry (0+) and parr (>0+) trout. HUI compares observed and expected densities and is a measure of the extent to which the habitat is utilised by salmonids: a value of 0 occurs when the observed density is equal to the expected density and negative values indicate underutilisation. HUI's were calculated for all upstream and downstream sites (appendix 12) and all were negative, at both upstream and downstream sites, which indicated an under utilisation of habitat by salmonids at all sites surveyed.

The HUI's correlated well with the RJSMP classifications and indicated that at many upstream sites, a perturbed fishery exists, ie. poor to moderate (appendix 12). They also showed that, at sites where an excellent or good fishery existed, the quality of the fish populations could be even better. Furthermore, in many cases the reduction in the downstream RJSMP class of the fishery, due to a minewater discharge, is indicative of additional detrimental impact on the fishery which, according to the HUI, may already be under utilised by salmonids.

Habscore can also be used to produce a Habitat Quality Score (HQS%) which, on a percentage scale, is the approximate proportion of Welsh sites which have a worse habitat than that observed at this site. A value of 50 therefore represents a median habitat quality for Welsh streams, and a value of 5, for example, represents a poor quality below which only 5 % of sites in Wales are worse (Milner & Wyatt 1991).

The HQS values (Appendix 12) show that some sites had low to median quality habitats, upstream and downstream of the discharge, including the R. Sirhowy (6), R. Rhymney (7). The R. Llwyd (1) had low to medium quality downstream for parr. This indicates that, despite under utilisation of the above sites, the relatively poor quality of the habitat explains in part the low numbers of fish caught.

The HQS values for site 30 on the R. Morlais show a severe reduction in habitat quality downstream of the discharge. The site is close to the Morlais / Loughor confluence and is near the tidal limit. The highly silty downstream site was poor compared with the upstream site, which comprised shallow riffles, and no fish were caught there. The high impact (A) assigned to the discharge, due to a reduction in 2 classes of RJSMP, suggests the minewater is having a high impact on the fishery. However, the location of the downstream site near

the tidal limit and its unsuitability for salmonids is likely to be a strong contributing factor. Also the impact of this large discharge may deter migratory salmonids entering the watercourse from the estuary.

Sites on the R. Clydach tributary (11), A. Corrwg Fechan (18), N. Gwynfi (19), Ffrwd wyllt (23), Gwenffrwd (26), N. Cregan tributary (27), and the Nant y Fedw (28), (which are in the Taff-Clydach the Afan and Pelenna catchments), all had very high quality habitats, both upstream and downstream of the discharge (HQS values >90 %). However the HUI's, for all these sites indicate reduced trout densities upstream and, as a result, there was no discernible impact of the minewaters on already poor fish populations, and they scored a C for fisheries impact.

The remaining sites, on the R. Llynfi tributary (15), N. Craig yr aber (16), R. Corrwg (17), R. Corrwg (21), R. Cathan (29) and N. Melyn (32), (which are in the Ogmore, Cynffig, Afan and Loughor catchments), also had high quality habitats, but the discharges to these sites caused high to medium fisheries impacts. Increased HUI values between sites upstream and downstream of these discharges supports the evidence of reduced fish populations by suggesting greater under utilisation of habitat. At sites 15, 16, 17, 29 and 32 the minewaters were the sole known source of pollution, as the streams were not affected by other sources such as storm sewage overflows. However site 21 on the R. Corrwg is affected by storm sewage overflows and the fisheries impact may not be solely attributable to the minewater.

This study has demonstrated the scale and impact of ferruginous minewater discharges in Wales. A significant length and area of river bed are affected by ferruginous discharges. The impacts vary from largely visual to detrimental to fisheries and / or the aquatic fauna. The degree of impact on the ecology is largely related to the degree of depostion of iron hydroxide, which in turn is dependant on the quality of the minewater discharge and the receiving watercourse.

A list of the most environmentally damaging discharges has been drawn up and their impacts ranked according to the water quality, biological and fisheries data collected. A number of these discharges will be selected for the next phase of the study which will scope the remedial options for reducing or removing the impacts of these discharges.

8. RANKING METHOD FOR STAGE 2 DATA

A ranking method to provide an overall assessment of the impact of the 33 minewaters on the biological and fisheries quality of the receiving waters has been developed.

Briefly, the method is based on three components: (1) a measurable biological impact between the upstream and immediate downstream site; this is the most important component; 2) the area of river bed biologically affected; and 3) the third component is based on fisheries impact (See Section 6.1.1 and 6.1.2). Sites have been ranked against each of the three components in turn as high (A), medium (B) or low / no impact (C) according to the rules in 6.1.1 and 6.1.2.

9. RESULTS OF STAGE 2 RANKING

The results of the stage 2 ranking (prior to override) are given in Table 4. Sites were evenly distributed between the selected bands of impact, the most dramatically impacted sites were ranked at the top of Table 4. However, it was felt that a number of sites which were ranked as having a significant physical / water quality impact in stage 1 of the study but did not have measurable biological or fisheries impacts in stage 2 because of poor upstream biological quality, were erroneously placed (eg. site 1 R. Llwyd at Abersychan, see Table 4). This led to the development of an adjustment / override to take into account those minewater discharges which had an obvious impact in stage 1 but not in stage 2 of the survey.

- 9.1 Some points about the ranked minewaters: Tables 4 and 5
- Those sites where fisheries surveys were not carried out are denoted by a dashed line.
- 2. The table also includes the ranking position of the minewaters as they appeared at the end of stage 1 and the final column denotes whether they discharge to Classified (C) or Unclassified (U) stretches of river.

TABLE 4. STAGE 2 RANKING RESULTS

			STAGE 2	IMPACT CRI	STAGE	STAGE		
				AREA		1		
RANK	SITE		BIOLOGY	BIOL.	FISHERIES	ORIG.	CLASS	
				IMPACTED		RANK		
1	30	A. Morlais	Α	Α	Α	2	С	
2	16	N. Craig yr Aber	Α	Α	В	6	С	
3	19	N. Gwynfi	Α	Α	С	10	С	
4	25	N. Blaenpelenna	Α	Α	С	1	С	
5	26	Gwenffrwd	A	Α	С	3	С	
6	10	R. Llwyd Blaenavon	Α	Α		19	С	
7	33	Tawe Trib.	A	Α	••	2	ប	
8	31	R. Clyne	A	В	С	1	U	
9	2	R. Llwyd Pontnewydd	A	В	3.8	13	С	
10	12	Y Ffrwd Clydach trib	Α	В	• •	4	U	
11	17	A. Corrwg	В	Α	В	10	U	
12	29	R. Cathan	В	Α	В	3	υ	
13	18	A. Corrwg Fechan	В	Α	С	8	U	
14	6	R. Sirhowy Pontlanf	В	Α	С	15	С	
15	7	R. Rhymney Hengoed	В	Α ·	С	9	С	
16	4	R. Ebbw Newbridge	В	Α		11	С	
17	5	R. Sirhowy B'Wood	В	Α		4	С	
18	3	R. Llwyd Pontypool	В	Α		. 14	С	
19	15	Llynfi Trib	В	В	Α	5	U	
20	11	R. Clydach Trib.	В	В	С	9	U	
21	24	N. Blaenpelenna	В	В			• •	
22	34	Broughton Brook	В	В	G-9	17	С	
23	32	Nant Melyn	С	С	Α	19	ប	
24	1	R. Llwyd Abersychan	С	С	В	7	С	
25	21	A. Corrwg W.D.A Site	C	С	В	12	С	
26	23	Ffrwd Wyllt Goytre	С	С	С	8	С	
27	27	Trib. of Nant Cregan	C	С	С	27	U	
28	28	Nant y Fedw	С	С	С	14	u	
29	9	R. Dare trib.	С	С	194	18	С	
30	13	R. Rhondda	c	С	1144	16	С	
31	20	R. Afan	C	c		25	С	
32	22	Ffrwd Wyllt Bryn	C	С		20	С	
3 3	14	Ogwr Fach		upstream fl	ow so not	ranked.		
	•	J		•				

10. OVERRIDE FOR STAGE 2 RANKING

The override system mentioned above was developed as follows. The RIVPACS system can be used to predict optimum BMWP scores for the upstream 'control' sites as if they were unaffected by other sources of pollution. Using the predicted BMWP score an Environmental Quality Index (EQI) can be calculated from the observed: expected, (0:E), BMWP score ratio, which gives a measure of the actual biological quality of the receiving water relative to its potential quality. Although there is no absolute value of the EQI which is recognised as indicating a poorer observed biological quality than that predicted by RIVPACS, an EQI of < 0.7 is generally considered to be significant. Values of EQI substantially < 0.7 would certainly suggest the observed fauna was being affected by poor water quality.

The EQI values calculated for each of the 32 discharges have been used to override the stage 2 ranking using the following rule. Sites which were ranked in the top 15 in the stage 1 ranking and which had no measurable biological impact (ie. scored C) in stage 2, but which had an upstream EQI value of < 0.7, have been reranked on the assumption that there would have been a moderate biological impact had the upstream quality been better. Such sites have been given a subjective (B,B) for biological impact and biological area affected. This rule has been applied and has resulted in one site (1), the R. Llwyd at Abersychan, being reranked upwards in the table to number 20. (See Table 5)

TABLE 5 STAGE 2 RANKING RESULTS USING OVERRIDE

TABLE	OF R	ANKED MINEWATERS	STAGE 2	2 IMPACT AREA	CRITERIA	STAGE		บ/ร
RANK	SITE		BIOLOGY	BIOL.	FISHERIES	=	CLASS	RIVPAC
KANK	3116	•	BIOLOGI	IMPACTE		RANK	OLINO	EQI
				111110161	•			
1	30	A. Morlais	Α	Α	Α	2	С	0.78
2	1.6	N. Craig yr Aber	Α	Α	В	6	С	8.0
3	19	N. Gwynfi	Α	Α	С	10	С	0.59
4	25	N. Blaenpelenna	Α	Α	С	1	С	0.62
5	26	Gwenffrwd	Α	Α	С	3	С	0.53
6	10	R. Llwyd Blaenavon	Α	Α	4.	19	С	1.33
7	33	Tawe Trib.	Α	Α		2	U	0.98
8	31	R. Clyne	Α	В	С	1	ប	88.0
9	2	R. Llwyd Pontnewydd	Α	В		13	С	0.86
10	12	Y Ffrwd Clydach trib	Α	В	169	4	U	0.99
11	17	A. Corrwg	В	Α	В	10	U	0.44
12	29	R. Cathan	В	Α	В	3	U	0.91
13	18	A. Corrwg Fechan	В	Α	С	8	U	0.38
14	6	R. Sirhowy Pontlanf	В	Α	С	15	С	0.61
15	7	R. Rhymney Hengoed	В	Α	С	9	С	0.64
16	4	R. Ebbw Newbridge	В	Α	4.4	11	С	0.49
17	5	R. Sirhowy B'Wood	В	Α	3.5	4	С	0.77
18	3	R. Llwyd Pontypool	В	Α	9.5	14	С	0.82
19	15	Llynfi Trib	В	В	Α	5	. U	1.06
20	1	R. Llwyd Abersychan	[B]	[B]	В	7	С	0.69
21	11	R. Clydach Trib.	В	В	С	9	U	0.84
22	24	N. Blaenpelenna	В	В		••	-4	0.54
23	34	Broughton Brook	В	В		17	Ç	0.31
24	32	Nant Melyn	С	С	Α	19	U	0.79
25	21	A. Corrwg W.D.A Site	. C	С	В	12	С	0.81
26	23	Ffrwd Wyllt Goytre	С	С	С	8	С	1.15
27	27	Trib. of Nant Cregar	n C	С	С	27	Ü	1.33
28	28	Nant y Fedw	С	С	С	14	U	1.22
29	9	R. Dare trib.	С	С	••	18	C	1.10
30	13	R. Rhondda	С	С		16	С	0.48
31	20	R. Afan	С	c	123	2 5	С	0.86
32	22	Ffrwd Wyllt Bryn	С	С	**	20	С	1.31
33	14	Ogwr Fach	No i	ирястеат	flow so not	ranke	ed.	

^[] ranked according to override rules based on RIVPACS - EQI.

11. DISCUSSION

Ninety ferruginous discharges located in the coal measure areas of Wales affect a total length of 59.4 km of river and 220.3 10^3 m² of riverbed. At present 25% of classified river stretches in South Wales fail to meet their long term water quality objectives. A proportion of these stretches are affected by ferruginous minewater discharges together with other sources of pollution such as storm sewage. Ferruginous discharges are therefore an important factor in the NRA's urbanised river recovery programme and as other sources of pollution are removed, will become the limiting factor.

The majority of minewater discharges were not highly acidic and did not significantly affect the pH of the receiving watercourse. However, problems of low pH were noted at some upstream sites and acidic discharges to these streams did exacerbate the pH problems downstream. The potential toxic effects of dissolved aluminium in the discharges were generally not realised as the pH of most receiving watercourses was in the range of 6-8, at which aluminium is not toxic. Suspended solids concentrations downstream of the discharges were not at levels harmful to the biota.

The single most important chemical component of the discharges impacting on the fauna was iron, as deposition of ferric hydroxide onto the substrate has a highly deleterious impact. The Environmental Quality Standard (EQS) of 2 mg/l total iron was exceeded on at least one sampling occasion for 11 of the 33 sites selected for impact assessment in stage 2. Downstream of the discharge to the R. Morlais (30) the maximum concentration of iron was 26.42 mg/l, far in excess of the EQS. Failure of the EQS for iron has implications for the NRA's ability to meet long term statutory water quality objectives and hinders the long term improvement of water quality of a number of rivers in South Wales.

The deposition of iron hydroxide on the substratum smothers epilithic algae (ie. algae which grows on the substrate), reduces plant growth, infiltrates the substrate interstices and results in a general reduction in the quality and availability of the benthic habitat. The combination of these factors can result in a reduction in abundance and diversity of invertebrates and inhibit salmonid reproduction downstream of a minewater discharge.

As expected invertebrate taxa were most significantly reduced or absent in the areas of highest deposition of iron (near to the point of discharge) and further downstream the diversity and abundance increased again as the visual impact of the iron deposits decreased. This holds true for the majority of sites and the picture was generally not complicated by other associated

problems of low pH, aluminium or suspended solids in the Welsh coalfield discharges. Biological impacts were therefore mainly the result of precipitation of iron hydroxides onto the substrate causing loss of habitat and epilithic algae, an important food source for many invertebrates.

Biological impacts were demonstrated in receiving watercourses ranging in size from small unclassified streams to main classified rivers throughout the coalfield. The demonstration of a significant impact on some upland streams, in which there was already evidence of reduced macroinvertebrate faunas, due to poor upstream water quality (low pH), illustrated clearly the deleterious effects of the deposition of iron salts downstream of ferruginous minewater discharges.

Similar impacts were demonstrated on rivers, particularly in the south east areas of the coal field where intermittent discharges from combined storm sewer overflows resulted in an already reduced and pollution tolernt fauna comprising families less sensitive to the effects of organic pollution. Significant impact on the relatively pollution tolerant families was demonstrated at a number of these sites and over large areas of river bed. The water quality data suggested that the iron content of the discharges resulting in the subsequent deposition of iron hydroxide onto the riverbed was the single most important criterion impacting the fauna.

The BMWP score system was originally designed primarily to demonstrate the effects of organic pollution. Similarities between the effects of minewaters and organic pollution do exist; for example, deposition of organic matter onto the substrate can cause a loss of habitat as does iron hydroxide precipitation. However, in many other respects the effects are quite different; for example iron salts are inert whilst organic deposits can exert an additional oxygen demand and deoxygenate the sediments. Although some of the highest BMWP scoring taxa were sensitive to iron deposition the ferruginous deposits also had an impact on a wider range of invertebrates than organic pollution and families at all levels of the BMWP index were affected (see Appendix 10A and 10B). This suggests that the blanketing effect of iron (ochre) deposition was indiscriminate and highly deleterious to the quality of substrate and it affected invertebrates from a wide range of taxa.

The blanketing effect of iron hydroxide precipitation is also believed to be detrimental to the success of salmonids by affecting the spawning, the survival of fry, and consequently the size of juvenile populations.

Ideally an upstream 'control' site should support a good population of salmonids so that any impact of a minewater would be readily detected at the downstream site. In S.E area the R. Sirhowy (6) and the R. Rhymney (7) had poor upstream populations of salmonids and the question of poor water quality has already been discussed. Intermittent discharges of storm sewage overflows cause pollution of a number of these rivers resulting in a reduction in water quality and damage to salmonid fisheries. This general deterioration in water quality has in part, masked the impact of some minewaters on fisheries.

The impact of minewaters upon salmonid fisheries was not demonstrable where water quality problems existed above the discharge and where there was a generally under utilised habitat as indicated by Habscore. The EQS of 2 mg/l iron was exceeded on at least one sampling occasion at 11 sites downstream of the discharge (Appendix 5-7). Impact on the fisheries at three of these sites (6, 7 and 19) was not demonstrable but on the N. Melyn (32) a reduction of two RJSMP classes was observed downstream of the discharge. At two sites (16 and 30) where the EQS for iron was exceeded fisheries impacts were demonstrated but no fish were caught either upstream or downstream of the discharge to the Gwenffrwd (26) due to acidification of the upper catchment. Iron deposition downstream of this minewater also probably contributed to the fishery impact.

In conclusion therefore the impact of minewater discharges on fish populations, was only fully demonstrated at sites where upstream water quality, habitat and therefore backgound fish populations were good (eg. R. Llynfi (15)) but at sites where the upstream water quality and, in some cases, the fish habitat was moderate or poor, the deleterious effects of minewaters on the fishery were not demonstrable.

Improvements in the class of fishery, were observed below a small number of discharges. The mobility of fish and the variation in habitat suitability at some sites may account for such findings. These data highlight the fact that fish are highly mobile and will actively seek good habitat, water quality and an abundant food supply.

12. CONCLUSIONS

- 1. The deposition of iron hydroxide from ninety ferruginous minewater discharges affects a total length of 59.4 km of river and an area of 220.3 x 10³ m² of riverbed in the coalmeasure areas of Wales. Of the thirty three most deleterious discharges selected for full assessment, the impacts demonstrated ranged from mainly aesthetic effects to significant effects on water quality, biology and fisheries status downstream of minewater discharges.
- 2. The minewater discharges were found to be generally mildly acidic to near neutral. Neutralisation of minewaters, by limestone associated with the coal measures, prior to discharge to surface waters, may explain this phenomenon. The minewaters in the south west area were generally more acidic than those in south east area and some of the more acidic ones discharged to acidified watercourses which were already supporting stressed or reduced biota and fish populations.
- 3. The concentrations of dissolved aluminium in the discharges were not generally high enough to cause failure of the EQS of 1 mg/l aluminium at pH 6-8 in the receiving watercourses.
- 4. Suspended solids, due to precipitation of iron hydroxide downstream of discharges, were not at concentrations which would significantly affect fish or the biota.
- 5. The deposition of iron hydroxides onto the substrate caused blanketing and binding of substrate, loss of habitat and reduction in the epilithon, all of which are essential for a diverse and abundant invertebrate fauna. In 10 cases considerable losses and reductions in abundance of taxa were to both pristine quality waters demonstrated discharges below and the water quality was relatively poor watercourses where invertebrate fauna already perturbed. The fact that significant impacts were demonstrated downstream of discharges to watercourses of relatively poor water quality emphasises the seriousness of the effects of iron hydroxide precipitation.

- 6. On the other hand, the impact of minewater discharges on fisheries was not readily demonstrated where the receiving watercourse was already of poor quality, for example in some of the south east area rivers. In such cases the impact of the discharges was partly masked by the poor receiving water quality, caused, for example, by intermittent discharges from combined sewer overflows. In some of the upland streams acidification was responsible for poor status of the fish populations. Only where upstream water quality and habitat were good, was the true impact of minewater discharges on fisheries demonstrable (eg. the R. Llynfi tributary (15)).
- 7. It is important to emphasise that this survey represents a snapshot of the position in 1993, and there was some evidence that the situation was changing even during the survey period. The scale of British Coal's deep mining operations in Wales has now almost stabilised with only one British Coal colliery remaining in South Wales. However a large number of small private mines extract coal and may be the source of future minewater discharges. In addition, further minewater discharges from recently abandoned mines may emerge in an unpredictable way. These discharges will continue to pollute, unless preventative or remedial action can be carried out.

13. REFERENCES

Alabaster J. S & Lloyd R. (eds). (1980) Water quality criteria for freshwater fish. Butterworths.

Cox R., Furse M.T., Wright J.F. & Moss D. (1991) RIVPACS II A user manual. Institute of Freshwater Ecology.

Hamburger M. & Smith S. (1991) The impact of ferruginous minewater breakouts on the environmental quality of the river Rhymney, river Ebbw and the river Sirhowy. NRA Report (Welsh region)/Unpublished M.Sc thesis.

Hellawell J. M. (1986) Biological indicators of freshwater pollution and environmental management. Elsevier Applied Science.

Howells G. et al. (1990) EIFAC Water quality criteria for the European freshwater fish: report on aluminium.

Jones N. (1992) Pollution from the emergence of ferruginous springs at Cefn Hengoed, River Rhymney, from February 1991. Unpublished report to the Anglers Cooperative Association acting for the Rhymney river federation of angling clubs.

Kelly M. (1988) Mining and the freshwater environment. Elsevier science publishers limited.

Mance G. & Campbell J.A. (1988) Proposed Environmental Quality Standards for List II Substances in Water - Iron. TR 258: Water Research Centre - Environmental Strategy, Standards and Legislation Unit.

Milner N. J. & Wyatt R. J. (1991) HABSCORE software manual, NRA Report (Welsh region).

Salmonid Advisory Committee. (1991) Factors affecting natural smolt production. MAFF, SOAFD, WOAD.

14. List of Appendices

- 1. Catchment maps.
- 2. Table showing physicochemical data for ferruginous inputs to Welsh rivers in the South East area.
- 3. Table showing physicochemical data for ferruginous inputs to Welsh rivers in the South West area.
- 4. Table showing physicochemical data for ferruginous inputs to Welsh rivers in the North area.
- 4a. Ferruginous sites not sampled.
- Table showing chemical data for the 12 S.E discharges (selected for stage 2 assessment) on all sampling occasions.
- Chemical data for the 20 S.W discharges (selected for stage 2 assessment)
 on all sampling occasions.
- 7. Chemical data for the discharge in the North (selected for stage 2 assessment) on all sampling occasions.
- 8. Water quality data summary.
- 9. Flow data for the minewaters assessed in stage 2 over the period June October 1993.
- 10. Biological survey data for the minewater sites assessed in stage
 2 including observed (0) and predicted (P) BMWP scores and reduction in
 BMWP scores.
- 10A. Summary of invertebrate taxa lost or reduced in abundance at the first downstream site below a minewater discharge.
- 10B. Specimen copy of BMWP score sheet as used for recording stage 2 biological survey details.
- 10C. Worked example of the calculation of biological impact using BMWP score and reduction in log 10 abundance.
- 11. Fisheries data from electrofishing surveys with R.J.S.M.P classification.
- 12. Habscore results for sites electrofished in stage 2 of the survey showing HUI and HQS % for each site.

Appendix 1

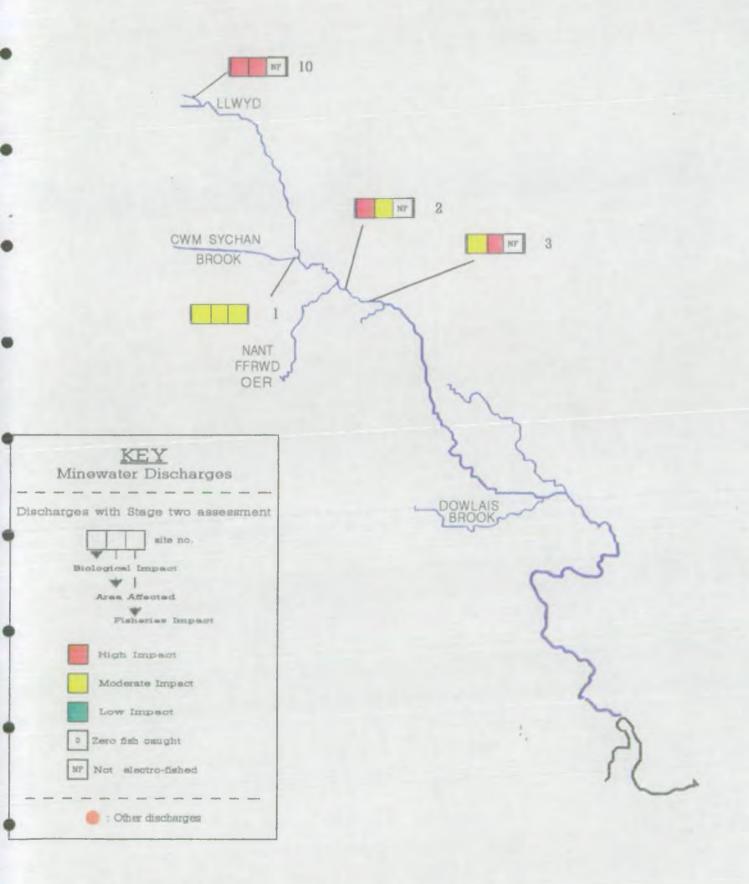
Catchment Maps:

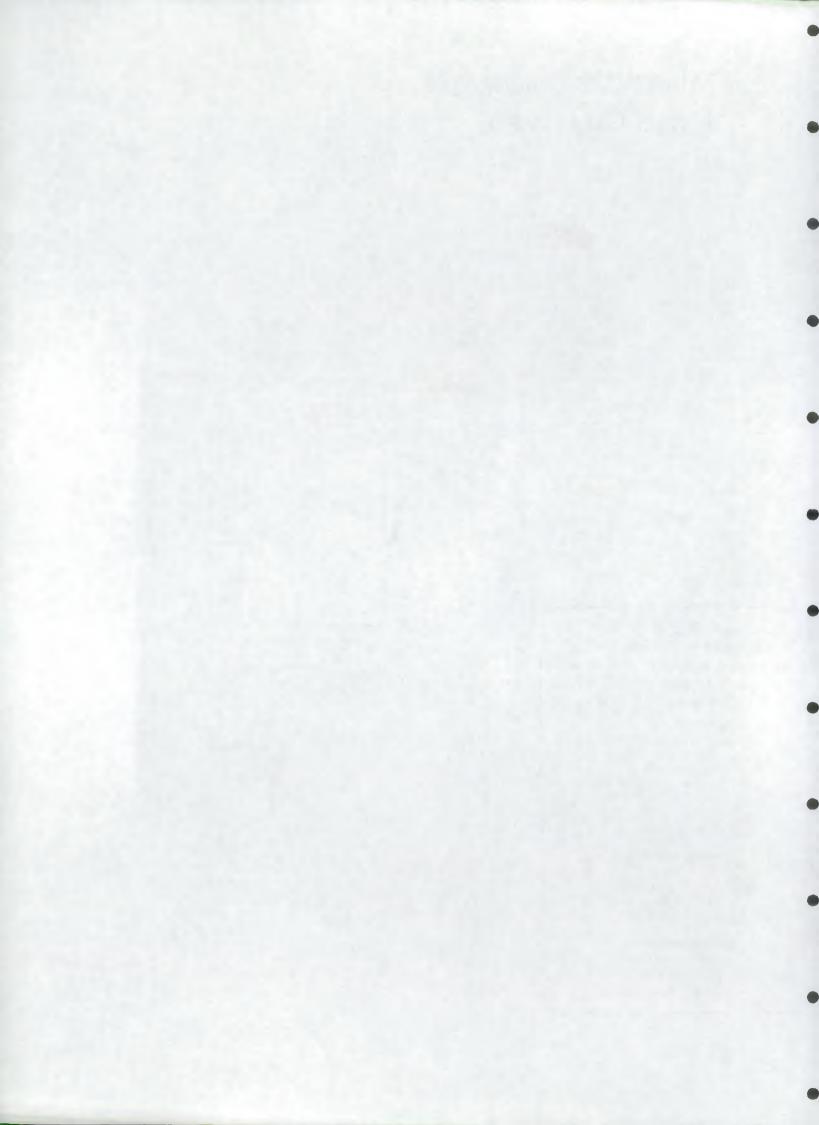
Llwyd

Ebbw/Sirhowy/Rhymney

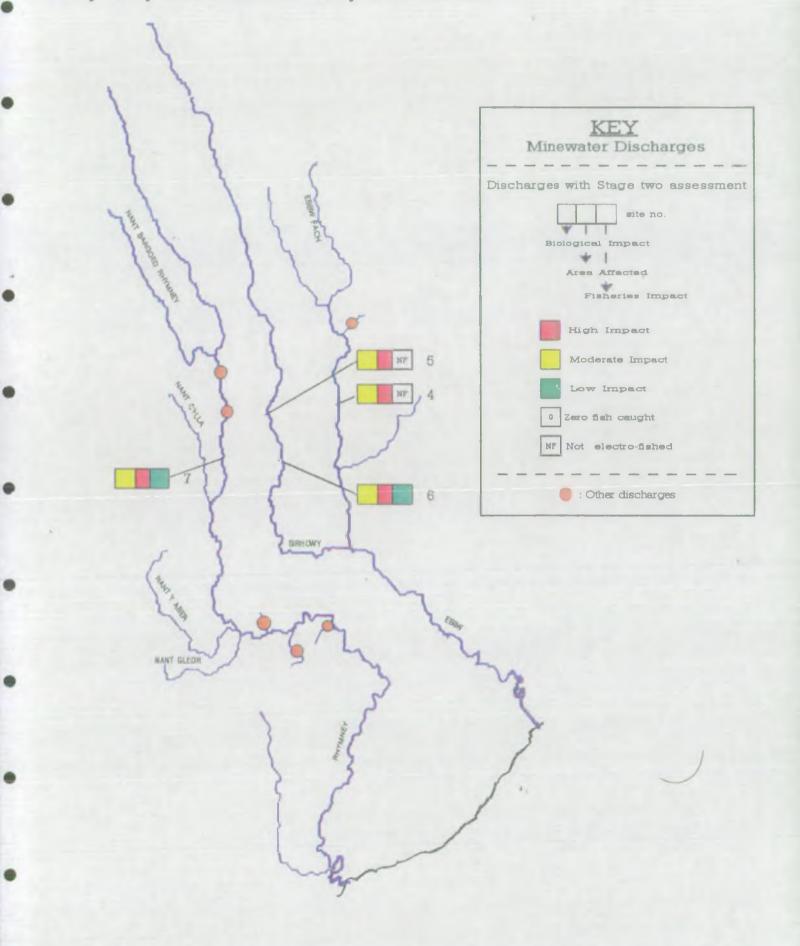
Taff

Ogmore/Cynffig

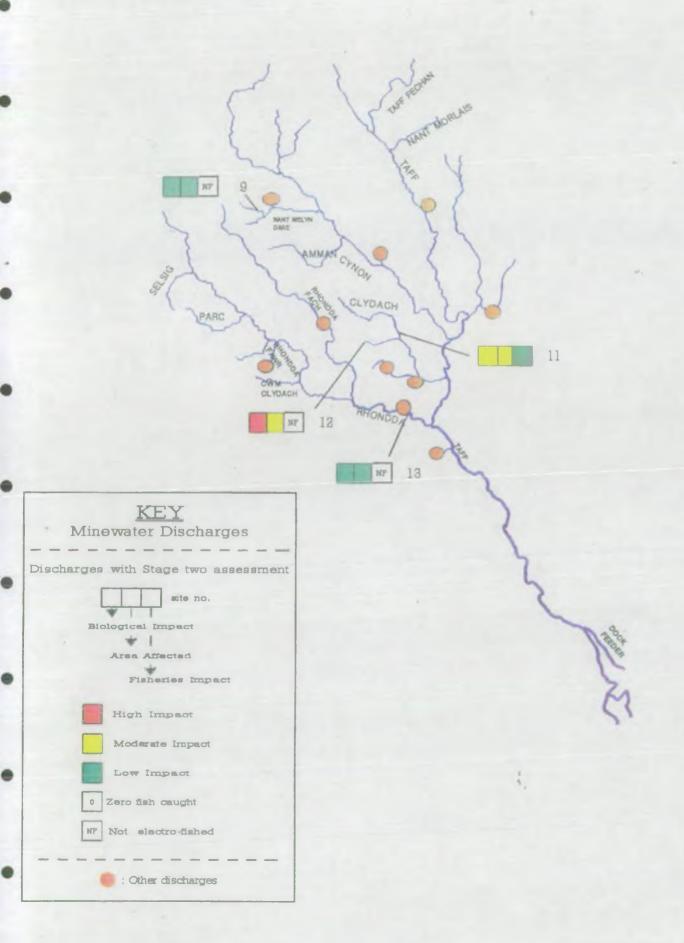

Afan/Neath

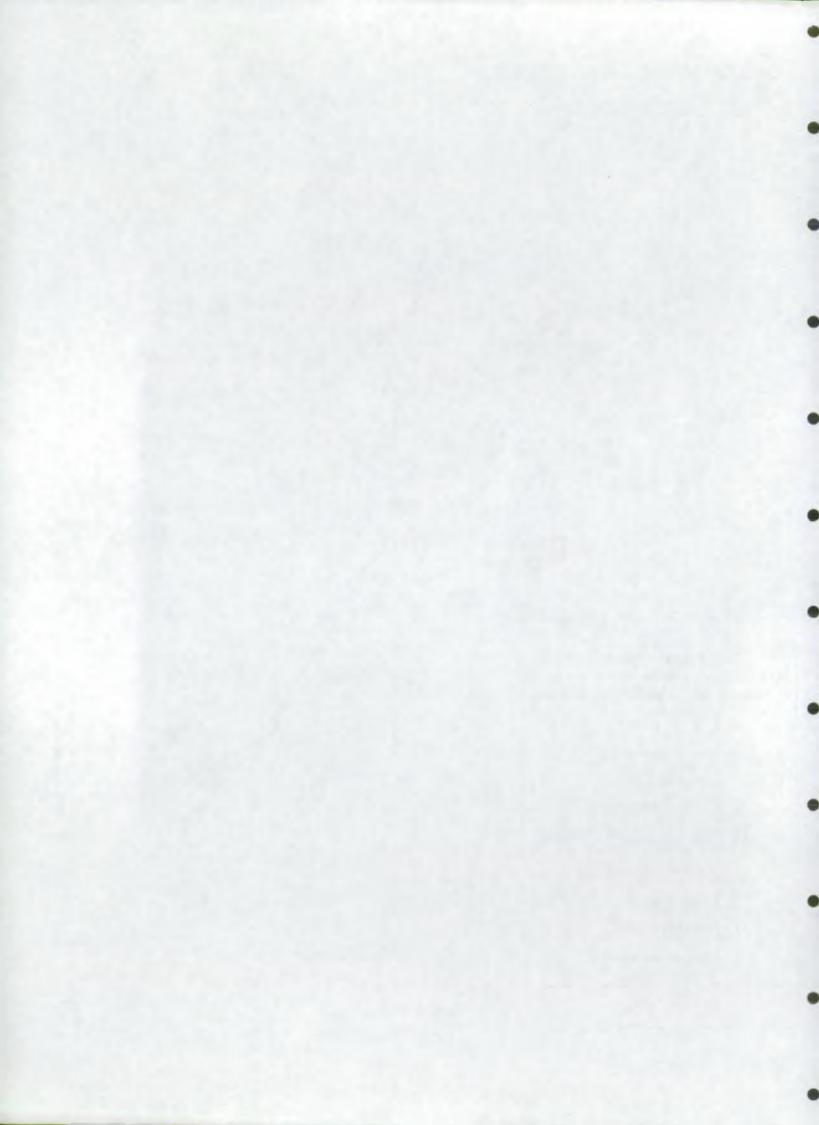

Tawe

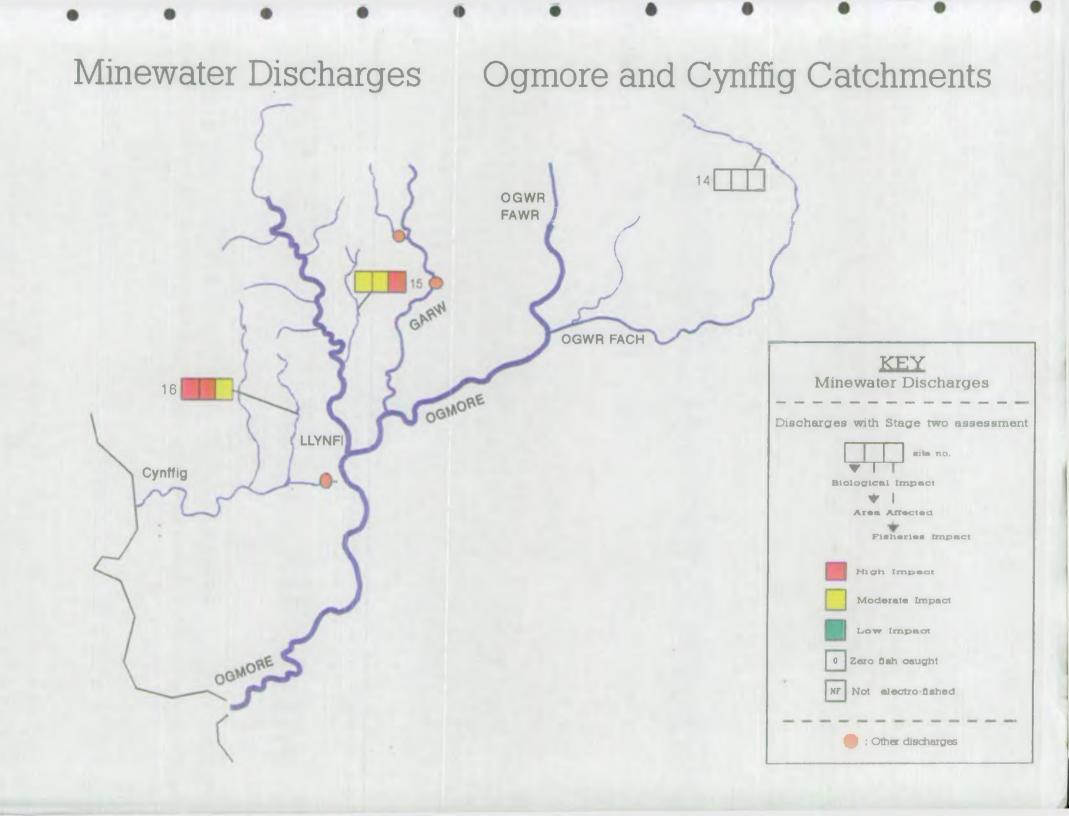
Loughor/Gwendraeth

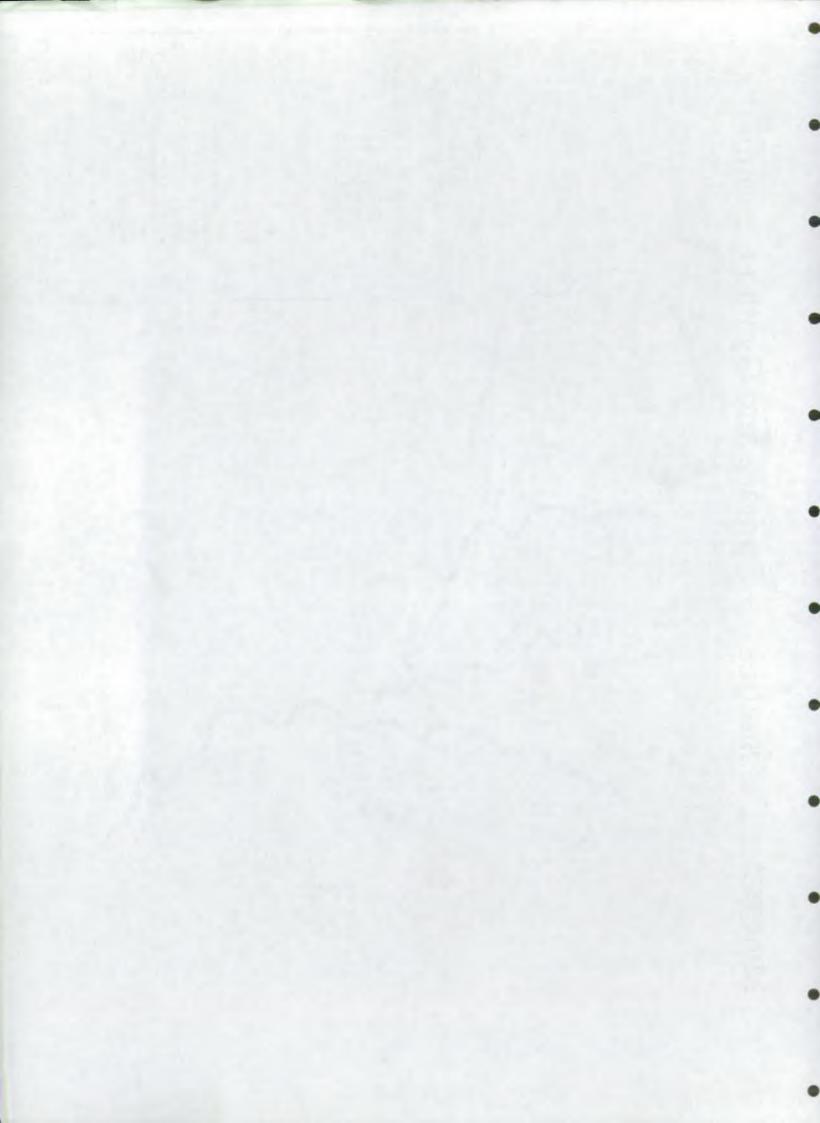

Dee

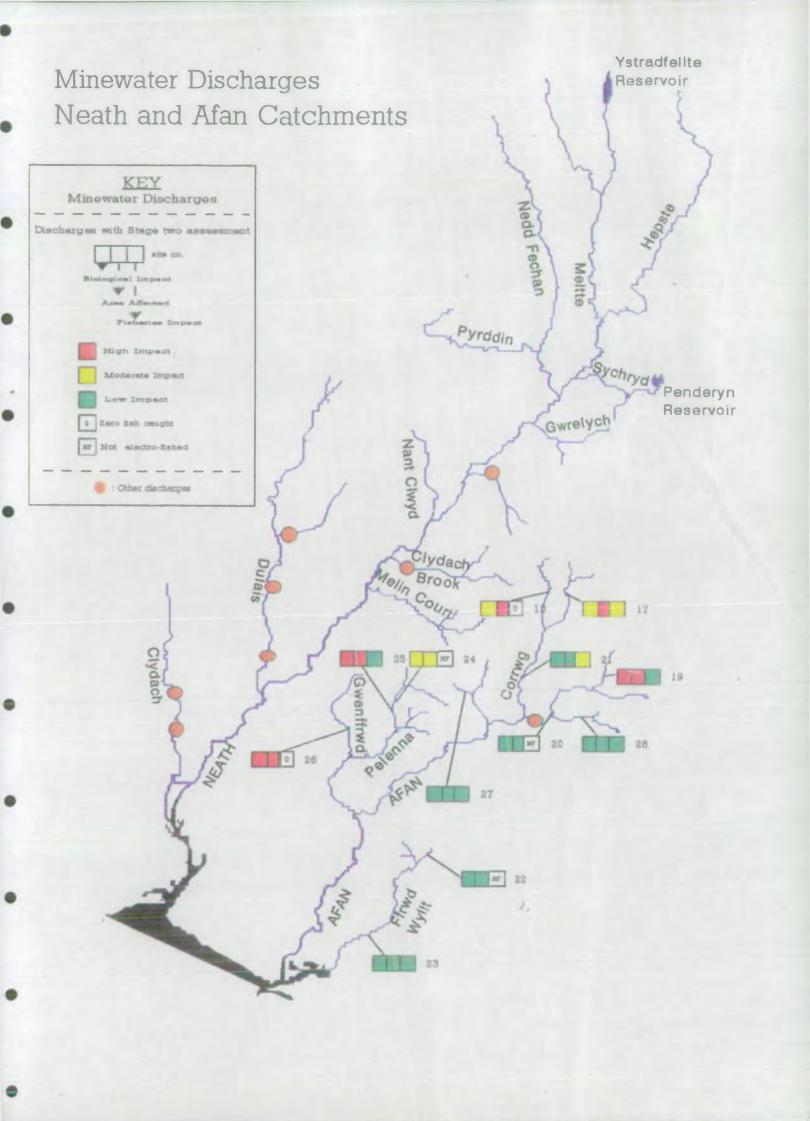
Minewater Discharges Llwyd Catchment

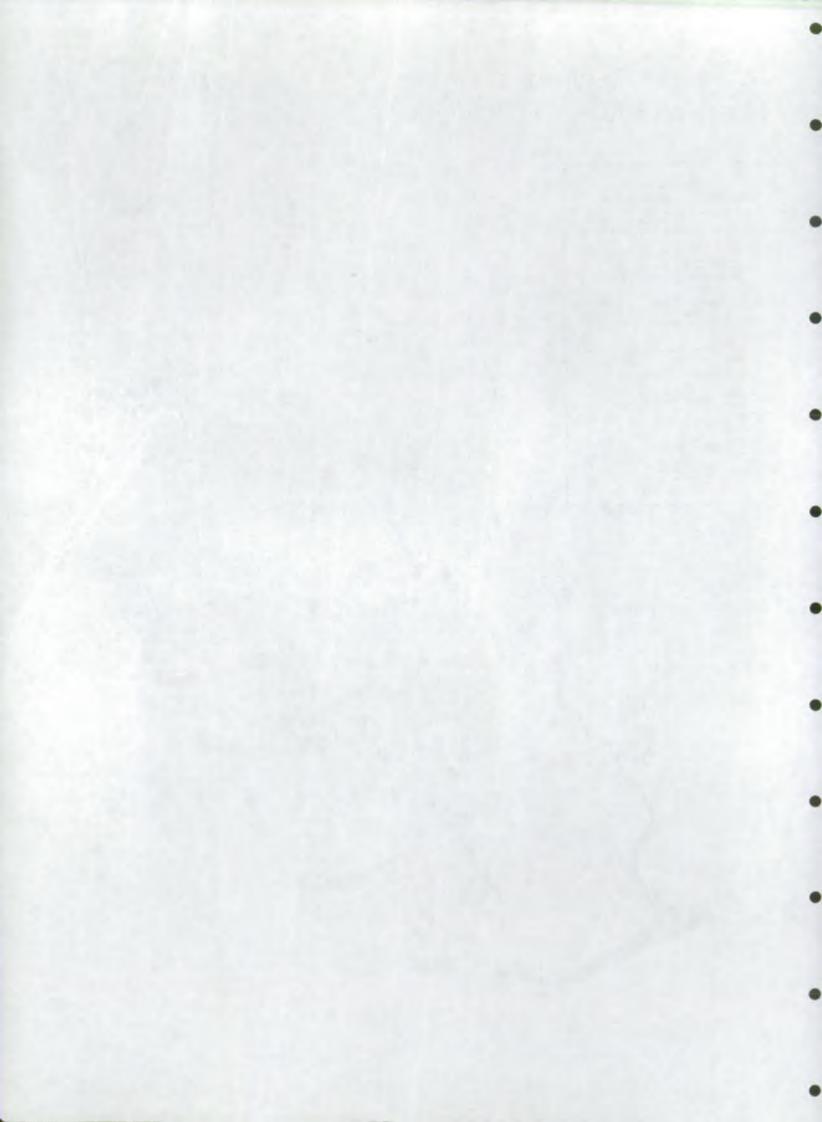


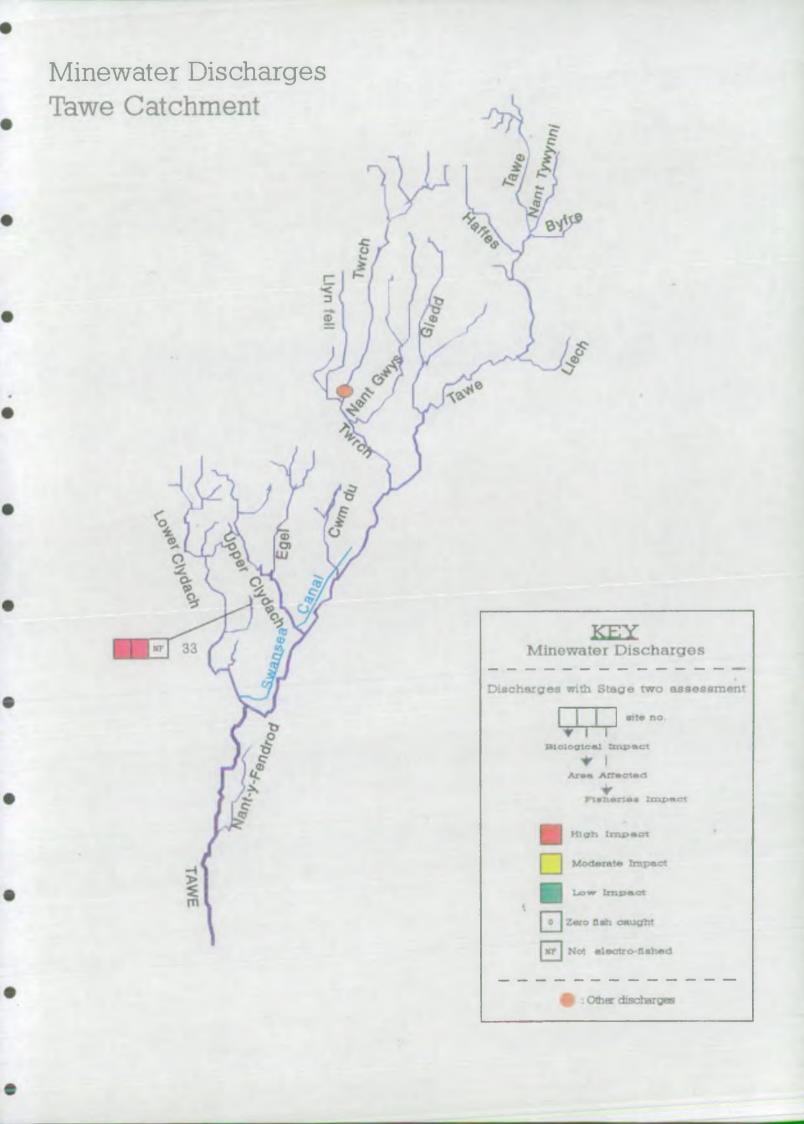

Minewater Discharges
Rhymney and Ebbw/Sirhowy Catchments

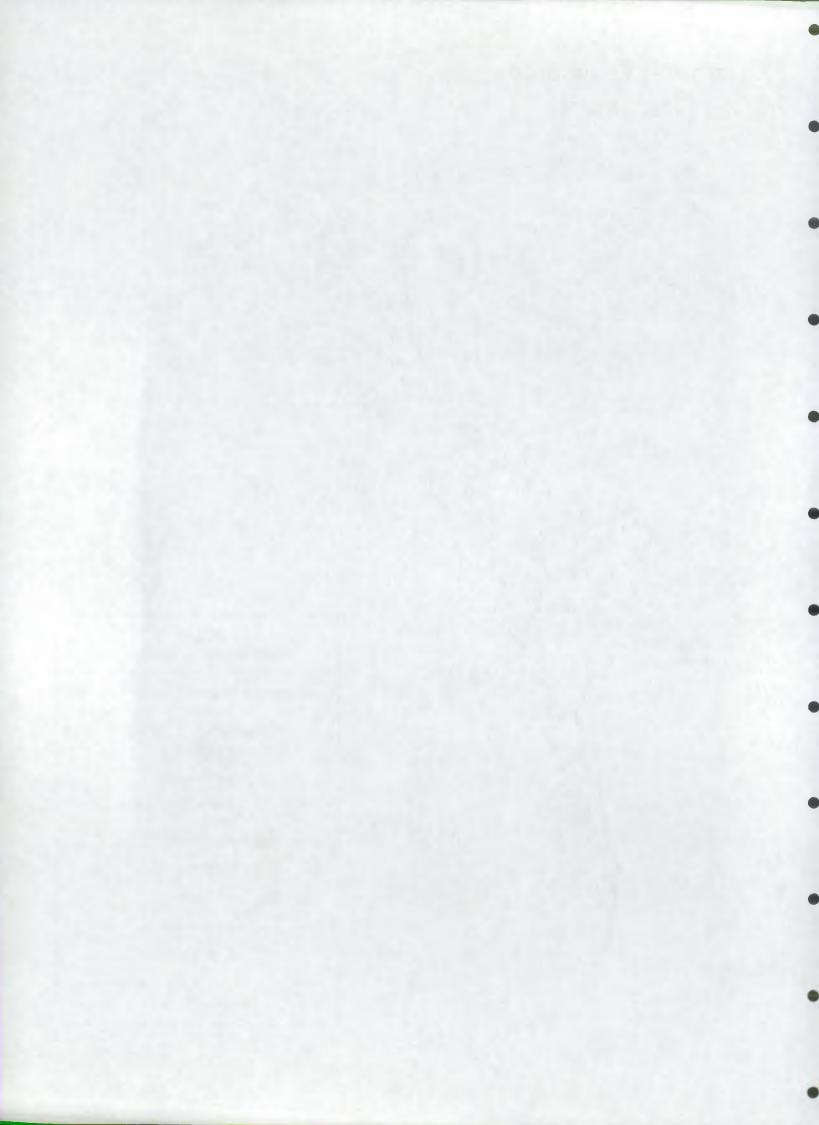


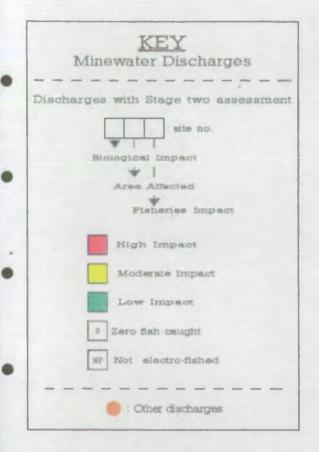


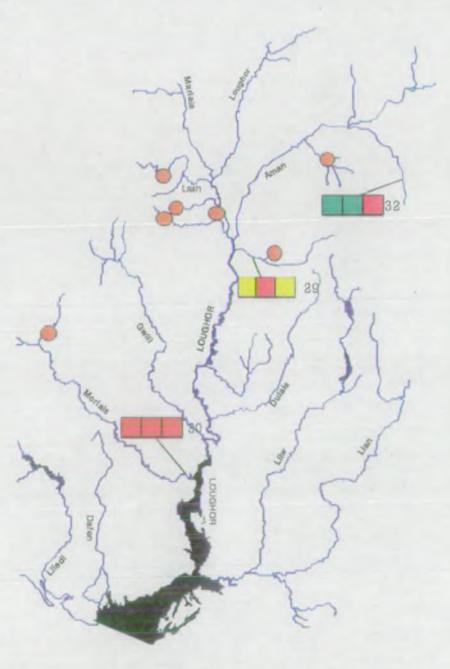

Minewater Discharges Taff Catchment

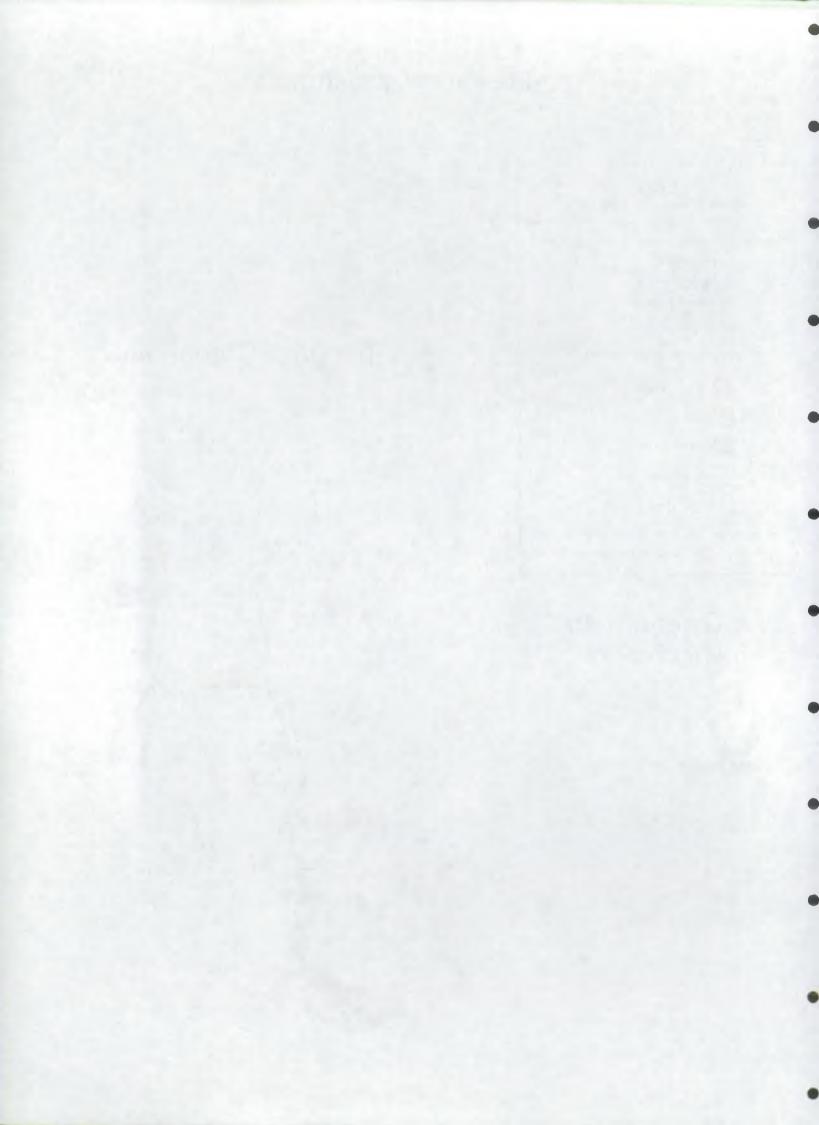




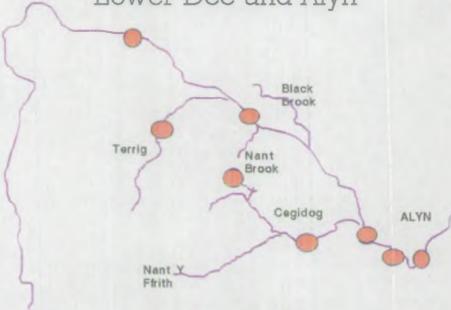




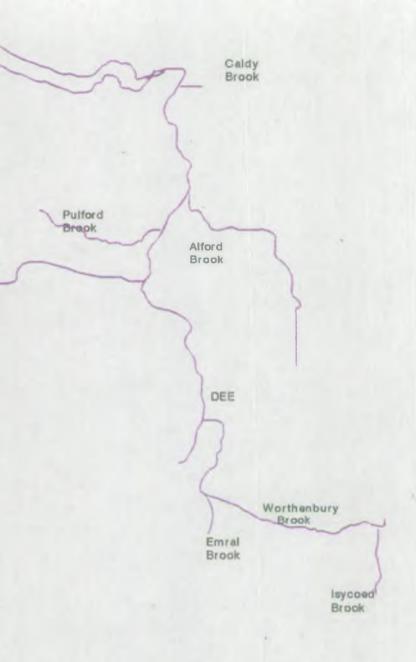

Minewater Discharges



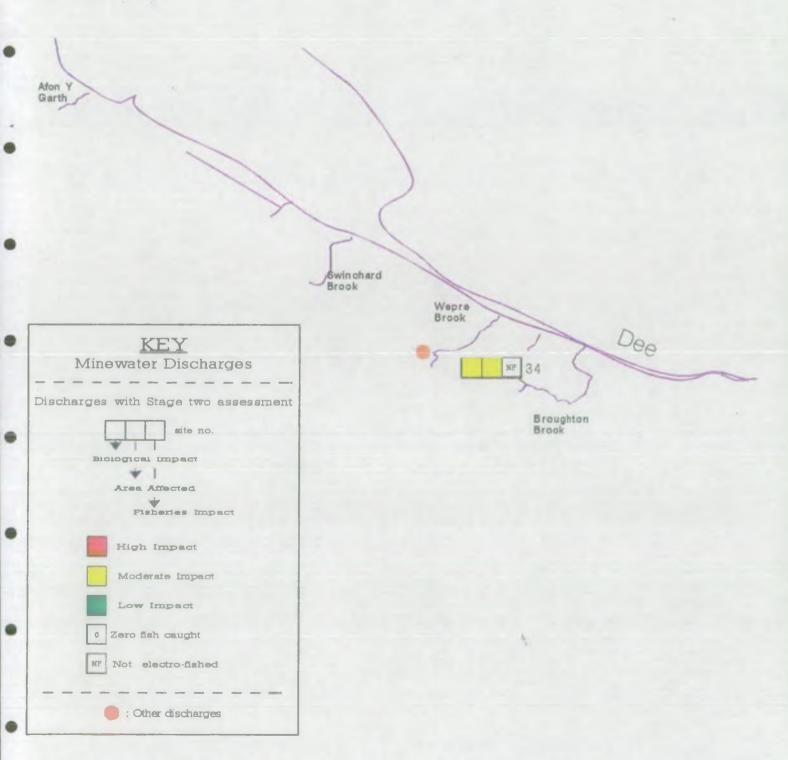
Gwendraeth Catchment

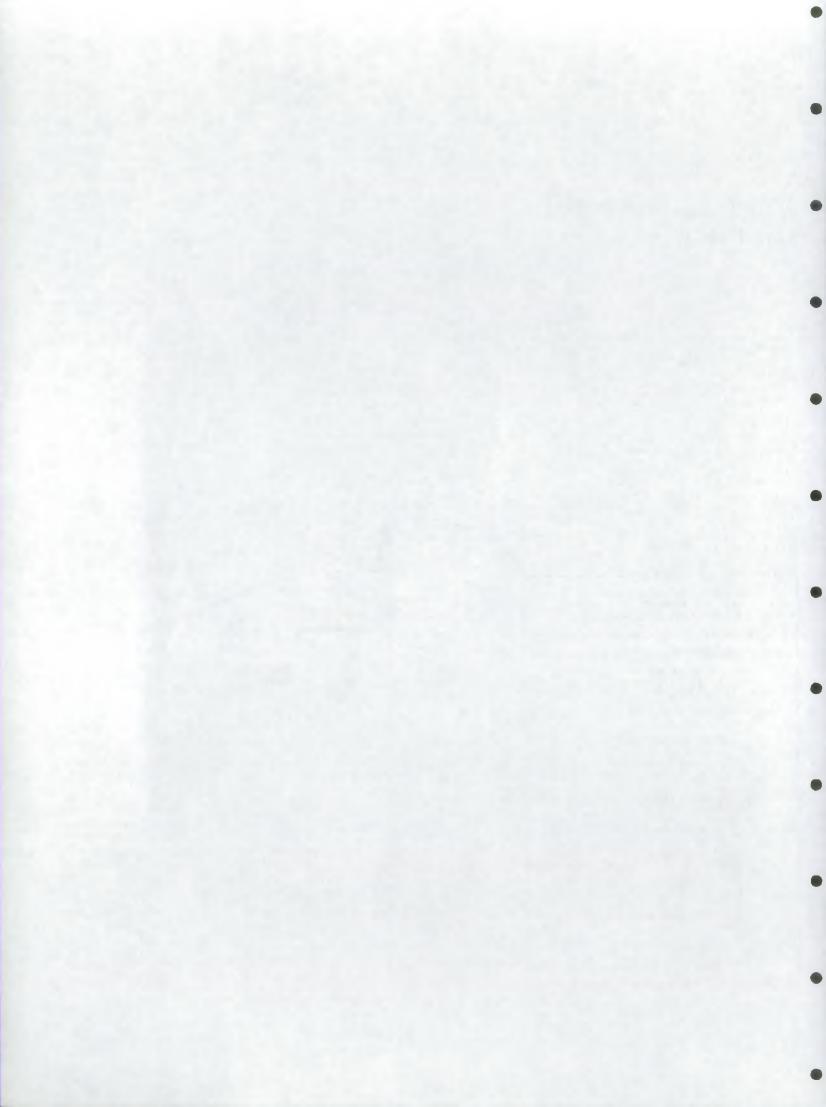


Loughor Catchment



Minewater Discharges Lower Dee and Alyn


Minewater Discharges Discharges with Stage two assessment site no. Biological Impact Area Affected Fisheries Impact Moderate Impact Low Impact O Zero fish daught Not electro-fished : Other discharges



Minewater DischargesDee Estuary

Appendix 2. Table showing Physicochemical data for Ferruginous Inputs to Welsh Rivers in the South East Area

					-	***************************************	***************************************
NAME OF RECEIVING WATER	LAB. REF.	LOCATION	NATIONAL GRID REFERENCE	DATE	TIME	WEATHER	FLOW
LLWYD 		 U/S DISC D/8	 \$0 2341 0962 \$0 2443 0897 \$0 2484 0889	 16-Nov-92 11-Nov-92 11-Nov-92	11:40	DRY	 HIGH
		1J/8 DISC D/9	SO 28590 00620 SO 28600 00560 SO 28680 00570	02-Feb-93	11:30	DRY	MED
LLWYD	E 245756 T 245757 E 245758	U/S DISC D/S	 SO 27070 03200 SO 27050 03150 SO 27025 03100	 02-Feb-93 	15:00	DRY	 HIGH
i		U/S DISC D/S	SO 27630 01620 SO 27630 01610 SO 27660 01730	01-Mar-93	15:00	DRY	LOW
į.	E 246318 T 234133 E 246320	DISC	80 16010 95650 SO 18010 95570 80 18010 95550	08-Feb-93 16-Nov-92 08-Feb-93	1	I DRY	LOW
	T 250266	U/8 DISC D/9	8T 17600 97370 8T 17590 97360 ST 17580 97420	01-Mar-93 1	12:00	DRY	Low
		U/8 DISC D/S	ST 21205 97620 8T 21210 97650 8T 21235 97420	10-Feb-93 10-Nov-92 10-Feb-93	j i	DAY	LOW
EBBW NANT CYFFIH	T 250288	DISC	SO 22280 01340	02-Mar-93	14:00	WET	I MED
i		U/S DISC D/S	ST 15610 98090 ST 15600 98030 ST 15610 97950	10-Feb-93	12:00	WET	I MED
j	E 246324 T 246325 E 246326	DISC	ST 19390 87255 ST 19380 87225 ST 19340 87300	08-Feb-93	12:00	1 DRY	MED
RHYMNEY UNNAMED TRIB AT BEDWAS COLLIERY	T 250284	I DISC	ST 18025 89400	02-Mar-93	11:00	DRY	LOW
AT FLEUR-DE-LIS		DISC 1	ST 15510 96350 ST 15490 96320 ST 15470 96290	04-Mar-93	10:30	DRY	LOW
RHYMNEY IUNNAMED TRIB AT MACHEN	T 256850	l Disc	ST 21390 88735	15-Apr-93	1 10:00	DRY	I MED
TAFF 1	E 246321 T 246322 E 246323) U/S DISC D/S	SO 06840 02330 SO 06880 02325 SO 06885 02290	08-Feb-93	14:00	J DRY	MED

DISCHARGE RATIO	WIDTH m	COLOUR	DEPOSIT	AFFECTED	AFFECTED	BED AFFECTED
	2	HIGH	 HIGH 	0.25	500	100
10:1	5	MED	MED	0.7	3500	100
100:1	RIVER - 4 STREAM - 2.5		 HIGH 	1.5	6000	100
100:1	5	HIGH	HIGH	0.75	3750) 100
1000:1	RIVER -	HIGH	HIGH/MED	0.4	4800	100
100:1	ADIT- 1 RIVER -	HIGH	HIGH	1.6	RIVER - 12600	1 100 1 100
100:1	4-5	HIGH	HIGH/	2.1	† 10500	100
	0.5-2	MED/LOW	MED/LOW	0.25	250	100
1000:1	8	HIGH	MED	Sm	5	5
10:1	1 2-3	HIGH	MED	0.7	1750 1	100
	TAIB - 0.05	LOW	LOW			1
10:1/100:1	12	HIGH	HIGH	3	36000 1	100 I
1000:1	1	HIGH	HIGH	0.5	500	100
1000:1	RIVER - 10 TRIB - 2.5	 нібн 	 HIGH 	RIVER - 2-5m TRIB - .1 Km	RIVER - S	TRIB -

Appendix 2. Table showing Physicochemical data for Ferruginous Inpute to Weish Rivers in the South East Area

NAME OF RECEIVING WATER	DOMINANT SUBSTRATE	TEMP.	pH	FIELD pH	DO	DO
		deg. C	l		mg/l	1 %
LLWYD		 6.0] 7.10	! 6.40	 10.50	 84.
	STONES/PEBBLES	6.1	•			•
UNNAMED TRIB		0.0	7.20	7.93	12.20	j 100.
LLWYD	BEDROCK/LARGE COBBLES/	0.2	,	•		•
	ODD BOULDERS	9.0	7.90		11.40	98.
LLWYD	 ROCKS/STONES/	0.6	8.00	I I 8.49	12.00	1 88
	BEDROCK	10.3	8.10	8,10	11.20	100.
ABER SYCHAN	i	7.7	8.10	8.34	11.40	95.
LLWYD	ROCKS/BOULDERS/	6.5		8.45		J 96.
	BEDROCK 	11.7		8.07 8.41	11.80 11.60	109.5 95.
SIRHOWY	COBBLES/ROCKS	8.8			•	100.
	1	1 10.4		6.76 7.55		34. 93.
SIRHOWY	ROCKS/GRAVEL/	3.7		7.51		99.
ADIT	BEDROCK	10.5	6.50 7.50	0.60 0.60	6.40 1 12.60	75. 1 99.
ADIT	<u> </u>	1	i 7.50	1 0.50	1 12.00	1
EBBW	ROCKS/BOULDERS/	8.3		8.48	13.40	114.
	GRAVEL	11.8	6.90 7.80	6.59 6.19	1.80 14.30	16. 122.
EBBW NANT CYFFIH	FLAT ROCKS/PEBBLES	e.s	7.40	6.95	8.90	59.
RHYMNEY	· · · · · · · · · · · · · · · · · · ·	7.0	7.80	8.18	13.10	108.
	ļ	8.4 7.6	7.50 7.60	7.96 7.67	12.00	102.
			·	·	·	
RHYMNEY	STONES/COBBLES/ GRAVEL	8.9 9.6	8.20 6.10	7.99 1 8.20	12.50	109. 12.
RUDRY BROOK	1	9.0	•	•	10.60	91.
RHYMNEY UNNAMED TRIB AT BEDWAS COLLIERY	ARTIFICIAL CHANNEL	3.1	i 6.10	6.40 1	 6.90 	 66.
RHYMNEY	ROCKS/BOULDERS/	4.2			13.80	J 106.
AT FLEUR-DE-LIS	BEDROCK	10,8	7.00	6.75	0.40] 3.
	1	10.8	7.20	•	0.20 14.00	[1.] 113.
RHYMNEY UNNAMED TRIB AT MACHEN	SAND/GRAVEL	9.2	7.00	6.85	0.20	1.
TAFF	STONES/COBBLES	9.0		6.18	12.60	
UNNAMED TRIB	Į.	10.2	7.70 6.00	7.84 8.07	11.10 12.40	99. 108.
DISTANCE IND	1	, e.s	. 8.00	1 0.07	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	i 136.

OND.		TOTAL LIRON	OISS.	TOTAL AI.	DISS.	TOTAL SULPHATE	ALKALINITY	SUS. SOLIDS
	•	mg/l	•	!	mg/l		mg/I CaCO	

165	0.198	0.355	0.111	0.405	45.50	47.0	24.16	15
379	0.941	0.941	0.039	0.149	110.20	110.2	67.82	
181	0.288	0.441	0.068	0.312	43.40	43.9	33.92	11
411	•				86.90	•	•	•
540		0.573	0.008		77.70			
450	0.084	0.397	0.016	0.068	83.10	88.3	105.75	3
375	0.021	0.102	0.019	0.045	64.20	 64.2	81.90	 3
546	0.888	2.398						i 6
526		•	•				•	4
569	0.071	0.330	0.012	0.016	146.40	146.0	151.57	3
595	0.033	0.180	0.004	0.030	126.10	128.1	123.55	7
525	0.890	0.930	0.050	0.088	140.60	140.7	132.29	3
469				•				
1336		6.140		•		•	227.12	,
754	1.500	1.800	0.028	0.089	256.00	258.0	119.21	17
410		0.210	0.048					
1321	5.000	5.100	0.760	1.500			100.79	18
720	1.400 	1.400	0.250 	0.370 	263.40	269.6 	97.64 	5
479	0.139	0.313	0.032	0.061	114.40	116.2	99.19	3
1615		20.250	0.031	0.045	791.40	795.4	296.24	36
476	0.137	0.420	0.018	0.164	115.00	166.1	96.46	۱
539	3.400] 3.400 	0.008	0.011 	167.00	168.9 I	109.32 	[6
400	0.052	0.275	0.020	0.196	92.10	92.1	97.24	
585				0.030	220.90	220.9	50.32	3
514	0.190	0.892	0.013	0.142	154.50	1 155.8	85.77	4
462			0.010			•		1 4
312		13.100	!	0.013	83.70			5
433	2.500	2.500	800.0	0.019	41.10	44.7	167.49	15
494	64,000	[67.000	1 0. 290 	 1.210 	 1,332.00 	 1,347.0 	23.64	 113
517	0.150	I 0.360	0.019	 I 0.041	139.80	I 141.5	115.70	 3
1564		8.300	0.004	0.008	00.808	808.0	210.74	1
997			0.004		358.80	359.5	227.90	į
776			0.013	0.035	264.60	284.6	141.90	
324	4.100	4,450	0.008	0.008	60.40	j [60.4	 87.74	
							1 137.54	
394	0.040	0.084	0.100	0.150 0.120	55.00 70.00	55.0 70.0	137.54 104.86	3 33
444 351	0.360			0.120 0.140	59.00	59.0	128.44	33 7
301	0.110	0.2-0	; 0.07 9	, 0.140	35.00	1	, , , , , , , , ,	•

Appendix 2. Table showing Physicochemical data for Ferruginous Inputs to Welsh Rivers in the South East Area

to weigh hiver		- Con Aive				***************************************	***************************************
NAME OF RECEIVING WATER	LAB. REF,	LOCATION	NATIONAL GRID REFERENCE	DATE	TIME	WEATHER	 FLOW
 TAFF UNNAMED TRIB CLYDACH, PWLL HELYH	 E 247252 T 247253 E 247254	 U/S DISC D/S	ST 05350 95360 ST 05375 95320 ST 05360 95270	11-Feb-93	11:30	DRY	MED
TAFF UNNAMED TRIB CLYDACH, PWLL HELYH DISC 2	E 250777 T 250778 E 250779	0/9 0/9	8T 05350 95360 8T 05340 95710 8T 05360 95270	04-Mar-93	15:30	DRY	LOW
TAFF UNNAMED TRIB OF LLYS NANT AT TAI HEOL		U/S DISC D/S	ST 06405 92580 ST 06325 92600 ST 06405 92670	11-Feb-93	10:15	DRY	LOW
TAFF Y-FFRWD TRIB NANT CLYDACH PWLL HELYH	E 247255 T 247256 E 247257	U/S DISC D/S	ST 03560 94340 ST 03565 94330 ST 03660 94400	11-Feb-93	12:30	DRY	Low
TAFF LLYS NANT AT TWYN-Y-GLOG	E 247258 T 247259 E 247260	U/9 DISC D/9	ST 04495 93570 ST 04550 93560 ST 04590 93550	11-Feb-93	14;50	DRY	LOW
TAFF TRIB OF CYNON O DARE VALLEY PARK	E 249921 E 249922 E 249923	U/S DISC	SN 97990 02920 SN 98000 02910 SN 98055 02910	01-Mar-93	10:30	DRY	MED
TAFF/CYNON UNNAMED TRIB OF	E 249924 T 249925 E 249928	U/9 DISC	SN 97280 02550 SN 97190 02560 SN 97390 02500	01-Mar-93	11:15	DRY	' Low
TAFF/RHONDDA RHONDDA PRONDDA FACH PERNDALE	E 249928 T 249929 E 249930	U/S DISC D/S	\$8 99100 97690 \$8 99150 97670 \$8 99220 97660		15:00	DRY	LOW
TAFF/RHONDDA RHONDDA AT HOPRINSTOWN DISC 1	E 250771 T 250772 E 250773	U/S DISC	ST 05720 90470 ST 05750 90730 ST 05750 90690	04-Mar-93	13:30	DRY	LOW
TAFF/RHONDDA PRHONDDA AT HOPKINSTOWN OSC 2	E 250774 T 250775 E 250776	U/S DISC D/S	ST 05920 05840 ST 05940 90590 ST 05950 90590	04-Mar-93	13:30	DRY	Low
TAFF/RHONDDA UNNAMED TRIB AT BWLLFA FARM	T 251083	DISC	SS 96560 93865	05-Mar-93	11:00	DRY	MED
TAFF/CYNON TRIB OF CYNON OF ABERDARE SCHOOL	T 249927	DISC	ST 04180 99718	01-Mer-93	13:00		Low
UNNAMED TRIB OF TAFF AT UNIVERSITY OF GLAMORDAN	T 251082	DISC	ST 07270 88225	05-Mar-93	10:00	DRY	LOW
i i	E 256851 T 256852 E 256853	DISC	ST 10480 98920 ST 10470 98960 ST 10440 98930	15-Apr-93	12:00	DRY	MED

DISCHARGE RATIO	Í WIDTH		COLOUR	DEPOSIT	AFFECTED	AFFECTED	BED AFFECTED %
50:1		4	 MED 	HIGH	1,1	 4400 -	 100
100:1		1	LOW	Low	0.01	10	100
10:1		5	HIGH	HIGH	0.35	, 700 700	100 100
10:1	2-3		HIGH	HIGH	2	6000	
10:1		2	HIGH	HIGH	0,4	800	 100
100:1	RIVER -	3) MED	RIVER -	0.02	RIVER - 60	100
10:1	TRIB -	2	HIGH	HIGH	0.3	600	100
00:1		7	LOW	Low	7 m	2.45	5
000:1		10	HIGH	LOW	0.25	2500	100
I 00 0:1		10	MED	MED	0.25	2500	100
······································		2	LOW	Low	0.1	200	100
000:1	TRIB -		HIGH	MED	TRIB -	2000	100
Q:1		2	HIGH	PATCHY HIGH/LOW	0.6	1200	100
10:1		3	HIGH	HIGH	0.25	750	100

Appendix 2. Table showing Physicochemical data for Ferruginous Inputs to Welsh Rivers in the South East Area

NAME OF RECEIVING WATER	 Dominant Substrate	 TEMP. 	pH	 FIELD pH	00	 DO
		deg. C	İ	1	i mg/l	1 %
TAFF I	 ROCKS/BOULDERS	5.2	7.80]] 7.91	1 13,10	l I 103
JNNAMED TRIB	, noow,bookball	10.0	6.20	0.14	•	1 78
CLYDACH, PWILL HELYH	i	6.2		•	•	105
AFF			1	1	1	
JNNAMED TRIB	GRAVEL/STONES	3.6	•	•		
OLYDACH, PWLL HELYH SOC 2	Í	3.7	8.10 7.80	0.57 0.45	•	94 98
AFF	ROCKS/GRAVEL	5.3	7.90	7.97	12.90	100
JANAMED THIB OF LLYS		10.1	7.10	•) 85
NANT AT TAI HEOL		9.6	,	•	•	j 118
TAFF	 ROCKS/GRAVEL	4.7	 6.50	1 770	14,60	1 114
FFFHWD [i HOCKS/GIWAER	7.5	7.30	7.70		1 104
WILL HELYH	İ	6.5	•	,	•	110
TAFF	GRAVEL	5.3				•
LLYS NANT I	!) 7.0	8.60	6.70	•	7
AT TWYN-Y-GLOG	1	- 0.4	7.30			
TAFF	GRAVEL/STONES/ SILT	10.4	7.70	7.49	•	94
TRIB OF CYNON DARE VALLEY PARK	SIL I	8.9	7.50	7.45		2
TAFF/CYNON	ROCKS/GRAVEL	1 4.3	7.90	8.01		
UNNAMED TRIB OF	į.	10.9	6.90	•	•	3:
CYNON AT CWMDARE		_ 4.7	· ———	·		103
TAFF/RHONDOA I	BOULDERS/ROCKS	1 2.4		8.35	•	100
RHONDDA FACH @ FERNDALE	į į	6.2 5.9	•	7.92	•	100
TAFF/RHONODA)	1	<u> </u>	1	1	t	1
RHONDDA 1	BOULDERS/BEDROCK	5.4	5.10	•	15.70	124
AT HOPKINSTOWN DISC 1	i B	10.0	7.90 8.00	8.95	13.90	12
		-!		(
TAFF/RHONDDA J RHONDDA I	j I Boulders/Bedrock	5.1	8.10	9.17	1 13,80	100
AT HOPKINSTOWN	1	6.0	5.90		11.10	•
DISC 2	,	5.5	•	•	•	•
TAFF/RHONDDA UNNAMED TRIB AT BWLLFA FARM	ROCKS/COBBLES	6.0	7.20	7.95	12.70	100
TAFF/CYNON TRIB OF CYNON ABERDARE SCHOOL	FLAT ROCKS/COBBLES	3.8	7.70	8.07	14.20	10
UNNAMED TRIB OF TAFF AT UNIVERSITY OF GLAMORGAN	STONES/ROCKS/ GRAVEL	11.0	7.60	7.55	9.50	8
TAFF	ROCKS/GRAVEL	7.0				
NANT CAEACH	Ĺ] 11.1 6.6				
NATI CAERCII			· ·		19.44	-

OND.	DISS. IRON	I TOTAL I IRON	DISS.	TOTAL At.	Í DISS. Í SULPHATE	TOTAL SULPHATE		SUS.
	mg/l	mg/1	mg/l	mg/l	mg/l	mg/l	•	mg/l
226	0.059	0.141	0.037	0.068	49,20	49.2	56.26	1 3
277	1.120	1,190	0.416	•	102,30	•	17.00	1
238	•	•	•	0.202	•	•	•	1 3
	1	I	 				I	1
226	0.095	0.160	0.020	0.025	35,10	35.1		3
1931	0.003	4.600	0.004	0.070	1,001.00	1,001.0	241.37	47
247	0.093	0.093	0.021	0.021	43.00	43.0	69.97	3
340	0.003	0.010	•	0.008	54.70	55.4	128.49	3
380	2.100	2.990	0.009	0.050	105.30	105.7	61,46	
370	1.830	2.130	0.011	0.022	105.70	108.4	83.49	3
77	0.113	0.141	0.130	0.153	14.80	1 14.6	3.92	1 3
160	0.888	2.040	0.031	0.058	25.60	26.6	32.69	15
145		1.080	0.049	•	23.60	?	25.27	i
118	0.045	0.092	0.135	0.168	19.50	19.6	20.89	1 (
130	5.300	5.300	0.005	0.006	31,10	31.1	45.54	13
141	0.265	0.886	0.070	0.190	23.50	23.6	25.22	3
486	0.003	0.004	0.004	0.004	62.30	62.3	222.14	1 3
595	0.691	0.651	0.004	0.004	84.90	66.1	207.17	
533	0.206	0.254	0.004	j 0.004 I	69.80	69.8] 232.67 	13
204	0.196	0.238	0.004	0.004	25.10	26.2	60.95	1
598	0.367	•	0.004	0.039	196.30	196.8	99.69	1
229	0.336	0.637	0.004	0.005	46,10	46.1	69.27	1
264	0.036		•		•			
403	0.519						31.57	
322	0.169	0.314	0.050	0.123	29.00	29.0	77.97	!
304	0.290	0.710	0.019	l 0.042	50.70	t J 51.1	95.62	
450	1.600	2.300		0.008	247.80	275.6	•	
317		•	•	0.073	57.00	57.0	•	
				1			95,10	1
313 496	0.330	1.800 29.200	0.025	[0.100] 1.900	54,90 216,40	54.9 216.4	4.35	24
326	27.800 0.570	2.300		•	59.70		•	
			1	1				
335	0.046 I	l 0.050	0.004 I	0.004 I	99.30	j 99.3 	66.67 	[
505	0.344	1.070	0.025	0.159	191.00	195.8	54.50	1 6
	!		!	!			 	l
1975	j 19,590 i	24.240 	0.041	0.054	2.70 	2.6 	[1,044.36]]	65
279	J 0.397	0.636	0.013	0.078	41,00	41.0	75.05	. 5
639	7.160	7,430	0.004	0.004	163.40			
338	1,390	1.580	0.017	0,060	60.30	60.7	64.00	5

Appendix 3. Table shewing Physicochemical data for Ferruginous Inputs to Weish Rivers in the South West Area

OGMORE FACH T 245142 DISC 1 SS 07760 90515 01-Feb-93 10:55 DRY	FLOW	WEATHER	TIME	DATE	NATIONAL GRID REFERENCE	LOCATION	REF.	NAME OF RECEIVING WATER
OGMORE FACH T 245142 DISC 1 SS 97760 90515 01-Feb-93 10:55 DRY	Low	DRY	12:30	01-Feb-93				OGMORE
T 251084 DISC 2 S8 08190 00470	İ			ii	38 90190 90070	D/S	E 245145	GARW FECHAN
UNINAMED TRIB T 245147 DISC S3 80300 87820	HIGH	DRY	10:55	01-Feb-93	*		•	OGMORE FACH
	MED	DRY	13:30	02-Feb-93	SS 59380 57570	U/S	E 245146	OGMORE
AFON T 248111 DISC SN 86135 00720	!	! 			•			UNNAMED TRIB OF LLYNFI
CORRWG FECHAN E 248112 D/S SN 88115 00720	LOW	DRY	10:30	17-Feb-93				
AFON CORRWG E 248114 DISC SN 88925 00890 AFON CORRWG E 248115 D/S SN 88970 00810 AFAN/PELENNA E 248118 U/S SS 86329 97860 17-Fab-93 13:15 DRY AFAN/PELENNA E 248119 U/S SS 86329 97860 17-Fab-93 13:15 DRY AFAN/PELENNA E 248120 DISC SS 86385 97870 AFAN/PELENNA E 248121 DISC 2 SS 80000 96915 AFAN/PELENNA E 248122 D/S SS 79940 97190 AFAN/PELENNA E 248122 D/S SS 81815 97250 AFAN/PELENNA E 248124 DISC 2 SS 81815 97250 AFAN/PELENNA E 248125 D/S SS 81820 97125 AFAN/PELENNA E 248124 DISC SS 81850 97550 O8-Mar-93 12:30 DRY AFAN/PELENNA E 251691 U/S SS 81540 97515 O8-Mar-93 12:30 DRY AFAN/PELENNA E 251691 D/S SS 81540 97515 AFAN/PELENNA T 251692 DISC SS 81540 97515 AFAN/PELENNA T 248025 DISC SS 81540 97515 AFAN/PELENNA T 248025 DISC SS 81540 97515 AFAN/PELENNA E 251691 D/S SS 81560 97500 AFAN/PELENNA E 251691 D/S SS 81540 97515 AFAN/PELENNA E 251691 D/S SS 81540 97515 AFAN/PELENNA E 251691 D/S SS 81540 97515 AFAN/PELENNA E 251691 D/S SS 81540 97515 AFAN/PELENNA E 251691 D/S SS 81683 92100 AFAN/PELENNA E 251691 D/S SS 81683 92100 AFAN/PELENNA E 251695 DISC SS 81715 92135 AFAN/PELENNA E 251695 DISC SS 81715 92135 AFAN/PELENNA E 251695 DISC SS 81715 92135 AFAN/PELENNA E 251085 U/S SS 81683 92100 AFAN/PELENNA E 251085 U/S SS 81090 93200 AFAN/PELENNA E 251085 U/S SS 81090 93200 AFAN/PELENNA E 251085 U/S SS 87100 90340 AFAN/PELENNA E 251080 D/SC SS 87200 90300 AFAN/PELENNA E 251080 D/SC SS 87200 90300 AFAN/PELENNA E 251080 D/SC SS 87840 95790 AFAN/PELENNA E 251080 D/SC SS 87840 95790 AFAN/PELENNA E 251080 D/SC SS 87840 95790 AFAN/PELENNA E 251080 D/SC SS 87840 95790 AFAN/PELENNA E 251080 D/SC SS 87840 95790 AFAN/PELENNA E 251080 D/SC SS 87840 95790 AFAN/PELENNA E 251080 D/SC SS 87840 95790 AF		! 			1			AFON CORRWG FECHAN
AFON CORRWG E 248115 D/S SN 86870 00610	I LOW	DRY	12:00	17-Feb-93	SN 88960 00725	U/S	E 248113	AFAN/PELENNA
AFON CORRWG E 248117 DISC SS 86290 97880	1				•		· _ ·	AFON CORRWG
AFON CORRWG E 248117 DISC SS 86290 97880	LOW	DRY	13:15	17-Feb-93	\$S 86385 97660	U/9] E 248118	AFAN/PELENNA
AFAN/PELENNA E 248110 U/S S\$ 79020 97325 17-Feb-G3 15:15 DRY T 248120 DISC 1 S\$ 79090 97300 T 248121 DISC 2 S\$ 60090 9615 GWENFFRWD E 248122 D/S S\$ 79040 97190 AFAN/PELENNA E 248122 DISC S\$ 81585 97275 17-Feb-G3 14:45 DRY AFAN/PELENNA T 248124 DISC S\$ 81615 97200 AFAN/PELENNA T 248124 DISC S\$ 81615 97200 AFAN/PELENNA E 251691 U/S S\$ 81590 97550 08-Mar-G3 12:30 DRY AFAN/PELENNA T 251692 DISC S\$ 81540 97515 DISC 2 E 251693 D/S S\$ 81540 97515 DISC 3 S\$ 81540 97515 DISC 4 E 251693 D/S S\$ 81540 97515 DISC 5 E 251693 D/S S\$ 81540 97515 AFAN/PELENNA E 248824 U/S S\$ 78720 807750 AFAN/PELENNA E 248824 D/S S\$ 78720 807750 AFAN/PELENNA E 251894 U/S S\$ 78720 80750 AFAN/PELENNA E 251894 U/S S\$ 81690 92210 08-Mar-G3 13:15 DRY AFAN/PELENNA E 251895 DISC S\$ 81715 92135 AFAN/PELENNA E 251896 D/S S\$ 81690 92210 08-Mar-G3 13:00 DRY AFAN/PELENNA E 251085 U/S S\$ 80215 97305 AFAN/PELENNA E 251085 U/S S\$ 80215 97305 05-Mar-G3 13:00 DRY AFAN/PELENNA E 251085 U/S S\$ 80215 97305 05-Mar-G3 14:00 DRY AFAN/PELENNA E 251085 U/S S\$ 80210 90300 05-Mar-G3 14:00 DRY AFAN/PELENNA E 251080 DISC S\$ 87200 90300 05-Mar-G3 14:00 DRY AFAN/PELENNA E 251080 DISC S\$ 87770 95000 08-Mar-G3 10:30 DRY AFAN/PELENNA E 251080 DISC S\$ 87770 95000 08-Mar-G3 10:30 DRY AFAN/PELENNA E 251080 DISC S\$ 87790 95000 08-Mar-G3 10:30 DRY					•			
T 248120 DISC 1 SS 79960 97300	(LOW	DRY	15:15	17-Feb-93			· :	
GWENFFRWD	1				SS 79960 97300	DISC 1	T 248120	
NANT BLAEN PELENNA T 248124 DISC SS 8185 97200 DISC 1 E 248125 D/S SS 81620 97125 DRY AFAN/PELENNA E 251091 U/S SS 81500 97550 08-Mar-93 12:30 DRY NANT BLAEN PELENNA T 251092 DISC SS 81540 97515 DRY NANT BLAEN PELENNA T 251092 DISC SS 81540 97515 DRY AFAN/PELENNA E 248024 U/S SS 78720 89775 23-Fab-93 14:00 DRY AFAN/PELENNA E 248025 DISC SS 78720 89750 AFAN/PELENNA E 251094 U/S SS 81090 92210 08-Mar-93 13:15 DRY AFAN/PELENNA E 251095 DISC SS 817515 92135 AT BRYN E 251096 D/S SS 81605 92180 AFAN/PELENNA E 251085 U/S SS 80165 92180 AFAN/PELENNA E 251086 DISC SS 80215 97365 05-Mar-93 13:00 DRY AFAN/PELENNA E 251087 D/S SS 80210 97300 NANT GWYNFI E 251086 U/S SS 80210 97300 AFAN/PELENNA E 251086 U/S SS 87180 98340 05-Mar-93 14:00 DRY AFAN/PELENNA E 251086 DISC SS 87180 98340 05-Mar-93 14:00 DRY AFAN/PELENNA E 251080 DISC SS 87180 98340 05-Mar-93 14:00 DRY AFAN/PELENNA E 251080 DISC SS 87180 98340 05-Mar-93 14:00 DRY AFAN/PELENNA E 251080 DISC SS 87180 98340 05-Mar-93 14:00 DRY AFAN/PELENNA E 251080 DISC SS 87180 9837190 98270 AFAN/PELENNA E 251080 DISC SS 87180 9837190 98270					•			=
DISC 1	I row	DRY	14:45	17-Feb-93	•		• _	
NANT BLAEN PELENNA T 251892 DISC SS 81540 97515 DISC E 251609 D/S SS 61565 97500 DRY AFAN/PELENNA E 248824 U/S SS 78720 89775 23-Feb-03 14:00 DRY FFRWD WYLLT T 248825 DISC SS 78720 89750 DRY AFAN/PELENNA E 251894 U/S SS 81890 92210 08-Mar-03 13:15 DRY FFRWD WYLLT T 251695 DISC SS 81715 92135 DRY FFRWD WYLLT T 251695 DISC SS 81715 92135 DRY AFAN/PELENNA E 251896 D/S SS 81685 92180 DRY AFAN/PELENNA E 251085 U/S SS 80215 97365 DS-Mar-03 13:00 DRY T 251086 DISC SS 89230 97300 DRY AFAN/PELENNA E 251088 U/S SS 87180 98340 DS-Mar-03 14:00 DRY AFAN/PELENNA E 251088 U/S SS 87180 98340 DS-Mar-03 14:00 DRY AFAN/PELENNA E 251080 DISC SS 87200 98300 DRY AFAN/PELENNA E 251080 DISC SS 87200 98300 DRY AFAN/PELENNA E 251080 DISC SS 87300 98300 DRY AFAN/PELENNA E 251080 DISC SS 87300 98300 DRY AFAN/PELENNA E 251080 DISC SS 87300 98300 DRY AFAN/PELENNA E 251080 DISC SS 87300 98300 DRY AFAN/PELENNA E 251080 DISC SS 87300 98300 DRY AFAN/PELENNA E 251080 DISC SS 87300 98300 DRY					•			
DISC 2 E 251690 D/S SS 61565 97500	Low	DRY	12:30	08-Mar-93]	SS 81590 97550	U/S	E 251691	AFAN/PELENNA
FFRWD WYLLT AT GOYTRE E 248825 DISC SS 78720 89750 E 248825 DISC SS 78690 89740 E 248825 DISC SS 78690 89740 AFAN/PELENNA E 251894 U/S SS 81890 92210 08-Mar-93 13:15 DRY FFRWD WYLLT T 251695 DISC SS 81715 92135 AT BRYN E 251896 D/S SS 81685 92180 AFAN/PELENNA E 251085 U/S SS 80215 97385 05-Mar-93 13:00 DRY T 251086 DISC SS 89230 97300 NANT GWYNFI E 251087 D/S SS 80180 97290 AFAN/PELENNA E 251088 U/S SS 87180 98340 05-Mar-93 14:00 DRY AAFAN T 251089 DISC SS 87200 98300 AT GELU FARM E 251082 U/S SS 87190 90270 AFAN/PELENNA E 251683 DISC SS 87700 95800 08-Mar-93 10:30 DRY AFAN/PELENNA E 251683 DISC SS 87840 95790					•			NANT BLAEN PELENNA DISC 2
AFAN/PELENNA E 251894 U/S SS 81890 92210 08-Mar-93 13:15 DRY FFRWD WYLLT T 251895 DISC SS 81715 92135 AFAN/PELENNA E 251896 D/S SS 801685 92180 AFAN/PELENNA E 251896 DISC SS 80215 97365 05-Mar-93 13:00 DRY T 251086 DISC SS 8020 97300 NANT GWYNFI E 251087 D/S SS 80180 97290 AFAN/PELENNA E 251088 U/S SS 87180 96340 05-Mar-93 14:00 DRY AFAN/PELENNA E 251089 DISC SS 87200 96300 AT GELU FARM E 251080 D/S SS 87190 96270 AFAN/PELENNA E 251080 D/S SS 87190 96270 AFAN/PELENNA E 251682 U/S SS 87770 95800 08-Mar-93 10:30 DRY T 251680 DISC SS 87840 95790	LOW	DRY	14:00	23-Feb-93	\$\$ 78720 69775	U/9	E 248824	AFAN/PELENNA
AFAN/PELENNA E 251694 U/S SS 81690 92210 08-Mar-93 13:15 DRY FFRWD WYLLT T 251695 DISC SS 81715 92135 AT BRYN E 251696 D/S SS 81685 92180 AFAN/PELENNA E 251085 U/S SS 80215 97305 05-Mar-93 13:00 DRY NANT GWYNFI E 251087 D/S SS 80220 97300 AFAN/PELENNA E 251088 U/S SS 87180 98340 05-Mar-93 14:00 DRY AFAN/PELENNA T 251089 DISC SS 87200 98300 AT GELLI FARM E 251082 U/S SS 87190 90270 AFAN/PELENNA E 251080 D/S SS 87700 98800 08-Mar-93 10:30 DRY AFAN/PELENNA E 251683 DISC SS 87840 95790	į			į	•			FFRWD WYLLT
FFRWD WYLLT T 251695 DISC SS 81715 92135		***************************************		' — ·	·	-	· —— ·	
AT BRYN E 251085 D/S \$8 81685 92180	LOW	DRY	13:15	08-Mar-93	•		· · - · · · · · · · · · · · · · · · · ·	AFAN/PELENNA FFRWD WYLLT
T 251086 DISC \$3.89230.97300	i	2		I				
NANT GWYNFI E 251087 D/S S8 80180 97290	i row	DRY	13:00	05-Mar-93			,	AFAN/PELENNA
AAFAN T 251009 DISC SS 87200 96300	i .			i		·		NANT GWYNFI
AT GELLI FARM E 251090 D/S 88 87190 90270	LOW	DRY	14:00	05-Mar-93				
AFAN/PELENNA E 251662 U/S SS 67770 95600 08-Mai-93 10:30 DRY T 251689 DISC SS 87840 95790	!		!		•			
T 251880 DISC 59 87840 95790			********				` 	
	Low	DRY	10:30	•		_		AFAN/PELENNA
The state of the s	i		Control					NANT-Y-FEDW
AFAN/PELENNA E 251885 U/S 88 86380 96135 08-Mar-93 11:00 DRY	Low	DRY	11:00	08-Mar-93				
AAFAN T 251686 DISC SS 86360 90160	!			. !				

DISCHARGE RATIO	MDTH		COLOUR	DEPOSIT	AFFECTED	AFFECTED	BED AFFECTED
10:1		2	HIGH	HIGH/MED	0.4	600	100
	3-4		HIGH	MED	1.25	4375	100
10:1	1.5-2.5		HIGH	HIGH	2.7	5400	100
50:1	3-5		HIGH	HIGH	1.7	5100	100 100
50:1	3-5		HIGH	HIGH	3.2	12800	100
100:1	4-5		HIGH	HIGH	1.2	5400	100
10:1	2-3 		HIGH	HIGH	1.1] 2750 	j 100
10:1	<u> </u>	3	HIGH	HIGH	5	l 15000	100
50:1	3-4		HIGH	HIGH	0.01] 30	100
10:1	ì	4 1	HIGH	HIGH	0.75	3000	100
1:1	2-3		MED	MED	0.25	750	l 100
10:1	2.5-3	¹	HIGH	1 нідн I	2.1] 5250	 100
1000:1) 3 [1	HIGH	l cow	0.01	1 15	50
10:1	2-3		HIGH	HIGH	0.7	! 2100 !	100
1000:1	3-4		MED	MED	15m	1 30	1 30

Appendix 3. Table showing Physicochemical data for Ferruginous Inputs to Weish Rivers in the South West Area

NAME OF	DOMINANT	TEMP.	1 pH	FIELD	I DO	100
ECEIVING WATER	SUBSTRATE	deg. C	i	[pH	 mg/l	1 %
OGMORE	ROCKS/COBBLES/	7.3	7.10		•	105
SARW FECHAN	STONES	10.4 6.1	•	6.75 7.25	•	103
DGMORE FACH	ROOKS/ • LARGE STONES	9.1	•	•	•	,
OGMORE	STONES/	7.7	6.80	7.53	12.00	1 101
INNAMED TRIB OF LLYNFI	GRAVEL/ LARGE ROCKS	10.2	•	6.85 7.06	9.60 11.60	1 85 97
FAN/PELENNA	BOULDERS/ROCKS/	5.9	•	•		116
ufon Corrwg Fechan	COBBLES	9.7 7.1		7.05 7.38	•	101
FAN/PELENNA	BEDROCK/BOULDERS	7.3		: : :	•	111
NFON CORRWG		9.4 7.7		•	•	105
VFAN/PELENNA	BOULDERS/ROCKS/	7.9	·		•	105
AFON CORRWG	GRAVEL	i 11.6			10.10	110
AFAN/PELENNA	ROCKS/GRAVEL	8.9	•		•	100
TRIB OF	}	10.5	4.00	4.95	•	1 8
GWENFFRWD		l	• ——		*************	10:
AFAN/PELENNA NANT BLAEN PELENNA DISC 1	ROCKS/GRAVEL/ FEW BOULDERS) 8.6) 10.5) 9.3	5.70	6.15	i a.so	100 71 90
AFAN/PELENNA	ROCKS/GRAVEL/	5.5				***************************************
NANT BLAEN PELENNA DISC 2	FEW BOULDERS	6.9 0.5	7.20	7.43 7.73	11.40	1 100
AFAN/PELENNA	ROCKS/GRAVEL	6.5	7.20	•	•	11
FFRWO WYLLT AT GOYTRE	1	10.2	:	6.78 7.36	9.50	1 100
AFAN/PELENNA	GRAVEL/SOME ROCKS	1 5.7	•	•		1 10:
FFRWD WYLLT AT BRYN		5.9	7.20	7.89	12.10	100
AFAN/PELENNA	BOULDERS/ROCKS/	j 5.6	•	8.36 7.24	•	•
NANT GWYNFI	GRAVEL	6.5		7		
AFAN/PELENNA A.AFAN	ROCKS/GRAVEL	6.7	•	,	•	11
AT GELU FARM		6.6			•	
AFAN/PELENNA	ROCKS/GRAVEL/ BOULDERS	5.0	•	•	•	•
NANT-Y-FEDW		8.3	•	•		
AFAN/PELÉNNA AAFAN	ROCKS/BOULDERS	5.6 J 9.4			•	
AT CYMER	i	6.1			•	

COND.	DISS.	TOTAL IRON	DISS.	TOTAL	DISS. SULPHATE	TOTAL SULPHATE	ALKALINITY	SUS.
us	mg/l	mg/l	mg/1	mg/l	mg/l	mg/l	mg/l CaCO	mg/l
118	0.096	 0.096	0.110	0.120	14.70	14.8	15.62] 3
344	3.400	3.400	0.004	0.004	49.70	49.7		
180	0.540	0.540	0.014	0.100		16.9	26.10	17
244	2000	•				21.9] 3
238	0.575	0.677	0.004	0.004	42.30	42.3	73.90	3
112	100000000000000000000000000000000000000	•	•			13.6		5
335			0.005	0.005	98.40	103.0	27.63	•
170	0.500	0.800	0.027	0.340		29.4	10.80	·
78.3				0.110		9.8	•	3 21
526			0.016	0.016		142.2	•	•
230		2.709	0.360	0.052	52.70	52.7	48.66	
150	128222	•	0.270					
507		15.250	0.022	•	35.40	202.6	•	
198	1	1.596	0.030	0.032		36.0	52.77	1 5
173			0.025			32.2	42.29	
1018			0.028				•	
194	0.304	0.750	0.022	0.042	38.80	38.8	45.91	3
148			0.129	0.273			8.85	
974		•	0.179	0.190	512.20	519.3	1.19	
355 258			1.491 0.037	1.514	145.20 93.50			1 3
	***************		************	***************************************				
124				•	24.20	24.2	•	3
565		25.630	0.169	0.353	255.60	267.6		
303	9,190	11.610	0.067	0.915	121.90	122.4	3.00	
98	0.003	0.111	0.035	0.328	•	•	•	•
239			0.018	0.640				6
152	0.149	0.628	0.035	0.576	29.20	29.2	23.50	8
179			0.030	0.079	,		26.16	3
399	and the same of th	•	0.009	0.025		•		6

160	0.027						•	•
261	0.384			0.046	19.00		34.92 35.68	
171	0.324	0.569	0.036	***************************************	**************		*******************	
106	0.066		•		•	•	,	•
447			0.027	0.043	163.40		52.67	
194	2.100	2.100	0.027	0.043	53.60	53.6	34.74	10
169	0.038		0.030	0.030	30.90	31.0	35.55	
224	0.129	0.756	0.004	0.011	27.60	27.6		
173	0.054	0.187	0.024	0.037	30.60	31.0	35.89	3
57		•						
299		1.522	0.004		•	70.9	•	. 6
156	0.646	0.646	0.004	0.015	34.20	34.8	10.40	5
181		•	0.008					
266			0.004	0.004	20.10	20.1		
178	0.055	0.122	800.0	0.012	30.30	31.5	38.77	3

Appendix 3. Table showing Physicochemical data for Ferruginous Inputs to Welsh Rivers in the South West Area

					-	-	
NAME OF RECEIVING WATER	LAB. REF.	LOCATION	NATIONAL GRID REFERENCE	DATE	TIME	 WEATHER 	 FLOW
AFAN/PELENNA TRIB OF NANT CREGAN] E 251688 T 251689 E 251690	 U/S DISC D/S	58 84420 97360 58 89445 97330 53 84770 97315	08-Mar-93	12:00	 DRY 	Low
CYNFFIG NANT CRAIG YR ABER	E 251697	U/S DISC D/S	85 85640 85140 88 85670 85120 98 85685 85050	08-Mar-93	14:30	DRY	, I rom
NANT CYNFFIG	T 251700	DISC	SS 86425 83500	08-Mar-93	15:40	DRY	LOW
LOUGHOR TRIB OF AFON MORLAIS	E 253007	U/S DISC	SN 53920 09920 SN 53700 09680	16-Mar-93	14:30	DRY	Low
LOUGHOR	E 253200 T 253201 E 253202	U/S DISC D/S	SN 56900 02000 SN 57230 02280 SN 57025 01970	17-Mar-93	12:45	DRY	LOW
UNAMED TRIB OF	T 252761	U/S DISC D/S	SN 60090 14120 SN 60135 14120 SN 60190 14140	15-Mar-93	16:30	DRY	LOW
LOUGHOR R. CATHAN	E 253389 T 253390 E 253391	U/S DISC D/S	SN 63250 09630 SN 63250 09630 SN 63230 09665	18-Mar-93	15:30	DRY	Low
	,	U/S DISC D/S	SN 63750 09670 SN 64040 09820 SN 63720 09680	19-Mar-93	09:00	DRY	Low
LOUGHOR UNNAMED TRIB OF NANT GARRNING AT GLANAMAN	1 E 253548 T 253547 E 253548	U/S DISC	 - SN 67385 12285	19-Mar-93	10:30	DRY	Low
OF LOUGHOR AT	T 253550	U/S DISC DIS	SN 60220 12230 SN 60250 12200 SN 60260 12180	19-Mar-93	11:15	DRY	LOW
UNNAMED TRIB OF LOUGHOR AT CAPEL HENDRE AMMANFORD	E 253552 T 253553 E 253554	U/S DISC DISC	SN 59450 11670 SN 59470 11820 SN 59450 11565	19-Mar-93	12:00	DRY	l row
R.LOUGHOR AT AMMANFORD	E 254177 T 254170 E 254179	U/S DISC D/S	\$N 61970 11980 \$N 62000 11960 \$N 62010 11930	24-Mar-93	10:00	DRY	LOW
UNNAMED TRIB OF LOUGHOR AT AMMANFORD	E 254175 T 254176	U/S DISC/STREA	:	24-Mar-93	10:30	DRY	LOW
LOUGHOR NANT MELYN] E 254346	DISC	 SN 70350 10110	 25-Mar-93	11:40	DRY	l rom
GWENDRAETH TRIB OF GWENDRAETH FAWR	E 253004 T 253005	U/S DISC O/S	SN 5388\$ 12475 SN 53880 12450 SN 53840 12440	16-Mar-93	12:00	DRY	LOW

DISCHARGE RATIO	WIDTH I I m	COLOUR	DEPOSIT	AFFECTED	AFFECTED	BEO AFFECTEO
100:1	 	l High I	 MED 	0.1	200	100
10:1	} 2-3	HIGH	HIGH	4,5	13500	100
	•	MEO	MED		***************************************	100
NOT MEASURABLE	-	MED/LOW	MEDLOW	2.5		100
10:1	5	HIGH	HIGH	1	5000	100
l:1	1,5	HIGH	HIGH	0.5	750	100
1000:1	3	I HIGH	— ———— нісн 	1.2	3600	100
0:1	2	HIGH	HIGH	Q.6	1200	100
.0:1	2.5	MED/LOW	MED/LOW	0.5	1250	100
:1 :1	1	HIGH	HIGH	0.4	400	100
00:1	2	HIGH	HIGH	0.6	1200	100
000:1	. i6	HIGH/MED	MED/LOW	0.01	0.01	5
	0.2			-		
	1.5	MED	MED/LOW	1 1.6	2400	100
0:1	1	HIGH	HIGH	0.3	300	

Appendix 3. Table showing Physicochemical data for Ferruginous Inputs to Weish Rivers in the South West Area

NAME OF	DOMINANT	TEMP.	pH	FIELD	DO	1 DO
RECEIVING WATER	SUBSTRATE	1	<u>İ</u>	pH		! _
		deg. C	·	·	mg/l	! %
FAN/PELENNA	GRAVEL/ROCKS	5.0	 5.39	8.00	12.50	j 98
TRIB OF NANT CREGAN] 	9.7	6.70 7.17	7.34 7.51] 11.40 12.10	100 101
CYNFFIG	ROCKS/GRAYEL	J 7.1				•
IANT CRAIG YR ABER	 	7.6		7.43 7.60	11.10 11.80	92 94
NANT CYNFFIG	SMALL ROCKS/GRAVEL/ SILT	6.0	7.60	7.54	11.30	95
OUGHOR	GRAVEL/SILT	8.5	•	•	13.80	110
OUGHOR 1	GRAVEL/STONES/	9.6		•		
MORLAIS	SILT BANKS 	14.5		6.90 7.32	0.20 10.40] 9:
OUGHOR	COBBLES/GRAVEL	0.0	6.00		9.70	8
JNAMED TRIB OF AFON LASH	[]	10.3	7.20 7.60		5.80 6.70	5 7
LOUGHOR	ROCKS/COBBLES	0.6	1 7.70		11.30	
R. CATHAN		11.0	5.80 7.20	•	1.00	9
LOUGHOR	LARGE ROCKS/GRAVEL	j 4.5 l 10.5	•	7.86 6.25	11.50	8
UNNAMED TRIB OF CATHAN		9,2	•	•	11.00	9
LOUGHOR I	GRAVEL/SMALL ROCKS	4.7	8.30	6.42	1 12.00	0
NANT GARRNING AT GLANAMAN	1	5.8 5.4	7.10	7.90	10.10	1 8
UNNAMED TRIB	I STONES/GRAVEL	6.5	6.10	7.94		`
OF LOUGHOR AT SARON AMMANFORD] (9.8	7.30 7.60	7.41	10.30	1 9
UNNAMED TRIB	BEDROCK/GRAVEL	5.5	7.40	7.46] 12.30 4.80] 9 4
OF LOUGHOR AT CAPEL HENDRE AMMANFORD	 	8.0	7.00	6.62	•	
- : :::::::::::::::::::::::::::::::::::	ROCK9/GRAVEL	6.7		6.25 6.87	j 14.10 I 0.90] 11
R.LOUGHOR AT AMMANFORD		10.7			11.70	9
UNNAMED TRIB OF LOUGHOR AT AMMANFORD	-	5.4 9.0	•	8.28 7.16	13.50 6.30	10 5
LOUGHOR NANT MELYN	GRAVEL	J 6.2	6.90	7.92	i 1 12.30	"
GWENDRAETH	GRAVEL/SMALL STONES	j 8,7		8.25		11
TRIB OF GWENDRAETH FAWR	}	10.5	•	•	9.30	

COND.	OISS.	TOTAL I IRON		, TOTAL Al.	DISS.	TOTAL SULPHATE	ALKALINITY	SUS. SOLIDS
JS	mg/l	mg/l	•	•	mg/l		mg/l CaCO	mg/l
105	0.010	0.011	0.011	0.011	16.60	1 15.5	1.78	1
394	3.230	3.320	0.063	0.123	150.60	153.7	_	
265	1.680	2.470	•			•	•	
105	0.153	0.283					11.22	•
234	1	1,990	0.010	0.013	•	[19.9	17.75	
156	0.537	0.699	0.006	0.011	25.30	25.3	22.80	1
526	0.761 	0.851	0.016	l 0.031 I	125,50 	125.5 1	125.30	1 7
81	0.528	0.585	0.056	0.135	6.90	6.9	12.34	
106	•	1.331	0.032	0.062	7.50	7.5	20.14	1 .
169	0.262	0.416						
2230	63.130	73.080	0.166	•	•	1,057.0	222.62	
1011		10.360		0.034	390.50	400.4	103.62	50
725	0.003	0.041	0.004	0.004	214.50	214.5	190.55	1 :
1162	2.098	2.116		0.004	304.00	304.0	246.15	į :
1070	0.548	1.138	0.004	0.004	272.20	275.0	345.88	i
212	0.048		0.011	0.020	42.20	42.5		
900	61.100	61,630	0.746	1.203	488.70	488.7		
235	1.900	1.951	0.026	0.060	54.60	54.9	47.62	
155	0.042							! !
897	24.800	25,500	0.200		408.70	408.7		4:
51\$	0.565	2.610	0.007	0,139	144.60	207.9	45.65	12
296	0.076	0.118	 0.012	 0.061	1 34.50	 35.2	121.97	1 3
461	0.047		0.004	1	179.40	i	52 40) z
310				0.058	46.90	46.9	116.62	j
214	0.117		0.014	0.057	10.70	1 10.8		
610	2.920			•	169.90	169.9		14
458	1.620	1 1.710	0.004	0.026	115.20	117.1	116.13	
184	0.380	0.546	0.005	0.029	14.50	14.5	59.13	1 10
310	8.480	13.000	0.019	0.021	25.80) 34.9 17.7		ļ 20 34
205] 2.430 	[2.430]	0,009	0.033	17.70	17.7	02.90	*
337	0.059	0.200	0.046	0.130	42.50	42.5	123.52	
1083	5.100	7.200	0.008	0.008	144,10	145.2		•
530	1.200	1.300	0,026	0.120	l	50.5	184.72	3:
555	0.074		0.005	0.005	101.90	102.2		!
504	3.800	4.500	0,011	0.011	53.00	53.0	224.44	(
98	0.742	0.660	0.011	i 0.016	[7.60	7.9	! 23.64	
397	0.293	0.429	0.010	0.030	50.80	80.6		
921	2.923	3.006	0.004	0.006		243.4	339.80	
676	1.373	2.481	0.004	0.022	j 165.70	[167.1	227.47	1 :

......

......

......

......

Appendix 3. Table showing Physicochemical data for Ferruginous Inputs to Welsh Rivers in the South West Area

NAME OF RECEIVING WATER	I CAB.	LOCATION	NATIONAL GRID REFERENCE	DATE	TIME	WEATHER	FLOW
GWENDRAETH FAWR	 E 252757 T 252758 E 252759	U/S D/SC D/S	SN 50165 11210 SN 50150 11180 SN 50130 11185		13:30	DRY	 LOW
GOWER UNNAMED TRIB AT BLUE ANCHOR	 E 253203 T 253204	• U/\$ DISC	 \$9 55350 95080 \$8 65330 95080	17-Mar-93	16:00	DRY	LOW
GOWER UNNAMED TRIB OF PENARD PIL	E 253382 T 253383 E 253384	U/S DISC D/S	\$8 55180 91370 \$8 55200 91380 \$8 55200 91330	18-Mar-93	09:00	DRY	LOW
GOWER	T 253388	U/S DISC 1 DISC 2 D/S	\$\$ 58750 94250 \$\$ 58750 94270 \$\$ 56810 94250	18-Mer-93	11:40	DRY	LOW
PEMBROKESHIRE UNNAMED TRIB OF BRADY BROOK	E 253947 T 253948 E 253949	U/S D/SC D/S	SM 89520 23610 SM 89500 23590 SM 89465 23590	23-Mar-93	10:00	DRY	LOW
PEMBROKESHIRE CRESWELL RIVER	E 253950 T 253951 E 253952	U/S DISC D/S	SN 11875 06990 SN 11840 06985 SN 11790 06980	23-Mar-93	16:30	DRY	LOW
PEMBROKESHIRE UNNAMED TRIB AT SAUNDERSFOOT STW	E 253954 E 253955	U/\$ DISC D/9	SN 12419 04865 SN 12490 04860 SN 12555 04880	23-Mar-43	17:15	DRY	LOW
NEATH CLYDACH	E 254180 T 254181 E 254182	U/S D/SC D/S	SN 74140 00055 SN 74140 00040 SN 74110 00020	24-Mar-93	16:00	DRY	LOW
NEATH CLYDACH BROOK	T 258693	U/S D/S D/S	SN 83430 02530 SN 83390 02530 SN 83380 02510	13-Apr-93	10:30	V.WET	HIGH
NEATH GARWED BROOK AT ABERGARWED	E 256695 T 256696 E 256697	U/S DISC O/S	SN 81350 02840 SN 81370 02825 SN 81360 02805	13-Apr-93	11:30	WET	HIGH
NEATH CANAL	† E281137 T281138 E281139	U/S DISC D/S	SN 8110 0190 SN 8080 0175 SN 8035 0110	23-Sep-93	09:30	DRY	LOW
NEATH RIVER GWRACH	E 256698 T 256699 E 256700	U/9 DISC D/9	SN 86900 05070	13-Apr-93	13:30	DRY/WET	нідн
NEATH CRYNANT IRIB OF DULAIS	E 256701 T 256702 E 256703	DISC	SN 79480 04520 SN 79470 04700 SN 79450 04700	14-Apr-93	11:30	DRY	MED
TAWE	E 254347 T 254348 E 254349	DISC	SN 75465 12010 SN 75470 11990 SN 75460 11980	i	13:30	DRY	LOW
TAWE JNNAMED TRIB OF	E 254515		SN 70020 05385 SN 70020 05330		11:00	DRY	LOW

DISCHARGE RATIO	WIDTH	COLOUR	DEPOSIT		AFFECTED	BED AFFECTED
1000:1	3-4	Low	Low		2	1
NOT MEASURABLE	0.5	MED/LOW	Low	0.1	500	100
000:1	· · · · · · · · · · · · · · · · · · ·	MED/LOW	Low		2	
i;1	CLINE - 2 TRIB - 1-2	HIGH	HIGH	1,75	3500 	100
10:1	1	MED	MED/LOW	0.01	S	50
100:1		MED	MED	0.4	400	100
1:1	1	MED	MED	0.15	150	100
.000:1	5	I MED	LOW	0.01	1 10	1
000:1	4	1 HIGH	HIGH	0.4	1600	100
:1	3	HIGH	HIGH	0.4	1 1200	100
000:1	4-5	I HIGH	HIGH	2	10000	100
000:1	2-3	Low			*	(
00:1		HIGH	HIGH	0.5	2000	100
000:1	6	MED/LOW	MED/LOW	20m	160	 100
00:1	1-2	HIGH	HIGH/MED	1.5	1 3000	100

Appendix 3. Table showing Physicochemical data for Ferruginous Inputs to Weish Rivers in the South West Area

NAME OF	DOMINANT SUBSTRATE	TEMP.	pH	FIELD PH	1 00	1
RECEIVING WATER	SUBSTRATE	deg. C	 	 	mg/l	9
GWENDRAETH FAWR	 ROCKS/GRAVEL	9.2	 8.20	8.40	 11.90	
		j 10.3 j 8.8		7.32 7.42	•	1
GOWER UNNAMED TRIB AT BLUE ANCHOR	SMALL ROCKS/GRAVEL/	 10.0 10.0	•		•	•
GOWER JNNAMED TRIB OF PENARD PIL	COBBLES/GRAVEL	9.0	6.40	6.39	3.40	i
GOWER	GRAVEL/ROCKS	9.3			•	•
	!	11.4		6.75 6.79	•	
TRIB OF CLYNE	}	11.4				•
PEMBROKESHIRE	GRAVELISMALL STONES	7.4	7.00	6.80		1
UNNAMED TRIB OF BRADY BROOK		5.5 5.0	6.70	5.78		
PEMBROKESHIRE	SMALL STONES/SILT	0.2	7.40	7.83	•	•
CAESWELL RIVER		10.0	•		•	
PEMBROXESHIRE	GRAVEL/SMALL STONES	8.2			,	į
UNNAMED TRIB AT SAUNDERSFOOT STW		9.8	6.90 6.60	6.60 6.95		1
NEATH	GRAVELS/STONES	7.5				l
CLYDACH		7.5	•			i
NEATH	BOULDERS/ROCKS/	7.0		6.00		
CLYDACH BROOK	GRAVEL	12.5		7.12		
NEATH	BOULDERS/ROCKS/	0.0				
GARWED BROOK AT ABERBARWED	GRAVEL	10.6	•			
NEATH	!) 10.5				
NEATH CANAL		13,3 11,2				•
NEATH		8.7			•	•
RIVER GWRACH		12.2 9.3	:	6.86 7.45	0.90 11.20	•
NEATH	ROCKS/GRAVEL/	7.1				
CRYNANT TRIB OF DULAIS	BOULDERS	7.1				
TAWE	ROCKS/BEDROCK	7.1				
A,TWRCH	1	10.3				
TAWE	GRAVEL/STONES	5.0				
UNNAMED TRIB OF LOWER CLYDACH	!	9.5				

	COND.	DISS.	TOTAL	DISS.	TOTAL	DISS.	TOTAL SULPHATE	ALKALINITY	SOLIOS
Tata 6	us	IRON mg/l	[mg/l	mg/l	mg/l	•		mg/I CaCO	
	670		0.360	0.004	0.023	j 57.20	574	1 130.15	3
104.0	379 605	0.274	0.300	0.004	0.004	87.30		•	3
35.6 81.1				0.004	0.007	•	•	162.27	3
									
75.4 78.1	476 568	0.341 0.854	0.470 1.306	0.015 0.008	•	•	103.1 94.7	•	5.00
81.3	220	0.593	0.764	0.034	0.122	14.30	14.3	52.72	8
29.5	240	,	6.250	i	0.014	•	12.8	35.55	7
76.9		•	0.718	0.029	0.111	14,30	14.3	50.85	4
89.0	207	0.158	0.411	7		•	•	•	•
9.2	541	7.817	8.175			•	76.7 129.9	•	12
67.0 55.6	455 469	•	27.800 4.777	0.057 0.010	0.059	129.80 49.70	56.4	•	
116.0	240	0.180	0.220	0.044	0.068	22.40	22.4	27.87	[3
94.0	254	0.230		0.360	0.840	12.10	17.5		
97.3	261			0.260	0.350		13.5	1.58	3
104.0	244	0.580	1.040	0.024	0.130			75.37	
7.1	360	18.600	19.200	0.043					23
93.1	270	2.000	2,900	0.028	0.140	12.20	12.2	77.87	16
98.6	235	•			0.060	•	•	67.01 149.12	5
15.9	362 347		0.770 1,100	0.004	0.014		•	:	3
101.0	200	0.330	0.420	0.041	0.075	40.30	40.4	40.82	
11.0	237	1,400	j 1.400			33.20	35.9		
106.0	200	0.310	2.500	0.038	0.160	39.60	39.8	42.27	
99.8	93	0.052	0.374	0.082	0.615				12
0.9	946		22.830	0.058	0.168	460.00	460.0	•	24
98.4	138	1.084	1.102	***************************************			38.2		***************************************
97.1	83	0.050	0.199	0.092			1,032.0	6.86	15
90.0	1583 316	100.600 22.090	•] 22.380 6.900	22.940 7.040			1	23
92.5	224		0.340		0.090	30.50	30.5		4
33.8	3380	130.000	135.000	0.130	0.330	1,274.00	1,274.0	•	27
78.5	450	4.400	5.800	0.054	0.190	135.00	142.3		16
97.2	91	0.056	0.094	0.023	0.097	11.20	11.2		3
8.4	416	0.810	7.780	0.014	0.045	7,70	7.7		20
97.8	109	0.026	0.061	0.004	0.038	103.70	103.7	148.00	
92.6	70	0.016	0.025	0.076	0.103				3
105.0				•					
101.0	155 	0.338	0.780	0.078	0.350	·			
98.4				0.032			•		
8.1	640 141		•	0.004					
				0.000	`	·	132.0	11.70	3
95.5	312 556			0.061	•				79
96.5			•						

Appendix 4. Table showing Physicochemical data for Ferruginous Inputs to Weish Rivers in the North Area

NAME OF RECEIVING WATER	LAB. REF. 	LOCATION	NATIONAL GRID REFERENCE	DATE	I TIME	WEATHER	FLOW
DEE R.TERAIG	E 165669 T 165670 E 165671	U/S DISC D/S	 	 	 	 DRY	l I MED
DEE WEPRE BROOK	E 165594 T 165596 E 165595	U/S DISC D/S	SJ 27330 67450	20-Apr-93	15:30	DRY	MED
DEE	E 165666 7 165667 E 165668	U/S DISC DISC	SJ 27480 61080	21-Apr-93	10:30	DRY	MED
DEE R.CEGIDOG	E 165672 T 165673 E 165674	U/S DISC O/S	SJ 29290 54960	21-Apr-93	14:00	DRY	MED
DEE BAOUGHTON BROOK	E 165765 T 165766 E 165767	U/S DISC D/S	SJ 30650 65700 SJ 30680 65710 SJ 30680 65720	23-Apr-93	09:00	DRY	MED
DEE AT MONSANTO	E 165762 T 165763 E 165764	U/S DISC D/S	SJ 27300 41890 BJ 27340 41880 SJ 27320 41850	22-Apr-93	14:50	WET	MED
DEE RALYN	E 165676 T 165679 E 165680	U/S DISC D/S	SJ 31430 55340 BJ 31440 55290 SJ 31450 55340	21-Apr-93	15:15	DRY	MED
DEE RALYN	T 165676	U/S DISC D/S	 SJ 32520 54310	21-Apr-93	16:00	DRY	MED

DISCHARGE RATIO	WIOTH	COLOUR	DEPOSIT	AFFECTED Km		BED AFFECTEO
100:1	2	 HIGH 	 MEO	 1m) 	
100:1	·	HIGH	MED		•	
1000:1	i 	LOW	LOW]	
100:1	3	MED	LOW	0.1	100	100
10:1		HIGH	HIGH	0.15	150	100
1000:1	12	HIGH	STREAM -	STREAM - 0.1		STREAM .
1000:1	5	MED	LOW	0.02	20	S
1000:1	5	MED/LOW	LOW		······	***************************************

.

Appendia 4. Table showing Physicochemical data for Farruginous Inputa to Welsh Rivers in the North Area

***************************************	1])	1	1	1]
NAME OF	DOMINANT	TEMP.	рН	FIELD	DO	DO	CON
RECEIVING WATER	SUBSTRATE	l Idea.C		pH 	l mg/l	 %	us
				'	***************************************		*******
DEE		9.3	•	•	,	•	
	SMALL ROCKS] 6.9	•		,	2.6 74.9	ļ
R.TEARIG		9.2	7.90	7.60	0.00		
DEE	SILT GRAVEL	12.0	7.70	7.95		•	•
	İ	11.2		•	,	•	•
WEPRE BROOK		12.0	7.20 	7.92 	10.10] 93. 9	_
DEE	I GRAVEL	9.8	8.00	7.85	10.50	92.8	-
/	1	6.0	•	7.40	6.10	69.5	İ
RALYN	i	0.1	7.50	7.90	7.70	66.9	
DEE	GRAVEL/ROCKS	10.0	,	•		,	•
	1	11.5			•	•	
R.CEGIDOG	1	J 10.1	7.80	7.15	10.80	96.1	
DEE	GRAVEL/SILT	9.7		r	•		ļ.
	1	10.7				1.8	!
BROUGHTON BROOK	 	10.5	6.90	7.00	1.50	13.5	******
DEE	RIVER - SILT	10.1	6.00	7.49			1
AT MONSANTO	STREAM - GRAVEL	11.2		,	•	8.2	1
		10.5	} 7.90 	} 7.52) 5.50 	79.0	!
DEE	I BEDROCK	11.1	6.40	6.04	11.20	102.0	
		10.0		6.26			İ
R.ALYN		10.8	8.10	7.98	10.80	97.7	1
DEE)	11.0		,			I
	GRAVEL	9.6		•	•		!
RALYN	1	11.0	6.50	8:34	11.50	105.0	1

		1	1	1		1	1	ı
ļ	-	TOTAL) DISS.			IGIAL	ALKALIMITY	3U\$
	IRON	I IRON	AL	Al.	SULPHATE	SULPHATE		SOFIDS
- 1	mg/l 	[mg/l	mg/1	mg/l	mg/l	mg/l	mg/l CaCO	mg/l
483 I	0.900	 0.930) 0.316	 0.339	26.79	 -	205.00	 7.2
658	4,770	6.040	0.381	0.381	67.58	İ	294.00	12
533	0.178	•		0.315	26.63	1	215.00	13.2
705	0.010	0.310	0.028	0.287	74.49		203.50	8.6
733	2.980	3.480	0.662	0.704	746.64	J 1,331.0		11
912	0.030	2.950	0.032 	0,414 	219.50	262.0 	252.50] 25
594	0.080	0.191	0.344	0.358	47.55	1	202.00	8.8
634	0.600	14,310	•	1.000	84.55	i	252.00	22
620	1.030	3,440	•	0.389	83.40	İ	248.00	109
432	0.084	0.195	0.267			•	165.00	•
982	8.590	8.690	0.265	0.285	315.33	•	300.00	15
463	0.449	0.597	0.261	0.293	49.89]	158.00	4.8
326	0.381	0.504	0.193		44.86	•	89.00	•
978	10.270	10,380	0.260	0.270	242.20	•	•	11
867	9.420	9.420	0.255	0.264	215.51	221.0	211.00	13.2
93	0.102		,	0.109	6.72		•	4
044	0.060	10.300	0.141	0.336	258.42	•	298.00	[10
459	0.208 	[2.371) 0.135 	0.208] 31.58]	73.6	[51.00 [1 3.6 1
606	0,105	0.393	0.314	0.323	73.57	1	204.00	7.6
646	11,180	23.130	0.265	0.270	230.82	237.0	118.00	1 16
615	1,140	3.460	0.312	0.333	83.03	87.1	200.00	13.2
610	0.117			•	75.78		215.00	•
767	0.768	7.970	•	0.414	\$3.77		332.00	•
620	0.168	0.896	0.332	0.346	75.22	l .	216.00	4

Appendix 4a

Ferruginous Sites not Sampled

Catchment	Receiving S	Site	Loca	ition	Comments
Rhymney	Rhymney	ST	1538	9948	Low flow minewater passing over a trunk sewer.
Ogmore	Cwm Garw	SS	9138	8767	Discharge from culvert negligible
					effect on Garw
Neath	Clydach	SS	7392	9876	Minewater staining at foot of drain
Neath	Dulais	SN	7833	0300	Several areas of bankside staining
					below Blaenant Drift Mine.
Neath	Neath	SN	7776	0063	Low level of bankside staining.
Dee	Alyn	SJ	2335	6496	Bankside staining, no flow.
	_				
Dee	Trib Cedidog	SJ	2719	5811	Marshy area and stream affected by
					minewater.
Dee	Alvn	SJ	3348	5387	Spoil tip causes bankside staining.

Appendix 5. Chemical Data for 12 S.E. discharges (selected for stage 2 essessment) en all exempting occasions.

	1	l)	J	1		l
SITE	NAME OF	LAB.	LOCATION	NATIONAL	DATE	TIME !	WEATHER
NO.	RECEIVING WATER	REF.	l	GRID			!
		l	i	REFERENCE	Ţ		
				1	,		
10	TTMAD	E234126	U/S	80 2341 0962	16-Nov-92	11:40	DRY
	UNNAMED TRIB	T233775	DISC	80 2443 0897	11-Nov-92	į i	ĺ
	1	E233777	D/S	80 2484 0589	11-Nov-92	j i	İ
		E265724	j U/\$	80 2341 0962	14-Jun-93	10:30	WET
i	•	T265725	DISC	80 2443 0697	1	j 1	I
		E265726	D/3	80 2484 0889	1		
		E279569	j UPS	SQ 2341 0962	14-Sep-93	09:15	MET
		T279570	DISC	80 2443 0897	!		!
		E279571	0/3	j SC 2484 0889	·		
		E248750	I U/S	SO 2859 0062	02-Feb-93	15:30	DRY
3	LTMAD	E245750 T245760	DISC	80 2560 0058	1	, ,,,,,,	i
	AT PONTYPOOL	E245761	D/8	80 2868 0057	i		
	! 1	E265727	i U/3	80 2859 0062	14-Jun-93	11:30	DRY
	1	T255728	DISC	80 2560 0058	İ	l i	!
	i	E265729	D/S	80 2008 0057	ł .		
	į	E279575	į U/S	80 2559 0062	14-Sep-93	10:35	WET
	j	T279576	DISC	80 2000 0058	!		ļ
	1	E279577	D/S	80 2668 0057	!		l
1	LLWYD	E245756	L U/S	1 30 2707 0320	02-Feb-93	15:00	ORY
	AT ABERSYCHAN	T245757	DISC	80 2705 0315	i	i i	İ
		E245758	[D/S	80 2702 0310	i	1	l
	İ	E254059	U/S	SO 2707 0320	03-Jun-93		DRY
	İ	T264060	DISC	80 2705 0315	ļ		
	į –	E264061	D/S	80 2702 0310	07.0 00	44.20	DRY
	ļ	E276379] .U/S	80 2707 0320	07-Sep-93	11:30	ו אם
	ļ	T278380 E278381) DISC D/S	80 2705 0315 80 2702 0310	1		
_	l 	6270301			' 		
2	LLWYD	E250269	U/S	80 2763 0182	01-Mar-93	15:00	DRY
	AT PONTNEWYDD	T250290	DISC	80 2763 0181	ļ		!
	!	E250291	1 0/3	80 2760 0173]		000
	}	E264062 T264063	l Disc	SO 2763 0182 SO 2763 0181	03-Jun-93		DRY
	! !	E264064	D/3	80 2765 0173	i		i
	1	E279572	U/S	80 2763 0182	14-Sep-93	09:55	DRY
	i	T279573	DISC	80 2763 0181	į]	İ
	i	E279574	j D/9	80 2756 0173	1		1
	. 610110110	E246318	1 U/8	80 1801 9565	08-Feb-93	13:00	DRY
6	BIRHOWY AT PONTLLANFRAITH	E240318 T234133	DISC	80 1801 9568	10-Nov-92		,
	I ALLONIE DANCING III	E246320	0/9	80 1801 9555	08-Feb-93	i	i
		E204500	U/S	80 1801 9565	04-Jun-93	14:30	DRY
	i	T264504	DISC	80 1801 9568	İ	1	!
	İ	E204505	j D/8	80 1801 9555	1		1
	j	E278670	I U/S	80 1801 9565	[08-Sep-93	10:50	DRY
	1	T278071	DISC	80 1801 9568	!		
	l	E278672	[D/S	80 1801 9555			
5	SIRHOWY	E250265	I U/S	ST 1760 9737	01-Mar-93	12:00	DRY
_	AT BLACKWOOD	T250286	DISC	8T 1757 9736	1	<u> </u>	!
	j	E250287	į D/S	8T 1758 9742	!]
	1	E264500	1 U/S	8T 1760 9737	04-Jun-93	13:30	DHY
	!	T264501	DISC	8T 1757 9736	!		!
	!	E264502	D/3	8T 1758 9742	05-Sep-93	12:10	DRY
	!	E278673 T278674	I DISC	8T 1760 9737 8T 1757 9736	l	1 .2.,0	,
	1	E278675	•	8T 1758 9742			i
	1		1 D/S				

TEMP.	1 pH	FIELD PH	l DO) 00
deg. C	i		j mg/l	į %
	-		1)
6.0	7.10		•	84.5
	7.30			95.6 100.0
6.9 12.4	7.20 7.60	7.93 8.41	•	100.0 92.0
_	• :		•	94.0
12.6	7.60	7.69	•	J 108.0
10.7	7.10		10.50 10.10	94.5 92.2
11.2 10.9	7.20 7.30			92.2 92.7
5.2	6.10	6.33	11.30	96.0
	7.90		•	95.0
5.3	6.00		11.10	
11.6	•			116.0 113.0
10.6 11.4] 7.70 7.80		12.00	110.0
10.9	7.60		10.53	95.5
	7.90 7.50		•	95.6 96.6
				·
6.6 10.3	8.00		(12.00 11.20	•
7.7	6.10	8.34		95.7
10.7	7.85	8.31		128.0
11.3	7.70	6.05 6.11	•	(129.0 130.0
11.2 10.7	7.86			130.0
13.4	•	7.91	9.99	95.9
12.1	6.00	8.11	10.60	98.6
	5.30	·	11.80	
11.7	•	6.07 ± 6.41	11.60 11.60	
6.6 t0.8	6.10 7.83		•	104.0
11.1	:	7.69	11.10	101.0
10.9		7.75		91.6
	:	[7.45 7.81	•	97.6 95.5
11.0	•		*	96.5
8.8	7.70	8.11	11.60	
10.4				34.0
8.4 14.2	7.50 7.90	7.55 7.71	11,00 1 10,40	93.9 102.0
10.8	7.00	6.82	9.30	84.1
	7.50	10.60	10.60	102.0
	7.30	7.89	9.65	93.5
11.2 12.5	5.90 7.10	j 8.63 j 6.65	7.87 8.79	71.9 62.7
3.7	8.00	7.51	13.10	99.3
10.5	6.80	j 6.29	8.40	75.4
5.3	7.50			
13.6				
10.7 13.5			•	
13.7	7,40	j 7.70	j 9.65	93.3
10.9				
13.7	7.40	7.50	9.70	93.7

SITE	NAME OF	LAB.	LOCATION	COND.	I DISS.	TOTAL	I OISS.	TOTAL	DISS.	TOTAL	ALKALINITY	SUS.
o. i	RECEIVING WATER	REF.		1	IRON	IAON	AJ.	AI.	SULPHATE	SULPHATE		SOLIDS
į		i	i	j us	i me/i	mg/l	mg/l	I mg/l	mg/l	mg/l	mg/I CaCO	1 mg/l
1		!	ļ	!	!	!		!		47.0	74.14	}
10	LT.MAD	E234126	1 U/8	165	0.195	0.355	0.111	0.405	46.60	47.0	24.16	!
ļ	UNNAMED TRIB	T233775	DISC	379	0.941	0.941	0.039	0.149	110.20	110.2	67.02	!
į		E233777	D/8	181	0.255	0.441	880.0	0.312	43,40	43.0	33.92	
١		E265724	U/S	141	0.261	0.393	0.065	0.142	25.60	26.6	37.05	 <3
- 1	•	T265725	DISC	580	2.730	2.950	0.017	0.203	!	225.1		!
- 1		E265726	D/8	363	0.614	0.980	0.028	0.097	107.00	107,6	72.00	<3
1		E279569	UPS	176	0.150	0.186	0.066	0.123	35.60	37.1	38.50	<3
l l		T279570	LOISC	576	0.980	1.020	0.021	0.075	02.14	110.0	108.00	! _
I		E279571	D/S	354	0.270	0.341	0.048	890.0	86.12	90.2	65.00	<3
3		E245750	U/8] 411	0.035	0.532	0.023	0.063	86.90	86.9	106.93	!
ı	AT PONTYPOOL	T245760	DISC	540	0.389	0.573	800.0	0.060	77.70	77.7	121.30	<u> </u>
ł		E245761) DV8	J 450	0.084	0.397	0.015	0.068	63.10	68.3 61.9	105.75	<3
ļ		E265727	U/S	318	0.000	0.500	0.019	(0.067 I 0.033	[61.90] 77.30	77.3	127.50	<3
!		T265726	DISC	398	0.351	•	0.005	0.033	60.80	80.5	111.00	
		E265729) D/S	383	0.101	0.443	0.083	0.165	1 50.50 1 54.78	60.6 \$8.1	81.00	ł
. !		E279575	U/8	316	0.139	0.309	•	0.100	1 59.06	50.1 1 89.1	145.00	1 <3
ì		T279576 E279577	DISC	1 490	0.304	0.512		0.045	59.27	59.3	•	
	LLWYD	E245756	1 U/9	375	0.021	0.102	0.019	0.045	64.20	64.2	61.90	, —
, ,	AT ABERSYCHAN	T245757	i DISC	546	0.686	2.398	0.004	0.011	230.50	230.5	•	i
	AT ABENSTONAN	E245758	I D/S	526	0.220	0.839	0.017	0.043	108.20	108.2		i
		E248730	1 U/S	224	0.098	0.248	0.061	0.152	40.90	41.1		ľ
		T264060	DISC	609	0.773	2.440	1 0.001	0.052	205.00	205.0		ì
- 1		E264061	1 0/8	312	0.234	0.678	0.055	0.115	70.90	71.4		i
- 1		E278379	I JJ/S	516	<0.003	<0.003	0.012	0.012	118.00	125.0		<3
- 1		T278380	DISC	1258	<0.003	6.200	<0.004	0.025	429.00	429.0		1
i		E278381	D/8	898	0.004	1.700	0.004	0.009	255.00	291.0		i
2 1	LLWYD	E250269	1 U/8	1 569	0.071	0.330	0.012	0.015	145,40	148.0	151.57	1
	AT PONTNEWYDD	T250290	DISC	595	0.033	0.180	0.004	0.030	120.10	125.1	123.55	ì
i		E250291	D/8	525	0.590	0.930		0.088	140.60	140.7		i
i		E264062	U/S	300	0.142	0.426	0.044	0.102	59.30	59.3		i
i		T264063	DISC	382	0.225	0.384	0.007	0.060	93.50	94,1		ì
i		E264064	D/S	364	0.210	0.463	0.021	0.091	67.00	87.0		i
i		E279572	U/8	302	0.123	0.266	0.002	0.168	53.41	53.4	78.00	i
j		T279573	DISC	422		•		0.032				1
į		E279574	D/8	374		0.747		0.206	j 61.05	83.0	j 61.00	i
0	SIRHOWY	E246316	U/9	469	0.220	0.400	0.042	0.130	125.00	J 125.0	87,19	,
i	AT PONTLLANFRAITH	T234133	DISC	j 1336	5.680	6.140	0.006	0.013	613.80	616.7	227.12	1
j		E248320	j D/9	j 754	1.500	1,800	0.026	0.089	258.00	258.0	119.21	1
į		E264503	U/S	j 377	0.132	0.174	0.021	0.044	71.20	71.6	61.00	<3
1		T264504	DISC	1325	1	7.310		0.016	1	646.2		1
		E264506	D/8	654	i	1,160	0.016	0.016		230.0		1
I		E278670	j u/s	370	820.0	0.290	0.016	0.160	00.00	69.0	63.00	1
-		T278671	DISC	1542		7.600	0.013	0.026	840.00	857.0	221,00	1
-		E278672) D/8	1000	3.500	4,300	0.000	0,092	467.00	\$39.0	172.00	l
5		E250265	U/8	410				0.070		72.8		1
(AT BLACKWOOD	T250266	DISC	1321	5.000	5.100	0.760	1.500	796.00	796.0		J
1		E250287	j D/8	j 720		1.400	0.250	0.370	263.40	259.6	•	1
1		E264500	U/S	277		0.100		0.037	50.00	50.9		<3
١		T284501	DISC	1207	Į.	2.290		0.437	ì	614.6		1
1		E204502	1 0/3	1 277	ţ	0.065	0.019	0.023	52.60	52.6	,	<3
- 1		E278673	I U/S	312		0.250	0.016	0.160	64.00	64.0		1
		T278674	I DISC	1230		1.600	0.067		00.888	668.0		ſ
		E276675	D/3	316	0.100	0.230	0.016	0.140	62.00	62.0	67.00	

Appendix 5. Chemical Data for 12 S.E. discharges (selected for stage 2 assessment) on all sampling occasions.

OF	LAB.	LOCATION	NATIONAL	DATE
VING WATER	REF.	!	GRID	!
		·	REFERENCE	'
<u></u>	1	1		1
	E246783	U/S	ST 2120 9762	1 10-Feb-93
WBRIDGE	T234130	DISC	ST 2121 9758 ST 2123 9742	16-Nov-92
	E246784 E264497	1 D/S 1 U/S	ST 2123 9742	04-Jun-93
	E204497 T264498	I DISC	87 2121 9758	• • • • • • • • • • • • • • • • • • •
	E264499) D/S	ST 2123 9742	ì
NEY	E250767		8T 1551 9635) 04-Mar-93
UR-DE-LIS	T250768	DISC 1	ST 1547 9632	1
0.100	T250789	DISC 2	1	i
	E250770	D/S	ST 1547 9629	i
	E268454	i u/s	ST 1551 9635	30-Jun-93
	T268455	DISC 1	ST 1547 9632	İ
	T258458	DISC 2	9T 1547 9632	1
	E258457	J D/8	ST 1547 9629	1
	E282145	U/S	8T 1551 9635] 29-Sep-93
	T282146 E282147	ID/S	ST 1547 9632 ST 1547 9629	!
	C40417-	U/3		! —— <u>—</u>
	E247252	U/S	8T 0535 9536	11-Feb-93
MED TRIB OF	T247253	DISC	8T 0537 9532	!
DACH	E247254	1 D/S	ST 0535 9527	i es higgs
	E200074	I U/S	8T 0535 9536 8T 0537 9532	15-Jun-93
	T286075 E286078	DISC D/S	81 0537 9532 81 0536 9527	!
	E282148	1 U/S	1 ST 0535 9536	 29-Sep-93
	T282148	1 DISC	8T 0537 9532] == v=,
	E282150	D/S	8T 0536 9527	i
	E247255	1 U/S	8T 0356 9434] 11-Feb-93
MD.	T247250	DISC	ST 0358 9433	1 ""
FNANT	E247257	0/8	8T 0359 9440	ì
ЮH	E200070	U/S	8T 0356 9434	15-Jun-93
	1 T200071	DISC 1	8T 0358 9433	•
	T266072 E266073	DISC 2 D/S	8T 0411 9462 8T 0369 9440	1
	E282315	1 U/S	8T 0350 9434	01-Oct-93
	T282316	DISC 1	ST 0358 9433	
	T282317	DISC 2	ST 0350 9429	i –
	E202318	Dya	ST 0369 9440	İ
CYNON	E249924	1 U/S	1 8N 9728 0255	01-Mar-93
MED TRIB OF	T249925	DISC	SN 9719 0266	i
N AT	E249926	D/S	SN 9739 0260	1
ARE	E204004	į U/S	SN 9726 0255	08-Jun-93
	T204065 E264066	I DISC 1 D/S	8N 9719 0256 8N 9739 0260	1
	E279578	U/S	8N 9728 0255	14-Sep-9
	T279579	DISC	8N 9719 0266	
	E279580	D/S	8N 9739 0260	İ
RHONDOA	E250774	1 U/S	8T 0592 0564	04-Mer-9
PKINSTOWN	T250775	DISC	8T 0594 9059	
2	E250770	0/3	8T 0595 9059	i
	E200077	į u/s	8T 0592 0564	15-Jun-9:
	T266078	DISC	ST 0594 9059	İ
	E250079	1 0/8	•	1 14-Sep-9
				lanaster
		•		-
			E280079 D/S E279581 U/S T279582 DISC	E260079 D/S 8T 0595 9059 E279581 U/S 8T 0592 0504 T279582 DISC 8T 0594 9059

	***************************************			-		
TIME	WEATHER	TEMP.	pН	 FIELD pH	DO	00
		deg. C	 	• •	mg/l	i <u>*</u>
		1	 	1	J	1
12:00	DRY	j 5.3	7.90	•	•	•
	!	11.8	•	•	1.80	
	. 602	8.2	7.60 6.50	8.19	14,30 11,40	106.0
10:30	CAT	12.1 1 12.2	6.90	•	4.40	*
	ĺ	12.7	,		•	•
10:30	DRY	4.2	7.90	8.51	13.80	
	į	10.6		•	0.40	•
	ţ	10.6		•		•
	l	6.0		•	14.00	•
	DRY	16.4	1		10.70	110.0
	!	11.0				
	ļ	10.9		•	0.30 1 10.90	2.7 i 109.0
40.55	ו המע	15.2			10.50	•
10:55	i DRT	[11.3] 10.9		1	0.10	1
	! 	11.4		•	•	
11:30	DRY	5.2	7.80	7.91	13.10	103.0
	i	10.0	•	5.14	8.80	j 78.1
	ì	0.2	7.60	7.14	13.00	
13:00	DRY	11.8		•	12.20	•
	Ī	1 9.9	5.20	6.55	11.00	•
	1	11.4	_	7.08	12.50	•
13:45	DRY	10.6	•	6.64		
	} i	10.2	•	•	7 8.26 1 10.36	
12:30	L DBY	1 4.7	6.50	7,70	14.60	114.0
12.00	i	7.5	,	•		•
	i	6,5	7.20	7.80	13.50	j 110.0
10:30	DRY	j 12.4	6.90	7.95	13.00	122.0
	ĺ	9.3	7.40	6.10		
	!	13.6		7.96	11,20	106.0
10:50	l DBA	10,8		6.14 6.98	12.40 10.52	112.0
10.50	j Oni	6.9	6.60	7.70	10.52	•
	}	10.0		7.33	10.40	92.3
		9.2	•	•	10.56	j 92.0
11:15	ORY	4.3			•	98.5
	1	10.0	•	•		35.4
	<u> </u>	4.7			•	1 103.0
13:30	DRY	11.2	•		•	[106.0 44.7
	!	12.1	6.20 7.60	7.02 7.20	11.10	102.0
12:00	I DRY] 11.6] 10.3	7.10	7.72	10.51	94.0
12.00	1	11.6	!	7.62		93.8
		10,3	• -	•	•	95.0
13:30	DRY	5.1	6.10	9.17		
	1	8.0				
	!	5.5				
14:00	ORY	10.6				
	!	11.4				
10.00	I WET	1 16.5	•	•		
13:00	i wei	j 11.0 j 11.0			10.55	
		11.5				
	1	The second second second		Contract Contract of		COLUMN TO SERVICE AND ADDRESS OF THE PARTY O

SITE	NAME OF	LAB.	LOCATION	I COND.	 DISS.	TOTAL) I DISS.) I TOTAL	i DISS.	TOTAL	i Lalkalinity	
0.	RECEIVING WATER	REF.	1	i	IRON	IRON	AL	į Al.	SULPHATE	SULPHATE	j mg/l CaCO	SOLIDS
	ſ	i		UB	1 mg/l	mg/l] mg/l	i mg/l	1 mg/l		1 1101 0200	
	l com		U/S	479	0.139	0.313	(0.032	[] 0.061	114.40	116.2] 99.19	
4	EBBW	E246783	DISC	1 1515	15.440	20.250	0.031	0.045	791,40	795.4	296.24	i
	AT NEWBRIDGE	T234130	I D/S	478	0.137	0.420	0.016	0.164	116.00	160.1	96,46	i
	!	E246764		415	0.145	0.222	0.029	0.063	95.10	95,1	69.00	i <3
		E264497) U/8		0.140	18.95	0.041	0.042	742.30	747.6	255.00	i
		T254498 E264499	DISC D/S	1558 484		0.562	0.025	0.029	144.30	•	•	i
-,	RHYMNEY	E250767			1 0.150	0.350	0.019	0.041	139.50	141.5	115.70	1
	AT FLEUR-DE-LIS	T250768	DISC1	1564	6.300	8.300	0.004	0.008	508.00	0.808	210.74	1
	1	T250759	DISC 2	997	8.500	6.700	0.004	0.004	358.80	359.5	227,90	1
	1	E250770	D/S	776	2.000	2.500	0.013	0.035	254.50	284.6	141.90	ĺ
	í	E258454	U/S	457	0.205	0.205	0.025	0.028	117.00	117.0	112.00	1
	i	T268455	DISC 1	1799	į	3.390	0.016	0.016	736.00	736.0	210.00	ļ
	İ	T268456	DISC 2	1133	3.530	3.950	0.017,,		405.00	405.0	232.00	!
	ì	E268457	D/S	754	1.270	1.270	0.030	0.030	256.00	256.0	135.00	!
	i	E282145	U/S	408	0.147	0.187	0.012	0.033	94.30	98.0		<3
	j	T282146	DISC	1254	5.400	6.600	<0.004	0.004	450.90	452.4		!
	i	E282147	1 0/8	5 694	2.220	3.900	0.006	0.030	292.30	294.4	159.00	·
11	TAFF	E247252	U/9	228	0.059	0.141	0.037	0.068	49.20	49.2	55.25	1
	UNNAMED TRIB OF	T247253	DISC	277	1.120	1.190	0.416	0.663	102.30	103.0	17.99	1
	R. OLYDACH	E247254	D/S	j 238	0.265	0.351	0.109	0.202	62.40	82.4	46.79	1
	1	E208074	i U/S	185	0.101	0.127	0.048	0.072	37.40	37.6	45.02	1
	i	T256075	DISC	276	1.030	1.050	0.307	0.469	1	95.0	16.97	
	ì	E200076	j D/S	198	0.252	0.268	0.094	0,143	45.90	49.0	40.10	<3
	ì	E282148	į U/S	230	890,0	0.131	0.032	0,045	41.70	41.7	60.40	<3
	i	T282149	DISC	298	0.730	0.750	0.340	0.460	101.20	101.2	21.90	1
	i	E282150	j D/S	į 242	0.183	0.268	0.078	0.134	52.80	52.6	54.90	١
12	TAFF	E247255) U/S	77	0.113	0.141	0.130	0.153	14.80] 14.6	3.92	!
) Y FFRWD	T247256	IDISC	160	0.885	2.040	0.031	0.058	26.60	25.6	32.69	!
	TRUB OF NANT	E247257	L D/8	145	0,654	1.080	0.049	0.069	23.50	23.6	26.27	!
	CLYDACH	E206070	l u/s	74	0.213	0.262	0.138	0.162	14.40	14.5	7,70	<3
	1	T255071	DISC 1	267	1.130	2,030	<0.004	0.009	27.60	27.6	37.50	1
	1	T256072	I DISC 2	52	0,613	0.737	0.169	0.236	9.30	9.3	10.34	1 <3
	1	E266073) D/S	137	0.528	0.981	0.041	0.048	23.70	23.7		<3
	1	E252315	l n/s	78	0.200	0.240	0.150	0.160	16.00	18.0	•	!
	!	T282318	DISC1	178	1,300	2.300	0.025	0.051	30.70	30.7		!
	!	T262317	i DISC 2	58	0.460	0.510	0.220	0.260	13,00	13.0		!
	·	E262316	D/\$	136	0.650	0.840	0.072	0.083	23.70	23.7	·	·
0	TAFF/CYNON	E249024	Į U/S) 204	0.196	0.238	0.004		25.10	26.2		!
	UNNAMED TRIB OF	T249025	DISC	598	0,367	0.460	0.004	0.039	195.30	196.8	99.69	ļ
	CYNON AT	E249025	D/8	229	0.336	0.637	0.004	0.005	46.10	45.1	69.27	!
	CWMDARE	E264664	U/S	153	<0.003	<0.003	0.004	0.009	51,90	51.9	38.00	<3
	ļ.	T284665	DISC	380	12.20	13.00	0.030	0.053	127.60	127.6	89.00	!
	ļ	E264666	1 0/8	157	0.190	0.240	0.011	0.013	29.90	29.9	45.00	<3
	! •	E279578] U/8	138	[0.019	0.017	0.017	22.85	22.9	40.00	<3
	ļ.	T279579	Disc	308	0,031	0.035	0.013	•	43,58	45.3	109.00	1
	<u> </u>	E279580	D/S	140	0.020	0.020	0.013	0.026	22.31	22.3	40.00	<3
13	TAFF/RHONDDA	E250774	I U/S	313	0.330	1.800	0.025	0.100	54.90	54.9	96.10	1
	AT HOPKINSTOWN	1 T250775	I DOSC	1 496	27.800	29.200	0.052	1.900	218.40	218,4	4.35	!
	DISC 2	E250776	[D/8	1 326	0.570	2.300	0.030	0.130	59.70	59.7	90.47	!
	!	E256077	U/S	91	0.319	0.499	0.010	0.039	1 40.90	41.0		!
	Į.	T256078	DISC	315	6.720	7.470	0.025	0.441	62.40	624	1 41.00	!
	!	E266079	D/8	1 88	0.372	0.625	0.011	0.048	39,90	39.9	75.50	1
	ļ.	E279581	U/S	1 224	0.220	0.270	0.021	0.043	32.48	32.8	64.00	<3
	l -	T279582	DISC	[216	2.010	2.910	0.038	0.206	38.69	38.9	45.00	1
		E279583	I D/S	1 222		2,190	0.033	0.176	35.89	36.9	51.00	

Appendix 6. Chemical Data for 20 8,W, discharges (selected for stage 2 assessment) on all sampling occasions.

SITE NO.	 NAME OF RECEIVING WATER 	LAS. REF.	LOCATION	NATIONAL GRID REFERENCE	DATE
		. ———			
•) LOGWR FACH	T245142	DISC 1	1 96 0774 0061	 01-Feb-93
- '-	1 OGWA PACA	T251084	DISC 1	88 9776 9051 88 9819 9047	1 01-20-93
	! i	T265730	I DISC 1	88 9776 9051	14-Jun-93
	İ	T265731	DISC 2	33 9519 9047	
j	•	E265732	D/8	\$8 9780 9055	i
	İ	T279584	DISC 1	38 9778 9051	14-Sep-93
15	OGMORE	E245148	I U/S	88 8938 8767	02-Feb-93
	UNNAMED TRIB OF	T245147	DISC	1 83 6936 6762	1
j	LLYNFI	E245146	(D/S	83 8934 8756	i
1		E266725	U/S	88 8938 8767	17-Jun-93
ļ		T256726	DISC	89 8936 8762	1
1		E266727	1 D/S	53 6934 6756	
		E273803	l U/S	88 8938 8787 88 8938 8782	03-Aug-93
		E273804	DISC D/S	89 8934 8758	1
	,	1 2210000		1 00 000 0100	'
18		E248110	I U/8	SN 8815 0084	17-Feb-93
]	AFON CORRWG	T248111	DISC	SN 8813 0078	!
	FECHAN	E248112 E266765	D/S U/S	SN 6611 0072 SN 6615 0064	18-Jun-93
		T266766	DISC	8N 8813 0078	10-0011-40
i		E266767	D/S	SN 6811 0072	j
į		E273800	U/S	SN 8815 0084	04-Aug-93
	ļ	J T273801	DISC	\$N 8813 0078	1
		j E273802	1 0/3	SN 6611 0072	l
17	AFAN/PELENNA	E248113) U/S	SN 8896 0072	17-Feb-93
İ	AFON CORRWG	T248114	DISC	SN 5892 0069	İ
ļ		E248115	I D/S	SN 8887 0061	
ļ		E266726 T266729	U/S	SN 8896 0072 SN 8892 0069	17-Jun-93
,		1 T266730	DISC 1	8N 8888 0067	
j	j	E206731	D/S	SN 8887 0061	i
ļ		E272330	U/8	SN 8696 0072	23-Jul-93
		T272331	DISC 1	SN 8892 0069	
i		T272332 E272333) DISC 2 D/S	SN 8888 0067 SN 8887 0061	
		· 			
21	AFAN	E248116	U/S	88 8638 9768	17-Feb-03
	AFON CORRWG	T248117 E248118	l Disc	88 6629 9768 88 6638 9757	
1		E267403	U/8	SS 5638 9766	23-Jun-93
i		T267404	DISC	89 8629 9768	
İ	İ	E267405	D/9	33 8638 9757	
!		E272850	1 U/8	88 8638 9766	20-Jul-93
		T272651 E272652	DISC D/S	\$3 8629 9768 \$3 8638 9757	
26		E248119	U/S	\$8 7992 9732	17-Feb-93
	TRIB OF CWM GWENFFRWD	T248120 T248121	DISC 1 DISC 2	88 7996 9730 88 8006 9691	
i	OTENT INTO	E248122	D/S	SS 7994 9719	
i			U/S	83 7992 9732	30-Jun-93
į		T268442	DISC 1	89 7996 9730	
ļ		T258443	DISC 2	88 8006 9691	
	1	E268444	D/S	88 7994 9719	
		E079006	1 11/40	רביר בסמים ספו	1 20 1.4.00
! !			U/S	88 7992 9732 88 7998 9730	30-Jul-93
1		T273236	U/S DISC 1 DISC 2	88 7992 9732 88 7996 9730 89 8006 9691	30-Jul-93

TIME	WEATHER	TEMP.	рН	FIELD pH	00	00
***	 	deg. C		· pn	mg/l	*
10:55	DRY	9.1	7.40	7.10	11.10	96.4
14:00	 WET	9.8 9.3	6.90 7.40	7.75 7.80	11.50 12.70	102.0 111.0
14.00	1767	9.6	7.00	7.01	11.50	101.0
13:50	i I WET	9.9	7.90 7.20	6.00 7.30	12.60 10.09	89.3
			4.00	7.50		101.0
13:30) UHT	7.7 1 10.20	6.80 6.30	7.53 6.65	12.00	101.0
		7.7	6.80	7.08	11.60	97.4
11:00	DRY	12.4	7.20	7.84	12.70	119,0
		12.6 12.4	6.90 7.00	7.54 7.75	0,10 11,50	[0.9 108.0
14:00	DRY	11.6	6.50	6.67	12.70	116.0
	- 1	11,6	6.80	6.90	7.90	72.6
		12.9	5.50	6.62	12.20	116.0
10:30	DRY	5.9	7.00	6.50	14.40	116.0
		9.7 7.1	7.30 6.90	7.05 7.38	2,10 12,20	16.5 101.0
11:30	WET	10.6	6,10	7.46	13.80	125.0
	65.0	10.0	6.60	6.65	2.60	23.1
		11.1	6.70	6.82	11.40	104.0
11:00	WET	11.2	6.50 6.70	7.52 6.58	[10,40 8,70	95.0 77.2
		11.0			10.10	91.6
12:00	DRY	7.3		6.30	13,40	111.0
		9.4	6.60 7.40	6.66 7.55) 2.40 12.50	21.0 105.0
14:30	DRY	10.9	7.60	7.99	15.00	136.0
	ĺ	9.6	6.10	5.64	2.60	24.6
	ļ	9.9		6.86 7.85	0.90	[8.0] 120.0
10:30	WET	(11.7 11.6	7.60 7.10	7.03 7.48	10.54	97.1
		j 9.4 i	6.30	5.00	2.46	21.5
		[10.2 12.0		6.36 7.45	•	(3.6 97.3
		·	***************************************		·	
13:15	I DRY	7.9 11.6	7.50 7.50	8.11 7.66	12.40 10.10	(105.0) 93.1
	i	6.2		8.09	12.90	110.0
10:30	DRY	12.6	7.50	7.99	13,40	126.0
	!	13.2	. 7.10	7.40	12.10	116.0
10:00	ŀ	12.7 11.9	7.70 6.90	7.86 7.36	13.40 10.20	(127.0 I 94.6
10.00	i	12.9	6.90	7.10	9.45	69.7
		i 12.0	6.80	7,11	10.00	93.0
15:15	DRY	6.9	6.70	•		105.0
	!	10.5				
	Ì	[10.1 [9.1]				
10:30	DRY	15.9				•
	1	10.7		6.29		
	!	12.1				
44,44	l nov	J 16.6				
11:00	UKT	13.5 10.3				
		1 11.4				
		13.4				

									***************************************	***************************************		
	A STANFALL TO SHALL THE STANFAL	1	1	l .	4 - 4 - 4 - 4 - 4 - 4 - 4	1		1				
ITE	NAME OF	į LAB.	LOCATION	COND.	DISS.	TOTAL	DISS.	I TOTAL	DISS.	TOTAL	ALKALINITY	
Ο.	RECEIVING WATER	REF.	i T	Ĭ	IRON	IRON	į Al.	Į Al.	SULPHATE	SULPHATE	1	SOLIDS
		i	i	j us	mg/l	mg/l	mg/I	mg/l	mg/l	mg/l	mg/I Ca CO	mg/1
-		1]
14	OGWR FACH	T245142	DISC 1	244	0.800	0.800	[0.00	0.00	j 21.90	21.0	63,31	ļ
		T251084	DISC 2	238	0.580	0.877	0.00	0.00	4230	423	73.90	
i		T255730	DISC 1	334	1.160	1,150	<0.004	<0.004	J 21.90	21.9	107.00	<3
ì	i	T265731	DISC 2	j 214	0.450	0.630	<0.004	<0.004	37.40	37.5	71.00	<3
	•	E265732	D/S	250	0.120	0.265	<0.004	<0.004	26.70	28.7	105.70	<3
	l.	T279584	DISC	198	0.776	0.778	<0.004	<0.004	i	12.9	74.00	l
15	OGMORE	I E245146	U/S	112	0.140	0,190	0.040	0.110	13.30	13.6	8.79	
	UNNAMED TRIB OF	T245147	DISC	335	9.900	9.900	0.005	0.010	98,40	103.0	27.53	1
	LLYNFI	E245148	0/8	170	0.500	0.600	0.027	0.340	29.40	29.4	10.80	l
	L CE 11471	E256725	1 U/S	67	0.310	0.590	0.041	0.130	13,70	13.7	16.50	İ
		T266726	DISC	1 428	6.600	7.500	0.030	0.055	48.80	49.4	33.50	i
		E256727	D/S	109	1.070	2.070	0.039	0.180	17.50	17.5	14.50	i
		E273803	i U/S	105	0.169	0.379	0.036	0.125	12.70	13.1	9,15	ĺ
		T273804	DISC	218	6.590	8.850	i 0.023	0.558	59.80	63.2	45.50	l
		E273805	D/S	1 111	0.573	•	0.035	0.156	15.60	15.6	10.68	Ì
18	AFAN/PELENNA	E248110	U/S	76.3	0.017	0.054	0.065	0.110	9.80	9.6	16.35	l
	AFON CORRWG	T248111	DISC	i 526	10.490	10.490	0.018	0.016	141.90	142.2	123.39	l
	FECHAN	E248112	D/S	230	I NO RESUL	2.709	0.360	0.052	52.70	52.7	48.66	l
		E266765	i U/S	46	0.063	0.100	j 0.190	0.380	9.90	10.0	2.50	<3
		T266766	DISC	657	11.500	12,900	0.013	0.044	145.00	145.0	127.00	l
		E256767	DVS	62	0.420	0.510	0.160	0.370	13.60	14.0	6.30	i
		E273800	i U/8	60	0.050	0.050	0.120	0.157	9.30	0.3	11.56	i <3
		T273801	I DISC	547	10.550	11.150	0.019	0.019	121.40	121.4	131.00	i -
		E273802	D/S	140	1.530	1.540	0.111	0.134	25.00	26.0	23.70	<3
17	AFAN/PELENNA	E248113	1 U/S	150	1 0.038	0.085	0.270	0.031	14.10	14.1	\$4.00	,
''	AFON CORRWG	T248114	DISC	507	1.366	1 15.280	0.022	0.031	35.40	202.6	44,92	i
	i wat coming	E245115	10/8	198	NORESUL	1.896	0.030	0.032	NO RESUL	36.0	52.77	i
	ļ	•	i U/S	1 24	•	0.099	0.071	0.082	11.60	11.6	25.80	<3
	!	E200726		551	0.071	16.700	0.050	0.050	242.00	242.0	39.60	1
		T266729	DISC 2	575	18.500	9.500	0.016	0.044	218.00	221.0	90,40	i
	1	E266731	D/S	127	0.590	0.690	0.057	0.071	23.10	23.4	24.95	i <3
	!			1 126		0.074	0.025	0.034	11.90	12.6	39.30	1 ""
	!	E272330	I U/S		0.054			0.046	11.00	102.1	47.20	:
		T272331	DISC :	578	10.820	11,330	0.041		. ~~~	1 229.4	62.00	!
		T272332 E272333) DISC 2 D/S	682	8.370	10.850 0.952	<.004 0.016	<.004 0.033	229.40 33.60	33.6	40.40	<3
21	AFAN	E248116	J U/8	173	0.041	0.126	0.025	0.035	32.20	32.2	42.29	,
E 1	AFON CORRWG	T248117	DISC	1018	15.710	27.970	0.026	0.092	370.20	387.0	207.12	i
	i ~ on contina	•	•	194	0.304	0.750	0.022	0.042	38.60	38.8	45.91	ł
	!	E248116) DVS									<3
	i I	E267403	l U/S	129	0.065	0.102	0.045	0.078	22.40	22.7 335.6	35,30 177,00	, ~ 3
	!) T267404	DISC	880	21.260	24,780			231.60			ŀ
	!	1 E267405	D/S	1 149	0.309	0.503	0.044	0.052	29.50	29.5	62.40	1
	!	E272650	l U/S	105	0.091	0.108	0.104	0.167	17.00	17.0	23.30	1 63
	 	T272651 E272652	DISC D/8	1 388	4,440 0,329	5.260 0.350	0.005	0.020	[69.00] 21.30	97.3	68.00 25.70	<3
26	AFAN/PELENNA	E248119	1 U/S			0.120	0.129	0.273	38.10	38.3	6.65	` -
20	TRIB OF CWM	T248120	DUSC 1	148	0.046	[0.120 [103.200	0.179	0.190	512.20	519.3	1,19	1
		· · · · · ·		: ::							NO RESUL	}
	GWENFFRWD	T248121	DISC 2	355	12.150			1,514		•	•	1
	Į.	E248122	I D/S	258	9.260		-	0.262	93.80	93.6	•	•
	ļ	E258441	l m/s	1 150	0.045	0.088		0.211	38.00	36.0		•
	!	1 T268442	DISC 1	764	32.050	38.450		0.026	340.00	340.0		!
	!	T258443	DISC 2] 330	2.540	2.930	0.969	0.976	130.00	130.0		ļ
)	E208444	1 0/8	196	2 120		0.031		64.00	67.0		•
	1	E273235	l u/s	102	0.179				22.70	20.0		
	ļ.	T273236	DISC 1	146	0.958	3.050	0.015		25.30	1 25.3		
	1	T273237	DISC 2	[210	2.310	2310	0.177	0.264	64.80	65.8	3.70	1
	•	E273238	D/8	112	0.329							

Appendix 6. Chemical Data for 20 8.W. discharges (selected for stage 2 assessment) on all sampling occasions.

-					
SITE NO.	I NAME OF RECEIVING WATER	LAB. REF.	LOCATION	NATIONAL GRID REFERENCE) DATE
_	<u> </u>	·			
25	i 1 Afan/Pelenna	E248123)]U/S	1 1 SS 8158 9727	} 17-Feb-9:
۳	I NANT BLAEN	T248124	DISC	SS 8161 9723	
	PELENNA DISC 1	E248125	1 D/S	33 8162 9712	i
	i receiting 0,50 i	E287655	U/S	SS 8158 9727	24-Jun-9
	¦ •	T267656	DISC	89 8161 9723	1
	! !	E267657	D/S	85 8162 9712	i
	f 1	E273557	1 U/S	39 8158 9727	02-Aug-9
	! 1	T273558	DISC	38 8161 9723	
	ĺ	E273559	D/8	53 5162 9712	i
24	I AFAN/PELENNA	1 E251691	1 U/S	33 8159 9755	9-Mar-9
24	•	T251692	DISC	88 8154 9751	1
	NANT BLAEN PELENNA DISC 2	E251093	1 0/8	88 8158 9750	ł
	j relemma piso z	E267658	U/S	33 8150 9755	I 1 24√Jun∙9
] L	T267659	DISC	33 8154 9751	1
	!	E267660	D/S	88 8158 9750	ł
	; 1	E273560	U/9	89 8159 9755	02-Aug-9
	i I	T273561	DISC	39 8154 9751	1
	i	E273562	D/3	83 6158 9750	i
23	I FFRWD WYLLT	E246524	U/S	1 88 7872 8977	23-Feb-9
	AT GOYTRE	T248825	DISC	33 7872 5975	i
	1	E248826	D/8	93 7869 8974	i
	i	E267409	U/9	83 7672 8977	23~Jun-9
	i	T257410	DISC	88 7872 6975	i
	}	E267411	10/3	88 7869 8974	i
	į	E274510	i u/s	\$\$ 7872 8977	06-Aug-9
	į	T274511	DISC	98 7672 8975	1
	i	E274512	į D/S	\$\$ 7869 8974	I
22	FFRWD WYLLT	E251694	U/S	38 6169 9221	08-Mar-9
	AT BRYN	T251695	DISC	SS 8171 9218	1
	ļ	E251696	[D/9	38 8168 9216	!
	1	E267406	U/S DISC	83 8169 9221	23~Jun-6
	ļ.	T267407	Disc D/9	99 5171 9218 88 5168 9216	[
	<u> </u>	E280026	U/S	33 8169 9221] 15-Sep-9
	1	T280027	1 DISC	1 33 8171 9218	ا روده د
	1	E280025	D/8	88 6166 9216	j
10	I AFAN	1 E251065		I SS 8921 9738	05-Mar-9
	NANT GWYNFI	T251066	DISC	88 6923 9730	i
	1	E251067	D/8	83 6916 9729	i
	i	E267355	U/8	85 6921 9736	21-Jun-9
	i	T267356	DISC 1	88 8923 9730	İ
	i	E267357	D/8	88 8918 9729	1
	İ	E267352	U/8	83 8945 9761	1
	ĺ	T267353	DISC 2	85 6940 9774	l
	l	E207354	D/3	83 8938 9767	1
	1	E274507	U/S	88 8921 9736	05-Aug-9
	1	T274508	Disc	88 6923 9730	!
	1	E274509	1 0/8	J 88 8918 9729	J

		*****************			f	
TIME	WEATHER	TEMP.	l pH	i FIELD) 00	00
	İ	i —	İ	pH	{	_ 3
	<u></u>	deg. C	1		mg/l	<u> </u>
14:50	DBY	6.5] 7.00	6.15	12.30	106,0
	i	10.5	5.70	6.15	6.50	76.3
	i		5.80	6.68	11.00	95.0
10:30	DRY	13.7	7.10	7.97	14.90	144.0
	i	j 11.4	5.39	6.32	12.80	117,0
	Ì	13.6	6.90	6.51	16.50	159.0
10:00	DRY	j 13.6	6.20	7.08	11.80	114.0
	j 🔍	11.4	5.40	5.52	12.30	113.0
	·	12.9	5.40	5.85	11.80	112.0
12:30	DRY	5.5	,		•	102.0
	45	0.9		7.43	•	98.5
	100	6.5	7.01	7.73	12.30	100.0
11:30	DRY	12.7	6.50	7.88	15.90	150.0
		9.8	6.90	7.46	15.80	140.0
	!	11.1	7.00	7.79	16.90	154.0
11:00	DRY	13.4	•	0.85	12.50	120.0
		10.4	6.70 6.50	7.40 6.82	•	107.0
			7.20	7.62	13.60	111.0
14:00	UNT) 6.5 i 10.2		1 6.78	1 9.50	84.7
	!	1 7.1	6.90	7.36	12.50	103.0
13:30	DRY	13.0	1 7.00	7.69	14.10	134.0
	1	11.8	6.70	7.21	12.30	113.0
	i	12.6	7.10	7.75	12.70	120.0
14:00	DRY	13.3	7.10	7.65	9.72	93.1
	i	11.6	6.90	6.15	6.00	73.7
	İ	13.3	6.90	6.43	9.80	93.9
13:15	DRY	5.7	7.30	8.00	12.90	103.0
	İ	0.0	7.20	,	-	99.6
	l	5.9	7.30	•	•	103.0
12:00	DAY	12.2	7.30	8.10	J 15.50	145.0
	!	12.1	7.40 7.50	7.94 7.83	14.50 15.40	135.0
09:30	I DRY	10.4	7.10	7.51	10.41	93.3
05.50	i Ditt	10.6	7.10	7.46		94.5
	i	•		•	10.50	
13:00	I DRY	5.6	7.50	6.36	15.60	124.0
	i	9.6	6.60	7.24	11.10	96.1
	Í	6.5	7.00	7.58	14.10	115.0
11:55	ORY	10.9	7.24	7.91	12.10	110.0
	ļ	9.3	6.50	0.93	•	81.2
	!	10.6	7.02	7.27		109.0
	!	9.9	1 6.00	6.62		90.3 75.3
	!	8.0	7.20 7.17	j 6.62 j 7.08	[8.90 i 10.10	89.0
14:00	I DRY	11.9	6.80	7.54	11.10	103.0
17.00	, Jn.	10.3		6.79	7.80	69.7
	i	11.6	6.80	•	•	99.5

											5								2								8							2								X	İ	Ç	BILS
	_	_	-	-		-				NANT GWYNE	-							AI BAYN	-		_					AT GOYTRE	FFRWD WYLLT					7010000	NANT BLACK	AFANIPELENNA	_					PELENNA DISC 1	NANT BLAEN	AFANDEL ENNA		DECEMBER MANEN	NAME OF
1	T274506	E274507	20,004	0/300	1000	787	7,350	20.7355	1007	1251086	251045	E280028	1250027	E280028	E257408	7207407	E207400	520000	EZ51694	E274512	1274511	E274510	E207411	1307400	E248820	1240825	E244824	EZ73562	27/3300	E267660	T287859	E267050	1251692	E251001	E273559	1273550	E273557	E267657	E207655	E248125	1248124	E248123		ē	3,8
3	DISC	- -	- 48	Disca	200	5	Disci	28	8	Disc	- C	8	Disc	5	D/S	Disc	200		S.C	8/0	Disc	5	D 60	200	8	Disc	S	0,8	2 6	Q	DISC	2 2 2 3	OSC	en e	5	Disc	5	200	13	28	DISC	5			LOCATION
8	310	8	113	8	. 8	8	Ę	3 7	Ē	447	-	10.	136	8	192	ī	ī:	3 8	8	18	Š	5	ž :	3 12	2	300	170	2	3 8	117	8	87	220	2	218	8	9 !	2 8	1	36	8	รั		<u>.</u>	OND.
0 640	4.027	0.121	1.18	-		1.023	0/2/	0.056	2100	8.700	0.000	0.242	0.248	0.006	0.184	-	0.023	0.304	0.027		3,157	0.075	0.189	2000	0,630	4,000	0.080	0.341	0.340	0.154	0.641	0,105	0,808	0.003	3	15.240	0.292	0.732	0.133	9.198	25.210	0,0			Diss.
000	5.223	0.152	1,1/0	3,4,0		2007	1.5.1	0.104	2100	9.540	0,122	0.28	0.276	0.008	0.235	0.145	0.077	0.546	0.050	0,68	3,745	0.075	0.20	2400	0,930	4.48	0.000	0.450	0.705	0.00	0.777	0.154	200	0.111	4,788	15.240	0.364	0.041	0.216	11,510	25,630	0.220		3 5	TOTAL
3	0.020	0.157	0,000	280.0	2000	000/1	720.0	200	0.027	0.027	0.042	0.063	0.084	0.034	0.074	0.001	0.080	0000	0.028	0.047	0,008	0.055	0,043	201	0.022	0,000	0,030	0.210	0.056	0.135	0.008	0.722	0.018	0.005	0.252	0.416	0.234	0.171	0.175	0.067	0.169	0.048		3 2	DISS.
0.145	0.046	0.174	0.002	0.102	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.074	0.005	0.000	0.043	0.043	0,043	0.074	0.075	0.040	0.076	0.061	0.005	9 9 9	0.046	0.079	0.039	0.082	0.113	0.013	0.048	0.026	0.079	0.485	0.971	200	0.780	0.306	0.540	0.325	0.381	0.504	0.407	0.410	0.212	0.915	0.353	0.365	***************************************	2	TOTAL
3	8	9.00	11.10		3 8	27.30	112.20	10.00	53.00	163.40	11.30	17.50	20.00	10.50	18.30	10,00	17.20	19.60	20.80	29.68	74.00	21.30	24.60	80.80	48.10	92.70	20.50	25.40	52.30	3 8	2	20.00	200	19,40	6210	105.50	18.00	35.00	200	121.00	265.60	24.20		mg/i	DISS.
8	101.1	. 9.2	1.11			27.5	2211	10.1	200	193,4	11.3	127	20.0	19.3	10.7	18.6	17.4	10.5	20.0	28	7.4	21.4	X	50.0	47.0	92.7	29.7	i i	523	60.0	2 2 2	8.1	8 6	19.61	82.1	190.2	18.3	36.3	279.6	1224	267.6	24.2		ng/	TOTAL
	918	6.31	30.00		5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3 20	3 8	3 6		52,67	27.85	1.8	8.8	3 2	20.30	30.60	10.40	28	32.50	29.60	70.00	17.50	21,40	8.50	1.8	85.95	25.16	9.97	25.51	3 8	40,72	7.60	325	1.8	270	3.62	5.35	1227	5	3 2	5.32	15.14		mg/I Caco	ALXALINITY
۵		_	_	-				3					2				۵					۵			_	_		۵				۵				_	-			2	_		1	2	SOLIDS
							1		5						2														_		5 0				1			u					1		

Appendix 6. Chemical Data for 20 S.W. discharges (selected for stage 2 assessment) on all sampling occasions.

SITE NO.	NAME OF RECEIVING WATER	LAB.	LOCATION	NATIONAL GRID REFERENCE	DATE
20	 AFAN	 E251088	1 1 U/S	 SS 8718 9634	05-Mar-93
	AAFAN	T251089	DISC	88 8720 9630	1
	AT GELLI FARM	E251090	D/S	88 8719 9627	ì
	į	E287358	U/9	98 8718 9634	21-Jun-93
	•	T257359	DISC	88 8720 9630	ł
		E267360	D/S	88 8719 9627	
		E250029	U/3	83 6716 9634 83 6720 9630	15-Sep-93
	l L	T250030 E250031	DISC D/8	8\$ 6719 9527	1
	I AFAN	E251682	U/8	88 8777 9580	06-Mar-93
	NANT Y FEDW	T251683	DISC	88 6764 9579	į
	į	E251684	0/8	88 8789 9582	Ì
	ì	E268448	U/9	88 8777 9580	30-Jun-93
	!	T255449	DISC	88 8784 9579	5
	!	E268450	D/S	88 8789 9582	05 4: 03
	<u> </u>	E274504	iu/s idksc	88 8777 9580 88 8784 9579	05-Aug-93
	1 ?	T274505 E274506	D/S	38 8789 9582	1
27	I AFAN	E251686	1 U/S	38 8442 9736	06-Mar-93
	TRIB OF NANT	T251689	DISC	38 8944 9733	ļ
1	CREGAN	E251090	1 D/S	89 8477 9731	!
l	!	E258445	U/S	38 8442 9736	j 30-Jun-93
	ļ	T268446	DISC	\$5 5944 9733 \$3 5477 9731	}
	[E268447	D/S U/S	1 85 8442 9736	26-Jul-93
	<u>{</u>	T272854	i Disc	89 6944 9733	1 22 33: 33
	1	E272055	D/S	SS 6477 9731	i
10	CYNFFIG	1 E251897	J U/S	1 89 8564 8514	1 08-Mar-93
10	I N. CRAIG YR ABER	E251098	DISC	89 6555 8455	1
	1	E251699	D/S	88 8568 8505	i
	i	E268451	U/S	89 8564 8514	30-Jun-93
	!	T268452	DISC	88 8555 8455	!
	1	E268453 E273808	D/S U/S	88 6566 6505 88 6564 6514	03-Aug-93
	}	T273607	I DISC	89 8555 8455	i do nog to
	;	E273808	D/8	88 6568 6505	i
32	LOUGHOR	E254346	DISC/	8N 7030 1011	25-Mar-93
	NANT MELYN	E209913	I U/S	SN 7023 1104	08-Jul-93
	i	T269914	DISC	SN 7022 1106	i
	•	E209915	0/8	8N 7021 1107	i
i	i	E271985	บ/ร	8N 7023 1104	22-Jul-93
	ļ.	T271985	DISC	SN 7022 1106	ļ.
	1	E271987	1 0/3	8N 7021 1107	<u> </u>
- 30		E253200	U/S	1 SN 5699 0200	1 17-Mar-93
	MORLAIS	T253201 E253202	DISC DIS	8N 5723 0226 SN 5702 0197	1
!	I I	E269505	1 11/8	1 SN 5699 0200	07-Jul-93
	1 1	T269506	I DISC	SN 5723 0228	1
	i	E269507	DAS	SN 5702 0197	i
	j	E271766	U/S	SN 5699 0200	21-Jul-93
	ļ	T271767	DISC	SN 5723 0225	į.
	j .	E271768	D/S	8N 6702 0197	1

TIME	WEATHER 	l	рH	FIELD pH		00
		deg. C	***************************************		mg/l	*
14:00	 DRY	6.7	7.60	5.15	14.20	116.0
	ĺ	9.7	7.50	7.85	12.60	
	Ì	6.9	7.60			•
14:30	DRY	13.2			10.20	
!	1	12.0	7.70			•
	l	13.3	7.40	7.92		•
10:45	(DRY	10.1				
	1	10.8				•
	·	10.2	7.00	7.20	10.67	95.2
10:30	I DRY	5.0	6.65	6.62	12.90	101.0
	i	9.2			3.60	33.1
	ì	6.3				98,1
10:15	DRY	13.9			11.30	110.0
	İ	9.6				
	İ	12.9				
10:30	(DRY	12.1				
	ĺ	10.1	6.70	6.36		
	ĺ	11.8	6.90	7.10	12.10	112.0
12:00	DRY	5.0	5.39	8.00	12.60	96.8
		9.7	6.70	7.34	11.40	100.0
	i	7.5	7.17	7.51		
14:00	DRY	15.4	7.20	7.37		
	ì	9.9				
	l	12.9				
14:00	DRY		5.20			
	<u> </u>	10.0				
					·	· ——
14:30	DRY	7.1 7.6				
	}	7.3				
13:00	l DBY	13.6		•		
13.00)	12.4				
	i	12.9	6.40	6.79		96.8
18:00	DRY	12.6	j 6 .50	6.63		•
	l	12,4	,	5.92		
		12.5	6.40	6.36	11.10	104.0
11:40	DRY	6.2	6.90	7.92	12.30	99.4
11:00	i DRY	14.3	l 7.00	6.27	9.50	93.0
	1	11.6		•		
		13.6		•		
10:15	i DRY	12.3		7.52		
	į	11.6	6.60	6.49	1.70	
	i	12,3		6.63	8.23	77.1
12:45	DRY	9.6	7.30	6,17	12.00	
	Ī	14.5				
	ł	11,4				
11:00	DRY	14.6				•
	I	14.4				
	·	14.8				
11:30	DRY	14.6				
	ļ	14.6		6,63 7.21		
	1	14.6	0.50	7.21	3.00	, 50.0

-					***************************************			***************************************				-
ITE	 NAME OF	I LAB.	LOCATION) I COND.) DISS.	J I TOTAL	 DISS.) I TOTAL	i diss.) I TOTAL] ALKALINITY	 SU\$.
0.	RECEIVING WATER	I REF.	Location	i with	IRON	IRON	Al.	Al.	SULPHATE	SULPHATE	i	SOLIDS
J.		1	i) Us	1 mg/1	mg/l	mg/l	mg/1	i mg/l	mg/l	mg/I CaCO	mg/1
	! <u></u>	!	!	!	!	0.083	0.030	0.030	30.90	31.0	 35.55	
20	•	E251068	1 0/3	169	0.038	I 0.065	i 0.004	0.011	27.50	27.6	53.42	i
	AAFAN	T251089	DISC	224		0.187	0.024	0.037	30.80	31.0	36.69	i
	AT GELLI FARM	E251090	1 D/8	173	0.054	0.107	0.032	0.053	17.60	17.7	23,40	i <3
	! .	E267358	j U/8	1 112	0.039	0.243	0.008	0.026	25.00	, I 25.0	65.80	<3
		T267359	DISC	1 186	0.154	•		0.039	18.20	18.4	27.10	<3
	l	E267360	I D/S	164	0.049	0.078	0.032		25,10	28.2	1 25.90	<3
	Į	E250029	j u/s	116	0.044	0.056	0.040	0.052	25,20	25.2		""
	1	T280030	DISC	192	0.177	3.370	0.005	0.119		31.4	,	!
	l	E280031	D/S	122	0.060	0.002	0.032	0.045	29.70	J1.4	25.70	ا
28	AFAN	E251682	U/S	57	0.017	0.017		0.009	8.50	6.5 1 70.9	7.90 74.58	!
	NANTY FEDW	T251683	I DISC	299	NO RESUL	1.522	0.004	0.015	34.20	1 34.6	10.40	•
	!	E251684	D/8	j 156 l 54	0.646) 0.646 I 0.024	0.004 0.012	0.014	4.70	4.7	9.50	í <3
	!	E268448) U/8	1 265	0.900	1,170	0.006	0.142	59.00	50.0	72.00	i
	!	T258449	i Disc			0.447	0.000	0.094	24.30	24.8	29.10	i
	!	E268450	D/S	132	0.447			0.038	6.50	6.9	7.07	 <3
]	E274504	U/S	1 48	0.044	0.044	[0.034 I 0.009	1.005	56.90	57.6	71.00	
	 	T274505 E274506	DISC DVS	322 100	1.363	2.509 1 0.230		0.009	15.90	19.1		i
_	·	<u> </u>	` 	` 		·	·		16.60	16.6	1.76	,
27	I AFAN	E251688	I U/S	105	0,010	0.011	,	0.011	•		•	!
	TRIB OF NANT	T251689	DISC	1 394	3.230	3.320	0.063	0.123	150.60	153.7	36.13	!
	CREGAN	E251890	D/S	265	1,680	2.470		0.238	86.40	55.6	25.25	
	ļ	E268445	U/S	93	0.026	0.026	0.019	0.019	11.00	14.0	14.60 30.97	1 <3
	1	T268445	DISC	321	0.820	1.010	0.060	0.107		116.0	1 22.50	!
	ļ	E265447	D/S	500	!	0.566	0.052	0.070	1 66.00	68.0		;
	ļ	E272853	U/S	74		0.025	0.319	0.346	14.00	14.4	1 3.69	1
	<u> </u>	T272654 E272655	DISC D/S	302 96	1.150	1.530 0.088	0.087	0.169 0.265	89.80 20.70	100.6	•	<3
16	1 CYNFFIG	L E251697	U/S	I 106	0.153	0.263	0.007	0.022	1 14.70	14.7	11.22	. ——
10	N. CRAIG YR ABER	E251698	DISC	234	NO RESUL	1,990	0.010		19.90	19.9		i
	I M. CARLE IN ROEM	E251699	I D/S	156	0.537	0.599	0.006	0.011	25.30	25.3	22.80	í
	!	E251089	U/S	131	0.293	0.385	0.016	0.020	16.30	19.2	16.50	. <3
		T258452	I DISC	1414	10.410	16.640	0.034	0.050	560,00	573.0	117.00	1
	:	E2684\$3	D/S	498	4.760	4.760	0.011	0.019	169.00	174.0	43.00	i
	;	E273806) U/S	131	0.295	0.443	0.025	0.038	18,00	16.0	11.69	i
	! }	T273807	DISC	1 1376	14.900	15.330	0.020	0.077	1	538.7	39.80	i
		E273805	D/S	331	3.190		0.020	0.088	101.90	•		i
32		E254340	DISC/	98	0.742	0.660	0.011	0.018	7.60	7.9	23.64	<3
	I NANT MELYN	!	1 STREAM	1		!		!	!	!	!	!
	!	E259013	į u/s	74	0.211	0.345	0.004	0.010	5.30	5.4	21.00	∮ <3
	!	T269014	DISC	1037	5.450	8,190	1	<0.004	254.00	269.0	315.00	!
	ļ	E250015	D/S	615	2.137	2.262		0.000	145.00	151.0	188.00	!
	ļ.	E271985	[U/S	110	1.240	2.060	0.010	0.041	6.50	0.9	34.30	!
	1	E271987	Disc	1 1080	5.760	6.090	0.005	0.006	248.60	253.2 92.0	315.00	}
_		· ·	· 	· 	. '		· ———	` 	·			'
30	LOUGHOR	E253200	I WS	1 189	0.252	0.416	0.025	0.056	24.10	24.1	32.65	ļ
	MORLAIS	T253201	DISC	2230) 63.130	73.080	J 0.166	J 0.175 1 0.034	985.00 1 390.80	1,057.0		}
	}	E253202	I D/S	1011	NO RESUL	10.360	NORESUL] 400,4] 29,5		 <3
	!	E259505	1 U/S	204	0.275	0.345	0.035	0.035	29.50	•	•	1 73
	1	T259506	DISC	2000	1	31.770		0.061	723.00	729.0	254.00	ļ.
	!	E269507	l D/S	1239	22.570	25.420	0.029	0.029	450.00	458.0		!
	!	E271764	l u/s	1 169	0.316	0.397	0.024	0.055	20.10	20.4	38.00	ļ
	Į.	T271767	DISC	2120	74.910	81,120	0.178	0.189	911.20	918.6	244.00	!
	1	E271768) D/S	720	12.600	12.600	0.021	0.033	249.50	249.8	58.00	1

Appendix 5. Chemical Data for 20 8.W. discharges (selected for stage 2 assessment) on all exampling occasions.

SITE NO.	NAME OF RECEIVING WATER	 LAB. REF.	LOCATION	NATIONAL GRID	DATE
		į	i	REFERENCE	j e
				. ———	. ——
29	 LOUGHOR) E253389	J I U/S	J I SN 6326 0963	1 18-Mar-93
-	CATHAN	T253390	DISC	SN 6325 0963	1
	i eximat	E253391	i D/S	8N 6323 0966	ł
	ľ	E266934	i U/S	8N 6326 0963	02-Jul-93
	:	T288935	DISC	8N 6325 0963	
) 	E256936	i D/S	1 SN 6323 0966	i
	<u>'</u>	E271988	i U/8	8N 6325 0963	22-Jul-93
	l P	T271989	DISC	SN 6325 0963	
	i	E271990) D/S	SN 6323 0966	i
31	TRIB OF CLYNE	E253365	1 U/S	I SS 5873 9434	1 18-Mar-93
_	i	T253386	DISC 1	88 5878 9427	ì
	i	T253387	DISC 2	88 5927 9382	Í
	i	E253388	D/S	88 5931 9389	i
	i	E269508	U/S	38 5873 9434	07-Jul-93
	i	T209509	DISC 1	98 5878 9427	i
	i	T289510	DISC 2	83 5927 9382	j
	i	E209511	i D/8	88 5931 9369	i l
	ĺ	E271762	į U/S	88 5873 9434	20-Jul-93
	ì	T271763	DISC 1	88 5878 9427	j
	j	T271764	DISC 2	88 5927 9382	İ
	İ	E271765	D/8	88 5931 9369	1
33	I TAWE	E254518	U/8	\$N 7002 0536	26-Mar-93
	UNNAMED TRIB OF	T254518	DISC	SN 7002 0533	i
	LOWER CLYDACH	E254517	D/3	SN 7001 0530	i
	j	E269916	j U/9	8N 7002 0536	[08-Jul-93
	i	T269917	DISC	SN 7002 0533	i
	i	E269918	į D/8	SN 7001 0530	1
	Ĭ	E280032	U/8	SN 7002 0536	15-Sep-93
	i e	T250003	DISC	1 SN 7002 0533	1
		E280034	D/S	SN 7001 0530	

TIME	WEATHER	ТЕМР.	рН	FIELO pH	i do I	j 00 I
		deg. C			mg/l	<u>*</u>
15:30	ORY	8.6	7.70	7,98	[11.30	 97.0
	i	11.0	5.80	5.50	1.00	J 9.1
		j 8.9	7.20	5.84	10,70	92.5
12:30	DRY	14.1	6.20	7.41	10.90	106.0
	Ì	1 11.3	5.70	6.35		j 10.1
	Ì] 13.9	6.70	7.52	10.20	99.0
11:00	DRY	13.1	7,10	7.58	10.40	99.2
	j	11.5	5.50	5.61		43.5
	İ	13.1	7.00	7.13	10.23	97.5
11:40	DRY	0.3	7.50	8.19		89.0
	j	j 11.4	7.00	5.75		9.2
	İ	17.4	6.30	5.79		Į 67.0
)	10.6	7.10	6.91		55.8
14:00	DRY	13.7	7.80	6.90	9.30	89.6
	ĺ	12.3	7.00	7.52	•	58.1
	j	12.5	6.30	7.41	8.70	82.0
	ĺ	12.5	7.00	7.70	7.80	J 73.4
15:00	ORY	14.5	7.10	8.20	6.70	1 85.6
	1	13.1	7.00	7.65	7.00	60.7
		12.5	6.10	7.52		61.1
		1 12.7	6.90	7.80	6.90	54.1
11:00	DRY	5.6	6.90	5.29		
)	9.5	5.80	8,08	0.20	1.6
	1] 6.0	6.20	6.25		96.5
13:00	DRY	16.5	6.90	0.48	9.00	92.4
	J	11.4	5.80	5.47	0.70	•
	١	15.1	6.10		•	
11:30	DRY	12.3	6.70	7.50	9.95	
	!	11.3	5.70			9.2
		12.3	6.30	5.98	6.70	62.3

SITE	 NAME OF RECEIVING WATER	 LAB. REF.	LOCATION	COND.
i	i	i	i	į us
1 29	(I LOUGHOR	E253389	! ! U/S	i I 212
0	I CATHAN	T253390	I DISC	900
1	I CALITAN	E253391	D/S	235
1	}	E268934	I U/S	188
i	¦ •	T268935	DISC	915
i	i	E268936	D/S	210
ì	, i	E271988	U/8	214
i	i	T271989	Disc	982
i .	i	E271990	D/S	234
31	TRIB OF CLYNE	E253385	U/S	207
1	!	T253386	DISC 1	541
!	<u> </u>	T253387	DISC 2	455
1	!	E253388) D/S	469
!	}	E269508	J U/8	230
Į.	!	T269509	DISC 1	493
!	!	T260510	I DISC 2] 342
!	}	E259511 E271762	I C/S	449 213
!	ļ	1 T271763	DISC	1 423
	} -	T271764	I DISC 2	440
	i	E271765	D/S	400
] 33	I TAWE	L E254515	I U/S	312
i	UNNAMED TRIB OF	T254516	DISC	556
i	LOWER CLYDACH	E254517	D/S	331
j	į	E269916	1 U/S	j 546
1	1	T269917	DISC	507
1	1	E259918	(D/S	610
1	1	E260032	I U/S	324
		T280033	DISC	914
I and		E260034	I DIS	1 390

		***************************************			***************************************		
DISS.	I TOTAL	DISS.	TOTAL	i J DISS.) TOTAL	ALKALINITY	∤ SUS.
IRON	IRON	I Al.	Al.	SULPHATE	SULPHATE	ĺ	SOLIDS
mg/l	mg/l	mg/t	mg/l	mg/l	i mg/l	mg/I CeCO	1 mg/1
0.048	9,096	0.011	0.029	l 42.20	[42.5] 50.03] [
61.100	•	0.745	1.203	488.70	458.7		
1.900	•	0.028	0.050	54.80	j 54.9	47.62	
0.048	0.120	0.017	0.022	32.00	32.0	49.00	[1
73.000	73.000	0.480	1.000	444.00	444.0	24.58	<3
1,200			0.042	42.00	42.0	43.00	1
0.159					38.4	48.40	<3
58,700			0.657	502.20	515.0	15.70	I
1.680	,			i constant	47.2	46.20	1
0.170	0.410	0.010	0.060	13.00	20.7	66.70	
7.620	8.160	0.010			76.7	199,80	
27.500					129.9	50.00	
NO RESU	4.750				56.4		
0.172		0.012	·	6.00	6.9	•	! .
6.520	8.620					,	2
22.170] 22,260	0.069	0.075		121.0		
5.470	7,170	0.057	0.074		67.0		
0.313			0.056	15.50			
5.353	6.483	0,006	0.056	45.50	50.7		
28.415	30.084	0.055	0.070	118.60	119.9		1 1
	4.160	(<0.004	<0.004	82.30	82.3	106.00	11
0,140						•	
30.300		•	0.420	•		•	•
1.490		0.020	0.040		136.0		
0.037		0.000	0.022		264.0		•
21.310		0.004	0.042		163.0		
2.389	1		0.044				
0.159	0.334					•	
20.450	42,790	0.006			366.0		•
2.980	3.000	0.036	0.095	160.30	163.6	25.50	1 1

Appendix 7. Chemical Data for the N. discharge (selected for stage 2 assessment) on all sampling occasions.

					***************************************	*********	***************************************	***************************************	***************************************	*************		*****************
SITE NO.	NAME OF RECEIVING WATER	 LAB. REF.	LOCATION	NATIONAL GRID	DATE	I I TIME I	 WEATHER 	 TEMP. 	pΗ	 FIELD pH	DO	DO
				REFERENCE		!		deg. C			mg/l	%
*******	**********************		***************************************	***************************************	***************************************			***************************************	**************	*************		*************
1								1				1
34	DEE	E165765	U/S	SJ 3085 6570	23-Apr-93	09:00	DRY	9.7	7.70	8.06	8,50	74.9
1 1	_	T165766	DISC	SJ 3068 6571		İ	į	10.7	6.70	6.34	0.20	1.8
İ	BROUGHTON BROOK	E165767	D/S	SJ 3068 6572		Ì	ĺ	10.5	6.90	7.00	1.50	13.5
		E281140	U/S	SJ 3085 6570	22-Sep-93	12:30	DRY	11.9	7.90	7.35	10.05	93.3
į		T281141	DISC	SJ 3068 6571	j	İ		10.6	7.60	6.31	0.78	7.1
j j		E281142	D/S	SJ 3068 6572		į	ĺ	11.0	7.80	6.66	6.39	58.1
*******	****		***************************************	*********	***-*******		************		************	*************	414	************

Appendix 7. cntd.

********					1	1	I I	1	1			. 1
SITE NO. 1	NAME OF RECEIVING WATER	LAB. REF.	LOCATION	COND.	DISS.	I TOTAL IRON	DISS.	TOTAL Al.	I DISS. SULPHATE	TOTAL SULPHATE	ALKALINITY	sus.
1			i	US	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/i CaCO3	mg/l
*******		***************************************	***************************************		***************************************		**************	*************		***************************************		
		i					[-]			
34	DEE	E165765	l U/S	326	0.381	0.504	0.193	0,260	44.86	NO RESULT	89.00	4.6
i i		T165766	DISC	978	10.270	10.380	0.260	0.270	242.20	253.0	232.00	11
i i	BROUGHTON BROOK	E185767	D/S	867	9,420	9.420	0.255	0.264	215.51	221.0	211.00	13.2
i i		E281140	į U/S	570	0.390	0.400	0.046	0.046	75.80	75,8		<3
i i		T281141	DISC	1070	13,100	13.100	0.043	0.082	271.10	275.6]
i i		E281142	D/S	1018	į	3.100	0.010	0.010	237.80	237.8		20
	***************************************	***********	*************		**********	*************	************			*************		

Appendix 8.

Water Quality Data Summary

				MEAN	VALUES	
Site		Тешр	D.O.	рH	total Fe	total SO4
		o _C	8		mg/l	mg/l
l Llwyd	u/s	9.3	109	7.96	0.117	76.8
at Abersychan	disc	11.7	108	7.83	3.68	288.2
•	d/s	10.3	108	7.99	1.073	156.9
2 Llwyd	u/s	9.3	99	7.88	0.348	86.9
at Pontnewydd	disc	11.3	102	7.67	0.288	104.7
,	d/s	9.6	94	7.76	0.713	103.6
3 Llwyd	u/s	10.2	103	7.83	0.446	75.6
at Pontypool	disc	10.1	103	7.83	0.569	81.4
	d/s	10.2	100	7.77	0.387	76.1
4 Ebbw	u/s	10.2	110	8.2	0.266	105.7
at Newbridge	disc	12.0	29	6.9	19.6	771.5
-	d/s	10.5	105	7.95	=0.982	155.5
5 Sirhowy	u/s	10.3	99	7.83	0.187	62.6
at Blackwood	disc	10.7	70	6.7	4.997	692.9
	d/s	10.8	1.00	7.6	0.565	128.1
6 Sirhowy	u/s	12.3	99	7.6	0.288	88.5
at Pontllanfrai	th disc	10.8	63	6.97	2.275	706.6
	d/s	11.4	93	7.37	2.42	342.3
7 Rhymney	u/s	10.6	104	7.47	0.251	118.8
at Fleur de Lys	disc	10.9	17	7.06	5.788	665.5
•	d/s	10.9	102	7.17	2.59	278.3

Appendix 8 continued.

MEAN VALUES

Site		Temp O _C	D.O. &	Hq	total Fe	total SO _l
9 Dare Trib.	u/s	8.6	100	7.57	0.087	33.7
at Cwmdare	disc	11.6	58	6.93	4.498	123.2
	d/s	8.9	100	7.57	0.300	32.8
10.134		0.7	90	7.27	0.313	36.9
10 Llwyd	u/s	9.7				
at Blaenavon	disc	10.2	94	7.23	1.637	148.4
	d/s	10.1	100	7.37	0.587	80.6
ll Clydach Trib.	u/s	9.2	104	7.27	0.133	42.9
at Ynysybwl	disc	10.0	83	6.2	1.000	100.1
	d/s	9.4	104	7.17	0.305	54.7
12 Y Ffrwd	u/s	8.9	107	6.5	0.214	15.1
at Ynysybwl	disc	9.9	106	6.92	1.523	28.4
	d/s	8.8	105	7.07	0.967	23.7
13 Rhondda	u/s	11.0	106	7.81	0.856	42.9
at Hopkinstown	disc	10.1	106	6.67	13.193	105.9
•	d/s	11.0	109	7.6	1.705	45.5
14 Ogwr Fach	disc	9.4	99	7.33	0.919	18.9
at Evanstown	d/s	9.7	102	6.95	0.755	39.9
15 Llynfi Trib.	u/s	10.6	113	6.83	0.386	13.5
near Bettws	disc	11.5	53	6.67	8.75	71.9
	d/s	11.0	107	6.77	1.194	20.8
			107		0.240	17.2
16 Nant Craig y Ab		11.1	107	6.8	0.369	17.3
Nr. Aberbaiden	disc	10.8	50	6.43	11.32	377.2
farm	d/s	10.9	100	6.63	3.173	100.4
17 Afon Corrwg	u/s	9.9	115	7.4	0.088	12.8
Nr Glyncorrwg	disc	9.7	16	6.46	14.437	217.7
	d/s	10.5	107	7.33	1.181	31

M ti	 1 1	/ A 1	11	i:S
יונים	 ·	/ 1		יי יו

si	te		Те т р О	D.O.	рН	total Fe	total SO ₄
18	Corrwg Fechan	u/s	9.3	112	6.53	0.07	9.7
	Nr.Glyncorrwg	disc	9.9	40	6.93	11.513	136.2
		d/s	9.7	99	6.77	1.587	30.9
19	Nant Gwynfi	u/s	9.5	112	7.18	0.125	10.2
	at Blaengwynfi	disc	9.8	83	6.57	7.348	125.6
		d/s	9.3	101	6.99	1.289	33.8
20	Afon Afan	u/s	10.0	103	7.3	0.065	25
	Nr. Gelli farm	disc	10.8	99	7.5	1.458	25.9
		d/s	10.1	103	7.33	0.12	26.9
21	Afon Corrwg	u/s	10.8	109	7.3	0.113	24.0
	Nr. Glyncorrwg	disc	12.6	100	7.17	19.337	273.3
		d/s	11.0	110	7.37	0.534	30.2
22	Ffrwd Wyllt	u/s	9.4	114	7.23	0.068	19.2
	at Bryn	disc	9.9	110	7.23	0.286	19.2
	+	d/s	9.4	113	7.27	0.354	20.1
23	Ffrwd Wyllt	u/s	10.9	113	7.1	0.074	23.3
	at Goytre	disc	11.1	90	6.8	3.545	72.6
		d/s	11.1	106	6.97	0.543	34.1
24	Nant Blaenpelenr	na u/s	10.5	124	6.6	0.225	18
	Nr. Tonmawr	disc	9.7	119	6.93	0.871	51.2
		d/s	10.3	126	6.8	0.582	27.8
25	Nant Blaenpelen:	na u/s	12.0	121	6.77	0.267	23.5
	Nr. Tonmawr	disc	11.1	102	5.5	19.81	245.8
		d/s	11.9	122	6.03	5.813	80.3
26	Cwm Gwenffrwd	u/s	12.8	113	6.23	0.134	32.4
	Nr. Tonmawr	disc	10.5	20	5.51	48.233	294.9
		d/s	13.0	112	6,0	4.207	62.3

Appendix 8 continued.

				MEA	N VALUES	
Site		Temp	D.O.	Нд	total Fe	total SO4
		o _c	8		mg/1	mg/l
27 Nant Cregan Trib	. u/s	10.8	113	5.93	0.020	15
at Troed y rhiw	disc	9.9	109	6.67	1.953	124.1
	d/s	10.7	112	6.86	1.041	58.5
28 Nant y Fedw	u/s	10.3	110	6.78	0.029	6.7
at Gelli farm	disc	9.7	30	6.87	1.833	62.6
	d/s	10.3	106	6.99	0.442	26.2
29 Cwm Cathan	u/s	11.9	101	7.0	0.126	37.6
Nr Garnswllt	disc	11.3	42	5.67	71.877	482.6
	d/s	12.0	96	6.97	1.633	48.0
30 Afon Morlais	u/s	13.0	108	7.2	0.387	24.7
at Llangennech	disc	14.5	1	6.67	61.99	901.5
	d/s	13.6	90	6.9	16.46	368.7
				4,0		
31 Clyne	u/s	12.5	72	7.47	0.325	14.4
at Dunvant	disc	12.4	45	7	26.715	123.6
	d/s	11.9	71	7	5.37	75.2
32 Nant Melyn	u/s	13.3	91	6.85	1.203	6.2
at Cwmgors	disc	11.7	11	6.85	6.14	261.1
	d/s	10.8	84	6.97	1.894	83.6
33 Tawe Trib.	u/s	11.5	94	6.83	0.216	188.1
Nr. Llechart	disc	10.7	6	5.77	36.267	244.3
farm.	d/s	11.1	89	6.17	3.063	191.9
34 Broughton Brook	u/s	10.8	84	7.8	0.452	75.8
at Hawarden.	disc	10.8	4	7.2	11.74	264.3
	d/s	10.8	36	7.4	6.26	229.4

Appendix 9. Flow data for the minewaters assessed in stage 2 over the period June - October 1993.

Site	N.G.R. of discharges	Flow (Cumecs)
l R. Llwyd (Abersychan)	SO 270 5 0315	0.1143
2 R. Llwyd (Pontnewydd)	SO 2763 0181	0.0932
3 R. Llwyd (Pontypool)	SO 2860 0058	0.2277
10 R. Llwyd (Blaenavon)	SO 2443 0897	0.0265
4 R. Ebbw (Newbridge)	ST 2121 9758	0.0507
5 R. Sirhowy (Blackwood)	ST 1757 9736	0.0182
6 R. Sirhowy (P'llanfraith)	ST 1801 9568	0.0552
7 R. Rhymney (Hengoed)	ST 1547 9632	0.1589
<pre>11 Clydach Trib (Ynysybwl)</pre>	ST 0537 9532	0.0126
12 Y Ffrwd (Ynysybwl)	ST 0358 9433	0.0082
13 R. Rhondda (Hopkinstown)	ST 0594 9059	0.0126
14 Ogwr Fach	SS 9776 9051	0.1139
	SS 9819 9047	0.0074
15 Llynfi Trib	SS 8936 8762	0.0028
16 N. Craig yr Aber	SS 8555 8455	0.0327
17 A. Corrwg	SN 8892 0069	0.0095
	SN 8888 0067	0.0154
18 A. Corrwg Fechan	SN 8813 0078	0.0051
19 N. Gwynfi	SS 8923 9730	0.0169
20 R. Afan (Nr. Gelli farm)	SS 8720 9630	0.0122
21 R. Corrwg (W.D.A Site)	SS 8629 9768	0.0018
23 Ffrwd Wyllt	SS 7872 8975	0.0116
24 N. Blaenpelenna	SS 8154 9751	0.0318
25 N. Blaenpelenna	SS 8161 9723	0.0265
26 Gwenffrwd	SS 7996 97 3 0	0.0180
	SS 8006 9691	0.0171
28 Nant y Fedw	SS 8784 9579	0.0298
29 R. Cathan	SN 6325 0963	0.0031
30 R. Morlais	SN 5723 0228	0.162
31 R. Clyne trib (Dunvant)	SS 5878 9427	0.0083
32 N. Melyn	SN 7022 1106	0.0223
33 Tawe tributary	SN 7002 0533	0.0027

Appendix 10. Biological survey data for the minewater sites assessed in stage 2 including observed (0) and expected (E) BMWP scores and reduction in BMWP scores.

Site	Sample	NGR.	BMWP		% Redn.	No.	Taxa
			(0)	(E)	in (0)	(0)	(E)
l A. Llwyd	ups	SO 270 031	91	130.7		16	21.2
Abersychan	d/sl	SO 270 030	116	132.9	7.7	19	21.6 **
	d/s2	SO 272 021	71		12	12	
2 A. Llwyd	ups	SO 276 018	114	132.3	7.	20	21.6
Pontnewydd	d/sl	SO 276 017	63	133.4	45 *	12	21.8 **
	d/s2	SO 278 016	124	- • •		21	
3 A. Llwyd	ups	SO 286 005	111	135.4	• •	21	22.1
Pontypool	d/sl	SO 286 005	96	136	14	17	22.2 **
	d/s2	SO 289 004	69		38	13	
4 R. Ebbw	ups	ST 212 976	65	132.6		13	22.1
Newbridge	d/sl	ST 212 974	65	133.7	2.2	13	22.3 **
	d/s2	ST 211 969	49		25	10	
	d/s3	ST 217 955	60		8	12	
5 R. Sirhowy	ups	ST 176 973	106	136.4		19	22.7
Blackwood	d/sl	ST 175 973	81	135.4	24	15	22.5 **
	d/s2	ST 177 969	88		17	15	
6 R. Sirhowy	ups	ST 180 956	83	135.6		15	22.5
P'lanfrait	h d/sl	ST 180 955	61	136.7	27	12	22.8 **
	d/s2	ST 180 954	73		12	14	
	d/s3	ST 178 947	72		13	13	
7 R. Rhymney	ups	ST 155 963	87	135.5		16	22.5
Hengoed	d/sl	ST 154 962	55	136.3	37	11	22.5 **
	d/s2	ST 955 949	78		10	14	
	d/s3	ST 148 927	86		1	16	
9 R. Dare	ups	SN 971 028	146	132.3		22	20.8
trib	d/sl	SN 972 028	115	133.6	21	19	21.1
	d/s2	SN 973 025	127	• • • • •	13	19	
10 A. Llwyd	ups	SO 234 095	166	126.4		25	19.9
Blaenavon	d/sl	SO 244 089	3	130.7	98 *	2	20.8 **
	/ d/s2	SO 247 088	55		67 *	10	
	d/s3	so 253 084	56		66 *	12	
	,						

^{*} Indicates a significant reduction in BMWP score

^{**} Indicates a significant reduction in \log_{10} abundance of ≥ 6 taxa

Site	Sample	NGR	BMWP		% Redn	No.	taxa.
			(0)	(E)	in (0)	(0)	(E)
ll R. Clydach	ups	ST 053 953	113	133.8	**D	17	21.4
Ynysybwl	d/sl	ST 053 952	70	134.8	38	12	21.7 **
	d/s2	ST 055 951	113			17	
12 Y Ffrwd	ups	ST 041 945	89	89.3		14	15.2
Nr Ynys y bw	l d/sl	ST 042 944	34	127.1	62 *	6	20.2 **
	d/s2	ST 044 943	86		3	14	• • • •
	d/s3	ST 052 949	134		4.	21	
13 R. Rhondda	ups	ST 059 906	60	124.6		12	21.4
H o pkinstow	n d/sl	ST 059 905	42	125.6	30	9	21.5
	d/s2	ST 059 905	48		20	11	
14 Ogwr Fach				•••••	••	• •	
Evanstown	d/sl	SS 977 905	34			7	
	d/s2	SS 978 904	64	• • • • •	149.	12	
	d/s3	SS 979 892	120			21	
15 R. Llynffi	ups	SS 893 876	136	127.3		22	17.8
trib	d/sl	SS 893 875	88	105.9	35	13	17.9 **
	d/s2	SS 893 873	103	••••	24	16	
	d/s3	SS 891 865	133		2	22	•
16 N. Craig y	r- ups	SS 855 845	100	124.4	**	17	20.0
aber	d/sl	SS 855 845	39	134.2	61 *	7	21.2 **
	d/s2	SS 831 833	106		188	17	
	d/s3	SS 825 831	115		5-	19	
17 R. Corrwg	ups	SN 889 007	56	126.4	1.2	10	20.0
	d/sl	SN 888 006	27	125.3	52 *	5	19.8
	d/s2	SS 879 993	59	• • • • •		10	
	d/s3	SS 866 979	83	• • • • •		13	
18 A. Corrwg	ups	SN 881 008	35	90.4	••	6	15.3
Fechan	d/sl	SN 881 007	11	94.4	69 *	2	15.8
	d/s2	SS 875 995	41			8	
	d/s3	SS 875 992	89			15	
19 N. Gwynfi	ups	SS 892 973	73	122.2		11	19.3
	d/sl	SS 891 972	41	123.8	44 *	8	19.6 **
	d/s2	SS 879 968	100			15	

^{*} Indicates a significant reduction in BMWP score

^{**} Indicates a significant reduction in \log_{10} abundance of \geq 6 taxa

Si	te Sa	ample	N.G.R.	B.M.1	W.P.	% Redn	No.	of taxa
				(0)	(E)	in (0)	(0)	(E)
20	R. Afan	ups	SS 871 963	98	113.3	• •	15	17.9
	Nr. Gelli fm	d/sl	SS 871 962	92	114.2	6	16	18.0
		d/s2	SS 872 962	84		14	15	• • • •
21	R. Afan	ups	SS 863 976	98	120.0		15	19.2
	W.D.A site	d/sl	SS 863 975	95	125.4	3	15	20.1
		d/s2	SS 862 966	88		10	14	
22	Ffrwd Wyllt	ups	SS 817 924	127	96.6	••	19	16.3
	Bryn	d/sl	SS 816 921	125	135.6	2	19	21.5
		d/s2	SS 813 921	97	• • • • •	25	16	
23	Ffrwd Wyllt	ups	SS 787 898	136	117.9	**	20	19.7
	Goytre	d/s1	SS 786 897	127	135.6	7	21	22.1
		d/s2	SS 785 897	109		20	17	
24	Blaenpelenna	ups	SS 815 975	63	115.2	++	11	18.2
		d/sl	SS 815 974	34	111.1	46 *	7	17.9
		d/s2	SS 816 973	49		22	9	
25	Blaenpelenna	ups	SS 816 972	58	92.1		10	15.6
		d/sl	SS 816 971	18	117.6	69 *	4	18.8 **
		d/s2	SS 809 961	44		24	8	
		d/s3	SS 787 953	66			11	
	R. Afan	d/s4	SS 793 940	94			15	
		d/s5	SS 781 919	93		**	15	
26	Gwenffrwd	ups	SS 799 973	58	108.1		10	17.8
		d/sl	SS 799 961	20	90.0	66 *	5	15.3 **
		d/s2	SS 787 953	47		19	9	
27	Trib. of N.	ups	SS 844 973	145	108.7		23	17.5
	Cregan	d/sl	SS 847 973	93	123.3	36	14	19.5
	J	d/s2	SS 844 971	65		55 *	11	
28	Nant y Fedw	ups	SS 878 958	111	91.1		17	15.4
	Gelli farm	d/sl	SS 877 958	91	122.6	18	14	19.4
	- -	d/s2	SS 871 960	117	• • • • •		18	
29	R. Cathan	ups	SN 632 096	123	134.6		19	21.3
	_ _	d/sl	SN 632 096	108	135.2	12	18	21.4 **
		d/s2	SN 621 102	129			22	44.7
		u/52	30 021 102	163		2.7	4.4	

^{*} Indicates a significant reduction in BMWP score

^{**} Indicates a significant reduction in \log_{10} abundance of ≥ 6 taxa

Appendix 10 Continued.

Site	Sample	N.G.R.	В.М.	W.P.	% Red	ln	No. of	taxa
			(0)	(E)	in (C)	(0)	(E)
30 R. Morlais	ups	SN 570 020	117	144.8			19	24.3
	d/sl	SN 570 019	21	135.9	82	*	5	24.3 **
31 Clyne Trib	ups	SS 587 943	99	112.2			17	19.7
	d/sl	SS 593 936	18	136.3	82	*	4	22.2 **
	d/s2	SS 593 931	110	• • • • •			18	
	d/s3	SS 598 924	122		2.5		22	
32 N. Melyn	ups	SN 700 102	111	139.6			20	23.6
	d/sl	SN 702 111	95	133.3	14		16	24.1
	d/s2	SN 700 120	78		30		15	
33 Tawe trib.	ups	SN 700 053	89	90.7			15	15.4
	d/sl	SN 700 053	22	91.7	75	፠	6	15.7 **
	d/s2	SN 698 048	20		78	*	4	
	d/s3	SN 688 043	52		42	*	10	·
34 Broughton	ups	SJ 306 657	43	134.8			10	21.6
Brook	d/sl	SJ 306 657	14	133.6	67	*	4	21.2
	d/s2	SJ 318 302	34		11		9	

^{*} Indicates a significant reduction in BMWP score

^{**} Indicates a significant reduction in \log_{10} abundance of ≥ 6 taxa

Appendix 10A Summary of invertebrate taxa lost or reduced in abundance at the first downstream site below a minewater discharge.

Taxa	BMWP SCORE		of d/s ch taxa T (%)	were		No. of U/S sites at which taxa were PRESENT
Heptageniidae	10	7	35	6	30	20
Ephemerellidae	10	5	21	8	35	23
Leptophlebiidae	10	1	100			1
Perlodidae	10	6	75			8
Chloroperlidae	10	10	66	1	6.6	15
Leuctridae	10	7	24	6	21	29
Sericostomatidae	10	10	77			13
Goeridae	10	4	100			4
Odontoceridae	10	1	100			1
Lepidostomatidae	10	3	100			3
Cordulegasteridae	⊋ 8	7	87.5			8
Philopotamidae	8	7	77	1	11	9
Caenidae	7	3	27	2	18	11
Nemouridae	7	8	53			15
Rhyacophilidae	7	9	31	5	17	29
Polycentropidae	7	10	40	2	8	25
Limnephilidae	7	7	63			11
Ancylidae	6	3	75			4
Hydroptilidae	6	5	83			6
Gammaridae	6	4	26	5	33	15
Mesoveliidae	5	2	100			2
Gerridae	5	1	1 0 0			1
Dytiscidae	5	7	87.5			8
Gyrinidae	5	1	100			1
Hydrophilidae	5	2	50	2	50	4
Helodidae	5	4	100			4
Dryopidae	5	3	100			3
Elminthidae	5	6	31	3	16	19
Hydropsychidae	5	6	31	6	31	19
Tipulidae	5	10	41	3	12.5	24
Simuliidae	5	7	28	7	28	25
Planariidae	5	8	61.5			13
Baetidae	4	6	18	9	28	32
Hydrobiidae	3	7	43.7	5	31	16
Lymnaeidae	3	5	100			5
Planorbiidae	3	2	100			2
Sphaeriidae	3	4	100			4
Erpobdellidae	3	3	43	1	14	7
Asellidae	3	2	22	1	11	9
Chironomidae	2	_		10	30	33
Oligochaeta	1	1	3.1	9	28	32

Appendix 10B Specimen copy of BMWP score sheet as used for recording stage 2 biological survey details

RIVER :			SAMPLE TYPE PURPOSE ANALYST		
FAMILY	: :	FAMILY	: :	FAMILY	•
SCORE 10	: A/P	SCORE 7	A/P	SCORE 4	: A/P
HEPTAGENIIDAE	::	CAENIDAE	::	BAETIDAE	:
EPHEMERELLIDAE	::	NEMOURIDAE	::	SIALIDAE	:
EPHEMERIDAE	::	RHYACOPHILIDAE	::	PISCICOLIDAE	:
LEPTOPHLEBIIDAE	::	POLYCENTROPIDAE	: ::		:
SIPHLONURIDAE	::	LIMNEPHILIDAE	::	SCORE 3	:
POTAMANTHIDAE	::		:		:
PERLIDAE	::	SCORE 6	:	VALVATIDAE	:
PERLODIDAE	::		:	HYDROBIIDAE	:
CHLOROPERLIDAE	:::	ANCYLIDAE	:	LYMNAEIDAE	:
LEUCTRIDAE	::	VIVIPARIDAE	::	PHYSIDAE	:
TAENIOPTERYGIDAE	::	NERITIDAE	;:	PLANORBIIDAE	;
CAPNIIDAE	::	HYDROPTILIDAE	::	SPHAERIIDAE	:
SERICOSTOMATIDAE	::	GAMMARIDAE	::	GLOSSIPHONIIDAE	:
GOERIDAE	::	UNIONIDAE	::	HIRUDIDAE	:
BRACHYCENTRIDAE	::	COROPHIDAE	: <u> </u> :	ERPOBDELLIDAE	:
ODONTOCERIDAE	::	COENAGRIIDAE	::	ASELLIDAE	:
PHRYGANEIDAE	::	PLATYCNEMIDIDAE	::		_;
MOLANNIDAE	::	· · · · · · · · · · · · · · · · · · ·	<u> </u>	SCORE 2	:
BERAEIDAE	::	SCORE 5	:		_:
LEPTOCERIDAE	::		<u> </u>	CHIRONOMIDAE	;
LEPIDOSTOMATIDAE	::	MESOVELIDAE	::		_;
APHELOCHEIRIDAE	::	HYDOMETRIDAE	::	SCORE 1	:
		GERRIDAE	::		_:
SCORE 8		NEPIDAE	:;	OLIGOCHAETA	:
		NAUCORIDAE	::		_:
ASTACIDAE	::	NOTONECTIDAE	;;	SCORE 0	:
LESTIDAE	::	PLEIDAE	::		_:
AGRIIDAE	::	CORIXIDAE	; <u> </u>		:
GOMPHIDAE	::	HALIPLIDAE	::		:
CORDULEGASTERIDAE	::	HYGROBIIDAE	;;		:
AESHNIDAE	::	DYTISCIDAE	:;		:
LIBELLULIDAE	::	GYRINIDAE	::		:
CORDULIIDAE	::	HYDROPHILIDAE	:;		:
PSYCHOMYIDAE	::	CLAMIDAE	::		:
PHILOPOTAMIDAE	::	HELODIDAE	::		
	:	DRYOPIDAE	: <u></u> :		·
ABUND. CATEGORIES	:	ELMINTHIDAE	::		<u>:</u>
1 - 1-9 organisms	:	CHRYSOMELIDAE	::		:
2 - 10-99	:	CURCULIONIDAE	::		:
3 - 100-999	:	HYDROPSYCHIDAE	::	=	:
4 - 1,000-9,999	:	TIPULIDAE	::	NO OF FAMILIES	:
5 - >10,000	:	SIMULIIDAE	::	BMWP SCORE	: <u> </u>
	:	PLANARIIDAE	::	CLASS	:
A/P - ABUNDANCE / PRESENCE	:	DENDROCOELIDAE	;:	A.S.P.T.	:

Appendix 10 C

This is a worked example of the calculation of biological impact using BMWP Score and reduction in log abundance criteria. If the following were the results of two biological samples, taken upstream and downstream of a discharge, the following assessment would be made.

FAMILIES RECORDED	BMWP SCORE PER FAMILY	LOG U/S	ABUNDANCE D/S	LOSS/INCREASE IN ABUNDANCE
Heptageniidae	10	2	0	-
Ephemerellidae	10	2	1	-
Perlodidae	10	1	1	*
Leuctridae	10	1	1	*
Sericostomatidae	10	2	1	-
Lepidostomatidae	10	1	0	-
Philopotamidae	8	1	0	-
Nemouridae	7	1	2	+
Rhyacophilidae	7	2	0	~
Limnephilidae	7	1	0	~
Gammaridae	6	3	3	*
Ancylidae	6	1	0	~
Haliplidae	5	1	1	
Dytiscidae	5	0	1	
Elminthidae	5	2	1	
Simulidae	5	2	0	
Baetidae	4	3	1	
Hydrobiidae	3	2	1	
Asellidae	3	0	1	
Erpobdellidae	3	1	0	•
Chironomidae	2	2	2	
Oligochaeta	1	2	1	
	BMWP SCO	RE 129	81	

^{(-) =} Reduction in abundance

The % reduction in BMWP Score between upstream and downstream is 37% which is less than the critical 40% value and therefore not quite significant.

Of the families scoring 6 or more on the BMWP score (ie. those above the dotted line) 8 showed a decrease in abundance of one or more on the \log_{10} scale, 2 showed no change and 1 showed an increase of one or more in \log_{10} abundance. The net number of families which showed a reduction in \log_{10} abundance was therefore 7, which is significant (ie. >4 families).

The result of this impact assessment according to the scheme used for biological assessment would therefore be B, Medium Impact.

^{(+) =} Increase in abundance

^{(*) =} No change in abundance

Appendix II.

Fisheries Data from Electrofishing Surveys with R.J.S.M.P Classification

	Upstream				Downstream				
					เมรพย				rjsmp
	Site	Area	No.	of Fish	Class	Area	No.	of Fish	Class
		(m ²)	0+	>0+		(m ²)	0.+	>0+	
1	Llwyd @ Abersychan	102	4	1.8	В	153	7	19	C **
	Llwyd recovery site					209	9	27	С
6	Sirhowy	277	0	14	D	210	1	14	С
7	Rhymney	297	0	14	D	245	0	8	D
11	Clydach Trib.	131	3	3	С	121	2	18	С
15	Llynfi Trib.	55	39	12	Α	111	14	9	C **
16	Nant Craig yr Aber	91	4	11	С	79	1	3	D **
17	Afon Corrwg	191	20	14	С	272	10	6	D **
18	Afon Corrwg Fechan	no fish caught							Е
19	Nant Gwynfi	114	4	0	D	151	7	6	D
21	Afon Corrwg	412	27	36	С	268	30	11	D **
23	Ffrwd Wyllt(Coytre)	155	8	9	С	204	3	18	С
25	Nant Blaenpelenna	163	0	2	D	197	, 0	1	D
26	Cwm Gwenffrwd			ດດ (ish cau	ght			E
27	Nant Cregan Trib.	151	2	ł	D	155	2	8	С
28	Nant y Fedw	110	6	4	Ð	85	0	4	D
29	R. Cathan	117	8	43	В	163	5	23	C **
30	R. Morlais	281	6	23	С	296	0	0	E **
31	Clyne	113	22	13	С	94	3 5	18	В
32	Nant Melyn	50	4	12	В	71	0	5	D **

^{**} Denotes that fisheries impact was demonstrated.

⁽⁰⁺⁾ and (>0+) above refer to fry and parr respectively both of which are juvenile salmonids less than one year old.

Appendix 12 Habscore results for sites electrofished in stage 2 of the survey showing HUI and HQS % for each site.

Site	Upstream HUI (-ve)		HQS₹			Downstream HUI (-ve)		HQS%	
	0+	>0+·	0+	>0+	0+	>0+	0+	>0+	
			•		-				
l Llwyd @ Abersychan	1.0	0.5	27	60	0.1	0.0	26	52	
6 Sirhowy	<u>3.5</u>	0.1	46	14	0.4	0.5	16	1	
7 Rhymney	<u>1.7</u>	0.5	13	12	0.4	0.2	7	8	
ll Clydach Trib.	3.7	2.3	86	93	<u>3.9</u>	<u>2,5</u>	85	98	
15 Llynfi Trib.	0.3	1.7	96	99	2.8	<u>2.9</u>	97	96	
16 Nant Craig yr Aber	3.9	3.2	96	99	4.4	4.3	89	99	
17 Afon Corrwg	2.4	3.5	93	99	4.0	4.8	95	99	
18 Afon Corrwg Fechan	6.0	5.5	93	97	6.4	4.8 5.9	96	98	
19 Nant Gwynfi	3.4	<u>5.5</u>	88	9 6	3.5	3.9	93	98	
21 Afon Corrwg	2.7	0.4	88	50	2.3	2.4	92	79	
23 Ffrwd Wyllt(Goytre)	2.8	<u>3.1</u>	86	95	4.2	2.8	88	96	
26 Cwm Gwenffrwd	5.7	6.8	90	100	5.9	<u>5.8</u>	92	98	
27 Nant Creagn Trib.	<u>4.9</u>	4.6	95	96	4.7	2.8	93	90	
28 Nant y Fedw	3.0	<u>3.5</u>	90	94	6.0	3.8	93	98	
29 Cwm Cathan	4.2	0.1	99	97	4.5	1.4	97	90	
30 Afon Morlais	4.0	0.3	89	38	1.6	0.6	38	7	
32 Nant Melyn	2.9	0.6	95	93	4.4	1.8	80	84	

For full details of Habscore see Milner & Wyatt 1991.

HQS

This is the Habitat Quality Score (HQS). It is a measure of the habitat quality expressed as the expected density of fish in numbers per $100m^2$.

HQS €

'This is the habitat quality score (HQS) on a percentage scale, and is the approximate percentage of Welsh sites which have a worse habitat than that observed at this site. A value of 50 will therefore represent a median habitat quality for Welsh streams, and a value of 5, for example, will represent poor quality for which only 5 % of sites in Wales are worse.'

HUI

The Habitat Utilisation Index (HUI) is a measure of the extent to which habitat is used by salmonids. It is a calculation based upon the observed density (OBS) and that which is expected under pristine conditions (HQS) divided by the standard deviation of the HQS. Hence a HUI of 0 will be observed when the HQS and the OBS are exactly the same and negative values of the HUI will be noted when the observed densities of salmonids are less than expected. The HUI values above in BOLD are values which are significant at the 5 % level. Therefore, a negative value of HUI above in hold would suggest that there was a significant under utilisation of the habitat at the 5 % level.