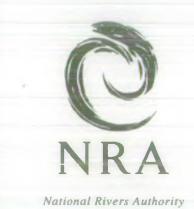
Pumping Station - Efficiency Of Operation And Cost For A Design Life Span

Survey of Pumping Installations and Design Philosophy Initiatives.


Research Contractor: Bullen and Partners

R&D Project Record 363/ 1 /NW

Further copies of this report are available from:

FWR

Foundation for Water Research, Allen House, The Listons, Liston Rd, Marlow, Bucks SL7 1FD. Tel: 01628-891589, Fax: 01628-472711

AJNS

Pumping Station - Efficiency Of Operation And Cost For A Design Life Span

Survey of Pumping Installations and Design Philosophy Initiatives

NRA SOUTH WESTERN REGION

Research Contractor: Bullen and Partners

-National-Rivers-Authority-Rivers House Waterside Drive -Aztec West Bristol BS12 4 UD

R&D Project Record 363/1/NW

National Rivers Authority Pumping Station Research

CONTENTS

.

			Page				
1.0	SUM	SUMMARY					
2.0	PRO	ROJECT DESCRIPTION					
3.0	STUDY APPROACH						
	3.1	Phase 1 - Data Base & Design Philosophy	5				
	3.2	Phase 2 - Maintenance Practices	6				
	3.3	Phase 3 - Detailed Analysis & Reporting	7				
4.0	DATA BASE PRELIMINARY REPORT						
	4.1	Summary of Pump Data	9				
	4.2	Analysis by Capacity	9				
	4.3	Analysis by Type	9				
	4.4	Analysis by Manufacturer	10				
	4.5	Cost of Stations by Capacity	10				
5.0	PUMPING STATION DESIGN PHILOSOPHY						
	PRE	LIMINARY REPORT	11				
	5.1	Summary	11				
	5.2	Introduction	11				
	5.3	Historical Background	11				
	5.4	Design Philosophy	15				
	5.5	General Considerations					
	5.6	Selection of Pumps and Ancillary Equipment	17				
	5.7	Design_Check_List	22				
. 100	5.8	Points for further study	22				

.....

- -

National Rivers Authority Pumping Station Research

APPENDICES

A1	Survey of Pumping Plant Questionnaire
A 2	Survey of Pumping Plant Design Questionnaire
A 3	Survey of Pumping Plant Maintenance Questionnaire

APPENDIX B DATA BASE

B1	Summary of Pump Data and Location	on Maps by	Region
B 2	Pump Analysis by Capacity	-	-
B 3	Pump Analysis by Type		
B 4	Pump Analysis by Manufacturer	1	

B5 Costs of Stations by Capacity

APPENDIX C

DESIGN PHILOSOPHY

C1Design ConsiderationsC2Checklist

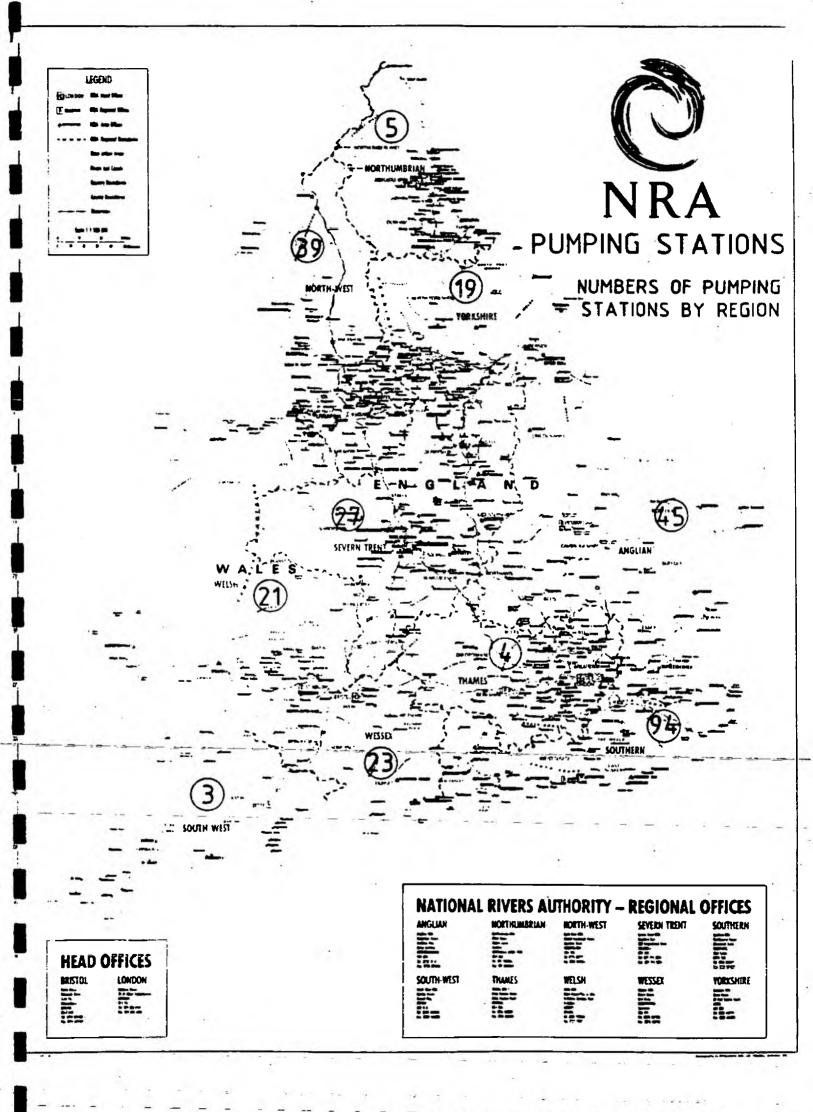
APPENDIX D

PHOTOGRAPHS

APPENDIX E

REFERENCES

National Rivers Authority Pumping Station Research


1

1.0 <u>SUMMARY</u>

The National Rivers Authority is currently responsible for 280 pumping stations (see map overleaf). These not only represent a very large capital investment in mechanical and electrical equipment but also involve the Authority in high annual expenditure in respect of their operation, maintenance and replacement. In view of the large financial commitment, the Authority wish to ensure that the most cost effective solutions are adopted for all new stations.

Preliminary investigation would appear to indicate that there is no common approach to the design and maintenance of flood defence pumping stations. It is evident that benefit would result from a detailed study of design philosophy and maintenance methods used. The object of the present study is to produce a manual of recommended practice for the guidance of engineers.

This interim report follows completion of the first phase of the study which comprised the following; a detailed survey of all land drainage pumping plant, preparation of a data base, and analysis of design philosophy throughout all regions. The report describes the project, summarises the results of the pumping plant survey and indicates the generally accepted current approach to the design of flood defence pumping stations. It also outlines some of the topics and problems that will be addressed in detail in the final report.

2.0 **PROJECT DESCRIPTION**

There is no common approach or code of practice applied to the design of flood defence pumping installations and it is thought that over-reliance may be placed on established custom and practice. This approach can lead to the specification and adoption of old and possibly well proven designs even though they may be less cost effective or efficient than alternative solutions. In addition, no consistent strategy exists for electrical and mechanical maintenance procedures. There would also appear to be current lack of forward planning in establishing the life expectancy of plant and associated systems and implementing long, medium or short term capital investment programmes for their replacement.

Having identified the above problems, the National Rivers Authority is addressing them by commissioning the present study of the land drainage pumping stations under its control. Particular emphasis is to be placed on the efficiency of operation and costs incurred for a design lifespan. In the past, initial cost has often been the main criterion possibly influenced by the grant-aid regulations, but it is obvious that prudent investment and financial control requires consideration of operating, maintenance and repair costs incurred during the entire life of the station. The overall objectives of the project are to:

- ii)

i)

analyse design philosophy and detail of flood defence pumping stations throughout all regions and determine best practices and relevant costings.

National Rivers Authority Pumping Station Research

- iii) review national strategies for maintenance investment and mechanical and electrical maintenance procedures.
- iv) publish results and prepare a manual of recommended practice for guidance of engineers.

To achieve these objectives, the study is divided into three phases with the following specific objectives:

Phase 1 - To conduct a detailed survey of flood defence pumping plant installations through the NRA and prepare a detailed categorised data base. To analyse design philosophy and carry out field studies to determine how decisions are made and developed through to final selection of type, site, and pumping station arrangement.

Phase 2 - To conduct a detailed survey into strategy and the decision making process in mechanical and electrical maintenance. Research samples in the field.

Phase 3 - Carry out a detailed analysis of Phase 1 and 2. Propose a code of practice and recommendations for design and maintenance investment applying any benefits from "Life Cycle Costing - A Radical Approach" (CIRIA Report 122). Publication of results and education in the field through to final implementation.

Phase-1-of-the study-has now been completed and this report presents a summary of the results from the survey of pumping plant and an interim report on design philosophy.

3.0 STUDY APPROACH

The approach to the study is summarised in the flow diagram overleaf and details of the methodology and approach for each phase of the study are provided on the following pages.

8.1 Phase 1 - The Data Base

The data base provides detailed information on National Rivers Authority pumping installations throughout England and Wales. For each pump installation general particulars have been collated, this comprises details of station layout and monitoring system, responsibility for design and specification, costs and any other relevant information.

In addition, more detailed information has been collected as indicated in the following categories:

National Grid Reference.

Station Catchment Area.

Total Capacity of Station.

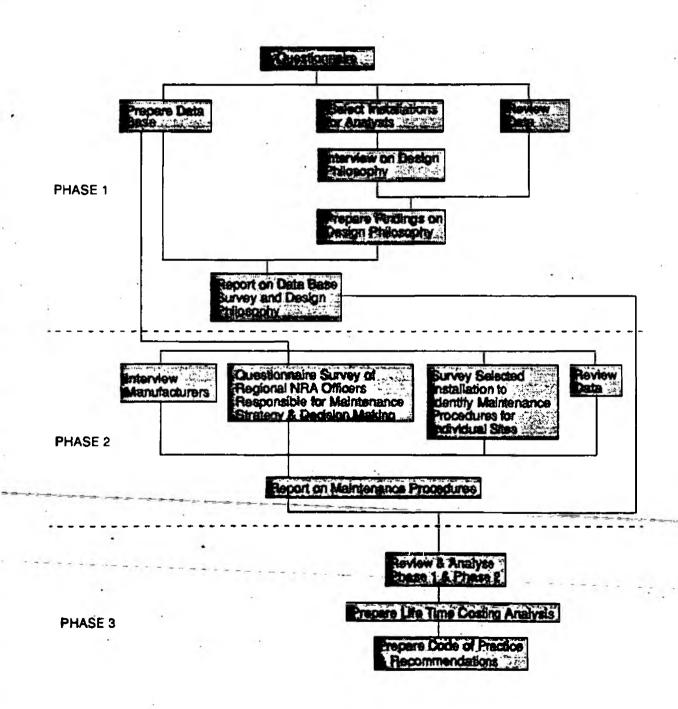
Number of pumps.

Manufacturer.

Date commissioned.

Pump Type (Centrifugal, Axial, Mixed Flow or Screw).

Size, Diameter.


Housing (High building with crane, low building, removable roof, outdoor ______ or submersible).

Mounting (Horizontal or vertical).

Capacity (per pump).

Design Static Head.

National Rivers Authority PUMPING STATION RESEARCH PROJECT STUDY APPROACH

National Rivers Authority Pumping Station Research

Impeller Speed RPM. Drive (Diesel or Electric). HP. Supply voltage. Discharge type (Syphonic, Sluice or Sluice and Reflux).

The information was gathered by means of a simple questionnaire, the format is presented in Appendix A1. The first two sheets allow the recipient to insert general particulars and the third contains detailed information. The questionnaire was designed to be simple to complete to ensure a high response rate whilst containing enough information to permit meaningful analysis. The questionnaires were circulated and completed during early 1992, and the database was constructed on the information supplied.

The amount of information provided in the completion of the questionnaire was variable both by region and by individual station. Most of the information supplied relates to pump size and characteristics, the information relating to design and costs is generally less well covered. It is recognised that this information is difficult to recover as many of the stations are over twenty years old and original documentation is no longer available.

A summary of the data base information is presented as part of this report. The complete document is held by Mr A. Taylor, the Mechanical Services Manager of the NRA, North West Region. It can be inspected by request.

3.2 Design Philosophy

It was agreed at the start of the study that the analysis of current design philosophy would be based on interviews with the designers of a 10% sample of stations selected from each NRA region. These pumping stations were chosen from those recorded on the Data Base, to cover the widest possible range of size and type in current operation. Site visits were made by Bullen and Partners engineers

National Rivers Authority Pumping Station Research

during 1992, the interviewees were engineers with responsibility for design of mechanical and electrical plant and/or civil works and they were in the main current NRA engineers. Detailed questions were asked about the design, construction and operational history, a list of standard questions being used to ensure uniformity of approach in the various areas. The format for the standard questions is presented in Appendix A2, in addition, relevant documentation was also obtained such as tender documents, reports and specifications. Following the site visits and collation of relevant documents detailed reports were completed and design implications studied.

A number of manufacturers have been approached regarding their philosophy in respect of the design and supply of pumps for flood defence purposes. A questionnaire was again used to ensure uniformity in the information supplied. Several replies have been received, in particular detailed comments were provided by the Bedford Pump Company Ltd and KSB's London office.

An interim report on design philosophy based on these initial interviews and information from manufacturers is presented in sections 5.0 of this report.

3.3 Phase 2 - Maintenance Practices

The review of the strategy and decision making processes in mechanical and electrical maintenance will be based on a combination of questionnaires and interviews.

The questionnaire will be completed by regional or district managers, who are responsible for maintenance of pumping installations within their area. Typically the regional/district managers would be responsible for several installations, and so these questionnaires will give general information on strategy and decision making for maintenance adopted on an area basis. The questionnaire will be circulated to district managers within the Authority so that coverage of all installations will be achieved.

Ref: VH/91742/001/B

6

The suggested basis for the questionnaire is in Appendix A3. The first part giving general information on maintenance strategy followed by detailed questions on inspections and checks.

The questionnaire will be followed up by interviews with selected area managers and also first line supervisors who carry out maintenance duties at individual sites. Again standard format interview check lists will be used and the contents will be agreed with the Authority where appropriate.

Companies involved in the manufacture or maintenance of pumping plant will also be interviewed.

The field work will be complemented by a review of any information available to give background information for the final report.

This phase of the project is programmed to take place during the winter of 92/93.

3.4 Phase 3 - Detailed Analysis and Reporting

The results of Phase 1 and 2 will be analysed to provide a review of performance, suitability for purpose, design life and costs of pumps and ancillary equipment of various types and manufacture. Analysis will span the whole asset life cycle of the plant, which involves the activities of specification, design, manufacture, operation and maintenance and finally replacement.

Review of costs over the whole life cycle of an installation will enable conclusions to be made on the appropriateness of initial capital investment and ongoing maintenance expenditure.

The review of design practices will identify successful approaches and the report will provide guidelines to be used by engineers when specifying plant to ensure new methods and design criteria are examined and adopted when appropriate.

Ref: VH/91742/001/B

7

Design criteria, some of which have been adopted on an arbitrary basis, will be considered. These include pump peripheral speeds, bellmouth clearances, shaped sump backs, syphonic discharges and other features.

The final report will be in the form of a manual which will include. recommendations on design practices and maintenance strategies to achieve optimum life cycle costing. The manual will provide guidance for design engineers and those responsible for the maintenance of land drainage pumping stations.

It is important that the information in the guide is widely circulated to practising engineers. This could be achieved by the holding of seminars in the National River Authority Regions, the publication of abstracts and papers, presentations at Conferences (Loughborough), and courses run by Water Training International and other similar bodies.

This phase of the project is programmed for 1993 with the review period for the final documentation during 1994.

4.0 DATA BASE PRELIMINARY REPORT

4.1 <u>Summary of Pump Data</u>

The data base information presented in this report Appendix B1 is a summary of the total information available. It provides basic data on geographical spread, numbers, size and type of the Authority's pumping plant. The information is presented on a Regional basis and a map is provided to show the location of installations in each region.

It should be noted that within the total number of 94 stations for Southern Region 28 are assets of Internal Drainage Boards which are operated and maintained by the NRA. In the Yorkshire Region 6 stations have been included which were constructed on behalf of the Coal Board for mining subsidence purposes, again these stations are operated and maintained by the NRA.

4.2 Analysis by Capacity

The number of stations by capacity are illustrated graphically for the whole country and by Region, Appendix B2.

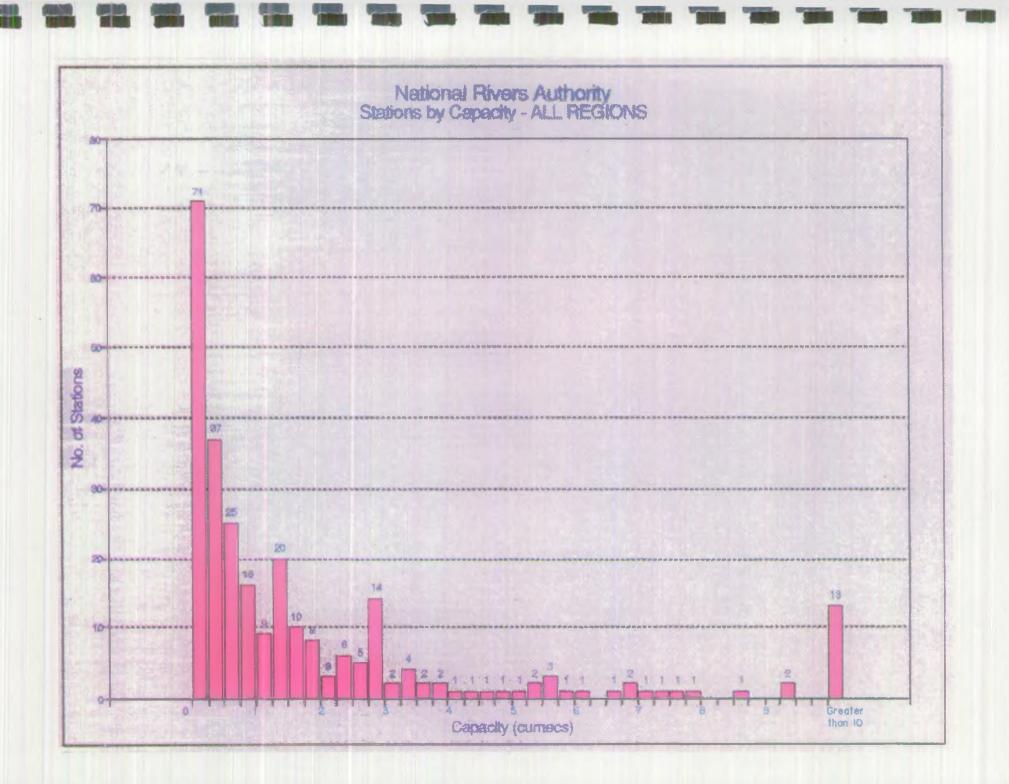
Presented overleaf is the analysis for the whole country and this indicates that the bulk of the stations have a capacity of 2 cumecs or less. This confirms that any standardization of designs should be concentrated on stations of this size.

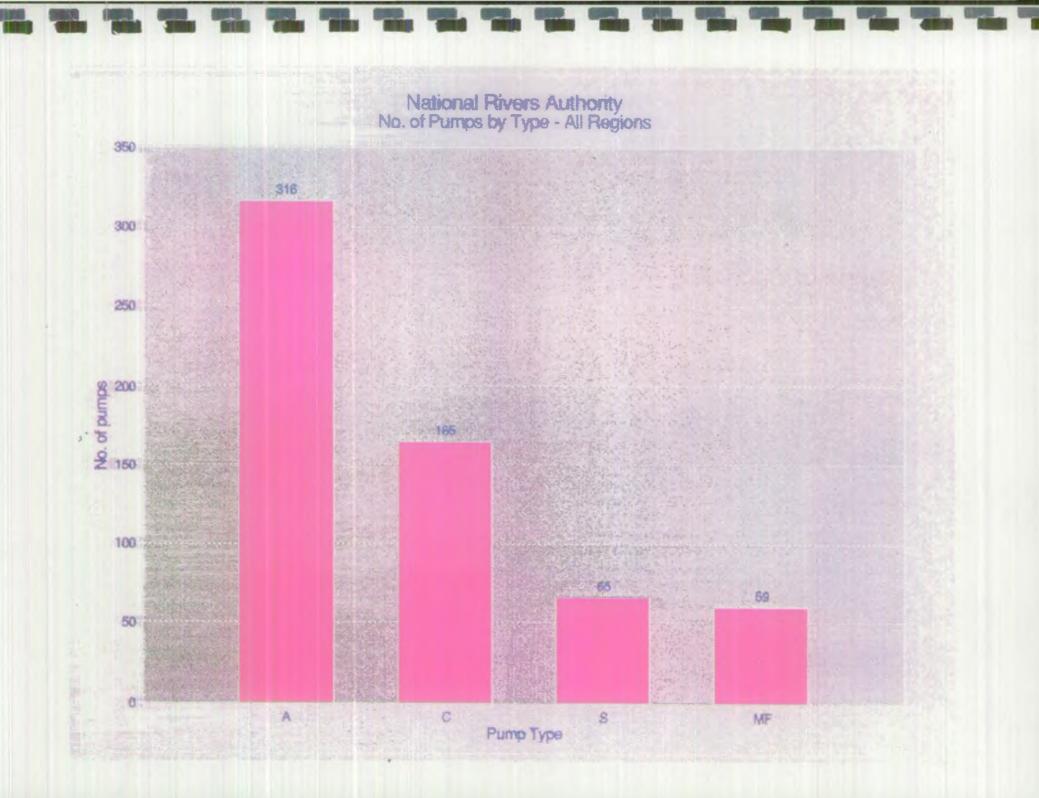
4.3 Analysis by Type

The number of pumps of different type are illustrated graphically for the whole country and by Region, Appendix B3.

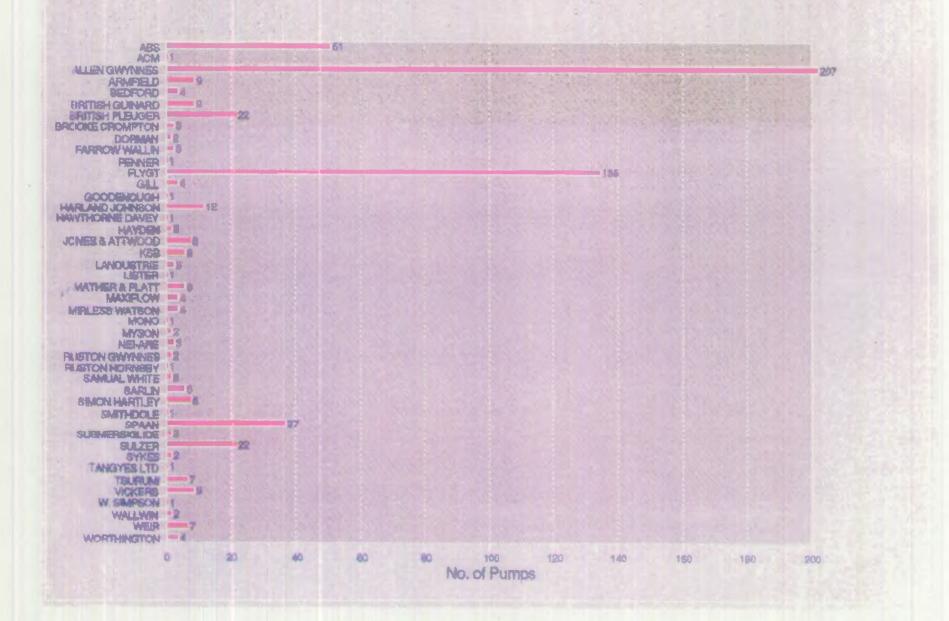
Presented overleaf is the analysis for the whole country, this confirms that as expected the bulk of the installations use axial flow vertical lift pumps. A point to note is the high number of archimedean screw type pumps, the bulk of which are located in the Southern Region. Another unusual type of installation was the floating type, again in the Southern Region.

4.4 Analysis by Manufacturer


The number of pumps by Manufacturer are illustrated graphically for the whole country and by Region Appendix B4.


Presented overleaf is the analysis for the whole country which highlights that the bulk of the pumps were manufactured by the A.P.E. Allen Group which was generally known as "Allen Gwynnes". This company, which had a long association with the manufacture of land drainage pumping plant, is now no longer in existence. A large number of the modern small submersible stations were manufactured by Flygt. Spaan represent the archimedean screw type pumps.

4.5 Cost of Stations by Capacity


Although cost information could only be obtained for about 20% of the stations, this information does represent a reasonable sample to analyse costs of installations. The costs of pumping stations by capacity are indicated graphically in Appendix B5, also illustrated are costs for the Mechanical and Electrical (M&E) and Civil elements only.

All costs have been converted to 1992 prices and the best line has been fitted to a log/log plot. As would be expected, the best fit line is for the M&E element as this cost is less variable than the Civils aspect. It should be noted that more cost information is available for M&E as compared to Civils as a result of the number of recent replacements of M&E plant.

National Rivers Authority No. of Pumps by Manufacturer

5.0 PUMPING STATION DESIGN PHILOSOPHY - PRELIMINARY REPORT

5.1 <u>Summary</u>

This interim report following discussions with senior engineers in the ten NRA regions indicates the generally accepted current approach to the design of flood defence pumping stations and outlines some of the topics and the problems that will be addressed in detail in the Manual.

5.2 Introduction

Since the first half of the nineteenth century, a large number of pumping stations have been constructed in England and Wales to drain some 900,000 hectares of land that cannot be drained effectively by gravity. A high proportion of this fertile and productive agricultural land is located in the fens of East Anglia, the Vale of York, the Kent and Sussex coastal lowlands, the Somerset Moors and Levels, and in the Lower Severn, Trent and the Mersey and Ribble estuaries.

Apart from the drainage of the above areas, pumping stations have also been constructed in Yorkshire, Lancashire, Staffordshire and in other areas where the effects of mining subsidence would have otherwise resulted in permanent flooding or waterlogging. Stations have also been constructed to facilitate the drainage of flat urban areas, particularly where the free discharge from tributary watercourses is impeded by high levels in the main arterial watercourse eg. the Foss at York.

5.3 Historical Background

Wind and Steam - The history of land drainage pumping and pumping station design in the United Kingdom has been one of continuous evolution, following technical innovations in the field. The earliest 17th and 18th century systems made use of windmills and scoop wheels. These, following Dutch practice, were often placed in a row, each unit raising the water some two or three feet. The 19th century saw the development of the steam engine, coupled to the low specific speed

centrifugal pump. Their high capacity and reliability, when compared to the wind driven units, gave rise to a great upsurge in the drainage of lowland areas and enabled land, well below sea level, to be reclaimed.

Gas and Oil - Although steam driven pumps were still in operation in some areas up to the Second World War the drive units had largely been replaced by slow running gas and oil engines linked to the low specific speed centrifugal pumps or with mixed flow or "bowl" type pumps where higher speed engines were employed.

Diesel, Electric and Axial Flow - Further progress was made with the development of the axial flow pump which has a higher specific speed than the earlier centrifugal and mixed flow units. Its greater rotational speed meant that it was capable of pumping large quantities of water at low head. It is lighter and smaller than a mixed flow unit of similar capacity and in consequence has been very widely adopted for land drainage use. In most stations it was driven by electric motors and despite the high electricity charges imposed by some electricity companies, this type of unit was almost universally adopted in the immediate postwar years.

The Outdoor Station - All the earlier pumping units, up to the 1960's were housed in purpose built pumping stations, most of the buildings being high enough to allow for the installation of lifting beams or travelling cranes for use when the pumps were initially installed and subsequently when they were dismantled or removed for maintenance or major repair. The buildings and lifting equipmentwere a major item of cost. In the early 60's "outdoor" type stations were introduced in the Middle Level I.D.B. by their Engineer, L.F.Fillingham. These made use of standard, shaft driven pumps, powered by a weatherproof motor fixed on an open slab at ground level, the switchgear being housed in a small

weatherproof cubicle close by. Whilst the outdoor stations with weather-proofed motors proved effective they can be at risk in vandal prone areas even though the exposed motors are protected by sealed cover plates.

The submersible Pump - The principle of the "outdoor" pumping station was developed still further in the late 60's and early 70's by the development of submersible pumps with capacities large enough for land drainage use. Although it has been claimed, and in some instances it is no doubt true, that their use can result in great savings over the traditional, shaft driven unit, there have been numerous cases of failure in service of this type of pump and evidence of short working lives in some marques.

Floating Pumping Stations - Floating pumping stations, many of them designed by Stephen Hawes, were constructed in some numbers in the 1960's but are now no longer in vogue. Advantages claimed are those of cheapness (half the cost of a conventional station), the fact that no foundation is required and their low profile presents no intrusion on the landscape. Disadvantages are the complicated arrangement necessary for discharge, the small size of weedscreen that can be provided (and the difficulty of keeping it clean), though this can be offset by the construction of a separate screen structure, on the channel, upstream of the pontoon. Problems can also arise in some instances by silt building up under the pontoon.

Archimedean Screw Pump - Another post-war innovation was the introduction of the screw pump for land drainage use. Although they have been employed in large numbers in the Netherlands and to a certain extent at sewage works in the U.K., it is only in the South East that they have been adopted in any number over 60 being located in the Anglian, Thames and Southern NRA Regions. They are best employed where there is little variation in discharge level and can deal with weed and the complete range of flows up to their maximum capacity. Critics

say that their installation can seldom be justified if initial cost and operational factors are taken into consideration. Their employment in such large numbers in the South East calls for a closer study.

Operation and Control - There have been considerable changes, over the years, in the methods used to operate and control pumps. Initially, starting and operating were entirely manually controlled. The impellers of many of the early pumps were not submerged and the pumps had to be primed by the use of "exhausters" prior to starting. The introduction of the axial or "propeller" type pump, driven by electric motor, with the impeller always submerged, lent itself to automatic operation. Early systems were switched by floats. These were followed in their turn by "no-flote" electrode systems, air bubblers and ultrasonic level switches. Control equipment is now often connected to a telemetry system that allows information on the equipment and its status to be monitored, and even operated, from a control room many miles away.

Screens - One of the constant problems in the past was dealing with the considerable quantity of weed and debris of all shapes and sizes that was carried to the pumping station in times of storm. This collected on the weed screen and up to comparatively recent times was always removed by hand raking - an arduous and unpopular job, at night or in inclement weather. Automatic, mechanical raking gear, capable of dealing with the wide variety of river debris has now been introduced from the Continent and is being installed in increasing numbers at both old and new stations.

Power Strikes and Motive Power - The general and almost universal move to larger-electrically driven pumps in post-war years, prompted by improved electricity supplies, received a severe set-back in the late 1960's with the interference to supplies brought about by the strikes of power company workers and the miners' strike. The indication that this previously considered secure source of power was liable to be cut by industrial action prompted many authorities to install both diesel and electrically driven pumps in new medium

National Rivers Authority Pumping Station Research

sized stations, to ensure that there would be some pumping capacity available under similar circumstances. Most authorities subsequently modified switchgear at existing stations to allow for the connection of a mobile generator. In recent times large mobile pumps have become available on the hire market and these could be used in case of emergency.

Siphonic Discharge - In most of the early pumping stations the discharge was through a reflux or flap valve that prevented reverse flow when the pump was stopped. A sluice valve was normally placed on the discharge side of the pump to allow the flap or reflux valve (or the pump) to be removed for repair or maintenance. Reflux valves and sluice valves are very expensive, particularly in the larger sizes, and from the 50's these have been largely replaced by the use of siphonic discharge pipes. A siphon breaker valve is incorporated to prevent reverse flow when the pump is stopped. This arrangement is cheap and effective and is still in general use at the present time.

5.4 Design Philosophy

Whilst some minor differences in approach were noted in the various Regions, the current consensus in the approach to flood defence pumping station design is:-

- i) that operational staff should play a part in the design team from the start to the finish of the project;
- ii) that the station must be capable of pumping all flows, up to its design capacity, with a high degree of reliability;
- iii) that the pumps must be able to deal with the weed and other river borne debris that can pass through the weedscreen;
- iv) that the station should be easy to operate, and where possible, automatic in operation and capable of being supervised by non-technical staff;

- v) that the equipment, whilst being secured against vandalism, should be accessible, easy to maintain, and should operate efficiently for long periods before requiring major maintenance or overhaul;
- vi) that the station must be environmentally acceptable, must not obtrude unduly on visual amenity, must not generate unacceptable noise levels or cause pollution of the watercourse;
- vii) that it should present no safety hazards to those working on, or in it, or to members of the public;
- viii) that the station should be constructed at the least possible overall cost commensurate with satisfying the above criteria.

Note:

- a) Whilst agreeing that pump and water efficiencies are important, it is generally accepted that in the case of flood defence pumping stations (where hours run are usually less than 500/annum), that reliability and the ability to deal with weed and other suspended solids take precedence.
- b) The concept of lifetime costing is readily accepted in the design of flood defence schemes and is required by MAFF for the economic analysis of schemes.-However, MAFF-will only grant aid the capital costs of a project._

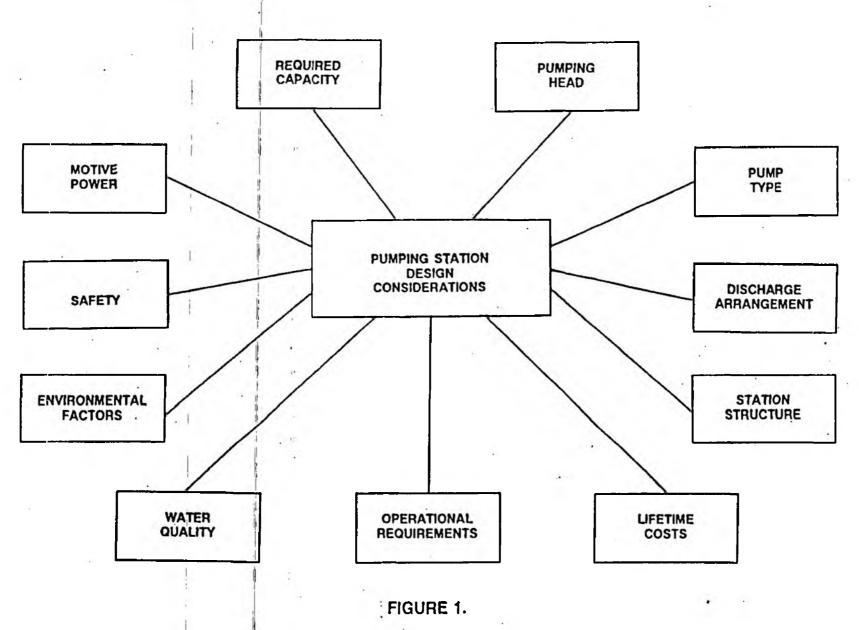
5.5 General Considerations

The approach to pumping station design and construction requires specialised knowledge but involves the same four basic steps, common to all engineering design processes - "the brief", "analysis", "synthesis" and "implementation".

Ref: VH/91742/001/B

16

Too much emphasis cannot be placed on the need to involve operational staff in the project, from initial inception right through to final completion of the work. They must be encouraged to produce a clearly written brief of their requirements and in particular, should be asked for information about problems that may have been encountered at previous stations and to list any features they would like incorporating in the new structure.


It should be confirmed that there are no objections to the construction of a pumping station as the solution to the particular flood defence problem. Whilst it might appear to be a perfectly logical engineering answer, it may be unacceptable in environmentally sensitive wetlands.

The broad range of topics that must be considered during the design of a pumping station are shown in Figure 1. Although the "required capacity" is listed, and its calculations an essential step, the scope of the present research project is limited to the station itself - from the downstream side of the weedscreen to the discharge point on the delivery side. It is assumed for the purposes of this study that the run-off from the catchment and the hydraulic design of the approach channels to the station, have been carried-out in accordance with the methods outlined by Charnley (1987).

5.6 Selection of Pumps and Ancillary Equipment

A considerable-number of options-are-open to the designer when choosing the equipment to install, and the method of housing it. These are shown in matrix form in Figure 2. The selection from among the various options is usually not as difficult as it might appear, as many of the choices are dictated by local conditions, the capacity of the station, the pumping head and planning or environmental constraints.

PUMPING STATION DESIGN CONSIDERATIONS

PUMPING STATION OPTIONS

ALTERNATIVES KEY PARAMETERS		1	2	3	4	5	6
MOTIVE POWER	А.	Electric Squirrel Cage	Diesel				
STARTER	в.	Direct On Line	Star Delta	Electronic Soft Start	Auto Trans - Former	Diesel - Compressed Air	Diesel - Electric Starter
PUMP TYPE	c.	Centrifugal	Axial Flow	Mixed Flow (bowl)	Mixed Flow (yolute)	Archimedean Screw	
MOUNTING	D.	Horizontal	Vertical	Inclined			
DI SCHARGE ARRANGEMENT	B.	Free Discharge	Siphonic	Sluice	Sluice + Reflux Valve	Sluice and Flap	Flap
HOUSING	F.	High Bldg.	Low Bldg. Removable Roof	Low Building	Outdoor	Submersible	Floating
PUMP CONTROL	G.	Float	No - Flote	Ultrasonic	Pressure Transducer	-	

FIGURE 2.

1

National Rivers Authority Pumping Station Research

Motive Power - For small or medium sized modern stations electrically driven pumps would normally be selected, providing that a power supply is available or could be brought to the site at reasonable cost. Consideration would of course have to be given to the tariff that the electricity board would charge. Where heavy maximum demand charges are likely to be faced, consideration would be given in preliminary investigation to the possibility of confining pumping to off-peak periods (providing sufficient storage was available) and increase the pump capacity to deal with the accumulated water.

Although slip-ring motors were sometimes specified in the past and are still in use in some stations, the squirrel-cage motor is now generally adopted. The squirrelcage is cheap, strong and simple in construction but has a high starting current and careful consideration must be given to the selection of the starter where high starting currents are not acceptable to the supply company.

Diesel engines, many of them turbo-blown, are mainly confined to very large stations and drive large capacity pumps through right-angle reduction gearboxes. They require heavy foundations, need fuel storage tanks, are very costly and required skilled operators. Although automatic starting is technically feasible, the risk of malfunction of associated equipment is such that it is not adopted for flood defence pumping. Without automatic starting, pumping at week-ends and outside normal working hours can result in heavy wage bills. In some stations it is now proving economical to replace diesel driven pumps with automatic electric units to overcome this difficulty.

Starters - The starter and motor combination is usually dictated by the limits on starting current set by the supply company. Where no restrictions apply, a direct on line starter and squirrel-cage motor can be employed. In the past when the starting current was restricted to 2.5 times the full load current, one option was to use a Wauchope starter, developed at Allen Gwynnes which could hold the

starting current close to this value. Present practice would favour the use of an electronic soft starter or an auto transformer starter that can reduce the starting current to a value between 1.5 and 3.5 times the full load current.

Pump Types - Five types of pumps are in current use in flood defence pumping stations, namely:-

- i) Centrifugal.
- ii) Axial flow.

iii) Mixed flow (bowl).

iv) Mixed flow (volute).

v) Archimedean screw.

The centrifugal pump with a low specific speed was in universal use for many years and some large units are still in operation today. It has now been superseded by axial and mixed flow pumps where large capacity units are required, but is still continuing in use in some of the smaller submersible models.

The axial flow pump, with its high specific speed, is smaller in size and requires a smaller motor for a given head and discharge than other types. In many respects it is ideal for flood defence pumping duty up to a head of 6m. With its impeller set below water lever and no priming problems it lends itself to automatic operation. In small sizes problems may be experienced where weed is present due to the small clearance between the impeller blades. One experienced manufacturer always recommended the use of mixed flow bowl pumps when sizes less than 36cm were required (Terry, 1967). Whilst the axial flow pump can prove highly efficient at high rotation speeds in clean water, serious vibration and overloading can occur when the water contains weed and other debris - the typical river condition. Experience has shown that where these conditions are likely to be encountered, conservative values of tip speed (20m/sec) should not be exceeded.

The mixed flow, bowl type pump has many of the advantages of the axial, but has a lower specific speed and requires a larger pump and motor than the former for a given head and capacity. It is mainly employed where heads are in excess of 6m or as indicated above, in small sizes, where its ability to deal with weed is superior to that of a similar capacity axial flow unit.

The mixed flow, volute pump is generally capable of passing large solids and in the small sizes it can be used in similar situations to its bowl type counterpart. It is also used when a very large capacity is required, with the volute cast in-situ in concrete in the pumping station structure. In these large scale applications its small variation in power demand over its pumping range proves a worthwhile advantage.

The archimedean screw pump is better able to deal with large quantities of weed than any of the other types. Its disadvantages are that it cannot be employed efficiently where there are large variations in discharge level and that the slow speed of revolution of the screw necessitates the use of a gearbox. It has been claimed that the screw pump is unlikely to be cost effective for flood defence purposes, but this is belied by the large number of small units employed in the South East.

Mounting - Although many of the early centrifugal pumps were mounted horizontally this arrangement is now little used except for some submersible pumps.—The inclined position was used for some large axial flow pumps in the pastand is still adopted for some light-weight pumps developed for irrigation or stormwater use and for screw pumps. Suspending the pump vertically is the most widely used method, both for the traditional shaft driven pump and submersible units.

National Rivers Authority Pumping Station Research

Discharge Arrangements - A great variety of discharge arrangements are currently used. Since the early 1950's the use of siphonic discharge pipes, incorporating a siphon breaker valve, have been in widespread use. It is much cheaper and generally more effective than the earlier combination of a sluice and reflux valve - both very expensive in the larger sizes. Care must be taken to ensure that flow velocities on starting are not less than 2m/sec or the siphon may not prime. Some care is required in the design of the siphon if optimum performance is to be achieved (Charlton, 1972). Lack of maintenance and air leakage at the valve can seriously reduce the pumps output. Free discharge above maximum downstream flood level has been adopted in some case but involves the extra cost of pumping against a high head at all times. The minimum requirement of a discharge flap has been adopted on some small stations. Problems can be experience with slamming of the flap and velocities should be kept down to 2m/sec, by use of a taper pipe or a flap with a "dashpot" should be fitted. Where reliance is placed on a single flap, provision for stop logs should be made in the discharge bay for emergency use or repair of the flap.

Housing - The traditional pumphouse is no longer required when "outdoor" or submersible pumps are installed. A small cubicle or building is required to house the switchgear and this is sometimes made larger to store tools or other items for local use. For large stations a pumphouse building is still generally provided, to house the engines and ancillary equipment and control gear. An overhead crane is normally provided. In some instances the crane is omitted and a low building constructed with removable roof sections, to permit the use of a mobile crane when the pumps have to be removed for maintenance or renewal.

Pump Control - For very large diesel driven stations manual control is invariably used, although several phases of the starting sequence may be automated. In electrically powered stations the pump units are equipped for both manual and automatic operation, the latter being initiated by electrode systems of the "no-flote" variety. Alternatives are floats that may incorporate mercury tilting switches, or systems using "air bubblers" or pressure cells to gauge water

levels. In recent years ultra sonic equipment has been used to monitor levels and trigger pump starts. Connections can be made to telemetry systems to report the status of the station and to indicate whether it is fully functional.

5.7 Design Check List

The Design Check List (Appendix C2.) has been produced to indicate the major tasks and key events in the design of a flood defence pumping station. The list is not exhaustive and cannot show the overlap of activities that occur in practice. For completeness some of the early operations, which are outside the scope of this study, are included, namely items 3 to 7. For the guidance of readers brief mention of them will be made in the manual.

5.8 Points for Further Study

Several points of interest where further study will be undertaken as part of this study arose from interviews with designers and correspondence with pump manufacturers. They are as follows:-

- i) There would appear to be no general agreement on the sizing of pumps in a multiple pump station. Some engineers think that pumps of equal capacity and type should be selected to reduce the range and amount of spares required. Others are of the opinion that more than one size of pump should be used, a small one (or ones) to deal with dry weather flow and larger pumps to handle storm flows.
- ii) There are similar differences of opinion as to whether wear should be evenly distributed over all pumping units, by a periodic change in the "duty pump", or whether one pump should remain as "duty pump", so that possible failure or need for major overhaul of all the units should not occur at the same time.

Ref: VH/91742/001/B

22

- iii) There are conflicting reports about the performance and cost-effectiveness of screw pumps. The latest report by CIRIA on the design of low-lift pumping stations states that they are "not usually cost-effective when total installation and operational costs are considered; now therefore, they are not normally considered for new stations". In view of the very large number of small screw pumps installed in the Southern Region of the NRA, it is important that we find the reason for their widespread adoption in this particular locality and whether they are in fact cost-effective when compared with other small rotodynamic pumps.
- iv) Some engineers favour letting a single contract for a station to the main civil engineering contractor, leaving him to deal with the pump manufacturer as a nominated supplier. Other engineers prefer to let the work out as two separate contracts and co-ordinate the work themselves, on the grounds that they have more direct control over the mechanical and electrical work.
- v) The conservative value of tip speed for axial flow pumps of 20m/sec, recommended by Allen Gwynnes for many years, has been confirmed by research in Germany by KSB Pumps Ltd. The company do claim however that a new impeller that they have designed and are marketing, prevents weed and other streamer type debris from sticking to the blades, thus permitting a much higher_tip_speed without_any_problems. They-have-published a video of tests on a standard impeller but unfortunately it does not show pictures of the new impeller working under similar conditions.

.-

Ref: VH/91742/001/B

National Rivers Authority Pumping Station Research

Appendix A

Study Approach

<u>Contents</u>	
A1 -	Survey of Pumping Plant Questionnaire
A2	Survey of Pumping Plant Design Questionnaire
A 3	Survey of Pumping Plant Maintenance Questionnaire

Ref: VH/91742/001/B

National Rivers Authority Pumping Station Research

Appendix A1

Survey of Pumping Plant

Questionnaire

	National Rivers Authorit	1.00
	SURVEY OF LAND DRAINAGE PUMPING PL QUESTIONNAIRE	ANT INSTALLATION
NRA	A Region	
Addı	ress	
		Ŧ
Nam	ne & Tel. No of person for further information	
	GENERAL DETAILS OF INSTAL	LLATION
1.	Name & Location	
2.	National Grid Reference	
3.	Catchment Area Served (So.km)	
4.	Total Capacity (Cumecs)	·
5.	Details of Pumps - *** Complete Appendix "A" *	***
3 .	Are pumps separated in sump by dividing walls	? Yes/No
7.	Dimensions of Screen (inc. Bar Sizes & Spacing)	- 4 3 - 4
5.	Is there a gravity by-pass to station?	Yes/No
9	- Is screen cleaned manually or automatically?	Yes/No
10.	Does station operate automatically?	Yes/No
1.	Is it manned during normal working hours?	Yes/No
2.	Are pump running hours recorded?	Yes/No
.3.	Is station connected to a remote monitoring or c	ontrol system?
	For water level recording?	
	For equipment status?	
	Can it be operated remotely?	

I

in all

1

1

Γ

Г

F

1

Ĩ

		20
	DESIGN	
5.	Who was responsible for the specification and design of the statio	n?
*		
6.	Are detailed M+E drawings and specifications available Yes/N	lo.
7.	Are detailed civils drawings and specifications available Yes/N	So
	COST	
8.	What was the cost of the station?	
	Civil £ Mech & Elec £ Date	
	FURTHER INFORMATION	
0	FURTHER INFORMATION	
9.	FURTHER INFORMATION Any further pertinent information or problems experienced	
9.		
9.		
9.		
9.		
9.		
•	Any further pertinent information or problems experienced	
•		-
•	Any further pertinent information or problems experienced	
•	Any further pertinent information or problems experienced	
•	Any further pertinent information or problems experienced	
•	Any further pertinent information or problems experienced	
•	Any further pertinent information or problems experienced	
9.	Any further pertinent information or problems experienced	

ŝ

Appendix "A"

1 3

1

National Rivers Authority

SURVEY OF LAND DRAINAGE PUMPING PLANT INSTALLATION

Printerine (2014) for Haber

. ñ. 34:54 Realization Mount ing Capacity Design Impeller Drive H.P. Supply KVa Discharge Pirg. Kake Date Pump Hours Run/ Com. Diam. (ii) (iii) (cumers) Static Speed (iv) Voltage Type Pump/year 110 Type (İ) Head (m) (R.P.M) (v) 1. 2. 4. ÷., . t., 5. 4 . 3. . I. . ñ.,

1.4

(i) Prop. Figs Contributed for Astal fi Migod Fi x fight denow fight (v) Dimension Sindomi fight 2010

a Bluisse (Bb) Bluisse & Sottas (BK) Allaisse & Sottas (BK)

. . .

till (Promitica) History, d., a., the framework Loose France Contribute States of the

1

* H4+* * 1,1+* * 4,4+* * 4,99,*

(iii) Meansting "Herizontal "H" "Vertical "V" tivt (nive Diese)

NRA Regions......

Diana) (1) Diana) (1) Floorid (1) **Bullen and Partners**

Ref: VH/91742/001/B

National Rivers Authority Pumping Station Research

Appendix A2

Survey of Pumping Plant Design

Questionnaire

National Rivers Authority

SURVEY OF LAND DRAINAGE PUMPING PLANT INSTALLATIONS SITE VISIT - QUESTIONS ON DESIGN AND DESIGN PHILOSOPHY

NRA	Region	
Addre	SS	
Name	& Tel. No of person interviewed	
	- Y	
Pump	ing Station Name and Location	3-3020
. 7		
	INTERVIEW QUESTIONS	
1.	Who was responsible for design?	4
1.		
		1
	Consultants?	
2.	How was it carried-out?	
	Intergrated part of drainage scheme?	
ن يو دو	-Seperate design package?	و بند بيد مو - عد اله
3	Design Team	
	(i) _C.E. led with vetting by M & E engineers?	
	_(ii)Integrated_C.E_and_M_& E_team?	
	(iii) Project Engineer co-opting specialists?	
4.	Who made the major decision in respect of design?	*

5. Siting

Was siting dictated by catchment constraints? If large single station, was consideration given to use of several small peripheral stations?

6. Environmental considerations?

Did environmental considerations have a major influence on design - if so how?

7. Capacity

How was capacity of station arrived at?

Locally accepted run-off/ unit area?

Following detailed analysis of C.E. machinery, storage, power supply and operating costs?

Particular constraints on any of the above?

Need to confine pumping to off-peak periods?

8. Alternatives considered

Were alternative designs considered? ie. shaft driven indoor, outdoor, submersible, pontoon, archimedean screw?

9. What influcenced final choice?

Initial cost?

Lifetime cost?

Operating costs?

Reliability?___

Previous experience of equipment or marque?

10. What basic information was given to pump manufacturer?

- a) Total capacity of pumps?.
- b) Number of pumps?
- c) Capacity per pump?
- d) Max. suction W.L.?
 - e) Max. discharge W.L.?

f) Min. suction W.L.?

g) Min. discharge W.L.?

h) Lowest start level?

i) Normal static duty head at design capacity?

j) Prime mover type - diesel, electric, mixed?

k) Ground level at site?

1) Max. flood level at site?

m) Screen - manual or machine raked?

n) Other?

11. Weed, debris, solids?

Was pump supplier informed of potential problems in respect of weed, urban or other debris, silt abrasive material?

12. Discharge arrangement?

Was siphonic or other discharge arrangement specified?

13. M & E requirements specified to manufacturer?

Were specific requirements in respect of mechanical and electrical items (starters, switchgear, lubrication, cooling, bearings, motor speeds, tip speeds, discharge velocites, materials etc.) given to suppliers - if so what?

14. Performance tests?

What performance guarantees were given by pump manufucturer?

Estimated life - running hours?

Power consumption?

Maintenance spares requirement?

15. Performance guarantees?

What performance guarantees were given by pump manufactuere?

Estimated life - running hours?

Power consumption?

Maintenance spares requirement?

16. Pump control

Manual?

Automatic?

Float? No Float? Air bubbler? Pressure transducer? Ultrasonic? Other?

Are interlocks with time delays fitted to prevent simultaneous starts on power restoration after mains failure?

17. Instrumentation

What instrumentation is installed?

Ammeter? Hours run meter? U/S level and D/S level?

Other? What records are kept?

18. Telemetry

Is the station linked by telemetry to a control centre?

If so what parameters are monitored and what alarms given?

Power supply? Pump running? Water levels? Equipment status and serviceability - seals? Bearing temperature? Start and stop levels? Building security - fire, intruder?

19. Standby provision

What provision has been made in the event of power failure?

Installed standby generator? Mobile generator? Mixed diesel and electric pump units?

20. Provision for uprating?

Has provision been made for uprating the capacity of the station should this be required in the future?

21. Station performance

Has station performed in accordance with design expectations?

Any particular problems?

Any feature you would omit or include as a result of operational experience?

Bullen and Partners

National Rivers Authority Pumping Station Research

Appendix A3

Survey of Pumping Plant Maintenance

Questionnaire

Ref: VH/91742/001/B

1				Natio	nal Rivers	s Authorit	у		
	S	URVEY C			AGE PUM			STALLA	TIONS
			е. П						
		Region							¥.
				~					
	Addre	ss							
	Name	& Tel. No	o of pers	on for f	urther inf	ormation			
							1.00 ° 1.0	4	
Í				DETAI	LS OF MA	INTENAN	CE		
	1.	Who is re	sponsible	e for P.S	maintenan	ce?			
			•						•
	÷								
		<u> </u>			<u> </u>			£.	<u></u>
	2.	Do you ha policy in t	ave writt respect o	en terms	of reference	e establish	ing overa	all strate	
				r pumpin	g station in	naintenance	11		Yes/No
	3.	How ofter						ý.	Ies/INO
	3. 4.	How ofter	n is the j	policy rev		<u> </u>	.f	Υ	Yes/No
		How ofter Are detail Do these	n is the p led record include:	policy rev ds kept o -	newed?	as?			Yes/No
		How ofter Are detail Do these (i) Inc (ii) De	n is the p led recom include: lividual=p tails of a	policy rev ds kept o - pump-rur ill mainte	niewed? of all station uning_hours enance?	as?			
		How often Are detail Do these (i) Inc (ii) De (Pl	n is the p led recom- include: lividual=p tails of a anned an	policy rev ds kept o - pump-rur ill mainte ad break-	niewed? of all station uning_hours enance?	ns? ?		-	Yes/No
	4	How ofter Are detail Do these (i) Inc (ii) De (Pl (iii) Da	is the pled record include: lividual=p tails of a anned an tes of ru	policy rev ds kept o - pump-rur ull mainte ad break- nning cho	newed? of all station aning_hours enance? down) ecks and in	ns? ? spections?			Yes/No Yes/No Yes/No Yes/No
		How ofter Are detail Do these (i) Inc (ii) De (Pl (iii) Da	is the pled record include: lividual=p tails of a anned an tes of ru	policy rev ds kept o - pump-rur ull mainte ad break- nning cho	niewed? of all station uning_hours enance? down)	ns? ? spections?			Yes/No Yes/No Yes/No
	4	How often Are detail Do these (i) Inc (ii) De (Pl (iii) Da Are these Are specifi major ma	h is the p led record include: dividual=p tails of a anned an tes of ru records fic time i intenance	policy rev ds kept o - pump-run ull mainte ad break- nning ch kept on kept on intervals e i.e Mo	f all station of all station oning_hours enance? down) ecks and in a data base laid down f nthly, Year	ns? ? spections? ? for running	tests an	d minor esels -	Yes/No Yes/No Yes/No Yes/No
	4. 5 6.	How often Are detail Do these (i) Inc (ii) De (iii) Da Are these Are specif	h is the p led record include: dividual=p tails of a anned an tes of ru records fic time i intenance	policy rev ds kept o - pump-run ull mainte ad break- nning ch kept on kept on intervals e i.e Mo	f all station of all station oning_hours enance? down) ecks and in a data base laid down f nthly, Year	ns? ? spections? ? for running	tests an	d minor esels -	Yes/No Yes/No Yes/No Yes/No
	4. 5 6.	How often Are detail Do these (i) Inc (ii) De (Pl (iii) Da Are these Are specifi major ma	h is the p led record include: dividual=p tails of a anned an tes of ru records fic time i intenance	policy rev ds kept o - pump-run ull mainte ad break- nning ch kept on kept on intervals e i.e Mo	f all station of all station oning_hours enance? down) ecks and in a data base laid down f nthly, Year	ns? ? spections? ? for running	tests an	d minor esels -	Yes/No Yes/No Yes/No Yes/No
	4. 5 6.	How often Are detail Do these (i) Inc (ii) De (Pl (iii) Da Are these Are specifi major ma	h is the p led record include: dividual=p tails of a anned an tes of ru records fic time i intenance	policy rev ds kept o - pump-run ull mainte ad break- nning ch kept on kept on intervals e i.e Mo	f all station of all station oning_hours enance? down) ecks and in a data base laid down f nthly, Year	ns? ? spections? ? for running	tests an	d minor esels -	Yes/No Yes/No Yes/No Yes/No

÷.

•

T

. • • •

,

.. ...

••

					-	
13.	Aro c	tandard report	and check	c sheets us	ed for annual and major	
20.		tenance inspecti				Yes/No
14.	Moio			c (2 maama)	(2)	÷
14.	-	r maintenance i	-	s (5 years)	(?)	
	What	checks are car	ried-out?			
	(i)	Sump dewater	red and d	leared		
	(ii)	Bearing wear	checked			4
	(iii)	Impeller wear	checked			
	(iv)	All couplings	checked			
	(v)	Lub. system 8	v pipes			
	(vi)	Seals				
	(vii)	Other			2	
15.		n pumping plant antees in respec		ased is the	e manufacturer asked for	any
	(i)	Consumable sp	pares	3		Yes/No
	(ii)	Power consum	ption		00	Yes/No
	(iii)	Life of plant				Yes/No
16.	Do yo	ou carry-out pos	t project	appraisals	to confirm design perform d operating costs?	ance,
	puwe.				o operating costs:	Yes/No
17.	Агеа				used in the selection of n	
	*pump	ping-plant?				Yes/No
18.		further commeny			n maintenance	-
 	(Use	separate sheet i	f require	d)		
			3			
				: 50		
		4.				
					- G - L	••

:

.

•••

.

-

•

L

-

I

Ì

× .

 \geq

•

Bullen and Partners

Appendix B

Data Base

Contents	

ł

ľ

B1		Summary of Pump Data and Location Maps by Region
B2		Pump Analysis by Capacity
B3		Pump Analysis by Type
B 4	Ţ.	Pump Analysis by Manufacturer

B5 Costs of Station by Capacity

- - -

.....

Bef: VH/91742/001/B

National Rivers Authority Pumping Station Research

Bullen and Partners

Con	tents

Anglian Region	List of Stations Location Map fig 1 Pump Summary Sheets (Four Number)
Northumbrian Region	List of Stations Location Map fig [.] 2 Pump Summary Sheet (One Number)
North West Region	List of Stations Location Map fig 3 Pump Summary Sheets (Four Number)
Severn Trent Region	List of Stations Location Map fig 4 Pump Summary Sheets (Three Number)
Southern Region	List of Stations (on two sheets) Location Map fig 5 Pump Summary Sheets (Seven Number)
South West Region	List of Stations Location Map fig 6 Pump Summary Sheet (One Number)
Thames Region	Lists of Station Location Map fig 7 Pump Summary Sheet (One Number)
Welsh Region	List of Stations Location Map fig 8 Pump Summary Sheets (Two number)
Wessex Region	List of Stations Location Map fig 9 Pump Summary Sheets (Two number)

Yorkshire Region

List of Stations Location Map fig 10 Pump Summary Sheets (Three Number)

Ref: VH/91742/001/B

Maglian 032 CHAPEL - OLD & NEW 034 BUTTS ROAD 035 CROFT LANE 034 BUTTS ROAD 001 THORNEY BAY 002 WINTER GARDENS 003 DUTCH VILLAGE 004 ANTLERS 005 PITSER HALL FLET 006 BECKNEY FARM 007 BRIDGEHICK 008 MARSH HOUSE 009 LANDWICK 010 MAY AVENUE 011 KNICKSHICK 012 WORLDS END 013 ST.ANNES 014 TILBURY MARSH 015 LEICH BECK 016 CROFPENBURG 017 RAIN BOW 018 ST.JOSEPHS 019 HILTON 020 ACLE Lincoln 023 024 HEADOW FARM 025 BRANSBY 026 TILL 027 SAND STKE 031 BLACKMOOR FARM 025 PAND SIKE 036 <th>LEGION</th> <th>SUB REGION</th> <th>STN. NO</th> <th>NAME</th> <th></th>	LEGION	SUB REGION	STN. NO	NAME	
032 CHAPEL - OLD & NEW 033 CROFT LANE 034 BUTTS ROAD 001 THORNEY BAY 002 WINTER GARDENS 003 DUTCH VILLAGE 004 ANTLERS 005 PITSEA HALL FLET 006 BECKNEY FARM 007 BRIDGEWICK 008 MARSH HOUSE 009 LANDWICK 010 MAY AVENUE 011 KNIGHTSWICK 012 WORLDS END 013 ST.ANNES 014 TIBURY MARSH 015 LEIGH BECK 016 CROPPENBURG 017 RAIN BOW 018 ST.JOSEPHS 019 HILTON 021 HOLLESLEY Lincoln 023 024 MEADOW FARM 025 BRANTS 026 TILL 027 WITHAM 028 BRANT 030 BRANSTON ISLAND <				eeccepteecceecceeccete	
033CROFT LANE034BUTTS ROAD001THORNEY BAY002WINTER GARDENS003DUTCH VILLAGE004ANTLERS005PITSEA HALL FLET006BECKNEY FARM007BRIDGEWICK008MARSH HOUSE009LANDWICK010MAY AVENUE011KNIGHTSWICK012WORLDS END013ST.ANNES014TILBURY MARSH015LEIGH BECK016CROPPENBURG017RAIN BOW018ST.JOSEPHS019HILTON020ACLEIpswich021021HOLLESLEY025BENASEY026TILL027WITHAM028BRANT039BLACKMOOR FARM031BLACK SLUICEPeterborough035035PADHOLME036BCANISTON ISLAND037PEAKIRK (ELECTRIC)038BOUNNE EAU039PARKESTONKelveden040041BOTTISHAM LODE043WELCHES DAM044UPWARE	mqiian		032	CHAPEL - OLD & NEW	
034BUTTS ROADChelmsford001THORNEY BAY002WINTER GARDENS003DUTCH VILLAGE004ANTLERS005PITSEA HALL FLET006BECKNEY FARM007BRIDGEWICK008MARSH HOUSE009LANDWICK010MAY AVENUE011KNIGHTSWICK012WORLDS END013ST.ANNES014TILBURY MARSH015LEIGH BECK016CROPPENBURG017RAIN BOW018ST.JOSEPHS019HILTON022BENACRELincoln023024MEADOW FARM025BRANSTON ISLAND031BLACK SLUICE032BLACK SLUICE033BLACK SLUICE034BLACK SLUICE035PADHOLME036PEAKIRK (ELECTRIC)037PEAKIRK (DIESEL)038BOUNNE EAU039PARKESTONKelveden040041UPWARE044UPWARE					
Chelmsford 001 THORNEY BAY 002 WINTER GARDENS 003 DUTCH VILLAGE 004 ANTLERS 005 PITSEA HALL FLEET 006 BECKNEY FARM 007 BRIDGEWICK 008 MARSH HOUSE 009 LANDWICK 010 MAY AVENUE 011 KNIGHTSWICK 012 WORLDS END 013 ST.ANNES 014 TILBURY MARSH 015 LEIGH BECK 016 CROPPENBURG 017 RAIN BOW 018 ST.JOSEPHS 019 HILTON Norwich 020 ACLE 1pswich 021 HOLLESLEY 022 BENACRE Lincoln 023 BLACKMOW FARM 024 MEADOW FARM 025 BRANSBY 025 BRANSBY 026 TILL 027 WITHAM 028 BRANT 029 SAND SYKE 030 BRANSTON ISLAND 031 BLACK SLUICE Peterborough 035 PADHOLME 036 PEKIRK (DIESEL) 037 WETHAM 038 BOURNE EAU 039 DATO SYKE 030 BRANSTON ISLAND 031 BLACK SLUICE Peterborough 035 PADHOLME 036 PEKIRK (DIESEL) 037 WETHAM 038 BOURNE EAU 039 PARKESTON Kelveden 040 MELL HOUSE E1y 041 BOTTSHAM LODE 042 SWAFFHAM LODE 043 WELCHES DAM 044 UPWARE					
002WINTER GARDENS003DUTCH VILLAGE004ANTLERS005PITSEA HALL FLET006BECKNEY FARM007BRIDCEWICK008MARSH HOUSE009LANDWICK010MAY AVENUE011KNIGHTSWICK012WORLDS END013ST.ANNES014TILBURY MARSH015LEIGH BECK016CROPPENBURG017RAIN BOW018ST.JOSEPHS019HILTON020ACLEIpswich021021BLACKMOOR FARM022BENACRELincoln023024MEADOW FARM025BRANT029SAND SYKE030BRANT029SAND SYKE031BLACK SLUICEPeterborough035035PADHOLME036BOURNE EAU037PEAKIRK (DIESEL)038BOURNE EAU039PARKESTONKelveden040041UPUSE043WELCHES DAM044UPWARE	,	Chalmaford			
003DUTCH VILLAGE004ANTLERS005PITSEA HALL FLET006BECKNEY FARM007BRIDGEWICK008MARSH HOUSE009LANDWICK011MAY AVENUE011KNIGHTSWICK012WORLDS END013ST.ANNES014TILBURY MARSH015LEIGH BECK016CROPPENBURG017RAIN BOW018ST.JOSEPHS019HILTON020ACLEIpswich021021HOLLESLEYD22BENACRELincoln023025BRANT026TILL027WITHAM028BRANT029SAND SYKE031BLACK SLUICE032Peterborough033BLACK SLUICE034BOINE EAU035PADHOLME036PEAKIRK (ELECTRIC)037PEAKIRK (ELECTRIC)038PARKESTONKelveden040041WORNE EAU042SWAFFHAM LODE043WELCHES DAM044UFWARE		Cheimstord		UINTED CADDENS	
004ANTLERS005PITSEA HALL FLEET006BECKNEY FARM007BRIDGEWICK008MARSH HOUSE009LANDWICK010MAY AVENUE011KNIGHTSWICK012WORLDS END013ST.ANNES014TILBURY MARSH015LEIGH BECK016CROPPENBURG017RAIN BOW018ST.JOSEPHS019HILTON019HILTON020ACLE1pswich021021HOLLESLEY022BENACRELincoln023024MEADOW FARM025BRANSBY026TILL027WITHAM028SAND SYKE030BRANT031BLACK SLUICEPeterborough035036PADHOLME037PEAKIRK (ELECTRIC)038BOURNE EAU039PARKESTONKelveden040041BOTTISHAM LODE043WELCHES DAM044WWARE				BUTCH WILLDOF	
005PITSEA HALL FLEET 006006BECKNEY FARM 007007BRIDGEWICK 008008MARSH HOUSE 009010MAY AVENUE 011011KNIGHTSWICK 012012WORLDS END 013013ST.ANNES 014014TILBURY MARSH 015 016015LEIGH BECK 016016CROPPENBURG 017 018017RAIN BOW 018 018 019018ST.JOSEPHS 019 HILTON 014019HILTON 010 018 019Norwich020 021 021 DENACRELincoln023 023 026 021 021 026 027 WITHAM 028 026 031 027 031 					
006BECKNEY FARM 007007BRIDGEWICK 009009LANDWICK 010010MAY AVENUE 011011KNIGHTSWICK 012012WORLDS END 013013ST.ANNES 014014TILBURY MARSH 015015LEIGH BECK 016 CROPPENBURG 017017RAIN BOW 018018ST.JOSEPHS 021 HOLLESLEY 022 BENACRELincoln023 025 026 021 027 026 021 027 026 031<					
007BRIDGEWICK008MARSH HOUSE009LANDWICK010MAY AVENUE011KNIGHTSWICK012WORLDS END013ST.ANNES014TILBURY MARSH015LEIGH BECK016CROPPENBURG017RAIN BOW018ST.JOSEPHS019HILTONNorwich020021HOLLESLEY1pswich021023BLACKMOOR FARM024MEADOW FARM025BRANSBY026TILL027WITHAM028BRANT029SAND SYKE031BLACK (LECTRIC)037PEAKIRK (LECTRIC)038BOURNE EAU039PARKESTON040MEL HOUSE031BLACK SILICE032BOURNE EAU033BLACK SLUICE034BOURNE EAU035PADHOLME036PAKKESTON037PAKKESTON038BOURNE EAU039PARKESTON040MELL HOUSE041WOLCHES DAM042SWAFFHAM LODE043WELCHES DAM044WEWARE					
O08MARSH HOUSEO09LANDWICKO10MAY AVENUEO11KNIGHTSWICKO12WORLDS ENDO13ST.ANNESO14TILBURY MARSHO15LEIGH BECKO16CROPPENBURGO17RAIN BOWO18ST.JOSEPHSO19HILTONO19HILTONO11O20ACLEHOLLESLEYIpswichO21O22BENACRELincolnO23D25BRANSBYO26TILLO27WITHAMO28BRANTO29SAND SYKEO30BRANSTON ISLANDO31BLACK (DIESEL)O35PADHOLMEO36PEAKIRK (ELECTRIC)O37PEAKIRK (DIESEL)O38BOURNE EAUColchesterO39PARKESTONKelvedenO40O41WOLNE EAUO42SWAFFHAM LODEO43WELCHES DAMO44UPWARE					
009LANDWICK010MAY AVENUE011KNIGHTSWICK012WORLDS END013ST.ANNES014TILBURY MARSH015LEIGH BECK016CROPPENBURG017RAIN BOW018ST.JOSEPHS019HILTON010ACLEIpswich021022BENACRELincoln023024MEADOW FARM025BRANSBY026TILL027WITHAM028BRANT030BRANSTON ISLAND031BLACK SLUICE036PEAKIRK (ELECTRIC)037PEAKIRK (DIESEL)036PEAKIRK (DIESEL)037PEAKIRK (DIESEL)038BOURNE EAU040MELL HOUSEEly041041BOTTISHAM LODE043WELCHES DAM044UPWARE					
Ol0 MAY AVENUE Ol1 KNIGHTSWICK Ol2 WORLDS END Ol3 ST.ANNES Ol4 TILBURY MARSH Ol5 LEIGH BECK Ol6 CROPPENBURG Ol7 RAIN BOW Ol8 ST.JOSEPHS Ol9 HILTON Norwich O20 ACLE Ipswich O21 HOLLESLEY O22 BENACRE Lincoln O23 BLACKMOOR FARM O24 MEADOW FARM O25 BRANSBY O26 TILL O27 WITHAM O28 BRANT O29 SAND SYKE O30 BRANSTON ISLAND O31 BLACK SLUICE Peterborough O35 PADHOLME O36 PEAKIRK (ELECTRIC) O37 PEAKIRK (DIESEL) O36 PEAKIRK (ELECTRIC) O37 PEAKIRK (DIESEL) O37 PEAKIRK (DIESEL) O38 BOURNE EAU Colchester O39 PARKESTON Kelveden O40 MELL HOUSE Ely O42 SWAFFHAM LODE O43 WELCHES DAM O44 UPWARE					
011KNIGHTSWICK012WORLDS END013ST.ANNES014TILBURY MARSH015LEIGH BECK016CROPPENBURG017RAIN BOW018ST.JOSEPHS019HILTON019HILTON019HILTON011HOLESLEY012BENACRELincoln023024BENACKE025BRANT026TILL027WITHAM028BRANT029SAND SYKE030BLACK SLUICE031BLACK SLUICE035PADHOLME036PEAKIRK (DIESEL)037PEAKIRK (DIESEL)038BOURNE EAUColchester039039PARKESTONKelveden040041BOTTISHAM LODE043WELCHES DAM044UPWARE					
012WORLDS END013ST.ANNES014TILBURY MARSH015LEIGH BECK016CROPENBURG017RAIN BOW018ST.JOSEPHS019HILTONNorwich020ACLEIpswich021022BENACRELincoln023025BRANSBY026TILL027WITHAM028BRANT029SAND SYKE031BLACK SLUICEPeterborough035036PEAKIRK (ELECTRIC)037PEAKIRK (DIESEL)038BOURNE EAU041BOTTISHAM LODE042SWAFFHAM LODE043WELCHES DAM044UPWARE					
013ST.ANNES014TILBURY MARSH015LEIGH BECK016CROPPENBURG017RAIN BOW018ST.JOSEPHS019HILTONNorwich020021HOLLESLEY1pswich021022BENACRELincoln023024MEADOW FARM025BRANSBY026TILL027WITHAM028BRANT029SAND SYKE030BRANSTON ISLAND031BLACK SLUICE035PADHOLME036PEAKIRK (ELECTRIC)037PEAKIRK (ELECTRIC)038BOURNE EAU039PARKESTONKelveden041041BOTTISHAM LODE043WELCHES DAM044UPWARE				KNIGHTSWICK	
014TILBURY MARSH015LEIGH BECK016CROPPENBURG017RAIN BOW018ST.JOSEPHS019HILTON020ACLEIpswich021022BENACRELincoln023024MEADOW FARM025BRANSBY026TILL027WITHAM028BRANT029SAND SYKE031BLACK SLUICE031BLACK SLUICE035PADHOLME036PEAKIRK (ELECTRIC)037PEAKIRK (DIESEL)038BOURNE EAUColchester039PARKESTONKelveden040041BOTTISHAM LODE043WELCHES DAM044UPWARE				WORLDS END	
015LEIGH BECK016CROPPENBURG017RAIN BOW018ST.JOSEPHS019HILTONNorwich020ACLEHOLLESLEYIpswich021022BENACRELincoln023024MEADOW FARM025BRANSBY026TILL027WITHAM028BRANT029SAND SYKE030BRANSTON ISLAND031BLACK SLUICEPeterborough035036PEAKIRK (ELECTRIC)037PEAKIRK (DIESEL)038BOURNE EAUColchester039Kelveden040041BOTTISHAM LODE043WELCHES DAM044UPWARE			013	ST.ANNES	
016CROPPENBURG017RAIN BOW018ST.JOSEPHS019HILTONNorwich020ACLEIpswich021HOLLESLEY1pswich022022BENACRELincoln023024MEADOW FARM025BRANSBY026TILL027WITHAM028BRANT029SAND SYKE030BRANSTON ISLAND031BLACK SLUICE035PADHOLME036PEAKIRK (ELECTRIC)037PEAKIRK (DIESEL)038BOURNE EAU039PARKESTONKelveden040041BOTTISHAM LODE043WELCHES DAM044UPWARE			014	TILBURY MARSH	
017RAIN BOW018ST.JOSEPHS019HILTONNorwich0201pswich021022BENACRELincoln023024MEADOW FARM025BRANSBY026TILL027WITHAM028BRANT029SAND SYKE030BRANSTON ISLAND031BLACK SLUICE035PADHOLME036PEAKIRK (ELECTRIC)037PEAKIRK (DIESEL)038BOURNE EAU039PARKESTON610MELL HOUSE611040041BOTTISHAM LODE043WELCHES DAM044UPWARE			015	LEIGH BECK	
018ST.JOSEPHS019HILTONNorwich020ACLEIpswich021HOLLESLEY1pswich022022BENACRELincoln023024MEADOW FARM025BRANSBY026TILL027WITHAM028BRANT029SAND SYKE030BRANSTON ISLAND031BLACK SLUICEPeterborough035036PEAKIRK (ELECTRIC)037PEAKIRK (DIESEL)038BOURNE EAU039PARKESTONKelveden040041BOTTISHAM LODE043WELCHES DAM044UPWARE			016	CROPPENBURG	
019HILTONNorwich020ACLEIpswich021HOLLESLEY022BENACRELincoln023BLACKMOOR FARM024MEADOW FARM025BRANSBY026TILL027WITHAM028BRANT029SAND SYKE030BLACK SLUICE031BLACK SLUICE035PADHOLME036PEAKIRK (ELECTRIC)037PEAKIRK (DIESEL)038BOURNE EAUColchester039Kelveden040041BOTTISHAM LODE043WELCHES DAM044UPWARE			017	RAIN BOW	
019HILTONNorwich020ACLEIpswich021HOLLESLEY022BENACRELincoln023BLACKMOOR FARM024MEADOW FARM025BRANSBY026TILL027WITHAM028BRANT029SAND SYKE030BLACK SLUICE031BLACK SLUICE035PADHOLME036PEAKIRK (ELECTRIC)037PEAKIRK (DIESEL)038BOURNE EAUColchester039Kelveden040041BOTTISHAM LODE043WELCHES DAM044UPWARE				ST. JOSEPHS	
Norwich 020 ACLE Ipswich 021 HOLLESLEY 022 BENACRE Lincoln 023 BLACKMOOR FARM 024 MEADOW FARM 025 BRANSBY 026 TILL 027 WITHAM 028 BRANT 029 SAND SYKE 030 BRANSTON ISLAND 031 BLACK SLUICE Peterborough 035 PADHOLME 036 PEAKIRK (ELECTRIC) 037 PEAKIRK (DIESEL) 038 BOURNE EAU Colchester 039 PARKESTON Kelveden 040 MELL HOUSE Ely 041 BOTTISHAM LODE 042 SWAFFHAM LODE 043 WELCHES DAM 044 UPWARE					
Ipswich021HOLLESLEY022BENACRELincoln023BLACKMOOR FARM024MEADOW FARM025BRANSBY026TILL027WITHAM028BRANT029SAND SYKE030BRANSTON ISLAND031BLACK SLUICEPeterborough035036PEAKIRK (ELECTRIC)037PEAKIRK (DIESEL)038BOURNE EAUColchester039Kelveden040041BOTTISHAM LODE043WELCHES DAM044UPWARE		Norwich			
022BENACRELincoln023BLACKMOOR FARM024MEADOW FARM025BRANSBY026TILL027WITHAM028BRANT029SAND SYKE030BRANSTON ISLAND031BLACK SLUICE035PADHOLME036PEAKIRK (ELECTRIC)037PEAKIRK (DIESEL)038BOURNE EAUColchester039Kelveden040Ely041041BOTTISHAM LODE043WELCHES DAM044UPWARE					
Lincoln 023 BLACKMOOR FARM 024 MEADOW FARM 025 BRANSBY 026 TILL 027 WITHAM 028 BRANT 029 SAND SYKE 030 BRANSTON ISLAND 031 BLACK SLUICE 036 PEAKIRK (ELECTRIC) 037 PEAKIRK (DIESEL) 038 BOURNE EAU 038 BOURNE EAU Colchester 039 PARKESTON Kelveden 040 MELL HOUSE Ely 041 BOTTISHAM LODE 043 WELCHES DAM 044 UPWARE		1PD#1011			
024 MEADOW FARM 025 BRANSBY 026 TILL 027 WITHAM 028 BRANT 029 SAND SYKE 030 BRANSTON ISLAND 031 BLACK SLUICE 036 PEAKIRK (ELECTRIC) 037 PEAKIRK (DIESEL) 038 BOURNE EAU 038 BOURNE EAU Colchester Kelveden Ely 040 MELL HOUSE Ely 041 BOTTISHAM LODE 043 WELCHES DAM 044 UPWARE		Tincoln		-	
025 BRANSBY 026 TILL 027 WITHAM 028 BRANT 029 SAND SYKE 030 BRANSTON ISLAND 031 BLACK SLUICE 036 PEAKIRK (ELECTRIC) 037 PEAKIRK (DIESEL) 038 BOURNE EAU Colchester 039 PARKESTON Kelveden 040 MELL HOUSE Ely 041 BOTTISHAM LODE 042 SWAFFHAM LODE 043 WELCHES DAM 044 UPWARE		Efficient			4
026TILL027WITHAM028BRANT029SAND SYKE030BRANSTON ISLAND031BLACK SLUICE035PADHOLME036PEAKIRK (ELECTRIC)037PEAKIRK (DIESEL)038BOURNE EAUColchester039PARKESTONKelveden040Ely041BOTTISHAM LODE043WELCHES DAM044UPWARE					
027 WITHAM 028 BRANT 029 SAND SYKE 030 BRANSTON ISLAND 031 BLACK SLUICE Peterborough 035 PADHOLME 036 PEAKIRK (ELECTRIC) 037 PEAKIRK (DIESEL) 038 BOURNE EAU Colchester Kelveden Ely 040 MELL HOUSE Ely 041 BOTTISHAM LODE 043 WELCHES DAM 044 UFWARE					
028 BRANT 029 SAND SYKE 030 BRANSTON ISLAND 031 BLACK SLUICE Peterborough 035 PADHOLME 036 PEAKIRK (ELECTRIC) 037 PEAKIRK (DIESEL) 038 BOURNE EAU Colchester Kelveden Ely 040 MELL HOUSE Ely 041 BOTTISHAM LODE 042 SWAFFHAM LODE 043 WELCHES DAM 044 UFWARE					
029SAND SYKE030BRANSTON ISLAND031BLACK SLUICE035PADHOLME036PEAKIRK (ELECTRIC)037PEAKIRK (DIESEL)038BOURNE EAUColchester039PARKESTONKelveden040Ely041042SWAFFHAM LODE043WELCHES DAM044UPWARE					
030 BRANSTON ISLAND 031 BLACK SLUICE 035 PADHOLME 036 PEAKIRK (ELECTRIC) 037 PEAKIRK (DIESEL) 038 BOURNE EAU Colchester 039 PARKESTON Kelveden 040 MELL HOUSE Ely 041 BOTTISHAM LODE 042 SWAFFHAM LODE 043 WELCHES DAM 044 UFWARE					
031BLACK SLUICEPeterborough035PADHOLME036PEAKIRK (ELECTRIC)037PEAKIRK (DIESEL)038BOURNE EAUColchester039PARKESTONKelveden040Ely041BOTTISHAM LODE042SWAFFHAM LODE043WELCHES DAM044UPWARE					
Peterborough 035 PADHOLME 036 PEAKIRK (ELECTRIC) 037 PEAKIRK (DIESEL) 038 BOURNE EAU Colchester 039 PARKESTON Kelveden 040 MELL HOUSE Ely 041 BOTTISHAM LODE 042 SWAFFHAM LODE 043 WELCHES DAM 044 UPWARE					
036 PEAKIRK (ELECTRIC) 037 PEAKIRK (DIESEL) 038 BOURNE EAU Colchester 039 PARKESTON Kelveden 040 MELL HOUSE Ely 041 BOTTISHAM LODE 042 SWAFFHAM LODE 043 WELCHES DAM 044 UPWARE					
037 PEAKIRK (DIESEL) 038 BOURNE EAU Colchester 039 PARKESTON Kelveden 040 MELL HOUSE Ely 041 BOTTISHAM LODE 042 SWAFFHAM LODE 043 WELCHES DAM 044 UFWARE	1.1	Peterborough			
O38BOURNE EAUColchesterO39PARKESTONKelvedenO40MELL HOUSEElyO41BOTTISHAM LODEO42SWAFFHAM LODEO43WELCHES DAMO44UPWARE		-	036	PEAKIRK (ELECTRIC)	
Colchester 039 PARKESTON Kelveden 040 MELL HOUSE Ely 041 BOTTISHAM LODE 042 SWAFFHAM LODE 043 WELCHES DAM 044 UPWARE			037	PEAKIRK (DIESEL)	
Kelveden040MELL HOUSEEly041BOTTISHAM LODE042SWAFFHAM LODE043WELCHES DAM044UPWARE		-	038	BOURNE EAU	
Kelveden040MELL HOUSEEly041BOTTISHAM LODE042SWAFFHAM LODE043WELCHES DAM044UPWARE		Colchester	039	PARKESTON	•
Ely 041 BOTTISHAM LODE 042 SWAFFHAM LODE 043 WELCHES DAM 044 UPWARE					
042 SWAFFHAM LODE 043 WELCHES DAM 044 UPWARE					
043 WELCHES DAM 044 Upware		,			
044 UPWARE					
	4.212	· · · ·	1.		
— — — — — — — — — — — — — — — — — — —					
				the second se	

•

2

ļ

E

-

÷

•

54 E.

.

9 - F

.

	1				1	1	
		- Survey of Land Summary	Drainage Pumping	Plant ins	tallations		
St	tn.	. Stn. Name	National Grid		Total Capacity	No of	Nanufacturer
-			Reference	(Sq.km)	(Cumecs)	Pump	
Ar	ng l	lian			1	ļ	•••••
<u></u>)1	THORNEY BAY	TQ 795 827		0.060	1	
					10-	Ž	FLYGT Flygt
00	••	WINTER CARDENS	TQ 790 840		0.046	í	
UU)2	WINIER GARDENS	14 790 840		0.060	1	FLYGT
e		-			1		FLYGT
00)3	DUTCH VILLAGE	Ta 775 838		0.620	1	
6					1		SPAAN
				14		2	SPAAN
. 00	4	ANTLERS	i 19 789 827		0.060	n h	
1.							FLYGT FLYGT
					· ·	1	r c i ui
00	15	PITSEA HALL FLEE	T TQ 738 859		0,060		FLYGT
-		1			.,		r1)01
,00	6	BECKNEY FARM	TQ 852 962		0.100		F1 NOT
-					(FLYGT
-	7	BRIDGEWICK	TM 030 004		0.510		
1	, r	DKIDGEWICK	TH 030 004		0.510	1	SULZER
!	•					Z	SULZER
00	8	MARSH HOUSE	TH 032 046	248.63	2.970		Ż
1							ALLEN GWYNNES
÷					L.	23	ALLEN GWYNNES ALLEN GWYNNES
1	-						
1	9	LANDWICK	TH 008 009	0.30	0.990	1	GILL
1							GILL
01	D	MAY AVENUE	79 805 825		0.590		
						1	ALLEN GWYNNES
i					I.		ALLEN GWYNNES ALLEN GWYNNES
ł		1. 			1		ALLEN UNINNES
01	1	KNIGHTSWICK	TQ 805 843		0,310		
1	Q.				1	2	ALLEN GWYNNES ALLEN GWYNNES
		a			5	3	ALLEN GWYNNES
	•	WORLDS END	TQ 648 753		1.520		
	•				Ĩ.		SAMUAL WHITE
	1				1	2	SAMUAL WHITE
	1			÷ 1	i.		
	ì				1		
. 0	1				I		-

Year	Pump Type	size Diam.			Capacity (cumecs)	Stat.		Drive	H.P.	Supply Voltage	Disc. Type	
1980	S	100 mm	58		0.03	1.60	960	Ε	3.0	415	SL	
1980	5	100 mm	SB	V	0.03	1.60	960	Ε	3.0	415	SL	
		18										
1980	5	100 mm	SB	v	0.03	1.35	960	Ε	3.0	415	SL	
1968	č	100 mm	SB	-	0.03	1.35	960	Ē	3.0	415	SL	
1978	\$	900 mm	18		0.31	2.60	20	E	3.0	415	SR	
1978	S	900 mm		v	0.31	2.60	20	Ε	3.0	415	SR	
	-			-				-				
1978	C	100 mm	SB	Υ.	0.03	1.50	960	E	3.0	415	SL	
1978	с С	100 mm		• ·	0.03	1.50	960	E	3.0	*15	SL SL	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	v		50		0.05	1.50	700		5.0	. 412	76	
1980	с	75 mm	SR	v	0.06	1.50	960	E	3.0	415	SL	
	Ŭ			·	0.00		,	-			56	
1982	с	100 mm	SB	-	0.05	2.55	960	E	3.0	415	SL	
1982	č	100 mm	S8	v	0.05	2.55	960	Ē	3.0	415	SL	
								-				
1949	A	406 mm	HB	v	0.34	3.66	720	Ε	25.0	415	SR	
1949	Ä	355 mm		v	0.17	3.66	960	Ē	14.0	415	SR	
							4	-				
1949	A	610 mm	HB	v	0.99	3.66	580	E	75.0	415	SL	
1949	A	610 mm	NB	V	0.99	3.66	580	Ε	75.0	415	SL	
1949	A	610 mm	HB	V	0.99	3.66	580	E	75.0	415	SL	
								-		í		
1961	4	508 mm 355 mm		H H	0.71	2.44	720	E	45.0 20.0	415 415	SR	
1 9 61	•	300 mm		n	0.28	2.44	960	E		412	SR	
1968	С	300 mm	10	v	0.28	2.20	960	E	10.0	415	SR	
1968	C	300 mm		v	0.28	2.20	960	E	10.0	415	SR	
1968	č		LB	v	0.03	2.20	960	Ē	5.0	415	SR	
	-			•				-				
1968	с	300 mm	LB	v	0.14	1.60	960	Ε	10.0	415	SR	
1968	č	300 mm		v	0.14	1.60	960	Ě	10.0	415	SR	
1968	Ċ	248 mm		Ŷ	0.03	1,60	960	Ē	5.0	415	SR	
1968	A	450 mm			0.76	2.88	720	E	140.0	415	SR	
1968	A	450 mm	~~	H	0.76	2.88	720	Ε	140.0	415	SR	

3		-				ī		
					1	1		
	Pum	•:Survey of Land p Summary	Drainage Pumping	Plant Ins	tallations	1	(*) 1	
		. Stn.	Hational	Catchment	Total	No	Manufacturer	Year
1		Name	Grid Reference		Capacity (Cumecs)	of		1681
	013	ST.ANNES	TO 811 827	• • • • • • • • • • • • •	0.590	•••;••	••••••	•••••
F.	0.5	31,	•		0.570	1	ALLEN GWYNNES	1978
1	r	•					ALLEN GWYNNES	1978
					5. C	1	ALLEN GWYNNES	1978
1	014	TILBURY MARSH	TO 636 778		0.170	Ĩ		
1						-1 	SPAAN	1974
•	015	LEIGH BECK	TQ 821 830		0.300	1		
,					1	1	BRITISH PLEUGER	1978
1	E.				1	2	BRITISH PLEUGER	1978
1	016	CROPPENBURG	TQ 816 833		0.560	. 1		
4	1)			1.	1	ALLEN GWYNNES	1968
1	1	,	dah		1	2 1	ALLEN GWYNNES	1968
	017	RAIN BOW	TO 799 838		0.060	1	6	
1		ŷ.				1	FLYGT	1968
1		4			1	2	FLYGT	1968
4	018	ST. JOSEPHS	to 799 837		0,030	1		
1		1			<u>a</u> .	1	FLYGT	1968
i.	019	HILTON	TQ 796 844	•	0.460		1	
,	1.				5.	1	SPAAN	1968
î	1	1			-	2	SPAAN	1968
	020	ACLE	TQ 408 106	17.22	0.700	h	÷.	
1			- 4			1	SHITHDOLE	1944
1	021	HOLLESLEY	TH 367 439	15.00	2.510	İ		
- 1					· ·	1		1969
j	1	4	• .		(1) (1)	Z	HAWTHORNE DAVEY	1940
3	022	BENACRE	TH 536 845	80.00	4.248	1	1	
1	•	4			1	- 1	ALLEN GWYNNES Sulzer	1969 1955
1		a			10		SULZER	1955
1	+				· · · · ·		h () • *	
1	023	BLACKHOOR FARM	SK 946 628	0.05	0.015		STRES	1989
1							STRES.	1909
1	024	MEADOW FARM	SK 933 589	0.01	0.013			
		к 1			1.1.1	1	SYKES	1989
	025	BRAHSBY	SK 904-788	1.00	0.180		1	
1					12		FLYGT	1988
	1	1				2	FLYGT	1988
	026	TILL	SK 910 763	3.00	1.600		1	
						1_	FLYGT	1986
					Ĩ.		FLYGT	1986
	ĵ.							
1	1						4	

ybe Tuub	Siz Dia				Capacity (cumecs)		Speed	Drive	N.P.	Supply Voltage	Disc. Type	
••••	• • • •	•••	••••			•••••	••••••			la.		•••••
C	300			¥.	0.28	2.30	960	E	10.0		SR	1.0
C C	300 244		LB	v v	0.28	2.30	960	E	10.0		SR	
L	244	nrn		v	0.03	2.30	960	E	5.0	415	SR	
s	900	(1971)	00	н	0.17	0.00	20	E		415	SL	
-	450				· ··			-				
C	150 (150 (V	0.15	4.03	900	E	28.0	415	SR	
C	120 1		CB	v	0.15	4.03	900	E	28.0	415	SR	
с	254	mm	18	v	0.28	2.55	960	ε	15.0	415	SR	
č	254			v	0.28	2.55	960	Ē	15.0	415	SR	
-				-							5.	
C	100	-	S0	v	0.03	1.12	960	ε	3.0	415	SL	
c	100				0.03	1.12	960 960	E	3.0	415	SL	
			55		0.00			•	5.0	412	JL	
С	100	item	SB	۷	0.03	1.71	960	ε	3.0	415	SL	
				•								
5	818	mm	LB	H	0.23	2.15	20	E	15.0	415	SR	
s	838			H	0.23	2.15	20	Ε	15.0	415	SR	
			20		1125			-				
A	450	inn	LB	v	0.70	3.00	725	ε	55,0	415	SR	
A	406 (m	00	v	0.51	3.60	940	E	30.0	415	SL	
MF	914			H	2.00	3.13	315		110.0	415	SR	
	600	hant	HB	v	0.85	5.79	585	ε	100.0	415	SR	
MF	600	m	HB		1.13	6.95		D	125.0		SR	
MF	900 1				2.26	6.80	440		247.0		SR	
с	100		C 0	v	0.01	4.00		E	ı	415	SL	
L	100 1	11	SB	v	0.01	4,00		C		413	эL	
c	100 1		58	v	0.01	4.00	4	E		415	SL	
				•	v.v!	4,00			÷.		~~	
A	200 1		SB	v	0.09	3.00	1,450	3	8.9	415	\$1	
A	200		58	v	0.09	3.00	1,450	Ε.	8.9	415	S1	
							1.1			•		
A	460 1		SB .	۷	0.80	3.00	975	E	50.0	415		
A	460 (5 8	V .	0.80	3.00	975	E	50.0	415	S I	
								-				

. ----

....

.

•

Stn. Stn. S No. Name	National	Catchment		No	Manufacturer	
	Grid Refer ence		Total Capacity (Cumecs)	of	· ·	Year
	*************		*******	2	FLYGT	1986
D27 WITHAM	SK 952 639	1.50	1,000			
•					FLYGT	1989
		0		2	FLYGT	1989
D28 BRANT	SK 948 625	i 4.00	2.800			
					FLYGT	1991
				-	FLYGT	1991
					FLYGT	1991
	· .			4	FLYGT	1991
29 SAND SYKE	SK 943 601.	2.50	1.800			
					FLYGT	1991
				-	FLYGT	1991
			3-0	3	FLYGT	1991
30 BRANSTON ISLAND	TF 103 703	0.80	0.110			
			••••	1	GOODENOUGH	1962
31 BLACK SLUICE	TF 327 428	710.00	59,900			
	· · · · · · · · · · · · · · · · · · ·		••••	1	ALLEN GWYNNES	1946
					ALLEN GWYNNES	1946
· · ·				3	ALLEN GWYNNES	1946
					ALLEN GWYNNES	1965
4				5	ALLEN GWYNNES	1965
32 CHAPEL - OLD & NEW	TF 560 729	66.00	14.790			
				1	NEI-ARE	1986
					NEI-ARE	1986
					NEI-ARE	1986
				_	ALLEN GWYNNES	1948
					RUSTON HORNSBY	1948
				D	ALLEN GWYNNES	1948
33 CROFT LANE	TF 501 600	5.05	7.430			
					ALLEN GWYNNES	1971
				Z	ALLEN GWYNNES	1971
34 BUTTS ROAD	TA 030 226	2.02	1.050			
				1	ABS	1985
•				2	ABS	1985
				3	ABS	1985
35 PADHOLNE	TL 229 984	8.02	3.000			
33 PAUNULNE	16 667 704	B.VE	3.000	1	HARLAND JOHNSON	1973
					HARLAND JOHNSON	1973
				3		1973
	1.1			-		• •
36 PEAKIRK (ELECTRIC)	TF 175 072		12.750			
				1	ALLEN GWYNNES	1973

глааса Римр Туре	Size Diam.			Capacity (cumecs)		<pre>[mpel. Speed (R.P.N)</pre>	Drive		Supply Voltage	Disc. Type	
A	460 mm	SB	v	0.80	3.00	975	E	50 .0	415	51	
A	460 mm	58	v	0.50	3.00	725	E		415	S 1	
A	460 mm	5 8	۷	0.50	3.00	725	E	·	415	SI	
A	460 mm	SB	۷	0.50	3.00	970	£		415	st	
A	460 mm	SB	V	0.50	3.00	970	E		415	51	
, A	550 mm	S8	V	0.90	3.00	970	E		415	S 1	
A	550 mm	S8	V	0.90	3.00	970	. E		415	S1	
٨	460 mm	SB	v	0.50	3.00	725	E		415	st	
A	460 mm	S 8	V	0.50	3.00	725	E		415	SI	
A	550 mm	58	V	0.80	3,00	970	E		415	51	
C	200 mm	L8	н	0.11	3.35	-	D			SL	
						_					
C	2540mm	HB	¥	11.30	4.00	70	D	900.0	110	SL	
C	2540mm	HB	V	11.30	4.00	70	D	900.0	110	SL	
C	2540mm	HB	v	11,30	4.00	70	D	900.0	110	SŁ	
С	2540mm	HB	V	13.00	4.00	70	D	975.0	110	SL	
C	2540mm	HB	V	13.00	4.00	70	D	975.0	110	SŁ	
		- F					_				
	1000mm	00	V	2.63	3.60	355	E	270.0	415	SI	
A	1000mm	00	¥.	2.63	3.60	355	E	270.0	415	SI	
A	1000mm 900 mm	00 HB	v	2.63 2.10	3.60 3.60	355 415	E E	270.0 160.0	415	SI SR	
A C	1050mm	-	H	2.40	3.60	350	D	156.0			
C C	1050mm	HB HB	H	2.40	3.60	350	D	156.0		SR SR	
5		нD	п	2.40	3.00	370	0	150.0		54	
A	685 mm	LB	v	3,42		580	E	70.0	415	S 1	
A'	450 mm	LB	Ŷ	4.00		735	Ē	40.0	415	S1	
		_					_	-		2	
S	300 mm	SB	¥	0.35	10.40	950	£	75.0	415	SR	
S	300 mm	SB	¥	0.35	10.40	950	E	75.0	415	SR	
S	300 mm	28	V	0.35	10.40	950	E	75.0	415	SR	
	600 mm	00	۷.	1.00	6.54	985	E	135.0	440	\$1	
A	600 mm	00	V	1.00	6.54	985	E	135.0	440	\$1	
A	600 mm	00	¥,	1.00	6.54	985	E	135.0	440	SI	
A	750 mm	00	v	4.25	1.83	490	E	90.0	440	SI	
			-			•• •	-			-	

-

crecticarcanan Stn. Stn. No. Name	Hational Grid Reference	Catchment Area (Sq.km)	Total Capacity (Cumecs)	No of	Manufacturer	Year	Ритр Туре	Size Diam.			Capacity (cumecs)				H.P.	Supply Voltage	Øisc Type	
037 PEAKIRK (DIESEL)	TF 175 072		4.800															
				1	FARROW WALLIN	1983	A	600 mm	HB	۷	1.60	2.80	600	D	180.0		ST	
	1.0			Z	FARROW WALLIN	1983	A	600 mm	HB	۷	1.60	2.80	600	D	180.0		S 1	
				3	FARROW WALLIN	1983	A	600 mm	HØ	۷	1.60	2.80	600	0	180.0		S I	
038 BOURNE EAU	TF 156 187	15.37	4.500											1.5				
				1	ALLEN GWYNNES	19	A	600 mm	HB	v	1.50	3.84	485	E	100.0	440	\$1	
				2	ALLEN GWYNNES	19	A	600 mm	HB	V	1.50	3.84	485	E	100.0	440	\$1	
				3	ALLEN GWYNNES	19	Α.	600 mm	HB	v	1.50	3.84	485	E	100.0	440	\$1	
39 PARKESTON	TH 243 323	28.50	2.820			-												
				1	GILL	1961	MF	750 mm		H	1.41	4.50		E	90.0	415	SL	
				S	GTLL	1961	MF	750 mm		H	1.41	4.50		E	90.0		SL	
40 MELL HOUSE	TL 963 085	5.00	0.850															
			•••••	1	BRITISH PLEUGER	1972	A	450 mm	58	К	0.28	1.40		£	40.0	415	SL	
				2	BRITISH PLEUGER	1972	A	530 mm	58	H	0.57	1.40		Ē	70.0	415	SL	
041 BOTTISHAM LODE	TL 510 658	72.20	4.000															
				1	WORTHINGTON 36	1948	C	914 mm	HB	v	2.00	5.10	237	Ð	150.0		12	
		-		2	WORTHINGTON 36	1948	C	914 mm	HB	Ŷ	2.00	5.10	237	D	150.0		S 1	
042 SWAFFHAM LODE	TL 522 673	36.40	2.000												,			
		50.40	2.000	1	WORTHINGTON 24	1948	С	609 mm	нВ	ч	1.00	1.00		D	95.0	240	st	
					WORTHINGTON 24	1948	č	609 mm	-	Я	1.00	1.00		0	95.0	240	51 51	
43 WELCHES DAM	TL 471 859	100 30	12.620							1								
NJ WELCHES DAN	10 4/1 055	100.30	12.020	1	ALLEN GWYNNES	1948	ME	1145mm	WD	u	6.31	3.35	475	D	500.0	415	SL	
					ALLEN GWYNNES	1948		1145mm		H	6.31	3.35	475	D	500.0	415	SL	
144 UPWARE	TL 538 698	63.60	2.500	•										-				
					BEDFORD SA.80.04	1990 1990	A.	996 mm 996 mm		V V	1.25	2.25	485 485	E	46.0 46.0	415 415	SL SL	
				2	BEDFORD SA.80.04	1990	A	ало Ши	28	v	1.25	2.25	402	5	40.0	412	31	
D45 SOHAM LODE	TL 540 764	104.00	5.400				4											
					ALLEN GWYNNES	1985	A	1000mm		V	2.70	1.45	420	E	90.0	415	51	
				Z	ALLEN GWYNNES	1985	A	1000 m	LB	v	2,70	1.45	420	E	90.0	415	51	

÷ : .

I

.

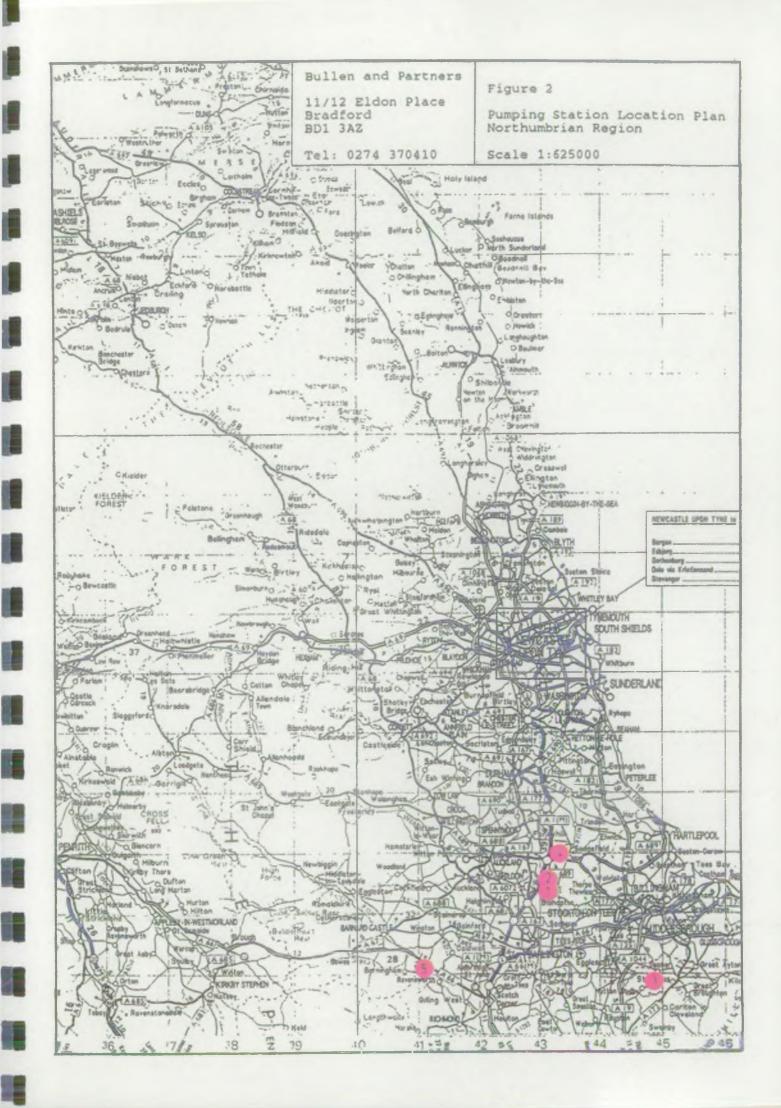
.

1

.

NORTHUMBRIAN

	er Der	
		=======================================
SUB REGION	STN. NO	NAME
Darlington	001	MORDEN CARRS
- 51	002	SWAN CARR
	003	SEAMER CARRS
	004	MAINSFORTH STELL
	005	VAN DIEMANS LAND
	SUB REGION Darlington	Darlington 001 002 003 004


!

....

• •

. . .

·····

		-				-	1
HRA	- Survey o	f Land Di	rainage Pu	mping Plant	Install	ations	
Pump	Summary						
£222							

.

.

	Stn. Name	National Grid Reference		Capacity	of	Hanufacturer
Nort	humbrian					
		NZ 318 248	2.10	0.420	,	
					1	FLYGT LL3152
					2	FLYGT LL3152
002	SWAN CARR	NZ 311 255	1.60	0.200		
				••••	1	FLYGT LL3152
003 :	SEAMER CARRS	NZ 491 096	2.38			
					1	TANGYES LTD
004 1	ATNSFORTH STELL	NZ 330 301	15.30	2.400		
	141				1	BRITISH GUINARD
					2	BRITISH GUINARD
005 N	AN DIEMANS LAND	NZ 114 128	4.97	1.340		
					1	A.B.S. VUP400
					2	A.B.S. VUP400

.

.

.

.

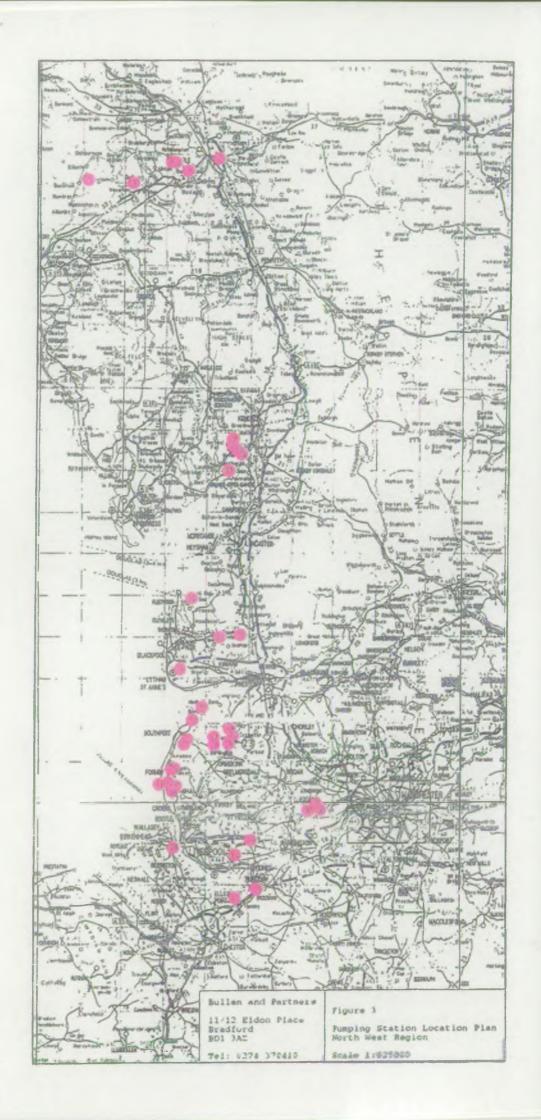
.

.

fear	Pump Type	Siz Dia		Hours.		Capacity (cumecs)	Stat, Head (m)	Impel. Speed (R.P.M)	Drive	H.P.	Supply Voltage	Disc. Type	
1986	A	450 1	m	58	v	0.20	2.20	950	E	12.0	415	SR	
1986	A	450		SB	v	0.22	2.20	950	E	12.0	415	SR.	
		1											
					1				1.2				•
1986	A	450 (110 1	50	v	0.20	2.20	950	E	12.0	415	SR	
1955	C	I I	TT I	LB	v			715	E	10.0	415	SR	
											•		
1987	A	800	m	SB	v	1.20	3.00	750	E	100.0	415	SR	
1987	A	800		SB	V	1.20	3.00	750	E	100.0	. 415	SR	
1985	A	700	داري	SB	v	0.67	2.0 0	960	E	40.0	415	SR	
1986	Ä	700		SB	V	0.67	2.00	960	E	40.0	415	SR	

NORTH WEST

1


1

i

REGION		STN. NO	NAME

North West			
	North Cumbria	001	COLMIRE SOUGH
		002	DURRANHILL
		003	GAMELSBY
		004	RUMBLING BRIDGE
		005	Thacka beck
		006	WOLSTY
	South Cumbria	007	JOHNSCALES
		008	LEVENS
		009	POOL BRIDGE
		010	SAMPOOL
		011	ULPHA
	North Lancs	012	PREESALL
		013	RAIKES BROOK
		014	RED BRIDGE
		015	YOAD POOL
	South Lancs	016	BANKS MARSH
	20000	017	BOUNDARY BROOK
		018	CLAY BROW
		019	CROSSENS
		020	CROSTON
		021	HOLMES WOOD
		022	KEW
		023	MAWDESLEY
		024	SOLLOM
•		025	RUFFORD
	Cheshire	026	
	Chesnire		FRODSHAM
		027	INCE MARSH
	Namela Manakara	028	MORPETH
	North Manchester		BEDFORD
		030	JENNETTS LANE
		031.	PENNINGTON
	Merseyside	032	ALTCAR
		033	ALTMOUTH
		034	DOG CLOG
		035	FINE JANE
		036	HEY COP
		037	INCE BLUNDELL
		038	NEW CUT
		039	PENDLEBURY

i

,

Stn. Stn. No. Name	National Grid Reference	Catchment Area (Sq.km)	Total Capacity (Cumecs)	No of Pump	Manufacturer	Ye
North West	**********	********				
DO1 COLWERE SOUGH	NY 225 505	2.90	0.600			
					A.B.S. A.B.S.	19 19
				د	A.B.J.	17
DO2 DURRANHILL	NY 421 562	0.32	0.360			
					FLYGT	19
					FLYGT FLYGT	19 19
					FLYGT	19
AT SAMELEDY		5 50	0 000			1.1
DO3 GAMELSBY	NY 326 553	0,59	0.090	1	FLYGT	19
				•	r Livi	• •
004 RUMBLING BRIDGE	NY 315 552	0,97	0.085			10
				I	FLYGT	19
005 THACKA BECK	NY 350 531	0.76	0.085			
				1	FLYGT	19
006 WOLSTY	NY 114 515	3.30	0.800			
			··	t	ALLEN GWYNNES	19
				2	ALLEN GWYNNES	19
007 JOHNSCALES	SD 468 868	0.29	1.080			
	JV 7VV 444		1.000	1	A.8.S	19
				2	A.B.S	19
008 LEVENS	SD 487-849	3.83	0.700			
VUG LEVENG		3.05	0.700	1	FLYGT	19
				2	FLYGT	19
009 POOL BRIDGE	SD 464 885.	0.34	1,700			
UV7 FUNE BRINGE	JV 707 662-	0134	1.100	1	A.B.S.	19
					A.B.S.	19
010 SAMPOOL	SD 473 855	0.80	2.520			
				1	A.B.S.	19
					A.B.S.	19
				3	A.B.S.	19
011 ULPHA	SD 456 806	11.52	1.720			
					K.S.B.	19
				2	K.S.B.	19
012 PREESALL	SD 374 495	0.41	0.840		4.	
	··· ··· ···		₹		SARLIN	19
·					SARLIN	19
013 RAIKES BROOK	SD 434 402		0.660			
VID ANIMES SALES			0.000	1	FLYGT	19
		-				•••

.

.

атата Ритр Туре	Si	==== ze Bm,			Capacity (cumecs)	Stat.				Supply Voltage	Disc. Type
	•										
A A	300 300		SB SB	H H	0.30 0.30	2.54 2.54	960 960	E E	20.0 20.0	415 415	SR SR
C C C	200 200 200	m	\$ B	v	0.09	4.00 4.00	1,450 1,450	E	6.0 6.0	415 415	SR SR
C	200		58 58	V V	0.09	4.00	1,450 1,450	E	6.0 6.0	415 415	SR SR
C	200	נוסרו	SB	v	0.09	3.35	1,450	E	6.0	415	SR
C	20 0	सम्म	\$ B	v	0.09	3.79	1,450	E	6.0	415	SR
C	200	(1177)	S8	v	0.09	3.35	1,450	E	6.0	415	SR
A A	400 400		58 58	v v	0.40 0.40	3.40 3.40	975 975	E E	43.0 43.0	415 415	SL SL
A	550 550			v	0.54 0.54	4.83 4.83	960 960	E	74.0 74.0	415 415	st si
				-	4			-	-		
A A	300 300		SB SB	V V	0.35 0.35	2.60 2.80	725 725	E E	30.0 30.0	415 415	SL SL
A A	500 500		SB SB	v v	0,85 0.85	5.18 5.18	720 720	E E	120.0 120.0	415 415	ST 51
A	500	m	SB	۷	0.84	4.50	960	E	100.0	415	SR
A	500 500			H H	0.84 0.84	4.50 4.50	960 960	E E	100.0 100.0	415 415	SR SR
A A	500 500			V V	0.86 0.86	4.02 4.02	985 985	E E	56.0 56.0	415 415	s r Sr
C C	300 300			v v	0.42 0.42	2.90 2.90	720 720	E	36.0 36.0	415 415	SR SR
A	300	m	SB	v	0.30		725	E	27.0	415	SR
										14	

-

Pump Summary				******		
Stn. Stn. No. Name	National Grid Reference	Catchment Area (Sq.km)	: Total Capacity	No of	Kanufacturer	Year
••••••	•••••		••••••			· • • • • •
014 RED BRIDGE	SD 347 323	0.08	0,720	•		
				1		1980
				2	GUINARD	1980
015 YOAD POOL	SD 482 416		0.300			
	99 YA		V • • • • •		FLYGT	1985
		•				• •
D16 BANKS MARSH	SD 396 231	4.45	1.600			
					ALLEN GWYNNES	1987
ı				- 2	ALLEN GWYNNES	1987
017 BOUNDARY BROOK	SD 351 144-		1.500			
	30 331 144		1,200	- 1	K.S.9.	1900
					K.5.0.	1988
018 CLAY BROW	SD 424 149	0.81	0.260			
					FLYGT	1986
		1.00		2	FLYGT	1986
019 CRDSSENS	SD 376 206	143.94	23,770			
VIF Choosens	40 310 2-4	194119		1	ALLEN GWYNNES (L.L.)	1961
		- 4			ALLEN GWYNNES (L.L.)	
÷.				3	SULZER (L.L.)	1989
					SULZER (L.L.)	1989
					ALLEN GWYNNES (L.L.)	
					ALLEN GWYNNES (L.L.)	
		19	,		ALLEN GWYNNES (L.L.) ALLEN GWYNNES (H.L.)	1961 1961 ::
					ALLEN GWYNNES (H.L.)	1961
					ALLEN GWYNNES (H.L.)	
				11	ALLEN GWYNNES (H.L.)	1961
					ALLER GWYNNES (H.L.)	
					ALLEN GWYNNES (N.L.)	1961
020 CROSTON	FAL 844 0	C (1	0.864			
OZU CRUSTON	SD 468 163	5.53	V.004	1	MIRLESS WATSON	1944
				•	MIRLESS WATSON	1944
					UINFEAR AUINAU	174.
021 HOLMES WOOD	SD 424 162	4.46	0.460			
					A.B.S	1989
				2	A.B.S	1989
	744 457	~ 15	~ 400			
022 KEW .	SD 361 153	0.65	0.600			1005
					A.B.S A.B.S	1982 1982
					A.B.3	1704
023 MAWDESLEY	SD 468 158	6.66	1.360			
		. ÷			ALLEN GWYNNES	1966
				2	ALLEN GWYNNES	1966

.

ype	Size Diam.	Hous,	Koun,	Capacity (cumecs)	Stat. Head (m)	<pre>Impel. Speed (R.P.H)</pre>	Drive	H.P.	Supply Voltage	Disc. Type		
									••••	****	••••	
A	450 mm	SÐ	v	0.36	2.70	•	E	29.0	415	SR		
A	450 mm	SB	v	0.36	2.70		E	29.0	415	SR		
A	300 mm	SB	v	0.30	3.70	730	E	27.0	415	SR		
A	600 mm	5B	v	0.80	1.40	730	E	43.0	415	SL		
A	600 mm	20	v	0.80	1.40	730	Ē	43.0	415	SL		
A	500 mm	50	v	0.75	2.10	980	E	26.0	415	51		
A	500 mm	SD	۷	0.75	2.10	980	Ε.	26.0	415	51		
с	200 mm	SB	v	0.13			E		415	SL		
Ċ	200 mm	58	v	0.13			Ē		415	SL		
с	609 mm	HB	н	0.85	6.86	465	D	143.0		SR 🔅		
Ċ	609 mm	HB	H	0.85	6.86	465	Ď	143.0		SR		
A	500 mm	HB	۷	0.85	6.98	743	E	100.0	415	SR		
A	500 mm 609 mm	HB	Y	0.85 0.85	6.98	743	E	100.0	415	SR		
C C	609 mm	HB HB	H H	0.85	6.86 6.86	465 465	0	138.0 138.0		SR SR		
č	609 mm	119	N	0.85	6.86	465	Ď	138.0		SR		
Ă	1067mm	HÐ	v	2.97	5.33	365	Đ	288.0		SI		
Ä	1067mm	HB	v	2.97	5.33	365	D	288.0		SI		
Ä	1067am	HB	v	2.97	5.33	365	D	288.0		st	•	
Α	1067mm	HB	V	2.97	5.33	365	D	288.0		st	÷.	
Α	1067mm	HB	v	2.97	5.33	365	D	288.0		SI		
A	1067mm	KB	v	2.97	5.33	365	D	288.0		51		
A	400 mm	LB	v	0.43	6.40	960	E	0.0	415	SR		•
A	400 mm	LB	v	0.43	6.40	960	E	0.0	415	SR		
с	300 mm	SB	v	0.23	8.20	950	£	44.0	415	SR		
C	300 mm	SB	v	0.23	8.20	,950	Ē	44.0	415	SR		
•	300 mil		•	~	0.60	e ^{, 30}	-	-114	412	911		
A .	350 mm	S 8	- H	0.30	2.97	960	E	25.0	415	st .		
A	350 mm	SB	H	0.30	2.97	960	E	25.0	415	S1		
	508 mm	HB	v	0.68	6.86	750	E	60.0	415	S 1		
2	508 mm	HB	v	0.68	6.86	750	Ē	60.0	415	SI		1

.

•

***************************************	311111111111111111111111111111111111111	**********			822222222222222222222222	********
Stn. Stn. No. Name	National Grid Reference	Catchment Area (Sq.km)	Capacity (Cumecs)	No of Pump	Manufacturer	Year
024 SOLLOM	SD 466 182	7.27	1.440			
				1		1977
					PLEUGER	197
					MIRLESS WATSON	194
				4	MIRLESS WATSON	194
025 RUFFORD	SD 461 151	0.67	0.180		51 EUCE 8	104
					PLEUGER	196
				2	PLEUGER	196
026 FRODSNAM	SJ 52 3 79 1	10.93	1.800	•		107
					ALLEN GWYNNES ALLEN GWYNNES	193
				۲	ALLEN UMINNES	193
027 INCE MARSN	SJ 465 774	17.42	1.120	•		107
10 A					MIRLESS WATSON MIRLESS WATSON	193 193
					ALLEN GWYNNES	193
					ALLEN GWYNNES	194
028 MORPETH	SJ 328 895	64.80	10, 160			
APP HOULFIL	38 JEG 093	04.00	10.100	1	ALLEN GWYNNES	196
				Ż	ALLEN GWYNNES	196
					ALLEN GWYNNES	196
				4	ALLEN GWYNNES	196
D29 BEDFORD	SD 669 001	26.93	9.430			
					ALLEN GWYNNES	196
					ALLEN GWYNNES	196
					ALLEN GWYNNES	196
					ALLEN GWYNNES ALLEN GWYNNES	196 196
				_	ALLEN GWYNNES	196
					ALLEN GWYNNES	196
030 JENNETTS LANE	SJ 671 981	6.50	0.220			
					FLYGT	197
				2	FLYGT	197
31 PENNINGTON	SJ 647 985	1.32	0.700			
				1	FLYGT	199
				2	FLYGT	199
D32 ALTCAR	SD 319 053	16.20	0.650			
	• •••	-		1	A.B.S.	199
					A.B.S.	199
				3	SARLIN	199
033 ALTHOUTH	SD 295 044	51.84	83.720		**	
÷	(a)			1	VICKERS	197
				2	VICKERS	197

•

1

-

1

1

ľ

ľ

.

r

									i.	A.
Pump Type	Size			Capacity (cumecs)	Stat.	Impel. Speed		######################################	Suppty Voltage	Disc. Type
A	450 mm	58	v	0.34	A 55	1,450	E	55.0	415	SL
Ä	450 mm				6.55	1,450	F	55.0	415	SL
Ä	385 mm		v	0.34 0.38	6.50	960	Ē	45.0	415	SL
A	385 mm		V	0.38	6.50	1,450 960 960	E	45.0	415	SL
A	203 mm		v	0.09	1.50		E	5.0	415	Free
•	203 mm	SB	v	0.09	1.50			5.0	415	free
A	609 mm		v	0.90		585	E	60.0	415	SR
A	609 mm	H8	V	0.90		585	Ē	60.0	415	SR
	356 mm		v	0.28		580	E	26.0	415	SR
A	356 mm	NB	v	0.28		580	E	26.0	415	SR
A	356 mm		V	0.28		580 580	E	26.0	415	SR
A	356 mm	HB	v	0.28	60	580	E	26.0	415	SR
MF	1016mm	HB	v	2.54	5.50		E	400.0	7	S 1
MF	1016mm	HB	V	2.54	5,50		Ε	400.0	7	SI
MF	1016mm	HB		2.54	5,50		E	400.0	7	SI
MF	1016mm	HB	v	2.54	5.50		E	400.0	7	51
MF	305 mm	NB	• v	0.15	8.31	940	E	25.0	415	S 1
MF	686 mm		v	1.13	8.31	586	Ē	160.0	415	SI
MF	838 mm		v	2.29	8.31	494	Ē	654.0	415	SI
MF	838 mm		Ŷ	2.29	8.31	494	Ē	654.0	415	\$1
MF	838 mm		Ŷ	2.29	8.31	494	Ē		415	SI
MF	686 mm		v	1.13	8.31	586		160.0	415	SI
MF	305 mm	НB	v	0.15	8.31	940	Ē	25.0	415	SI
с	305 mm		v	0.11		2,950		14.0	415	SI
С	305 mm	SB	۷	0.11	6.25	2,950	E	14.0	415	S1
с	300 mm		v	0.35	8.52	725	E	50.0	415	SR
C	300 mm	SB	۷	0.35	8.52	725	E	50.0	415	SR
С	300 mm	SB	v	0.30	4.50	960	E	50.0	415	SR
С	300 mm	SB	۷	0.30	4.50	960	E	50.0	415	SR
A	150 mm	\$B	۷	0.05	4.50	728	E	11.5	415	SR
A	686 mm	KB	v	1.13	6.10	735	E	160.0	415	SI
A	686 mm	HB	V	1.13	6.10	735	Ε	160.0	415	\$1
					Trê T		4			

33 ALTMOUTH SD 295 044 51.84 83.720 2 VICKERS 2 VICKERS 3 VICKERS 3 VICKERS 4 VICKERS 5 VICKERS 5 VICKERS 6 VICKERS 6 VICKERS 6 VICKERS 7 VICKERS 6 VICKERS 7 VICKERS 6 VICKERS 7 VICKERS 7 VICKERS 8 VICKERS 7 VICKERS 9 VICKERS 6 VICKERS 9 VICKERS 6 VICKERS 9 VICKERS 7 VICKERS 9 VICKERS 6 VICKERS 9 VICKERS 6 VICKERS 9 VICKERS 6 VICKERS 9 VICKERS 6 VICKERS 9 VICKERS 6 VICKERS 9 VICKERS 7 VICKERS 9 VICKERS 7 VICKERS 9 VICKERS 7 VICKERS 9 VICKERS 7 VICKERS 9 VICKERS 7 VICKERS 9 VICKERS 7 VICKERS 9 VICKERS 7 VICKERS 9 VICKERS 7 VICKERS 9 VICKERS 7 VICKERS 9 VICKERS 7 VICKERS 9 VICKERS 9 VICKERS <th>Reference</th> <th>(Sq.km)</th> <th>(Cumecs)</th> <th>Pump</th> <th>1</th>	Reference	(Sq.km)	(Cumecs)	Pump	1
2 VICKERS 3 VICKERS 4 VICKERS 5 VICKERS 6 VICKERS 7 VICKERS 8 VICKERS 9 VICKERS 6 VICKERS 7 VICKERS 8 VICKERS 9 VICKERS 1 FLYGT 1 FLYGT 135 FINE JANE 50 328 135 FINE JANE 51 SD 135 FINE JANE 50 328 136 HEY COP 50 338 136 HEY COP 50 338 137 INCE BLUNDELL 50 329 141 SD 152 ALLEN GUYNNES 137 INCE BLUNDELL 50 329 137 INCE BLUNDELL 50 333 137 SD 138 MEW CUT		51.84	83.720		
3 VICKERS 4 VICKERS 5 VICKERS 6 VICKERS 7 VICKERS 8 VICKERS 7 VICKERS 8 VICKERS 8 VICKERS 9 VICKERS 1 FLYGT 2 FLYGT 35 FINE JAHE SD 328 36 HEY COP 30 338 36 HEY COP 30 338 37 INCE BLUNDELL SD 329 37 INCE BLUNDELL SD 329 38 NEW CUT SD 333 38 NEW CUT SD 333 39 9 1 TSURUMI 2 TSURUMI 39 PENDLEBURY SJ 516 39 1 1 ALLEN GWYNNES 2 TSURUMI 2 <td< td=""><td></td><td></td><td></td><td></td><td>VICKERS</td></td<>					VICKERS
4 VICKERS 5 VICKERS 6 VICKERS 7 VICKERS 8 VICKERS 9 SD 328 088 14.17 2.600 1 ALLEN GWYNNES 2 ALLEN GWYNNES 36 HEY COP SD 338 040 6.80 37 INCE BLUNDELL SD 329 046 4.46 0.660 1 TSURUMI 2 TSURUMI 2 38 NEW CUT SD 333 080 5.30 0.900 <td></td> <td></td> <td>10.1</td> <td>_</td> <td></td>			10.1	_	
5 VICKERS 6 VICKERS 7 VICKERS 8 VICKERS 9 SD 328 088 14.17 2.600 1 ALLEN GWYNNES 2 ALLEN GWYNNES 36 HEY COP SD 338 040 6.80 37 INCE BLUNDELL SD SD 329 046 4.46 0.660 1 TSURUMI 2 TSURUMI 2 38 NEW CUT SD 333 080 39 PENDLEBURY SJ 516				-	
6 VICKERS 7 VICKERS 8 VICKERS 8 VICKERS 934 DOG CLOG SJ 471 878 7.94 0.070 1 FLYGT 2 FLYGT 935 FINE JANE SD 328 088 14.17 2.600 1 ALLEN GUYNNES 2 ALLEN GUYNNES 2 ALLEN GUYNNES 3 ALLEN GUYNNES 36 HEY COP SD 338 040 6.80 3.390 1 ALLEN GUYNNES 2 ALLEN GUYNNES 36 HEY COP SD 338 040 6.80 3.390 137 INCE BLUNDELL SD 329 046 4.46 0.660 1 TSURUMI 2 TSURUMI 38 NEW CUT SD 333 080 5.30 0.900 1 TSURUMI 2 TSURUMI 238 NEW CUT SJ 516 913 2.17 0.740 1 ALLEN GUYNNES 2 ALLEN GUYNNES					
7 VICKERS 8 VICKERS 934 DOG CLOG SJ 471 878 7.94 0.070 1 FLYGT 935 FINE JANE SD 328 088 14.17 2.600 1 ALLEN GLYNNES 2 ALLEN GLYNNES 3 ALLEN GLYNNES					
034 DOG CLOG SJ 471 878 7.94 0.070 1 FLYGT 035 FINE JANE SD 328 088 14.17 2.600 1 ALLEN GUYNNES 035 FINE JANE SD 328 088 14.17 2.600 1 ALLEN GUYNNES 035 FINE JANE SD 328 088 14.17 2.600 1 ALLEN GUYNNES 036 HEY COP SD 338 040 6.80 3.390 1 ALLEN GUYNNES 036 HEY COP SD 338 040 6.80 3.390 1 ALLEN GUYNNES 037 INCE BLUNDELL SD 329 046 4.46 0.660 1 T SURUMI 038 NEW CUT SD 333 080 5.30 0.900 1 T SURUMI 038 NEW CUT SD 333 080 5.30 0.900 1 T SURUMI 039 PENDLEBURY SJ 516 913 2.17 0.740 1 ALLEN GUYNNES				-	
034 DDG CLOG SJ 471 878 7.94 0.070 1 FLYGT 2 FLYGT 2 FLYGT 2 FLYGT 1 ALLEN GWYNNES 035 FINE JAME SD 328 088 14.17 2.600 1 ALLEN GWYNNES 036 HEY COP SD 338 040 6.80 3.390 1 ALLEN GWYNNES 036 HEY COP SD 338 040 6.80 3.390 1 ALLEN GWYNNES 037 INCE BLUNDELL SD 329 046 4.46 0.660 1 TSURUMI 038 NEW CUT SD 333 080 5.30 0.900 1 TSURUMI 039 PENDLEBURY SJ 516 913 2.17 0.740 1 ALLEN GWYNNES					
1 FLYGT 2 ALLEN GWYNNES 3 ALLEN GWYNNES 036 HEY COP 50 338 040 6.80 3.390 1 ALLEN GWYNNES 2 ALLEN GWYNNES 037 INCE BLUNDELL SD 329 046 4.46 0.660 1 1 ALLEN GWYNNES 037 INCE BLUNDELL SD 50 333 080 5.30 0.900 1 TSURUMI 2 TSURUMI 038 WEW CUT SJ 516 913 2.17 0.740 1 ALLEN GWYNNES 2 ALLEN GWYNNES		•			
2 FLYGT D35 FINE JANE SD 328 088 14.17 2.600 1 ALLEN GWYNNES 2 ALLEN GWYNNES 2 ALLEN GWYNNES 3 ALLEN GWYNNES 036 HEY COP SD 338 040 6.80 3.390 036 HEY COP SD 338 040 6.80 3.390 036 HEY COP SD 338 040 6.80 3.390 1 ALLEN GWYNNES 2 ALLEN GWYNNES D37 INCE BLUNDELL SD 329 046 4.46 0.660 1 TSURUMI 2 TSURUMI 038 NEW CUT SD 333 080 5.30 0.900 1 TSURUMI 2 TSURUMI 039 PENDLEBURY SJ 516 913 2.17 0.740 1 ALLEN GWYNNES 2 ALLEN GWYNNES	SJ 471 878	7.94	0.070		
035 FINE JANE SD 328 088 14.17 2.600 1 ALLEN GWYNNES 2 ALLEN GWYNNES 2 ALLEN GWYNNES 3 ALLEN GWYNNES 3 ALLEN GWYNNES 4 ALLEN GWYNNES 036 HEY COP SD 338 040 6.80 3.390 036 HEY COP SD 338 040 6.80 3.390 1 ALLEN GWYNNES 2 ALLEN GWYNNES 037 INCE BLUNDELL SD 329 046 4.46 0.660 1 TSURUMI 2 TSURUMI 038 NEW CUT SD 333 080 5.30 0.900 1 TSURUMI 2 TSURUMI 039 PENDLEBURY SJ 516 913 2.17 0.740 1 ALLEN GWYNNES 2 ALLEN GWYNNES					
1 ALLEN GWYNNES 2 ALLEN GWYNNES 3 ALLEN GWYNNES 4 ALLEN GWYNNES 4 ALLEN GWYNNES 036 HEY COP 50 338 040 6.80 036 HEY COP SD 338 040 037 INCE BLUNDELL SD 329 046 4.46 0.660 1 TSURUMI 2 TSURUMI 2 TSURUMI 038 NEW CUT SD 333 080 5.30 0.900 1 TSURUMI 2 TSURUMI 2 TSURUMI 039 PENDLEBURY SJ 516 913 2.17 0.740 1 ALLEN GWYNNES 2 ALLEN GWYNNES 2				2	FLYGT
1 ALLEN GWYNNES 2 ALLEN GWYNNES 3 ALLEN GWYNNES 4 ALLEN GWYNNES 4 ALLEN GWYNNES 036 HEY COP 50 338 040 6.80 1 ALLEN GWYNNES 2 ALLEN GWYNNES 3 ALLEN GWYNNES 037 INCE BLUNDELL SD 329 046 4.46 0.37 INCE BLUNDELL SD 3 ALLEN GWYNNES 3 038 NEW CUT SD 333 038 NEW CUT SD 333 039 PENDLEBURY SJ 516 913 039 PENDLEBURY SJ 516 913 2.17 1 ALLEN GWYNNES 2 ALLEN GWYNNES 2 ALLEN GWYNNES 2 ALLEN GWYNNES	720 000	4/ 47	7 400		
2 ALLEN GWYNNES 3 ALLEN GWYNNES 4 ALLEN GWYNNES 4 ALLEN GWYNNES 036 HEY COP 50 338 040 6.80 3.390 1 ALLEN GWYNNES 2 ALLEN GWYNNES 2 ALLEN GWYNNES 3 SD 333 080 5.30 0.900 1 TSURUMI 2 TSURUMI 2 TSURUMI 039 PENDLEBURY 3 516 913 2.17 1 ALLEN GWYNNES 2 ALLEN GWYNNES	20 JCO VOO	14.17	2.000		ALLEN CINUUEC
3 ALLEN GWYNNES 036 HEY COP SD 338 040 6.80 3.390 1 ALLEN GWYNNES 2 ALLEN GWYNNES 2 ALLEN GWYNNES 037 INCE BLUNDELL SD 329 046 4.46 0.660 1 T SURUMI 037 INCE BLUNDELL SD 329 046 4.46 0.660 1 T SURUMI 038 NEW CUT SD 333 080 5.30 0.900 1 T SURUMI 039 PENDLEBURY SJ 516 913 2.17 0.740 1 ALLEN GWYNNES 2 ALLEN GWYNNES 2 ALLEN GWYNNES 3.41LEN GWYNNES					
4 ALLEN GUYNNES D36 HEY COP SD 338 040 6.80 3.390 1 ALLEN GUYNNES 2 ALLEN GUYNNES 2 ALLEN GUYNNES 3 ALLEN GUYNNES 037 INCE BLUNDELL SD 329 046 4.46 0.660 1 TSURUMI 2 TSURUMI 038 NEW CUT SD 333 080 5.30 0.900 1 TSURUMI 2 TSURUMI 039 PENDLEBURY SJ 516 913 2.17 0.740 1 ALLEN GWYNNES 2 ALLEN GWYNNES					
036 HEY COP SD 338 040 6.80 3.390 1 ALLEN GWYNNES 2 ALLEN GWYNNES 3 ALLEN GWYNNES 3 ALLEN GWYNNES 037 INCE BLUNDELL SD 329 046 4.46 0.660 1 T SURUMI 038 NEW CUT SD 333 080 5.30 0.900 1 T SURUMI 038 NEW CUT SJ 516 913 2.17 0.740 1 ALLEN GWYNNES 039 PENDLEBURY SJ 516 913 2.17 0.740 1 ALLEN GWYNNES					
1 ALLEN GWYNNES 2 ALLEN GWYNNES 3 ALLEN GWYNNES 3 ALLEN GWYNNES 037 INCE BLUNDELL SD 329 046 4.46 0.660 1 TSURUMI 2 TSURUMI 038 NEW CUT SD 333 080 5.30 0.900 1 TSURUMI 2 TSURUMI 2 TSURUMI 2 TSURUMI 039 PENDLEBURY SJ 516 913 2.17 0.740 1 ALLEN GWYNNES 2 ALLEN GWYNNES				-	
2 ALLEN GWYNNES 3 ALLEN GWYNNES	SD 338 040	6.80	3.390		
3 ALLEN GWYNNES 037 INCE BLUNDELL SD 329 046 4.46 0.660 1 T SURUMI 038 NEW CUT SD 333 080 5.30 0.900 1 T SURUMI 038 NEW CUT SD 333 080 5.30 0.900 1 T SURUMI 039 PENDLEBURY SJ 516 913 2.17 0.740 1 ALLEN GWYNNES 2 ALLEN GWYNNES 2 ALLEN GWYNNES 1 ALLEN GWYNNES					
037 INCE BLUNDELL SD 329 046 4.46 0.660 1 TSURUMI 2 TSURUMI 038 NEW CUT SD 333 080 5.30 0.900 1 TSURUMI 039 PENDLEBURY SJ 516 913 2.17 0.740 1 ALLEN GWYNNES 2 ALLEN GWYNNES					
1 TSURUMI 2 TSURUMI 038 NEW CUT SD 333 080 5.30 0.900 1 TSURUMI 2 TSURUMI 2 TSURUMI 039 PENDLEBURY SJ 516 913 2.17 0.760 1 ALLEN GWYNNES 2 ALLEN GWYNNES				2	ALLEN GWYNNES
1 TSURUMI 2 TSURUMI 038 NEW CUT SD 333 080 5.30 0.900 1 TSURUMI 2 TSURUMI 2 TSURUMI 039 PENDLEBURY SJ 516 913 2.17 0.760 1 ALLEN GWYNNES 2 ALLEN GWYNNES	M 120 044	L 14	0.440		
2 TSURUMI 038 NEW CUT SD 333 080 5.30 0.900 1 TSURUMI 2 TSURUMI 039 PENDLEBURY SJ 516 913 2.17 0.760 1 ALLEN GWYNNES 2 ALLEN GWYNNES 2 ALLEN GWYNNES	20 754 040	4.40	V.000		TOUDIDAT
038 NEW CUT SD 333 080 5.30 0.900 1 TSURUMI 2 TSURUMI 039 PENDLEBURY SJ 516 913 2.17 0.760 1 ALLEN GWYNNES 2 ALLEN GWYNNES					
1 TSURUMI 2 TSURUMI 039 PENDLEBURY SJ 516 913 2.17 0.760 1 ALLEN GWYNNES 2 ALLEN GWYNNES				-	1 JUNUT
1 TSURUMI 2 TSURUMI 039 PENDLEBURY SJ 516 913 2.17 0.760 1 ALLEN GWYNNES 2 ALLEN GWYNNES	SD 333 080	5.30	0.900		
2 TSURUMI 039 PENDLEBURY SJ 516 913 2.17 0.760 1 ALLEN GWYNNES 2 ALLEN GWYNNES					T SURUM I
1 ALLEN GWYNNES 2 ALLEN GWYNNES				2	TSURUMI
1 ALLEN GWYNNES 2 ALLEN GWYNNES					
2 ALLEN GWYNNES	SJ 516 913	2.17	0.740		
J ALLER WINNES					
				3	ALLEN GWYNNES
		*553552223	*******	_	
- 1	**********	******	****** ***	_	
		Reference SD 295 044 SJ 471 878 SD 328 088 SD 328 088 SD 338 040 SD 329 046 SD 333 080	Reference (Sq.km) SD 295 044 51.84 SJ 471 878 7.94 SD 328 088 14.17 SD 338 040 6.80 SD 329 046 4.46 SD 333 080 5.30	Reference (Sq.km) (Cumecs) SD 295 044 51.84 83.720 SJ 471 678 7.94 0.070 SD 328 088 14.17 2.600 SD 338 040 6.80 3.390 SD 329 046 4.46 0.660 SD 333 080 5.30 0.900	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

.

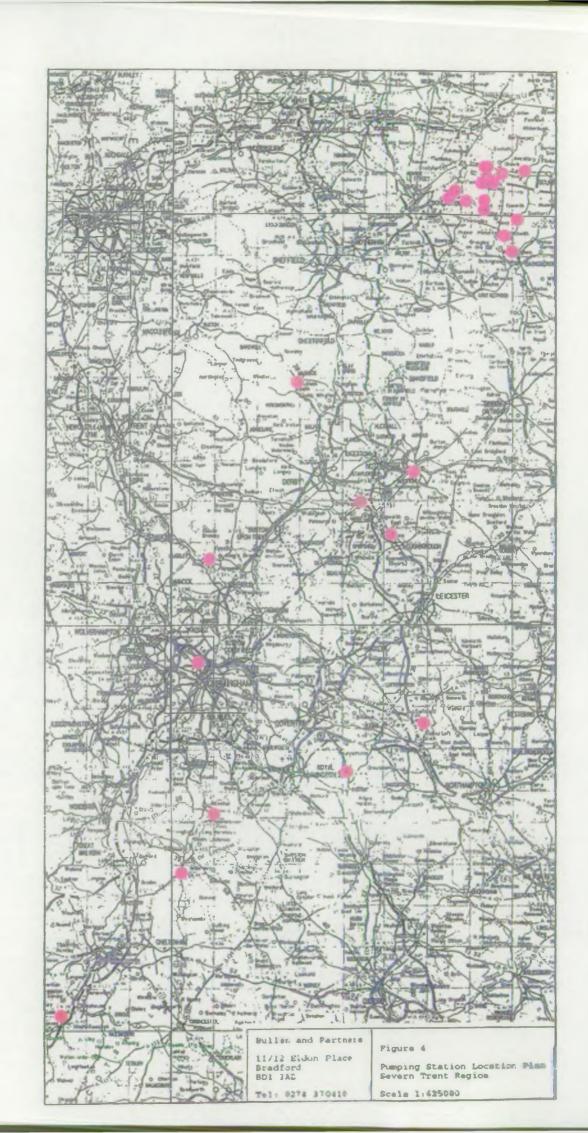
..... 1

Year	Ритр Туре	Size Diam,	Hous.	Mourn.	Capacity (cumecs)		<pre>Impel. Speed (R.P.M)</pre>	Drive	H.P	Supply Voltage	Disc. Type
		•••••									
1972	A	686 mm	HB	v	1.13	6.10	735	E	160.0	415	S1
1972	A	686 mm	HB	v	1.13	6.10	735	E	160.0	415	SI
1972	A	686 mm	HB	v	1.13	6.10	735	Ε	160.0	415	51
1972	A	686 mm	HB	v	1.13	6.10	735	E	160.0	415	st -
1972	A	2210mm	HB	v	19.80	6.10	195	D	1,800.0		SL
972	A	2210mm	HB	v	19.80	6.10	195	D	1,800.0		SL
972	A	2210mm	MB	v	19.80	6.10	195	0	1,800.0		SL
972	A	2210mm	MB	V	19.80	6.10	195	D	1,800.0		SL
1973	C.	152 mm	SB	v	0.04			£		415	SR
1973	C	152 mm	\$ 8	V	0.04			£		415	SR
						÷.					
956	A	254 mm	H8	v	0.15	0.00	•	Ε	12.0	415	51
956	A	508 mm	HB	v	0.59	0.00		Ε	50.0	415	St
956	A	508 mm	HB	v	0.59	0.00		Ε	50.0	415	SI
956	A	914 mm	HB	v	1.27	0.00		E	100.0	415	S1
974		686 mm	LB	v	1.13	4.57		E	132.0	415	51
974	Ä	686 mm	19	v	1,13	4.57		Ē	132.0	415	51
974	A	686 mm	L8	v	1.13	4.57		E	132.0	415	\$1
				-	-			_		-	
980	С	300 mm	SB	v	0.33	7.75	1,000	Ε	60.0	415	S1
1980	č	300 mm	58	v	0.33	7.75	1,000	Ĕ	60.0	415	S1
	•			•			.,				51
982	C	400 mm	SB	v	0.45	7.50	1,000	E	60.0	415	SI
982	С	400 mm	SB	V	0.45	7.50	1,000	Ε	60.0	415	S1
	_							-			
9	A.	254 mm	HB	N.	0.17	4.10		E		415 415	SI
9 9	A .	254 mi	K8 K8	V	0.17 0.40	4.10 4.10		E		415	SL
¥	A	406 mm	N 0	v	0.40	4.10		C		413	51

.

.

..


• •

÷

SEVERN-TRENT

EGION	SUB RI		STN. NO	NAME

evern-Trent	Louiser	Trent	001	TUNNEL PITS
	LOwer	itenc	002	
			003	SNOW SEWER NEW ZEALAND
1			004	MEDGE HALL
			005	
				LOW BANK
			006	KEADBY
			012	WOODCARR
			013	WEST STOCKWITH
			014	WATERTON FARM
			015	GOODCOP
			016	DIRTNESS
			017	CANDY FARM
			018	BULL HASSOCKS
			019	BELTON GRANGE
			020	BECKINGHAM
			021	ARMTHORPE RESERVOIR
			024	Shardlow
			025	KNOWLESTON PLACE
			026	NORMANTON
			027	GREYTHORNE DYKE
.*	Lower	Severn	007	Cam
			008	LONG ITCHINGTON
			009	CLAY COTON
			010	BARTON
			011	SEDGEBERROW
	Upper	Trent	022	PERRY HALL FIELDS
			023	HIGH BRIDGE

4)-

	n. Stn. Name	National Grid	Catchment		No	
		Reférence		(Cumecs)		
	vern-Trent				••••	••••••••••••••
	TUNNEL PITS	SE 735 041	17.01	1.480		
			•		1	ALLEN GWYNNES
						ALLEN GWYNNES
						ALLEN GWYNNES
					4	ALLEN GWYNNES
)02	SNOW SEVER	SK 813 994	34.27	2.850		
					1	SULZER
		÷				SULZER
					3	SULZER
01	NEW ZEALAND	SE 734 122	15.37	1.850		1
					1	ALLEN GWYNNES
						ALLEN GWYNNES
04	MEDGE HALL	SE 748 123	6.23	0.480	· .	ALLEN COMPUTE
						ALLEN GWYNNES ALLEN GWYNNES
					E .,	NELEN GRIANES
05	LOW BANK	SE 739 085	8.90	2.130		
						BRITISH PLEUGER
						BRITISH PLEUGER
					3	BRITISH PLEUGER
)6	KEADBY	SE 835 114	377.80	32.280		
						ALLEN GWYNNES
	~					ALLEN GWYNNES
						ALLEN GWYNNES
						ALLEN GWYNNES ALLEN GWYNNES
						ALLEN GWYNNES
07	CAM	so 746 045	45.00	1.500		
					1 2	
					3	
	4				-	
D8	LONG ITCHINGTON	SP 412 651	1.00		•	
						FLYGT
					2	FLYGT
09	CLAY COTON	SP 592 769	1.00	0.213		
					1	FLYGT
10	BARTON	SP 108 513	1.00	0.095	•	
						FLYGT
11	SEDGEBERROW	SP 026 386	1.00	0.300		
		•••••••••				FLYGT

R

Year	Ритр Туре	Size Diam,	Hous.	Moun,	Capacity (cumecs)	Stat. Head (m)	<pre>tmpel. Speed (R.P.M)</pre>	Drive	H.P.	Supply Voltage	Disc. Type
• • • • •			• • • • • •	••••						••••••	
		e la									
1963	A	457 mm	HB	٧	0.37			E	35.0	415	st
1963	A	457 mm	HB	۷.	0.37			E	35.0	415	51
1963	A	457 mm	- HB	V.	0.37	•		Ε	35.0	415	12
1963	A	457 mm	HB	v	0.37			Ë	35.0	415	S1
1976	MF	610 mm	HB	v	0.95			D	165.0		SE
1976	HF	610 mm	KB	٧	0.95			0	165.0		SE
1976	MF	610 mm	HB.	V	0.95			D	165.0		SE
1981	A	610 mm	HB	v	1.00		585	£	84.0	415	SE
1941	A	560 mm	HB	v	0.85		580	E	60.0	415	SE
1941	A	355 mm	HB	v	0.24			£	15.0	400	SL
1941	A	355 mm	HB	V Í	0.24	1		Ε	15.0	400	SL
1977	A		58	н	0.71	6.18		E	100.0	415	S 1
1977	A		SB	H	0.71	6.18		Ē	100.0	415	\$1
1977	A		\$ 8	H	0.71	6.18		E	100.0	415	\$1
1940	MF	1524mm	HB	н	5.38		1,440	0	420.0	-400	SR
1940	MF	1524mm	HB	H	5.38		1,440	Ð	420.0	. 400	SR
1940	⊢∻ HF	1524mm	HB	H	5.38		1,440	D	420.0	400	SR
1940	HF	1524mm	KB	H	5.38		1,440	D	420.0	400	SR
1940	MF	1524mm	HB	H	5.38		1,440	0	420.0	400	SR
1940	NF	1524mm	KB	H	5.38		1,440	0	420.0	400	SR
	-							_	40.0		
1980	A.	250 mm	HB	N.	0.15	- - 7	770	E	12.0	415	SL
1980 1980	A A	500 mm 500 mm	нв Нв	V V	0.68 0.68	2.75 2.75	730 730	E	46.0 46.0	415 415	SL SL
			\tilde{v}								
1970			SB	v			1,440	Ε	4.1	415	SR
1970			S8	V		32	1,440	E	4.1	415	SR
1982	A		58	v	0.21	3.35	965	E	33.0	440	SR
1981	٨	410 mm	SB	۷	0.09	2.30		E	8.0	415	SR
		500 m		v	0.30	4.00	950	E	12.0	415	SR

Stn. Stn.	National	Gatchment	Total	No	Hanufacturer
No. Name	Grid Reference		Capacity (Cumecs)		
012 WOODCARR	SE 754 088	2.38	0.630	••••	
					ARHFIELD
		1. A.		Ş	
				3	ARMFIELD
013 VEST STOCKWITH	SK 787 952	842 00	35.400		
UIS WEST STOCKWITH	JK 101 752	042.00	37.400	1	WEIR
					WEIR
				. 3	WEIR
		•		4	WETR
		10 / 2	3 674		
014 WATERTON FARM	SE 663 066	18.62	2.931	1	ALLEN GWYNNES
					ALLEN GWYNNES
				_	ALLEN GWYNNES
				-	
015 G000C0P	SE 736 083	31.77	4.610		
					FLYGT
				_	FLYGT
				2	ALLEN GWYNNES ALLEN GWYNNES
					ALLER GWINNES
D16 DIRTNESS	SE 747 097	19.80	3.640		
		•		1	ALLEN GWYNNES
				2	ALLEN GWYNNES
017 CANDY FARM	SE 698 031	23.25	3,160		
UT/ CANUT FARE	36 070 031	23.23	5.100	1	ALLEN GWYNNES
				ż	ALLEN GWYNNES
				3	ALLEN GWYNNES
018 BULL HASSOCKS	SE 732 016	27.35	5.610		
	4			1	ALLEN GWYNNES
				23	ALLEN GWYNNES
				4	ALLEN GWYNNES Flygt
				-	
019 BELTON GRANGE	SE 771 105	1.54	0.210		
				1	ARMFIELD
030 AFEYINCHAM		21 47	2.830		
OZO BECKINGHAM	SK 801 915	¢1,1/	6.030		RUSTON/ALLEN GWYNNES
					RUSTON/ALLEN GWYNNES
				£	HARING PERCENTATION
021 ARMTHORPE RESERVOIR	SE 658 048		0.450		
	Ger				BRITISH PLEUGER
		4		2	BRITISH PLEUGER
022 PERRY HALL FIELDS	SP 062 919			•	FLYGT

i.

				338262					*******			3
Year	Pump Type	Size Diam.			Capacity (cumecs)	Stat.	Impel. Speed (R.P.M)	Drive	H.P.	Supply Voltage	Disc. Type	-
	• • • • • •	····		•••••	• • • • • • • • • • • • •	• • • • • • • •	• • • • • • • • • • •					•
1978 1978	A	250 mm 250 mm		V.	0.20 0.20	5.50 5.50		E	25.0 25.0	415 415	SI S1	
1978	A	250 mm 250 mm	00 00	v v	0.20	5.50		Ē	25.0	415	SI	
1980	A	2440mm	HB	v	12.70		273	E	1,400.0	33,000	51	
1980	A	2440mm		v	12.70		273	E	1,400.0	33,000	SI	
1980 1980	A	1520mm		V	4.96 4.96		330 330	E	600.0 600.0	33,000 33,000	51 51	
1980	•	1520 m m	HU	v	4.90			E	600.0	33,000	21	
1977	A	610 mm		v	0.97	4.91		E	57.6	415		
1977	A	610 mm	00	V	0.97 0.97	4.91 4.91		E	57.6 57.6	415 415		
1977	A .	610 mm	00	v	0.97	4.91		Ľ	57.6	413	1.	
1983	A	975 mm	HВ	v	1.60			E	73.0	415	¥.	
1983	Â	975 mm		v	1.60			Ē	73.0	415		
1965	A	500 mm	HÐ	v	0.71			E	40.0	415		
1965	A	500 mm	нØ	v	0.71			E	40.0	415		•
1952	A	915 mm	HB	v	1.82	7.00		E	105.0	400	SI	
1952	A	915 mm	HB	V	1.82	7.00		E	105.0	400	SL	
1940	С	840 mm	ĦB	н	1.44			۵	103.0	400	SV	•
1940	С	686 mm	H8	H	0.71			D	57.0		SV	
1940	C	686 mm	HB	Ħ	1.01			D	78.0	415	SE	
1941	C	914 m	KB	H	1.64			Đ	100.0		sv	
1941	C	914 mm	HB	H	1.64			D	100.0		SV	
1941 1988	C A	914 mm 675 mm	HB 58	H V	1.64 0.68	0.00		D E	100 .0	415	SV 51	
1979	A	250 mm	LB	v	0.21		1,465	E	25.0	415		
1945	с	915 m	MB	н	1.42			D	114.0	230	SR	
1945	č	915 mm	K8 -	H	1.42			D	114.0	230	SR	
19	A	375 mm	SB	v	0.30			E	40.0	415		
19	Â	225 mm		v	0.15			Ē	25.0	415		
19	A		SB	v			•	E		415	SR	

Stn. Stn. No. Name s	National Grid Reference		Capacity		Manufacturer
023 HIGH BRIDGE	SK 091 167		3.600	•••••	
				1	FLYGT
					FLYGT
				3	FLYGT
				4	FLYGT
				5	FLYGT
				6	FLYGT
D24 SHARDLOW	SK 448 306				
				1	ARMFIELD
			•	2	ARMFIELD
					ARMFIELD
				4	ARMFIELD
025 KNOWLESTON PLACE	sr 301 599		6,100		
	0. 201 277		0,,,,,,	1	WEIR
					WEIR
					WEIR
				-	ABS
026 NORMANTON	sk 520 225		0.076		
	JA JEV ELJ		0.010	1	FLYGT
				•	FLYGT
D27 GREYTHORNE DYKE	er 571 374	106 00	1.300		
VET BRETINURNE DIKE	36 313 314	300.00	1.300	1	BRITISH PLEUGER
					BRITISH PLEUGER
					BRITISH PLEUGER
					BRITISH PLEUGER

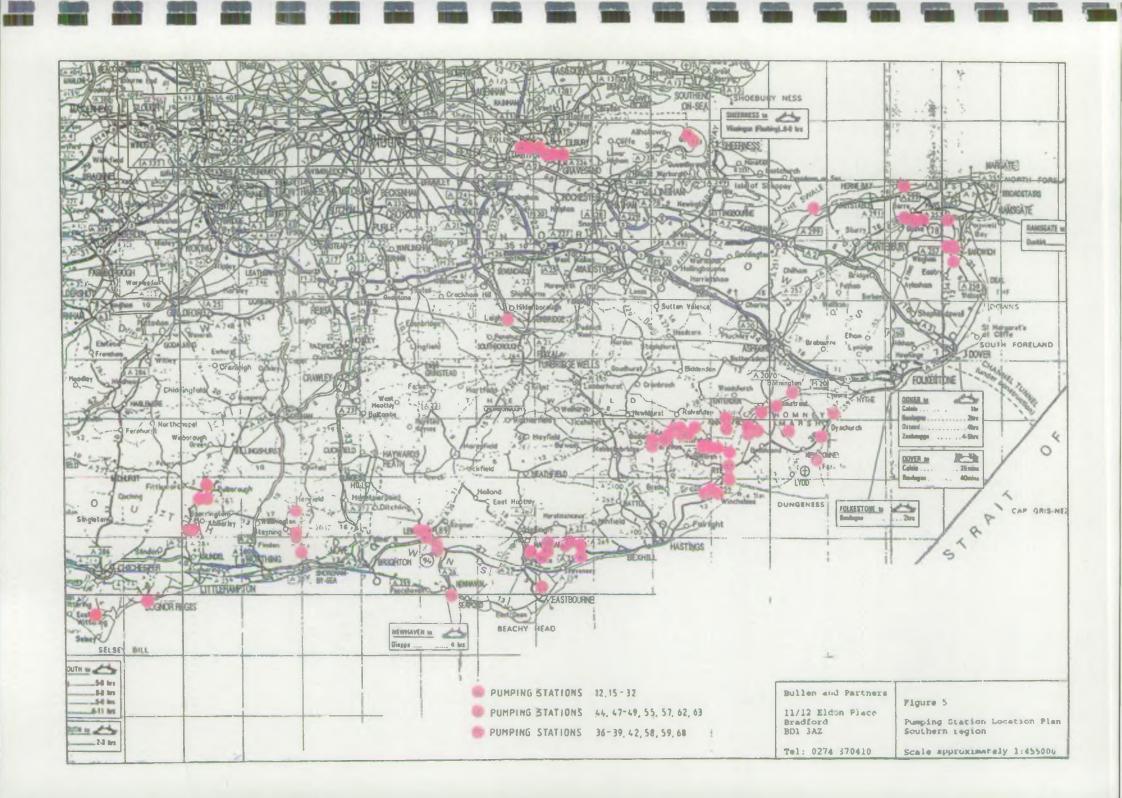
 $\sim \epsilon$

Yesr	Pump Type	Size Diam.	Hours.	Moun.	Capacity (cumecs)	Stat. Head (m)	Impel. Speed (R.P.M)	Drive	H.P.	Supply Voltage	Disc. Type
1986		600 mm	SB	v	0.60	6.00	965	e	30.0	415	SR
1986	A	600 mm	58 58	v	0.60	6.00	965	E E	30.0	415	SR
1986	Â	600 mm	38 58	v	0.60	6.00	965	Ē	30.0	415	SR
1986	Â	600 mm	30 58	v	0.60	6.00	965	Ē	30.0	415	SR
1986	Â	600 mm	58 58	v	0.60	6.00	965	Ē	30.0	415	SR
1986	Ä	600 mm	58 58	v	0.60	6.00	965	Ē	30.0	415	SR
19	•		00	v			1,450	E	24.0	415	
19			00	Y			1,450	E	24.0	415	
19	A		00	٧			1,450	E	24.0	415	
19	A		00	۷			1,450	E	24.0	415	
1984	A		LB	v	2.00	3.75	585	E	130.0	⁻⁵¹ 415	
1984	A		LB	V	2.00	3.75	585	Ε	130.0	415	
1984	A		18	V	2.00	3.75	585	Ε	130.0	415	
1991	C		S8	V	0.10	6.20	2,850	E	3.0	415	
		6				-				•	
1991			SB	ν =	0.05	2.00	1,440	Ε	4.1	415	
1991			SB	v S	0.03	2.00	935	Ē	1.2	415	
19	С	350 mm	SB	н	4,30			Е	40.0		-
19	č	350 mm	30 SB	N	0.43	0.00		E	40.0		SI
19	č	350 mm	58 58	H	0.43	0.00		Ē	40.0		SI
1992	c	300 mm	SB	v	0.32	5.00	960	Ē	30.0	- 415	SI

SOUTHERN

	SUB REGION		
Southern		042	CRAVEN
		045	EBONY
2.		054	* KITSBRIDGE IDB
	Chichester	001	* APPLESHAM
0.00	0.10.000001	002	* ANNINGTON
		003	* BEEDING BROOKS
		004	* NORTHOVER
	5	005	PULBOROUGH
		006	* HARDHAM
		007	* GREATHAM
		008	* HOUGHTON
		009	* BURY
		010	FELPHAM
		011	FERRY
	Tunbridge	012	BAXTER FELL
		013	HAMS HILL
		014	LEIGH
		015	G.E.C.
		016	NORTHFLEET NO.2
		017	NORTHFLEET NO.1
1.21		018	BOWATER NO.2
		019	BOWATER NO.1
		020	ROBINS CREEK
•		021	SHELL
		022	TOWER DRAIN
		023	BRITANNIA LEAD
		024	M+B DREDGING
		025	M+B ROYALE
		026	EMPIRE PAPER NO.2
		027	EMPIRE PAPER NO.1
		028-	BENDIGO WHARF
		029	WHITE HART
		030	EVERARDS
		031	GRAVESEND
		032 033	ALEXANDRA
	Rue	033	MILL MARSH
	Rye	034	APPLEDORE BILSINGTON
		036	BLACKWALL EAST
		030	
		037	BLACKWALL NORTH
		038	BLACKWALL SOUTH
		040	BOONSHILL * BRACK IDE
		040	COURT LODGE
		043	DIMSDALE
		044	DIXTER
		046	GREATSTONE
		047	HERONDEN
		048	HEXDEN NORTH
		049	HEXDEN SOUTH
		050	* ICKLESHAM
		051	* INDRAFT IDE
		052	JESSON
		053	KENT DITCH
		055	KNELLE
		056	* LODGELAND IDB
		057	MAYTHEM
		058	NEWBRIDGE NORTH
		059	NEWBRIDGE SOUTH
		060	NEWHOUSE
		061	NORTHPOINT
		062	POTMANS HEATH
		063	READING SEWER
		064	SHIRLEY MOOR
	20	065	UNION
		066	WAREHORNE
1.41		067	WILLOP
		068	WOODSIDE
		069	SARRE
		009	ASH LEVEL
		070	SEASALTER
		072	NORTH POUDLERS
		072	
		073	MINSTER
		074	STOURMOUTH IN BECHING
		075	
			BUTTERFLY
		077 078	COOPER STREET MILE END
	Pevensey	078	HONEYCROCK
	. evenbey	080	+ DROCKMILL

•


ľ

¢.

. .

÷

SUB REGION REGION STN. NO NAME MALLING BROOKS
MANXEY
RICKNEY
STAR INN
HORSEBRIDGE
NEWBRIDGE
RODMEL
NEWHAVEN
STONEHAM
OFFHAM
RANSCOOMBE
BARNHORN
LOTTBRIDGE
BEDDINGHAM --------------************* ==== 081 082 083 084 085 086 087 088 089 090 091 092 093 094 2 -. .

NRA - Survey of Land Drainage Pumping Plant Installations

Pump Summary

tn. Stn. o. Name	National Grid Reference	Catchment Area (Sq.km)	t Total Capacity (Cumecs)		Manufacturer	Year	Pump Type	Size Diam,	Hous.	Houn,	Capacity (cumees)		Impel. Speed (R.P.M)	Dríve	H.P.	Supply Voltage	Disc. Type
outhern																	
01 * APPLESHAN	TO 200 07	5.10	0.100	1	MAXIFLOW TYPE4	1968	-A	250 mm	1 R	v	0.10	4.00	1,440	E	15.0	415	SL
			•	•					è.	•				•			
02 * ANNINGTON	TQ 193 100	1.30	0.400			4070	-				A 3A	7 /0		-			
					FLYGT FLYGT	1979	C C		00 00	V V	0.20 0.20	3.60 3.60		E	30.0 30.0	415 415	51 S1
				•		.,,,,				•	0.20	3.00		L	50.0		31
03 * BEEDING 8R	DOKS TO 191 110	5.00	0.400														
					MAXIFLOW TYPE4 MAXIFLOW TYPE4	1973 1973	A	250 mm 250 mm		H H	0.20 0.20	4.30 4.30	1,450 1,450	E	15.0 15.0	415 415	SL SL
				2	MAXIFLUW TIPE4	1975	•	230 ma	00	n	0.20	4.30	1,430	E	15.0	415	36
04 * NORTHOVER	to 196-144	0.40	0,100														
		•		1	MAXIFLOW TYPE4	1972	A	250 mm	LB	V	0.10	4.00	1,440	E	15.0	415	SL
D5 PULBOROUGH	TO 046 18	0.10	0.200	•													
		0.10	0,200	1	WALLWIN	1967	C		LB	v	0.10	3.40	580	E	5.0	415	S I
				5	VALLWIN	1967	C		LB	V	0.10	3.40	580	E	5.0	415	S1
06 t HARDHAM	TO 045 16	1.20	0.200														
		, ,,,,,	0.100	1	FLYGT	19	C		58	v	0.10	5.00		E	8.0	415	SL
				2	FLYGT	19	C		S8	۷	0.10	5.00		E	8.0	415	SL
7 * GREATHAM	10 037 16	1.20	0.300														9
UNLATION			0.500	1	FLYGT	19	C		SB	v	0.10	5.00	·	E	8.0	415	SL
					FLYGT	19	C		SB	۷	0.10	5.00		E	8.0	415	SL
				3	FLYGT	19	C		SB	v	0.10	5.00		E	8.0	415	SL
08 * HOUGHTON	TO 023 112	1.50	0.100														
				1	ARMFIELD	19	A		00	V	0.10	4.00		E	15.0	415	SL
	TQ 016 12	2.60	0.100														
09 • BURY		2.00	0,100	t	FLYGT	1991	С		00	v	0,10	3.50	1,450	E	8.0	415	SL
		· .		•		•,-•	•			·				-			
10 FELPHAM	52 947 992	5.50	2.700									4 00	Faa	-	•		
					ALLEN GWYNNES ALLEN GWYNNES	1961 1961	Å		HB HB	v I	0.90 0.90	4.90 4.90	580 580	E	84.0. 84.0	415 415	S1 S1
					ALLEN GWYNNES	1961	Ä		HB	Ŷ	0.90	4.90	580	Ē	84.0	415	SI
4 45454	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	40.50															
I1 FERRY	SZ 856 963	10.70	2.400	1	ALLEN GWYNNES	1975			00	v	1.20	3.90	490	E	160.0	415	SL
					ALLEN GWYNNES	1975	Â		00	v	1.20	3.90	490	Ē	160.0	415	SL
						-											
2 BAXTER FELL	Ta 617 752		0.100	•	F1 WAT		-		CD		0.10	7 50	1,450	E	20.0	415	SR
				I	FLYGT	1979	C		SB		0.10	1.30	(,4)0	E	20.0	413	JR
13 HAMS HILL	to 868 773		0.225													<u>.</u>	
				1	FLYGT	19	C		LB	۷	0.23	2.24	950	E	12.0	415	SI
14 LEIGH	Ta 550 461	1.00	1.400														
16 IFIGN																415	SI

.

. .

Pump Summary		***********	*********		**************		
Stn. Stn. No. Name	National Grid Reference	Catchment Area (Sq.km)		No of	Manufacturer		Year
•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • •	•••••	•••••	•••••	••••
015 G.E.C.	· TQ 636 744	0.10	0.200				
					FLYGT		1979
				Z	FLYGT		1979
016 NORTHFLEET NO.2	TQ 634 745	0.10	0,100				
				1	FLYGT		1979
017 NORTHFLEET NO.1	TQ 630 746	0.10	0,100				
		v. 1V	v. 100	1	FLYGT	÷.,	19 79
		A 4-			1.0.1		
D18 BOWATER NO.2	TQ 628 746	0.10	0.100	•	FLYGT		197 9
				•			1719
019 BOWATER NO.1	TQ 627 747	0.10	0.100	-	F 1 44-		
				1	FLYGT		1979
020 ROBINS CREEK	TO 619 750	0.10	0.200	1			
					CCD/ABS		1981
				2	CCD/ABS		1981
OZ1 SHELL	TO 617 752	0.10	0.200				
					CCD/ABS		1981
		1. C.		2	CCD/ABS		1981
OZZ TOWER DRAIN	TQ 616 754	0.10	0.300				
	-		-		CCD/ABS		1981
					CCD/ABS CCD/ABS		1981 1981
				5	CLUTAD3		1901
023 BRITANNIA LEAD	TQ 613 756	0.10	0,200	-	APP / A F =		•
					CCD/ABS CCD/ABS		1981 1001
				۲	CCU/MD3		1981
024 M+8 DREDGING	19 613 7 58	0.10	0.100	-			
				1,,	CCD/ABS		1981
025 M+B ROYALE	TO 612 759	0.10	0.200				
					CCD/ABS		1981
				2	CCD/ABS		1981
D26 EMPIRE PAPER NO.2	TO 594 754	0.10	0.100				
				1	FLYGT		1978
077 ENDIDE	TO 503		A 14-				
027 EMPIRE PAPER NO.1	14 392 753	v.10	0.100	•	FLYGT		1978
				•			1770
028 BENDIGO WHARF	TQ 588 753	0.10	0.200	-	P1 144-		
					FLYGT		1978
				۲	FLYGT		1978

ł

ľ

.

. ...

,

-

....

Ритр Туре	Size Diam.			Capacity (cumees)	Stat.	Impel.			Supply Voltage	Disc. Type	
		•••••	•••••				*******			• • • • • • • • • • • •	•••
c		SB	v	0.10	5.00	1,450	E	20.0	415	SR	
c		SB	v	0.10	5.00	1,450	Ē	20.0	415	SR	
c		5 8	v	0.10	6.80	1,450	£	20,0	415	SR	
C		SB	v	0.10	6.80	1,450	E	20.0	415	SR	
с		SB	v	0.10	7.00	1,450	E	20.0	415	SR	
c		SB	v	0.10	7.40	1,450	E	20.0	415	SR	
с		5 8	v	0.10	5.50	950	´Ε	24.3	415	SR	
C		SB	v	0.10	5.50	950	E	24.3	415	SR	
						1.1					
C C		58 58	V V	0.10 0.10	9.70 9.70	950 950	E	24.3 24.3	415	SR	
Ŀ		28	v	0.10	9.70	430	E	24.3	415	SR	
c		SB	v	0.10	10,50	950	E	24.3	415	SR	
C		SB	V	0,10	10.50	950	Ε	24.3	· 415	SR	
C		SB	v	0.10	10.50	950	E,	24.3	415	SR	
				A 1A	7 00	~		24.7			
с С		SB SB	v	0.10	7.80	950 950	E		415 415	SR SR	
L		28	۲	0.10	7.80	¥J0		24.3	413	24	
C		SB	v	0.10	7.80	950	E	24.3	415	SR	
C		SB	V	0.10	7.80	950	E	24.3	415	SR	
C		SB	۷	0.10	7.80	950	E	24.3	415	SR	
							٣			1	
C		SB	V	0.10	6.70	1,450	E	20.0	415	SR	
C		SB	v	0.10	7.10	1,450	E	20.0	415	SR	
c		58	v	0.10	8.40	1,450	E	20.0	415	SR	
C		SB	۷	0.10	8,40	1,450	E	20.0	415	SR	

Stn. Stn. Io, Na me	National Grid Reference	Catchment Area (Sq.km)		No of	Hanufacturer	Yea
29 WHITE HART	TQ 586 752	0.10	0.300	••••	•••••	•••••
				1	FLYGT	197
					FLYGT	197
				3	FLYGT	197
30 EVERARDS	TQ 585 752	0.10	0.100			
		4-		1	FLYGT	197
31 GRAVESEND	TQ 652 745	0.10	0.100			
		•		1	RAYDEN	198
32 ALEXANDRA	tg 652 745	0.10	0.100			
				1	HAYDEN	198
	10 874 7/7	3 00	0 100	1		
33 MILL MARSH	10 871 763	2.00	0,100	1	FLYGT	198
				-		
34 APPLEDORE	TQ 960 295		1,220	1	ALLEN GWYNNES	195
				-	ALLEN GWYNNES	195
76 ottetuerou	TP 0// 3/4	,				
35 BILSINGTON	TR 046 340		1.000	1	SPAAN	196
		•			SPAAN	196
36 BLACKWALL EAST	TQ 886 258	2.27	0.350			
ARUANARE FUSI			~	1	SPAAN	197
	TO POE SEA	/ 77	1 / 70			
37 BLACKWALL NORTH	TQ 885 259	4.33	1.420	1	SPAAN	197
		•		-		
38 BLACKWALL SOUTH	TQ 885 258	7.73	2.830	1	SPAAN	197
					SPAAN	197
39 BOONSHILL	10 075 3/4	1 67	0 760	-		
SA ROOMSUIFF	TQ 935 246	1.87	0.350	1	SPAAN	196
				- 2 .		.,,
40 * BRACK IDB	TQ 969 275	4.54	0.380			10
				•	ALLEN GWYNNES	19
41 COURT LODGE	TO 803 257	2.85	0.570			
				1	SPAAN	197
42 CRAVEN	ta 934 247	8.24	1.300		3	
				1	SIMON HARTLEY	197
43 DIMSDALE	To 914 173	4.24	0.400			
				-	NYSON	197
				2	NYSON	197

i

ì

Ритр Туре		Hous.	Moum.	Capacity (cumecs)	Stat. Head (m)	Impel. Speed (R.P.M)		H.P.	Supply Voltage	Туре
							÷.,			
C		SB	v	0.10	6.10	1,450	E	20.0		SR
C C		SB SB	V V	0.10 0.10	6.10	1,450 1,450	E	20.0 20.0	415 and 415	SR SR
·		30	•	0.10	0. IV	1,430	E.	20.0		3R
C		SB	v	0.10	6.80	1,450	Æ	20.0	415	SR
C		SB	v	0.10	3.80		E	1.5	415	SR
÷.,					_			- - -		
C,		SB	۷	0.10	3.80		E	1.5	415	SR
									4	
С		S8	v	0.10	2.00		E	1.5	415	SR
							24.			
A	610 mm	нө	н	0.61	3.35		D	4		SR
A	610 mm	HØ	H	0.61	3.35		0			SR
s	1400mm	LB		0.50		35	E	25.0	415	SR
S	1400 m n	LB	•	0.50		35	E	25.0	415	SR
S	1200mm	LB	-	0.35	1.90	41	E	25.0	415	SR
5	2150mm	LB	•	1.42	1.98	29	E	100.0	415	SR
•				4 (3		~		175 0		60
S S	2150mm 2150mm			1.42 1.42	1.37 1.37		E	125.0 100.0	415 415	SR SR
3	213044	10		1.72	1.31	•••	6	100.0	415	JR
S	1200mm	LB	-	0.35	2.80	41	E	25.0	415	SR
A	225 mm	LB	H	0.38	0.00		E	25.0	415	SR
S	1500mm	LB	•	0.57	3.22	35	E	50.0	415	SR
s	2000mm	LB	-	1.30	2.55	30	E	100.0	415	SR
						4				
	300 mm	SB	V	0.20	•		E	33.0	415	SR
C	300 mm	SB	V	0,20			E	33.0	415	SR

		•		tallations		
Stn. No.	Stn. Name	National Grid	Catchment Area	Total Capacity	 Manufacturer	Year

	, Name	Reference	Area (Sq.km)	(Currecs)	Pump		
	DIXTER	10 835 270				SPAAN	1972
045	EBONY	TO 937 291	8.98	1.300	1	SIMON HARTLEY	19 7 5
046	GREATSTONE	TR 082 237	1.34	0.215		MATHER & PLATT MATHER & PLATT	1962 1962
047	HERONDEN	10 828 269	2.13	•0.300		SPAAN	1972
048	HEXDEN NORTH	10 854 287	6.22	1.000	1	SPAAN	1972
049	HEXDEN SOUTH	TQ 841 283	1.29	0.300	1	SPAAN	1972
050	* ICKLESHAM	to 891 176	5.86	0.920		JONES AND ATTWOOD FLYGT	1976 19
051	* INDRAFT IDB	TQ 981 285	1.30	0.150	1	SPAAN	1 971
052	JESSON	TR 090 273	25.35	2,800		JONES AND ATTWOOD JONES AND ATTWOOD	1980 1980
053	KENT DITCH	TO 801 260	3.76	0.570	1	SPAAN	1972
054	* KITSBRIDGE IDB	TR 016 329	4.05	0.427	1	ALLEN GWYNNES	1963
055	KNELLE	TO 850 269	. 9.75	2.000		SPAAN SPAAN	1972 1972
056	+ LODGELAND IDB	TR 031 281	2.57	0.250	1	SIMON HARTLEY	1983
057	MAYTHEN	TQ 865 276	1.88	0.300	1	SPAAN	1972
058	NEWBRIDGE NORTH	ta 915 254	4.28	0.710	1	SPAAN	1969
059	NEWBRIDGE SOUTH	TQ 914 253	1.13	0.212	1	SPAAN	1969

								10			
гатала Ритр Туре	Size Diam.		Moun.	Capacity (cumees)		<pre>Impel, Speed (R.P.M)</pre>		H.P.	Supply Voltage	Disc Type	
S	1500 m	LB	•	0.57	2.92	35	E	50.0	415	SR	
S	2100mm	L0	-	1.30	2.54		E	100.0	415	SR	
•					2.40	770	-	20 a			
A A	450 mm 450 mm	-	v v	0.11 0.11	2.10 2.10	730 730	E	20.0 20.0	415 415	SR SR	
\$	1100mn	L8	-	0.30	3.32	46	E	25.0	415	SR	•
\$	1900mm	LB		1.00	3.10	30	E	75.0	415	SR	
S	1100mm	LØ		0.30	3.55	46	E	25.0	415	SR	
s	1730mm	L9 L8	1	0.90 0.02	2.00 0.00	37	ŧ E	50.0 0.0	415 415	SR -	
s	840 mm	LB	•	0.15	6.20	53	E	12.0	415	SR	
									÷.		
5 S	2162mm 2162mm		•	1.40 1.40	4.20 4.20		E	120.0 120.0	415 415	SR SR	Ŷ
S	1500mm	LB	•	0.57	3.37	35	E	50.0	415	SR	æ
A	450 mm	HB	v	0.43	4.20	725	E	22.5	415	SR	
s	1900mm	10		1.00	2.71	30	E	75.0	415	SR	
S	1900mm		•	1.00	2.71	30	Ē	75.0	415	•	
S	950 mm	00	•	0.25	1.37	55	E	15.0	415	SR	
s	1100mm	LB	•	0.30	3.07	46	Ε	25.0	415	SR .	
S	1600mm	LB	•	0.71	2.40	33,	E	50.0	415	SR	
s	950 mm	LB	-	0_21	2.87	47	E	15.0	415	SR	

Pump Summary	*************	1882832280z2	***====***			
Stn. Stn. No. Name	National Grid Reference	Catchment Area (Sq.km)	Capacity	of	Manufacturer	Year
060 * NEWHOUSE	TO 901 180	5.73	1.260	••••		
		<i></i>	11200	1 2	JONES AND ATTWOOD FLYGT	1976 19
061 NORTHPOINT	10 932 200	2.63	0.300	1	SPAAN	1982
062 POTMANS HEATH	10 872 281	7.96	1,415	•	SPARA	1905
UOC PUIDANS BLAID .	IW OFE LOT	1.70	1,912	1	SPAAN	1970
D63 READING SEWER	ta 876 288	15,09	2.830	1	SPAAN	1972
	×		1		SPAAN	1972
064 SHIRLEY MOOR	TQ 935 301	41.20	6.600		SIMON HARTLEY	1974
	6				SIMON HARTLEY	1974
D65 UNION	TQ 938 225	66.97	7.000		ALLEN GWYNNES	1969
-					ALLEN GWYNNES ALLEN GWYNNES	1969 1969
D66 WAREHORNE	To 990 320		1.420	•	ATUM HANTIEV	1071
D67 WILLOP	TR 118 311	16.20	1.660	,	SIMON HARTLEY	1971
JOF WILLO	H 110 2.,	IVILV	11000		SPAAN SPAAN	1979
068 WOODSIDE	TO 900 251	9.69	1.530		J. ANI.	
	0			1	SPAAN	1969
069 SARRE	tr 245 649	21.60	1.100	1	FENNER	1972
DTO ASH LEVEL	TR 269 633	25.70	2.400	•		10
				2	ALLEN GWYNNES ALLEN GWYNNES ALLEN GWYNNES	19 19 19
071 SEASALTER	TR 076 650		2.920		ALLEN UNINNLJ	19
// JENJALILA	FR 070 050		E.764	1	ALLEN GWYNNES ALLEN GWYNNES	19 19
					ALLEN GWYNNES	19

.

ype	Size Diam,	Hous.	Moun,	Capacity (cumecs)		Impel. Speed (R.P.M)	Drive	H.P.	Supply Voltage	Disc. Type	
									4		
S	2030mm	ίB	÷	1.24	1.93	32	E	75.0	415	SR	
		•	V	0.02			•		415	•	
S	1100mm	LB	•	0.30	3.85	46	E	29.0	415	SR	
s	2150mm	10		1.41	2.97	29	E	125.0	° 415	SR	
	213000	10		1.41	2.97	27	E	163.0	413	3K	
s	2150mm	LB		1.41	2.67	29	E	125.0	415	SR	
S	2150mm	LB		1.41	2.67	29	E	100.0	415	SR	
s	3000mm	19		3.30	2.54		E	250.0	415	SR	
S	3000mm		•	3.30	2.08		E	250.0	415	SR	
			0			÷ -	_		£		
A	1067mm 1067mm		V V	2.80 2.80	5.79 5.79		E	220.0 220.0	415 415	SI	
Â	686 mm		v	1.40	5.79		Ē	115.0	415	51 51	
s	2100mm	LB	·	1.42	1.45	32	E	75.0	415	SR	
s	1700mm	f R	-	0.83	3.52	34	E	75.0	415	SR	
S	1700mm		•	0.83	3.52	34	Ē	75.0	415	SR	
	-										
S	2100mm	18		1.53	3.12	28	E	100.0	415	SR	
\$	1800mm	LB	•	1.10	2.13	33	E	60.0	415	SR	
A	500 mm	HB	v	0.79	2.40	725	E	60.0	415	\$1	
A	500 mm	HB	V	0.79	2.40	725	Ε	60.0	415	SI	
A	500 mm	HB	۷	0,79	2.40	725	E	60.0	415	S1	
A	600 mm	LB	v	0.98	3.63	585	E	85.0	415	SI	
A	600 mm	LB	V	0.98	3.63	585	E	85.0	415	SI	
A	600 mm	LØ	v	0.98	3.63	585	E	85.0	415	si .	
						-					

NRA - Survey of Land Dra Pump Summary		failf 1(12	(arrotion)		4) (1)	
				****	****************	
Stn. St n. No. Name	National Grid Reference	Catchment Area	Total Capacity	No of	Manufacturer	Year
• • • • • • • • • • • • • • • • • • • •	•••••••	•				
073 MINSTER	TR 310 632	20.80	1,190			
	an allocations - H				ALLEN GWYNNES	19
					ALLEN GWYNNES	19
-					ALLEN GWYNNES	19
		.,				
074 STOURMOUTH	TR 250 630	200.00	5.600			
					ALLEN GWYNNES	19
					ALLEN GWYNNES	19
				> 3	ALLEN GWYNNES	19
				4	ALLEN GWYNNES	19
75 RECULVERS	TR 230 693	6.70	0.311		A. (%)	107
				. 1	ACH	1972
076 BUTTERFLY	TR 320 592	0.30	0.100			
TO BUTTERFLI	14 JEO J72	0.50	0.100	1	JONES AND ATTWOOD	19
				,	JUNCS AND ATTWOOD	17
77 COOPER STREET	TR 313 597	3.60	0.450			
		5 - C		1	JONES AND ATTWOOD	197
D78 HILE END	TR 265 639	u.	0.450			
				1	FLYGT	19
			7 300			
179 HONEYCROCK	ta 596 072	13.40	3.200	•	ALLEN GWYNNES	1979
					ALLEN GWYNNES	197
	-				ALLEN GWYNNES	197
				-		÷.
80 * DROCKMILL	19 618 069	4,10	0.800			
				1	FLYGT	1969
				Z	FLYGT	196
t in the second s						
181 * MALLING BROOKS	TQ 418 106	0.20	1.200	_		
0					SUBMERSIGLIDE	199
				2	SUBMERSIGLIDE	199'
182 * MANXEY	10 655 084	17,30	1.200			
VE HORAET	1 000 004		1100	. 1	ALLEN GWYNNES	197
				2		197
						.,,
83 * RICKNEY	ta 627 070	10,50	2.200			12
				1	STMON HARTLEY	197
	÷ .				SIMON HARTLEY	197
084 • STAR INN	TQ 682 062	7.30	1.300			
					SPAAN	197
				2	SPAAN	197
185 * NORSEBRIDGE	TO 669 090	9,20	1.600			
					HARLAND JOHNSON	196
۹۵		£		2	HARLAND JOHNSON	196

i

l '

#* (Å.)

.

/pe	Size Diam,			Capacity (cumecs)	Stat.	Impel. Speed (R.P.M)			Supply Voltage	Disc. Type	-
3											•
Α	450 mm	-	V.	0.39	2.90	730	E	19.0	415 415	SI	
A A	450 mm 450 mm	00 00	V V	0.39 0.40	2.90 2.90	730 730	E E	19.0 19.0	415	51 51	
A	4J0 mm			0.40	2.70	730	C	. 19.0	412	51	
A	500 mm	НB	v	1.40		725	E	75.0	415	\$1	
A	500 mm	HB	v	1.40		725	Ε	75.0	415	St	
A	500 mm	H8	V	1.40		725	E	75.0	415	st	
A	500 mm	HB	v	1.40		725	E	75.0	415	St	
s	1100 mm	IR	-	0.31	3.12	47	E	18.0	415	SR	
5	110000			0.51	3.16		- T		-12		
s	690 mm	KB		0.10	2.17	68	E	4.1	415	SR	
3	OAN MU	нв	-	0.10	2.37	00	E	*.	415	24	
5	1297nm	HB	•	0,45	2.30	40	E	15.0	415	SR	
_							_				8
A		00	γ.	0.45			E	17.0	415	•	
A	385 mm	00	٧	0.40	3.00	970	E	40.0	415	51	
A	613 mm	00	۷	1.40	3.00	585	E	130.0	415	SI	
A	613 mm	00	v	1.40	3.00	585	E	130.0	415	SI ,	
		~	v	0.40	2.70	730	E	29.0	415	SL	
A A		00 00	v	0.40	2.70	730	Ē	(29.0	415	SL	
~		ţ.	•	0.40	2.10		L		-12	JL	
_		-		A 4A	r		E	50.0	415	st	
C C		00 00	v	0.60 0.60	5.90 5.90		Ē	50.0	415	51 51	
L			•	0.00	2.70						
		00	v	0.60	2.50	980	E	43.0	415	\$1	
Λ Δ		00	v	0.60	2.50	980	Ē	43.0	415	, St	
~			•				-				
S	1900mm	HB	•	1.10	2.10	38	E	50.0	415	SL	
S	1900mm	MB	•	1.10	2.10	38	E	50.0	415	SL	
\$	1500mm	HB	1	0.60	4.60	38	E	75.0	415	SL	
s	1500mm	HB	2 0	0.60	4.60	38	Ē	75.0	415	SL	
									e.		
				A 84			-	56.0	415	st	
A A	450 mm 450 mm	00 00	H - R	0.80 0.80	4.50 4.50		E	56.0	415	51 51	

'ump Summary - 	********************	********	*********		
itn. Stn. Io. Name	National Grid Reference	Catchment Area		No of	Manufacturer
86 * NEWBRIDGE	TQ 626 098	6.80	0.800	••••	•••••
					HARLAND JOHNSON HARLAND JOHNSON
87 • RODMEL	10 432 070	1.90	0.700	1	HARLAND JOHNSON
88 * NEWHAVEN	TQ 453 007	3.60	0.400		
					HARLAND JOHNSON HARLAND JOHNSON
89 • STONEHAN	ta 418 117	3,20	0.300	٩	FLYGT
			-	2	FLYGT PLYGT
90 * OFFHAN	10 405 117	1.80	0.100	•	FLYGT
9.1 • RANSCOOMBE	TO 442 082	2.50	0.400	•	
					FLYGT FLYGT
· ·					FLYGT
92 • BARNHORN	TO 689 082	0.60	0.300	_	
				Z	FLYGT FLYGT
93 * LOTTBRIDGE	TO 615 013	2.80	0,400	3	FLYGT
- <u>-</u>				1,	HARLAND JOHNSON
94 BEDDINGHAM	TO 443 081	62.00	9.300		ALLEN GWYNNES
				23	ALLEN GWYNNES ALLEN GWYNNES

. .

.

.

1964 A 450 mm 00 H 0.70 4.50 E 56.0 415 SL 1970 A 250 mm 00 V 0.20 3.50 1,460 E 20.0 415 S1 1970 A 250 mm 00 V 0.20 3.50 1,460 E 20.0 415 S1 1970 A 250 mm 00 V 0.20 3.50 1,460 E 20.0 415 S1 1976 C SB V 0.10 2.00 1,450 E 8.0 415 SL 1976 C SB V 0.10 2.00 1,450 E 8.0 415 SL 1977 C SB V 0.10 3.00 1,450 E 7.0 415 S1 1977 C SB V 0.10 3.00 1,450 E 7.0 415 S1 1977 C SB V 0.10	Year	Pump Type	Síze Diam.	Hous.	Houn,	Capacity (cumecs)	Stat. Head (m)		Drive	H.P.	Supply Voltage	Disc. Type
1968 A 450 mm 00 V 0.40 4.50 970 E 35.0 415 51 1964 A 450 mm 00 H 0.70 4.50 E 56.0 415 S1 1970 A 250 mm 00 V 0.20 3.50 1,460 E 20.0 415 S1 1970 A 250 mm 00 V 0.20 3.50 1,460 E 20.0 415 S1 1970 A 250 mm 00 V 0.20 3.50 1,460 E 20.0 415 S1 1976 C SB V 0.10 2.00 1,450 E 8.0 415 S1 1976 C SB V 0.10 3.00 1,450 E 7.0 415 S1 1977 C SB V 0.10 3.00 </td <td>1069</td> <td></td> <td>/50 mm</td> <td>~</td> <td>v</td> <td>0.40</td> <td>6 50</td> <td>076</td> <td>e</td> <td>75 0</td> <td><i>k</i> 15</td> <td>61</td>	1069		/50 mm	~	v	0.40	6 50	076	e	75 0	<i>k</i> 15	61
1970 A 250 mm 00 V 0.20 3.50 1,460 E 20.0 415 51 1970 A 250 mm 00 V 0.20 3.50 1,460 E 20.0 415 51 1970 A 250 mm 00 V 0.20 3.50 1,460 E 20.0 415 51 1976 C SB V 0.10 2.00 1,450 E 8.0 415 SL 1976 C SB V 0.10 2.00 1,450 E 8.0 415 SL 1976 C SB V 0.10 5.70 1,450 E 8.0 415 SL 1977 C SB V 0.10 3.00 1,450 E 7.0 415 S1 1977 C SB V 0.10 3.00 1,450 E 7.0 415 S1 1977 C SB V 0.10 3.70 1,450 E												51 51
1970 A 250 mm 00 V 0.20 3.50 1,460 E 20.0 415 S1 1976 C SB V 0.10 2.00 1,450 E 8.0 415 S1 1976 C SB V 0.10 2.00 1,450 E 8.0 415 S1 1976 C SB V 0.10 2.00 1,450 E 8.0 415 S1 1977 C SB V 0.10 3.00 1,450 E 7.0 415 S1 1977 C SB V 0.10 3.00 1,450 E 7.0 415 S1 1977 C SB V 0.10 3.00 1,450 E 7.0 415 S1 1977 C SB V 0.10 3.00 1,450 E 8.0 415 S1 1977 <td< td=""><td>964</td><td>A</td><td>450 mm</td><td>00</td><td>H</td><td>0.70</td><td>4.50</td><td></td><td>E</td><td>56.0</td><td>415</td><td>SL</td></td<>	964	A	450 mm	00	H	0.70	4.50		E	56.0	415	SL
1970 A 250 mm 00 V 0.20 3.50 1,460 E 20.0 415 S1 1976 C SB V 0.10 2.00 1,450 E 8.0 415 S1 1976 C SB V 0.10 2.00 1,450 E 8.0 415 S1 1976 C SB V 0.10 2.00 1,450 E 8.0 415 S1 1977 C SB V 0.10 3.00 1,450 E 7.0 415 S1 1977 C SB V 0.10 3.00 1,450 E 7.0 415 S1 1977 C SB V 0.10 3.00 1,450 E 7.0 415 S1 1977 C SB V 0.10 3.00 1,450 E 8.0 415 S1 1977 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
1970 A 250 mm 00 V 0.20 3.50 1,460 E 20.0 415 S1 1976 C SB V 0.10 2.00 1,450 E 8.0 415 S1 1976 C SB V 0.10 2.00 1,450 E 8.0 415 S1 1976 C SB V 0.10 2.00 1,450 E 8.0 415 S1 1977 C SB V 0.10 3.00 1,450 E 7.0 415 S1 1977 C SB V 0.10 3.00 1,450 E 7.0 415 S1 1977 C SB V 0.10 3.00 1,450 E 7.0 415 S1 1977 C SB V 0.10 3.00 1,450 E 8.0 415 S1 1977 <td< td=""><td>070</td><td></td><td>250</td><td>00</td><td>v</td><td>0.20</td><td>3 50</td><td>1 440</td><td>E 1 1</td><td>20.0</td><td>415</td><td>ct</td></td<>	070		250	00	v	0.20	3 50	1 440	E 1 1	20.0	415	ct
1976 C SB V 0.10 2.00 1.450 E 8.0 415 SL 1976 C SB V 0.10 2.00 1.450 E 8.0 415 SL 1977 C SB V 0.10 5.70 1.450 E 8.0 415 SL 1977 C SB V 0.10 3.00 1.450 E 7.0 415 SI 1977 C SB V 0.10 3.00 1.450 E 7.0 415 SI 1977 C SB V 0.10 3.00 1.450 E 7.0 415 SI 1977 C SB V 0.10 3.00 1.450 E 7.0 415 SI 1977 C SB V 0.10 3.00 1.450 E 7.0 415 SI 1975 C SB V 0.10 3.70 1.450 E 8.0 415 SI												S1
1976 C SB V 0.10 2.00 1.450 E 8.0 415 SL 1976 C SB V 0.10 2.00 1.450 E 8.0 415 SL 1977 C SB V 0.10 5.70 1.450 E 8.0 415 SL 1977 C SB V 0.10 3.00 1.450 E 7.0 415 SI 1977 C SB V 0.10 3.00 1.450 E 7.0 415 SI 1977 C SB V 0.10 3.00 1.450 E 7.0 415 SI 1977 C SB V 0.10 3.00 1.450 E 7.0 415 SI 1977 C SB V 0.10 3.00 1.450 E 7.0 415 SI 1975 C SB V 0.10 3.70 1.450 E 8.0 415 SI									k^{-}			
1976 C SB V 0.10 2.00 1,450 E 8.0 415 SL 1971 C SB V 0.10 5.70 1,450 E 8.0 415 SL 1971 C SB V 0.10 3.00 1,450 E 8.0 415 SL 1977 C SB V 0.10 3.00 1,450 E 7.0 415 SI 1977 C SB V 0.10 3.00 1,450 E 7.0 415 SI 1977 C SB V 0.10 3.00 1,450 E 7.0 415 SI 1977 C SB V 0.10 3.70 1,450 E 8.0 415 SI 1975 C SB V 0.10 3.70 1,450 E 8.0 415 SI 1975 C SB <td></td> <td>C</td> <td></td> <td>S8</td> <td>v</td> <td>0.10</td> <td>2.00</td> <td>1,450</td> <td></td> <td>8.0</td> <td>415</td> <td>SL</td>		C		S 8	v	0.10	2.00	1,450		8.0	415	SL
976 C SB V 0.10 2.00 1,450 E 8.0 415 SL 971 C SB V 0.10 5.70 1,450 E 8.0 415 SL 977 C SB V 0.10 3.00 1.450 E 7.0 415 SL 977 C SB V 0.10 3.00 1.450 E 7.0 415 SL 977 C SB V 0.10 3.00 1.450 E 7.0 415 SI 977 C SB V 0.10 3.00 1.450 E 7.0 415 SI 977 C SB V 0.10 3.70 1.450 E 8.0 415 SI 975 C SB V 0.10 3.70 1.450 E 8.0 415 SI 975 C SB	976	C		SB	٧	0.10	2.00	1,450	E	8.0	415	SL
977 C S8 V 0.10 3.00 1.450 E 7.0 415 51 977 C S8 V 0.10 3.00 1.450 E 7.0 415 51 977 C S8 V 0.10 3.00 1.450 E 7.0 415 51 977 C S8 V 0.10 3.00 1.450 E 7.0 415 51 977 C S8 V 0.10 3.00 1.450 E 7.0 415 51 977 C S8 V 0.10 3.70 1.450 E 8.0 415 51 975 C S8 V 0.10 3.70 1.450 E 8.0 415 51 975 C S8 V 0.10 3.70 1.450 E 8.0 415 51 976 C S8 V 0.10 3.10 3.40 365 </td <td>976</td> <td>C</td> <td></td> <td>58</td> <td>v</td> <td>0.10</td> <td>2.00</td> <td>1,450</td> <td></td> <td></td> <td>415</td> <td>SL</td>	976	C		58	v	0.10	2.00	1,450			415	SL
1977 C SB V 0.10 3.00 1.450 E 7.0 415 51 1977 C SB V 0.10 3.00 1.450 E 7.0 415 51 1977 C SB V 0.10 3.00 1.450 E 7.0 415 51 1977 C SB V 0.10 3.00 1.450 E 7.0 415 51 1977 C SB V 0.10 3.00 1.450 E 7.0 415 51 1975 C SB V 0.10 3.70 1.450 E 8.0 415 51 1975 C SB V 0.10 3.70 1.450 E 8.0 415 51 1975 C SB V 0.10 3.70 1.450 E 8.0 415 51 1976 A 450 mm 00 -0.40 3.10												
1977 C SB V 0.10 3.00 1.450 E 7.0 415 51 1977 C SB V 0.10 3.00 1.450 E 7.0 415 51 1977 C SB V 0.10 3.00 1.450 E 7.0 415 51 1977 C SB V 0.10 3.00 1.450 E 7.0 415 51 1975 C SB V 0.10 3.70 1.450 E 8.0 415 51 1975 C SB V 0.10 3.70 1.450 E 8.0 415 51 1975 C SB V 0.10 3.70 1.450 E 8.0 415 51 1976 C SB V 0.10 3.70 1.450 E 8.0 415 51 1964 A 450 mm CO -0.40 3.10 3.40	971	C		S8	V	0.10	5.70	1,450	E	8.0	415	SL
1977 C SB V 0.10 3.00 1.450 E 7.0 415 51 1977 C SB V 0.10 3.00 1.450 E 7.0 415 51 1977 C SB V 0.10 3.00 1.450 E 7.0 415 51 1977 C SB V 0.10 3.00 1.450 E 7.0 415 51 1975 C SB V 0.10 3.70 1.450 E 8.0 415 51 1975 C SB V 0.10 3.70 1.450 E 8.0 415 51 1975 C SB V 0.10 3.70 1.450 E 8.0 415 51 1976 C SB V 0.10 3.70 1.450 E 8.0 415 51 1974 A 450 700 -0.40 3.40 365							• ••		_			
1977 C SB V 0.10 3.00 1,450 E 7.0 415 SI 1977 C SB V 0.10 3.00 1,450 E 7.0 415 SI 1977 C SB V 0.10 3.00 1,450 E 7.0 415 SI 1975 C SB V 0.10 3.70 1,450 E 8.0 415 SI 1975 C SB V 0.10 3.70 1,450 E 8.0 415 SI 1975 C SB V 0.10 3.70 1,450 E 8.0 415 SI 1975 C SB V 0.10 3.70 1,450 E 8.0 415 SI 1976 A 450 mm 00 - 0140 3.10 E 25.0 415 SI 1964 A 450 mm 00 - 0140 3.10 3.60 365 E												
1977 C SB V 0.10 3.00 1,450 E 7.0 415 S1 1975 C SB V 0.10 3.70 1,450 E 8.0 415 S1 1975 C SB V 0.10 3.70 1,450 E 8.0 415 S1 1975 C SB V 0.10 3.70 1,450 E 8.0 415 S1 1975 C SB V 0.10 3.70 1,450 E 8.0 415 S1 1975 C SB V 0.10 3.70 1,450 E 8.0 415 S1 1964 A 450 mm OO - 0140 3.10 E 25.0 415 S1 1964 A 450 mm OO - 0140 3.10 E 220.0 415 S1 1971 A OO V 3.10 3.40 365 E 220.0 415 S1					-							
1975 C S8 V 0.10 3.70 1,450 E 8.0 415 SL 1975 C S8 V 0.10 3.70 1,450 E 8.0 415 SL 1975 C S8 V 0.10 3.70 1,450 E 8.0 415 SL 1975 C S8 V 0.10 3.70 1,450 E 8.0 415 SL 1964 A 450 mm CO - 0:40 3.10 E 25.0 415 SL 1964 A 450 mm CO - 0:40 3.10 E 25.0 415 SL 1971 A OO V 3.10 3.40 365 E 220.0 415 SL 1971 A OO V 3.10 3.40 365 E 220.0 415 SL												
1975 C SB V 0.10 3.70 1,450 E 8.0 415 SL 1975 C SB V 0.10 3.70 1,450 E 8.0 415 SL 1964 A 450 mm OO - 0:40 3.10 E 25.0 415 SL 1971 A OO V 3.10 3.60 365 E 220.0 415 SL 1971 A OO V 3.10 3.40 365 E 220.0 415 SL 1971 A OO V 3.10 3.40 365 E 220.0 415 SL	¥77	C		58	v	0.10	3.00	1,450		7.0	415	21
1975 C SB V 0.10 3.70 1,450 E 8.0 415 SL 1975 C SB V 0.10 3.70 1,450 E 8.0 415 SL 1964 A 450 mm 00 - 0140 3.10 E 25.0 415 SL 1971 A 00 V 3.10 3.40 365 E 220.0 415 SL 1971 A 00 V 3.10 3.40 365 E 220.0 415 SL	075	~		CD		0 10	7 70	1 /50	1.0		/ 15	C 1
975 C SB V 0.10 3.70 1,450 E 8.0 415 SL 1964 A 450 mm 00 - 0:40 3.10 E 25.0 415 SL 1971 A 00 V 3.10 3.40 365 E 220.0 415 SL 971 A 00 V 3.10 3.40 365 E 220.0 415 SL												
1964 A 450 mm 00 - 0:40 3.10 E 25.0 415 SL 1971 A 00 V 3.10 3.40 365 E 220.0 415 SL 1971 A 00 V 3.10 3.40 365 E 220.0 415 SL												
1971 A 00 V 3.10 3.40 365 E 220.0 415 SL 1971 A 00 V 3.10 3.40 365 E 220.0 415 SL	413	L		30	v	0.10	3.70	1,430		0.0	413	JL .
971 A 00 V 3.10 3.40 365 E 220.0 415 SL	964	A	450 mm	00	-	0.40	3.10		ΕI	25.0	415	SL
1971 A 00 V 3.10 3.40 365 E 220.0 415 SL			121			11			1			
971 A 00 V 3.10 3.40 365 E 220.0 415 SL	971	A		00	v .	3.10	3,40	365	E	220.0	415	SL
					-							SL
1971 A 00 V 3.10 3.40 365 E 220.0 415 SL	1971					3.10	3.40		E	220.0	415	SL

•

SOUTH WEST

REGION	SUB	REGION	STN.	NO	NAME
			=======		
South West					
	Exeter		001 002		POLMORLA
					ST.BLAZEY
			00.	3	MIDDLEWAY
				-	

_

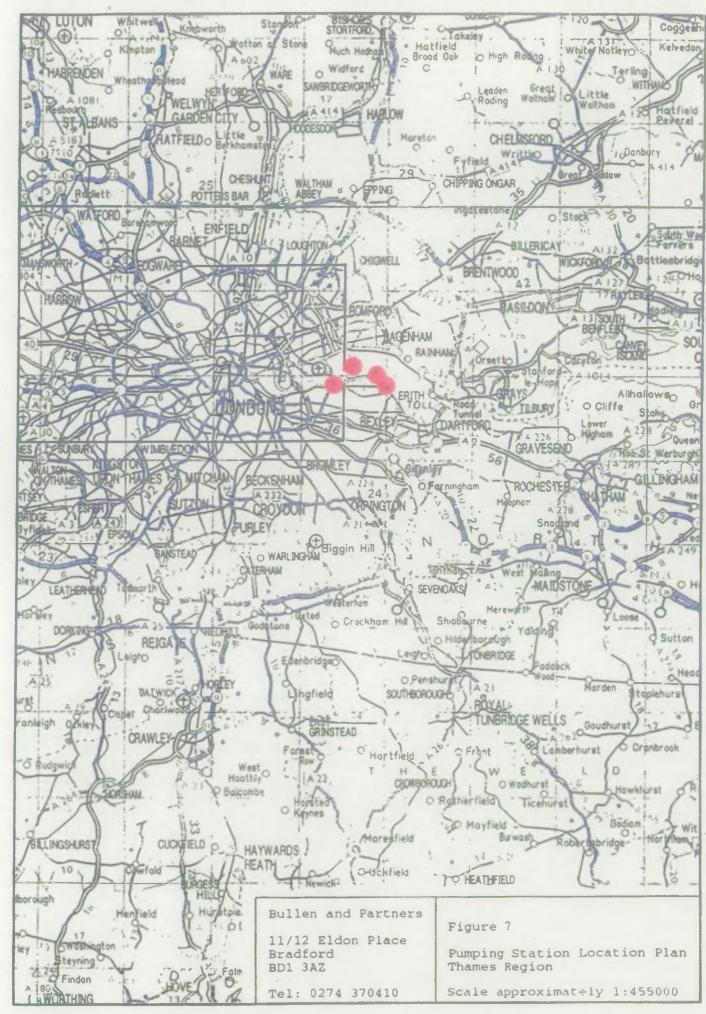
Stn. Stn. No, Name	National Grid Referenc o	Catchment Area (Sq.km)	Total Capacity (Cumecs)	of	Nanufacturer	Year	Ритр Туре	Size Diam.	Hous.	Houn.	Capacity (cumecs)	Stat. Kead (m)	Impel, Speed (R.P.M)	Drive	H.P.,	Supply Voltage	Disc. Type
outh West		45. 20	£ (00	•••••												1 1 - 1	
001 POLHORLA SV 991 72	SW 991 724	15.20	5.400	1	ABS	1990		750 mm	CD	v	1.80	2.30	710	E	119.0	415	Flap
			•	÷	ABS	1990	Â	750 mm		v	1.80	2.30		E	119.0	415	Flap
	Ŧ	121		3	ABS	1990	Ä	750 mm		v	1.80	2.30	710	Ē	119.0	415	Flep
2 ST.BLAZEY	SX 075 536	2.20	1.710														
4				1	FLYGT	1984	A	800 mm	50	٧	0.57	1.00	733	Ē	22.8	415	Flap
				Z	FLYGT	1984	A	800 mm	5 8	٧	0.57	1.00	733	E	22.8	415	Flap
				3	FLYGT	19 B4	A	800 mm	58	۷	0.57	1.00	733	E	22.5	415	Flap
			0.000	•						-				-			•
D3 MIDDLEWAY	SX 069 542	0.01	0.008	. 1	FLYGT	1976	С	50 mm	SB	v	0.01	3.00	2,850	E	0.8	240	SR

THAMES

ł

		· · · · ·		
REGION	SUB REGION	STN. NO	NAME	+==
<u>Chames</u>		001	GREAT BREACH	
		002 003	GALLIONS (LAKE 5) TRIPCOCK (LAKE 4)	
	***====================================	004	GREEN LEVEL	
		-		
			•	

4) ⁻⁴


•

.

. .

< ÷.

4 · · · · ·

Stn. Stn.	National	Catchment		No	Manufacturer
No, Name	Grid Reference	Area (Sq.km)			
Thames			• • • • • • • • •		
DO1 GREAT BREACH	TQ 493 807	9.00	1,710	_	
				Ŧ	BROOKE, CROMPTON
				2	BROOKE, CROMPTON
				3	BROOKE, CROMPTON
02 GALLIONS (LAKE 5)	TQ 449 798	4.00	0.940		
				1	flygt 82250
				2	Flygt B2250
					Flygt B2250
				4	Flygt B2250
03 TRIPCOCK (LAKE 4)	TO 464 810	18.00	8.510		
				1	MATHER & PLATT
				2	MATHER & PLATT
				3	DORMAN DIESEL
				4	DORMAN DIESEL
04 GREEN LEVEL	TO 508 796	3.00	0.690		
				1	METROPOLITAN VICKER
				2	LISTER DIESEL

.

. .

.

•

.

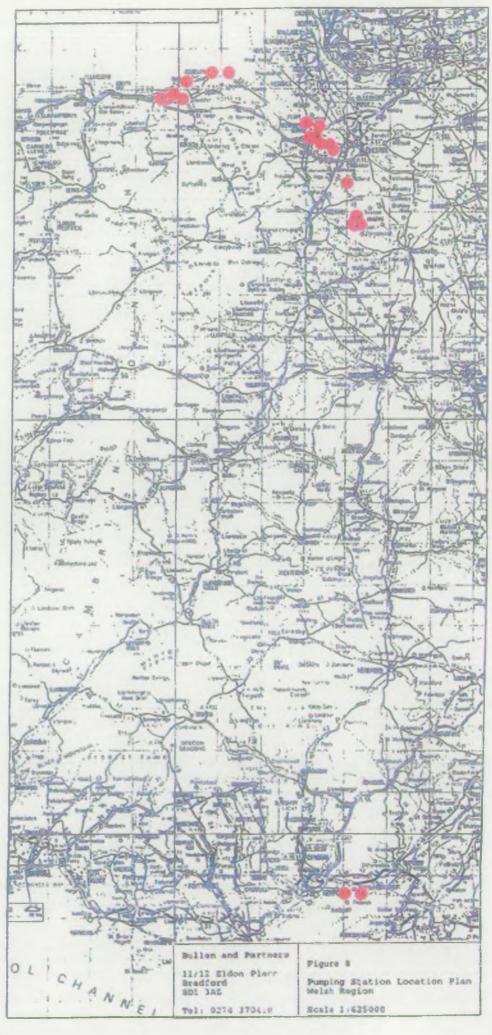
Year	Pump Type	Si: Di		Hous,	Moun.	Capacity (cumecs)	Stat. Head (m)	Impel. Speed (R.P.N)	Drive	H.P.	Supply Voltage	Disc. Type	
	_								_				
198Z	A	45		HB	N.	0.57	7.00	730	Ε.	87.0	415	SR	
1982	A	45		HB	V	0.57	7.00	0730	E	87.0	415	SR	
1982	•	45	ונפת	HB	V	0.57	7.00	730	E	87.0	415	SR	
1978	С			LB		0.23	7.30		E		415	SR	
978	С			LB		0.23	7.30		E		415	SR	
1978	Ċ			LB		0.23	7.30		E		415	SR	
978	C			LB		0.23	7.30		E		415	SR	
1977	5	2900	0mm	KB		2.13	8.36	1,500	E		11,000	SL	
1977	S	2900	Danan	HB		2.13	8.36	1,500	E		11,000	SL	
1977	5	2900	Dinani	HB		2.13	8.36	1,500	0		11,000	SL	
1977	S	2900	Jmm	NÐ		2.13	8.36	1,500	D		11,000	SL	
1959	٨			HB		0.43	6.10		E		415		
1972	С			LB		0.26			D				

.

i de

•

WELSH


:

1

EGION	SUB REGION	STN. NO	NAME	
ereesesse elsh		022685555555		CELECED
e150	Buckley	001	BALDERTON	
	•	004	WERN Y.DAVY	
		005	DOL ERION	
		006,	FINGERPOST	
		007	DOG KENNEL	
		008	GWERN Y TO	
		009	QUEEN FERRY	
		010	THORNLEIGH PARK	
		011	BURTON PUDDINGTON	
		012	ROWLEYS GUTTER	
		.013	GREEN MOOR	
		014	COLLISTER PILL	•
		015	TREVALYN MEADOW	
		021	SEALAND MAIN	
	Rhuddlan	002	RHYL	-
		003	CLWYD	
		016	TALACRE	•
		017	GRONNANT	
		018	BELGRAD	
		019	BODORYN	
		020	GYPSY LANE	

Í

Ì

o. Name Grid Reference Area (Sq.km) Cap (Cu (Cu (Sq.km)) elsh SJ 378 652 30.00 01 BALDERTON SJ 378 652 30.00 02 RHYL SJ 029 825 10.23 03 CLWYD SH 999 797 563.00 04 WERN Y.DAVY SJ 423 494 255.00 05 DOL ERION SJ 432 476 320.00 06 FINGERPOST SJ 307 723 0 07 DOG KENNEL SJ 424 473 210.00 0	2.800 2.770 0.150	THE THE THE THE THE THE THE THE THE THE	19 19 19 19 19 19 19 19 19 19 19 19
elsh SJ 378 652 30.00 D1 BALDERTON SJ 029 825 10.23 D2 RHYL SJ 029 825 10.23 D3 CLWYD SH 999 797 563.00 D4 WERN Y.DAVY SJ 423 494 255.00 D5 DOL ERION SJ 432 476 320.00 D6 FINGERPOST SJ 307 723 0 D7 DOG KENNEL SJ 424 480 170.00 D8 GWERN Y TO SJ 424 473 210.00 0	2.800 2.770 0.150	1 A.B.S. 2 A.B.S. 1 ALLEN GWYNNES 2 ALLEN GWYNNES 3 ALLEN GWYNNES 4 ALLEN GWYNNES 1 ALLEN GWYNNES 3 ALLEN GWYNNES 3 ALLEN GWYNNES 1 FLYGT	19 19 19 19 19 19 19 19
01 BALDERTON SJ 378 652 30.00 02 RHYL SJ 029 825 10.23 30 03 CLWYD SH 999 797 563.00 30 04 WERN Y.DAVY SJ 423 494 255.00 30 05 DOL ERION SJ 432 476 320.00 30 05 FINGERPOST SJ 307 723 40 07 DOG KENNEL SJ 424 480 170.00 08 GWERN Y TO SJ 424 473 210.00 40	2.800 2.770 0.150	2 A.B.S. 1 ALLEN GWYNNES 2 ALLEN GWYNNES 3 ALLEN GWYNNES 4 ALLEN GWYNNES 1 ALLEN GWYNNES 3 ALLEN GWYNNES 3 ALLEN GWYNNES 1 FLYGT	19 19 19 19 19 19 19 19
01 BALDERTON SJ 378 652 30.00 02 RHYL SJ 029 825 10.23 30 03 CLWYD SH 999 797 563.00 30 04 WERN Y.DAVY SJ 423 494 255.00 30 05 DOL ERION SJ 432 476 320.00 30 05 FINGERPOST SJ 307 723 40 07 DOG KENNEL SJ 424 480 170.00 08 GWERN Y TO SJ 424 473 210.00 40	2.800 2.770 0.150	2 A.B.S. 1 ALLEN GWYNNES 2 ALLEN GWYNNES 3 ALLEN GWYNNES 4 ALLEN GWYNNES 1 ALLEN GWYNNES 3 ALLEN GWYNNES 3 ALLEN GWYNNES 1 FLYGT	19 19 19 19 19 19 19 19
02 RHYL SJ 029 825 10.23 03 CLWYD SH 999 797 563.00 04 WERN Y.DAVY SJ 423 494 255.00 05 DOL ERION SJ 432 476 320.00 06 FINGERPOST SJ 307 723 6 07 DOG KENNEL SJ 424 480 170.00 08 GWERN Y TO SJ 424 473 210.00	2.800 2.770 0.150	2 A.B.S. 1 ALLEN GWYNNES 2 ALLEN GWYNNES 3 ALLEN GWYNNES 4 ALLEN GWYNNES 1 ALLEN GWYNNES 3 ALLEN GWYNNES 3 ALLEN GWYNNES 1 FLYGT	19 19 19 19 19 19 19 19
03 CLWYD SH 999 797 563.00 04 WERN Y.DAVY SJ 423 494 255.00 05 DOL ERION SJ 432 476 320.00 06 FINGERPOST SJ 307 723 07 DOG KENNEL SJ 424 480 170.00 08 GWERN Y TO SJ 424 473 210.00	2.800 2.770 0.150	2 A.B.S. 1 ALLEN GWYNNES 2 ALLEN GWYNNES 3 ALLEN GWYNNES 4 ALLEN GWYNNES 1 ALLEN GWYNNES 3 ALLEN GWYNNES 3 ALLEN GWYNNES 1 FLYGT	19 19 19 19 19 19 19
03 CLWYD SH 999 797 563.00 04 WERN Y.DAVY SJ 423 494 255.00 05 DOL ERION SJ 432 476 320.00 06 FINGERPOST SJ 307 723 07 DOG KENNEL SJ 424 480 170.00 08 GWERN Y TO SJ 424 473 210.00	2.770	2 ALLEN GWYNNES 3 ALLEN GWYNNES 4 ALLEN GWYNNES 2 ALLEN GWYNNES 3 ALLEN GWYNNES 3 ALLEN GWYNNES 1 FLYGT	19 19 19 19 19 19
03 CLWYD SH 999 797 563.00 04 WERN Y.DAVY SJ 423 494 255.00 05 DOL ERION SJ 432 476 320.00 06 FINGERPOST SJ 307 723 07 DOG KENNEL SJ 424 480 170.00 08 GWERN Y TO SJ 424 473 210.00	2.770	2 ALLEN GWYNNES 3 ALLEN GWYNNES 4 ALLEN GWYNNES 2 ALLEN GWYNNES 3 ALLEN GWYNNES 3 ALLEN GWYNNES 1 FLYGT	19 19 19 19 19 19
D4 WERN Y.DAVY SJ 423 494 255.00 D5 DOL ERION SJ 432 476 320.00 D6 FINGERPOST SJ 307 723 D7 DOG KENNEL SJ 424 480 170.00 D8 GWERN Y TO SJ 424 473 210.00	2.770	2 ALLEN GWYNNES 3 ALLEN GWYNNES 4 ALLEN GWYNNES 2 ALLEN GWYNNES 3 ALLEN GWYNNES 3 ALLEN GWYNNES 1 FLYGT	19 19 19 19 19 19
D4 WERN Y.DAVY SJ 423 494 255.00 D5 DOL ERION SJ 432 476 320.00 D6 FINGERPOST SJ 307 723 D7 DOG KENNEL SJ 424 480 170.00 D8 GWERN Y TO SJ 424 473 210.00	2.770	3 ALLEN GWYNNES 4 ALLEN GWYNNES 2 ALLEN GWYNNES 3 ALLEN GWYNNES 1 FLYGT	19 19 19 19 19
D4 WERN Y.DAVY SJ 423 494 255.00 D5 DOL ERION SJ 432 476 320.00 D6 FINGERPOST SJ 307 723 D7 DOG KENNEL SJ 424 480 170.00 D8 GWERN Y TO SJ 424 473 210.00	2.770 2 0.150	4 ALLEN GWYNNES 1 ALLEN GWYNNES 2 ALLEN GWYNNES 3 ALLEN GWYNNES 1 FLYGT	19 19 19 19
D4 WERN Y.DAVY SJ 423 494 255.00 D5 DOL ERION SJ 432 476 320.00 D6 FINGERPOST SJ 307 723 D7 DOG KENNEL SJ 424 480 170.00 D8 GWERN Y TO SJ 424 473 210.00	2.770 2.770 2.770	1 ALLEN GWYNNES 2 ALLEN GWYNNES 3 ALLEN GWYNNES 1 FLYGT	19 19 19
D4 WERN Y.DAVY SJ 423 494 255.00 D5 DOL ERION SJ 432 476 320.00 D6 FINGERPOST SJ 307 723 D7 DOG KENNEL SJ 424 480 170.00 D8 GWERN Y TO SJ 424 473 210.00	0.150	2 ALLEN GWYNNES 3 ALLEN GWYNNES 1 FLYGT	19 19
D4 WERN Y.DAVY SJ 423 494 255.00 D5 DOL ERION SJ 432 476 320.00 D6 FINGERPOST SJ 307 723 D7 DOG KENNEL SJ 424 480 170.00 D8 GWERN Y TO SJ 424 473 210.00	0.150	2 ALLEN GWYNNES 3 ALLEN GWYNNES 1 FLYGT	19 19
DS DOL ERION SJ 432 476 320.00 D6 FINGERPOST SJ 307 723 D7 DOG KENNEL SJ 424 480 170.00 D8 GWERN Y TO SJ 424 473 210.00	0.150	2 ALLEN GWYNNES 3 ALLEN GWYNNES 1 FLYGT	19 19
DS DOL ERION SJ 432 476 320.00 D6 FINGERPOST SJ 307 723 D7 DOG KENNEL SJ 424 480 170.00 D8 GWERN Y TO SJ 424 473 210.00	0.150 1	3 ALLEN GWYNNES 1 FLYGT	19
DS DOL ERION SJ 432 476 320.00 D6 FINGERPOST SJ 307 723 D7 DOG KENNEL SJ 424 480 170.00 D8 GWERN Y TO SJ 424 473 210.00	0.150	1 FLYGT	
DS DOL ERION SJ 432 476 320.00 D6 FINGERPOST SJ 307 723 D7 DOG KENNEL SJ 424 480 170.00 D8 GWERN Y TO SJ 424 473 210.00	1	-2	19
DS DOL ERION SJ 432 476 320.00 D6 FINGERPOST SJ 307 723 D7 DOG KENNEL SJ 424 480 170.00 D8 GWERN Y TO SJ 424 473 210.00	1	-2	19
D6 FINGERPOST SJ 307 723 D7 D0G KENNEL SJ 424 480 170.00 D8 GWERN Y TO SJ 424 473 210.00		-2	19
D6 FINGERPOST SJ 307 723 D7 D0G KENNEL SJ 424 480 170.00 D8 GWERN Y TO SJ 424 473 210.00	1		
D6 FINGERPOST SJ 307 723 D7 D0G KENNEL SJ 424 480 170.00 D8 GWERN Y TO SJ 424 473 210.00	1	1 TOURINA	
D7 DOG KENNEL SJ 424 480 170.00 D8 GWERN Y TO SJ 424 473 210.00 1		I INTERIO	19
D7 DOG KENNEL SJ 424 480 170.00 D8 GWERN Y TO SJ 424 473 210.00 1	2	1 TSURUMI 2 TSURUMI	19
D7 DOG KENNEL SJ 424 480 170.00 D8 GWERN Y TO SJ 424 473 210.00 1	•		.,
D8 GWERN Y TO SJ 424 473 210.00 (0.220		
D8 GWERN Y TO SJ 424 473 210.00 (1	1 MATHER & PLANT	19
D8 GWERN Y TO SJ 424 473 210.00 (2	2 MATHER & PLANT	19
D8 GWERN Y TO SJ 424 473 210.00 (
	1	1 FLYGT	19
9 DUEEN FERRY SJ 323 685 275.00	0.153		
9 DUEEN FERRY SJ 323 685 275.00	1	t tsuruni	19
77 WULLIN FERRI 3J 323 003 273.00	2 800		
	2.800	ALLEN GWYNNES	10
	_	ALLEN GWYNNES	19 19
	6		19
10 THORNLEIGH PARK SJ 364 662 24.00 1	1.500		
The second		A.B.S	19
		2 A.G.S	19
			.,,
1 BURTON PUDDINGTON SJ 330 718	0.350		
	1	KSB	19
	2	K S 8	19
2 ROWLEYS GUTTER SJ 316 689 14.85			
	1	SPAAN	19
	2	2 SPAAN	19
•			
IS GREEN MOOR ST 405 863		nn	
		MONO	19

.

r

Γ

ump уре	Si Di	ZC BM.	Hous.	Houn.	Capacity (cumecs)	Stat. Head (m)	impet.			Supply Voltage	Disc. Type	
A	700	m i	58	H			720	E	0.0	415		
A		mm		H			720	E	0.0	415		
					0.30			-	• •			
A A	508 508		KB HB	V V	0.70 0.70			E E	0.0	415		
Ä	508		KØ	v	0.70			E	0.0 0.0	415 415		
Â	508			v	0.70			Ē	0.0	415		
					.							
A	609			V	0.92			E	0.0	415	S1	
A	609			V	0.92			E	0.0	415	S1	
A	609	mn	HB	۷	0.92			E	0.0	415	S I	
C	250	fitti	58	H	0.15		950	E	0.0	415		
с	250	m	58	н			1,500	E	0.0	415		
C	250			#			1,500	Ē	0.0	415		
A	304		ND	v	0.11		945	E	7.0	415		•
Ä	304			v	0.11		945	E	7.0	415		
C	250	व्यव	S 8	H			950	E	0.0	415		
c	250	तान)	SB		0.15		1,500	E	0.0	415		
A	762	_	v 0	v	1.40		487	E	105.0	415		
Â	762			Ÿ	1.40		487	E	105.0	415		
					· •							
A A	500 500			H H	0.75 0.75		960 960	E	0.0 0.0	415 415		
A	350	गाइस	SB	۷			740	E	0.0	415		
•	350	तिस्त	S8	V			740	E	0.0	415		
s		ATT	00.				30	E	0.0	415		
s		1117 1	00				30	E	0.0	415		
٨		m	00	v				Έ	0.0	415	SR	

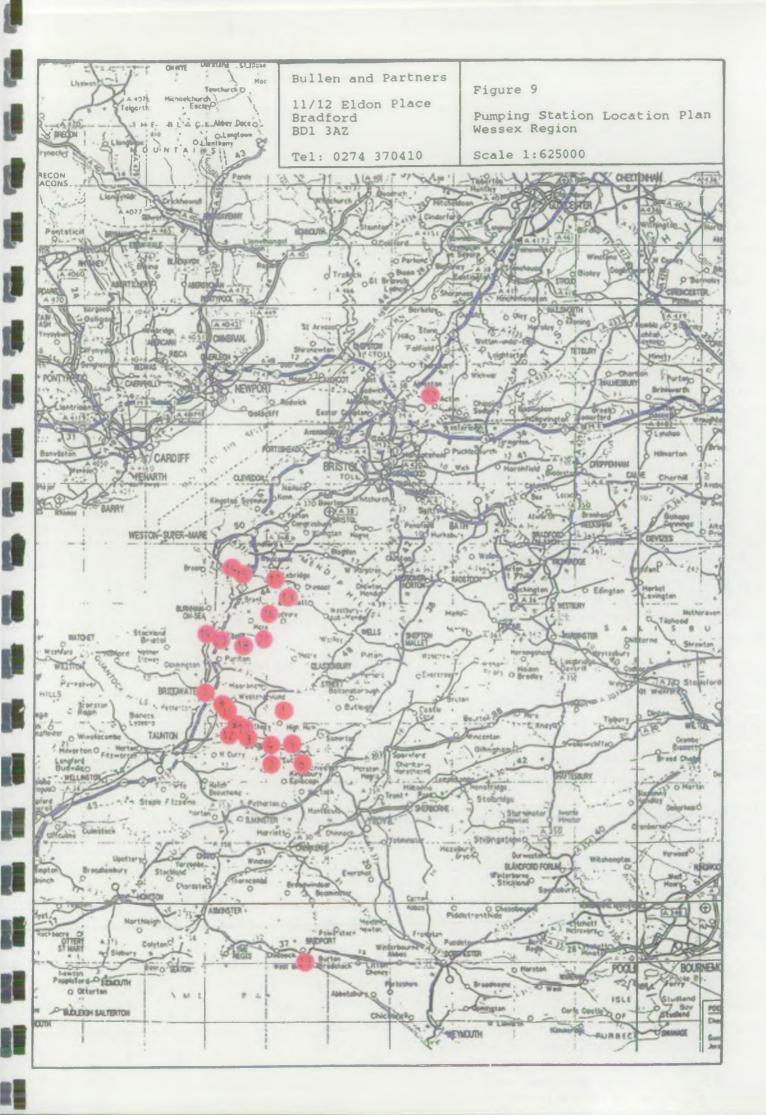
tn. Stn. o. Name	National Grid Reference	Catchment Area (Sq.km)	Total Capacity (Cumecs)		Manufacturer	Үеаг	Ритр Туре	Size Diam.		. Moun.	Capacity (cumecs)	Stat. "Head (m)	Impel. Speed (R.P.M)	Drive	N.P.	Supply Voltage	Disc. Type
14 COLLISTER PILL	ST 446 866		0.070														
				1	PLEUGER	19	A	475 mm	SB	M	0.07	5.12	965	E	100.0	415	SR
				Z	A.B.S	19	A	475 mm	SB	H			720	E	75.0	415	SR
		70.00	4 / 44														
5 TREVALYN MEADOW	SJ 402 576	30.09	1.400	•	ALLEN GWYNNES	19		558 mm			0.70		750	-	6 5 A		
					ALLEN GWYNNES	19	A	558 mm			0.70		750 750	E	55.0 55.0	415 415	
				2	ACCEN UNINALS	17	-	<i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	пb	a	0.10		00	E		415	
16 TALACRE	SJ 125 847	31.00															
2				1	SARLIN	19	C	152 mm	SB)			Ε		415	
17 GRONNANT	SJ 087 840	11.03	0.021	•		*0	•	FF0			0.07						
					ALLEN GWYNNES ALLEN GWYNNES	19 19	<u></u>	558 mm 558 mm		v v	0.07 0:07			t c		415 415	
					ALLEN GWYNNES	19	Â.	558 mm		v	0.07			F		415	
				-						•				•			
8 BELGRAD	SH 961 788	1.60	0,700														
		- <u>1</u>			ALLEN GWYNNES	19	A	355 mm		۷	0.35			E		415	
				2	ALLEN GWYNNES	19	A	355 mm	HB	v	0.35			£		415	
9 BODORYN	SH 985 786	14.85													4 - C		
J DOUGNIN	511 707 700	14.05		1	A.B.S	19		m	58					F		415	
					A.B.S	19			58					Ē		415	
O GYPSY LANE	SJ 011 786	140	0.220		0					•				_			
					SARLIN SARLIN	19 19			SB SB		0.11			E			
				2	SAKLIN	19		0m	28		0.11			E			
1 SEALAND MAIN	SJ 339 677	24.00	1.500							4							
				1	A.B.S	19	A	500 mm	SB	H	0.75		960	E		415	
					A.B.S	19	A	500 mm		Ħ	0.75		960	E	1	415	

÷.

WESSEX

•				
	**********************			=
REGION	SUB REGION	STN. NO	NAME	
		-===============		=
Wessex	<u>_</u>			
	Bridgewater	001	HENLEY	
		002	MIDELNEY	
		003	WEST SEDGEMOOR	
		004	WESTOVER	
		. 005	HUISH EPISCOPI	
		006	LONG LOAD	
		007	STOCKMOOR	
		008 009	NORTHMOOR SALTMOOR	
		010		
		011	STANMOOR WESTON ZOYLAND	
		012	CURRY MOOR	
		• 013	CLEWER	
		014	SOUTH HILL	
		015	WHITEHOUSE	
		016	BLACKFORD	
		017	CROSSMOOR	
		018	GOLD CORNER	
		019	SLOWAY LANE	
		020	WITHYDROVE	
		021	NORTH DRAIN	
	Bath	022	LADDEN BROOK	
4.0	Blandford	023	WEST BAY,	

÷...*


•

1

I

1

. .

_				*********		******************	
tn.	Stn. Name	National Grid Reference	Catchment Area	Total Capacity	No of	Manufacturer	Yea
				(culleca)	•••••	•••••••	
ess 01	<u>ex</u> Henley	ST 436 327		0.220			
				VILLO	1	PLEUGER	197
						PLEUGER	197
02 I	MJDELNEY	ST 416 235	22.50	3.300			
			22170	31304	1	ALLEN GWYNNES	196
					2	ALLEN GWYNNES	196
	÷				3	ALLEN GWYNNES	196
03 1	VEST SEDGEMOOR	ST 376 286	44.50	6.800			
				•••••	1	ALLEN GWYNNES	194
						ALLEN GWYNNES	194
						ALLEN GWYNNES	194
					4	ALLEN GWYNNES	19
04 1	ESTOVER	ST 416 265	9.80	1.860			
						ALLEN GWYNNES	196
					_	ALLEN GWYNNES	196
					5	ALLEN GWYNNES	196
05 H	HUISH EPISCOPI	ST 441 262	27.50	5.100			
						ALLEN GWYNNES	196
						ALLEN GWYNNES	196
					3	ALLEN GWYNNES	196
06 L	LONG LOAD	ST 468 237	32.60	7.200			
						ALLEN GWYNNES	197
						ALLEN GWYNNES	197
					2	ALLEN GWYNNES	197
07 5	STOCKMOOR	ST 306 357	7.30	1.420			
						ALLEN GWYNNES	197
					2	ALLEN GWYNNES	197
08 M	YOR THMOOR	ST 332 330	20.70	2.200			
						ALLEN GWYNNES	194
					2	ALLEN GWYNNES	194
79 s	ALTHOOR	ST 353 308	2.50	0.925			
					1	ALLEN GWYNNES	194
					2	BEDFORDS	199
					3	BEDFORDS	199
10 9	STANHOOR	ST 361 298	4,10	0.905			
			~ • • •	0170J	1	ALLEN GWYNNES	194
						ALLEN GWYNNES	196
					-	ALLEN GWYNNES	196
11 1	ESTON ZOYLAND	ST 340 374	8 10	1.000			
••••	LUIUN LUILANU	31 340 320	0,10	1.000	1	W.SIMPSON	194
					•		1 74

こうちゃ もんちゃ ちきま ましいまちしいち

.

. . . .

Pump Type	Size Diam.	Hous.	Moun.	Capacity (cumecs)	Stat. Head (m)	Impel. Speed (R.P.M)	Drive	H.P.	Supply Voltage	Disc. Type	3
A		SB	۷	0.11	Z.28	1,450 1,450	E	7.5 7.5	415	S1	
*		SB	v	0.11	2.28	1,450	E	7.5	415	S1	
~	750 mm				-		E				
C C	750 mm		v	1.10 1.10	3.35 3.35		E	95.0 95.0		SI SI	
c	750 mm		v	1.10	3.35		Ē	95.0			
							_				
C .	1000mm 1000mm		V V	2.20 2.20	2.59	265 265	D	132.0 132.0		SL SL	
MF	1000mm		v		2.59	265	D	132.0		SL	
MF	700 mm		v	1.20	3.00	800	E	13210	415	SI	
A	550 mm	NB	v	0.62	1 20	730	E	50.0	415	SI	
Â	550 mm	NB	v	0.62	1.20 1.20	730	E E	50.0		SI	
A	550 mm	HB	Ŷ	0.62	1.20	730	Ē	50.0		SI	
	900 com	HB	v	1.70	3.35	420	E	130.0	415	S 1	
Ä	900 mm	HB	Ý		3.35		Ē	130.0	415	51	
A	900 mm	NB	V	1.70	3.35	420	E	130.0	415	SI	
A	1 050mm	00	v	2.40	4.00	375	E	200.0	415	S 1	
A	1050mm				4.00	375	Ε	200.0		S1	
A	1050mm	00	v	2.40	4.00	375	E	200.0	415	SI	
A	600 mm 450 mm	00	v	1.00	3.85	585	E	94.0	415	SI	
A				0.42	4.17	980	E	47.0	415	si	
C	675 mm 675 mm	мв	н	1.10 1.10	2.44	265	0	66.0		SR	
C	675 mm	HB	H	1.10	2.44	265	D	66.0		SR	
	. 500 mm		н	0.42	3.05		D	- 34.0		SL	
MF	400 mm		۷			730	E	18.0	415	SI	
MF	400 mm	SB	۷	0.25	3.67	730	E	18.0	415	st	
с	450 mm	HB	H	0.45	2.44	310	D	34.0		SR	
MF		00	V	0.22	3.05	960	E	20.0	415	SL	
MF		00	۷	0.22	3.05	960	£	20.0	415	SL	
С	600 mm	HB	H	1.00	5.60	1,600	D	129.0		SL	

•

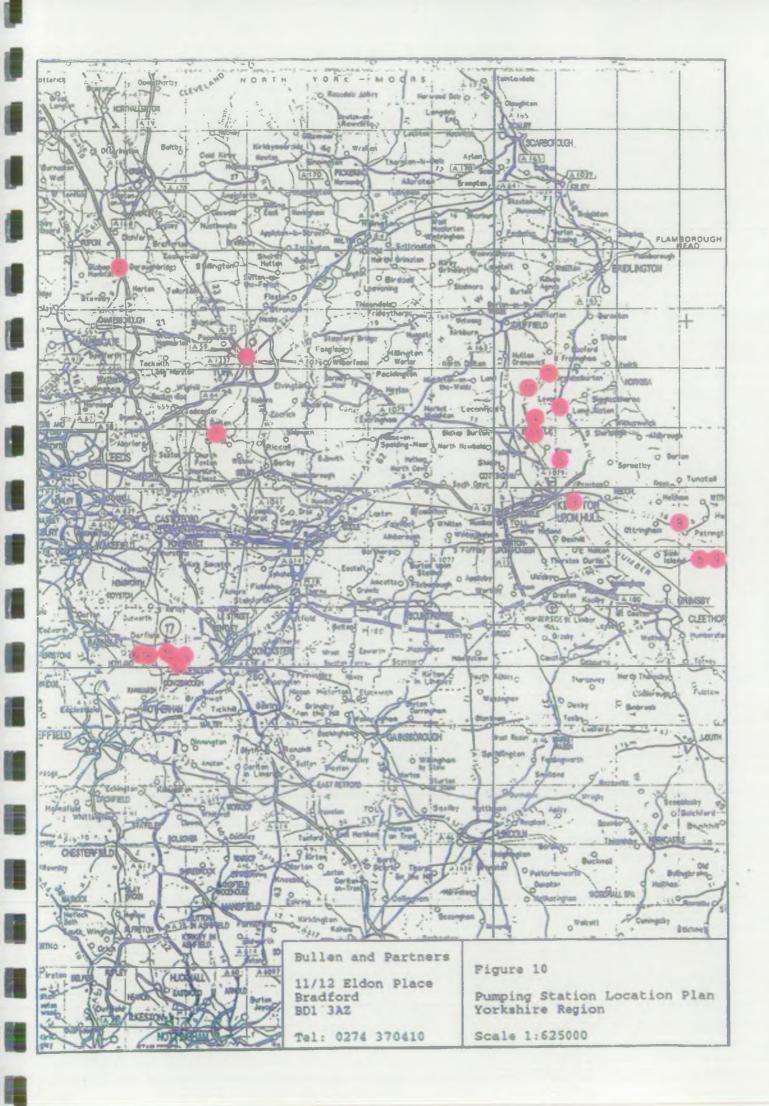
Stn. Stn. No. Name	National Grid Reference	Catchment Area (Sq.km)	Total Capacity (Cumecs)	of	Manufacturer	Year
•••••••		•••••			•••••	
012 CURRY MOOR	ST 345 288	15,50	3.470	_		_
					SULZER	1955
				-	SULZER LANDUSTRIE	1955 1983
				•		.,
013 CLEWER	ST 438 515	34.50	6.000			10/0
					ALLEN GWYNNES	1969
					ALLEN GWYNNES	1969 1969
			•	3	ALLEN GWYNNES	1909
014 SOUTH HILL	ST 346 564		0.720			10/7
					PLEUGER	1963
				č	PLEUGER	1963
015 WHITEHOUSE	ST 362 552		0.720			
					PLEUGER	1963
				2	PLEUGER	1963
D16 BLACKFORD	* ST 401 485	1.90	0.260			
				1	LANDUSTRIE	1973
017 CROSSHOOR	ST 415 544	1.40	0.720			
				1	LANDUSTRIE	1980
D18 GOLD CORNER	ST, 368 431	104.10	17,500			
				1	SULZER	1942
					SULZER	1942
				3	SULZER	1942
-e:				4	SULZER	1942
DIP SLOWAY LANE	ST 302 451	16.20	0.132			
				1	FLYGT	1991
				2	FLYGT	1991
20 WITHYDROVE	ST 326 441	16.20	0.132			
				1	FLYGT	1990
5 m 1 m					FLYGT	1990
21 NORTH DRAIN	ST 398 448	35,10	5.520			•
				1	ALLEN GWYNNES	1960
					ALLEN GWYNNES	1960
					ALLEN GWYNNES	1960
22 LADDEN BROOK	ST 667 840	41.00	2.000			
		41144	2.000	1	SPAAN	1980
					SPAAN	1980
		1440		-		
23 WEST BAY,	SY 463 905	1.70	1.500			
				1	FLYGT	1984

.

......

	:22222233	******		******	******		********			*****
Punip Type	Size			Capacity (cumecs)	Stat.		Drive		Supply Voltage	Disc. Type
ŗ	900 mm	VD		4 64	7 80	120	•			
C C	900 mm	H8 H8	V V	1.56 1.56	3.50 3.50	320 320	0 D	136.0 136.0		SL SL
5	1300mm		•	0.35	3.50	44	E	23.0	415	JL
A	900 mm	00	v	2.00	2.59	415	E	120.0	415	S]
1 A -	900 mm	00	V	2.00	2.59	415	Ē	120.0	415	51
A	900 mm	00	۷	2.00	2.59	415	E	120.0	415	S 1
A		SB	۷	0.36	1.83	960	E	20.0	415	\$1
A		\$ B	v	0.36	1.83	960	E	20.0	415	\$1
		~~	.,							
A		58 58	V V	0.36 0.36	1.83 1.83	960 960	E	20.0 20.0	415 415	S1
*		30	٠	0.30	1.03	YOU	E	20,0	912	S 1
s	950 mm	-		0.26	1.52	48	E	10.0	415	-
				9						
S	1645mm	00	•	0.72	2.20	36	E	30.0	415	•
A	1500mm	HB	H	4.38	2.59	250	E	315.0	415	SL
Ä	1500mm	HB	H	4.38	2.59	220	Ō	240.0	4,2	SL
A	1500 m m	HB	H	4.38	2.59	220	Ð	240.0	•	SL
A	1500mm	HB	H	4.38	2.59	220	0	240.0		SL
с	200 mm		v	0.07	6.00		E		415	SL
С	200 mm	SB	v	0.07	6.00		E		415	SL
C	200 mm		۷	0.07	6.00		E		415	SL
С	200 mm	SB	V	0.07	6.00		E		415	SL
A	900 mm		v .	1.84	3.66			136.0	415	S I
A	900 mm	HB	۷	1.84	3.66		D	136.0	415	S 1
A	900 mm	MB	V	1.84	3.66		D·	136.0	415	S1
\$	1800mm			1.00			E		415	SL
S	1800mm	SB		1.00			E		415	SL
	920 mm	19/09	v	1.53	2.50	585	E		415	S]

YORKSHIRE


.

1

-

=

REGION		SUB REGION	STN. NO	NAME
Yorkshire				
	_		014	* PASTURES ROAD P.S.
			015	* BARNBORGH GRANGE
			016	MILL LANE
			017	ADWICK-ON-DEARNE
			018	* BOLTON INGS P.S.
			019	* OLIS MOOR
		York 1	001	FLEET
		York 2	002	BOROUGHBRIDGE
			013	FOSS BARRIER
		Humberside	003	EAST HULL
			004	TICKTON
			005	GREAT CULVERT
			006	WINESTEAD OUTFALL
			0 07	HEMPHOLME
			008	WINESTEAD BOOSTER
			009	SKEFFLING
			010	WILFHOLME
			011	WATERSIDE
			012	ARNOLD AND RISTON

Stn. Stn. Io. Name	National Grid Reference	Catchment Area (Sq.km)	Total Capacity (Cumecs)	No of Pump	
forkshire					
DO1 FLEET	SE 555 398	32.00	2.260	1	SULZER
					SULZER
02 BOROUGHBRIDGE	SE 396 670		1.050		
					A.B.S. VOP 400/BR
				2	A.B.S. VOP 400/BR
003 EAST HULL	TA 130 284		22.600		
				1	NO INFORMATION
04 TICKTON	TA 074 425	0.55	2.550		
					ALLEN GWYNNES
					ALLEN GWYNNES ALLEN GWYNNES
				2	
05 GREAT CULVERT	TA 115 355	5.50	12.720	•	ALLEN GWYNNES
				-	ALLEN GWYNNES
				3	ALLEN GWYNNES
				4	ALLEN GWYNNES
06 WINESTEAD OUTFALL	TA 335 185		7.540		
					ALLEN GWYNNES ALLEN GWYNNES
				۷	NLLEN GWINNES
07 HEMPHOLME	TA 095 495	9.92	1.870		
					ALLEN GWYNNES ALLEN GWYNNES
				3	
108 WINESTEAD BOOSTER	TA 301 234		3.390	1	ALLEN GWYNNES
					ALLEN GWYNNES
				3	ALLEN GVYNNES
09 SKEFFLING	TA 369 184		2.400		
					SULZER BROS
				23	SULZER BROS SULZER BROS
			_	-	
10 WILFHOLME	TA 062 472	1.09	8,000	•	ALLEN GWYNNES
					ALLEN GWYNNES
12				-	ALLEN GWYNNES
				4	ALLEN GWYNNES
11 WATERSIDE	TA 057 393		4.000		
					ALLEN GWYNNES
	· · · ·			2	ALLEN GWYNNES

.

Year Pump Type Size Diam. Nous. Mour. Capacity (cumces) Stat. Speed (n) Impel. (R.P.H) Drive (R.P.H) N.P. Supply Voltage Supply Disc. Type 1975 HF 450 mm HB V 1.13 6.10 725 E 130.0 415 SL 1975 HF 450 mm HB V 1.13 6.10 725 E 130.0 415 SL 1975 HF 450 mm HB V 0.50 3.30 950 E 415 SL 1988 A 400 mm LB V 0.455 5.00 735 E 55.0 415 SI 1972 A 525 mm HB V 0.85 5.00 735 E 55.0 415 SI 1972 A 525 mm HB V 0.85 5.00 735 E 55.0 415 SI 1976 A 1050mm CO			14.							-			
1975 HF 450 mm HB V 1,13 6,10 725 E 130,0 415 SL 1988 A 400 mm LB V 0,50 3,30 950 E 415 SL 1988 A 400 mm LB V 0,50 3,30 950 E 415 SL 1972 A 525 mm HB V 0.85 5.00 735 E 55.0 415 S1 1972 A 525 mm HB V 0.85 5.00 735 E 55.0 415 S1 1972 A 525 mm HB V 0.85 5.00 735 E 55.0 415 S1 1972 A 525 mm HB V 0.85 5.00 735 E 250.0 415 S1 1969 A 1050mm OV 3.18 9.00 328 E 250.0 415 S1 1969 A 1050mm V 3.77 3.8		Pump	Size	Hous.		Capacity	Stat. Head	Impel. Speed			Supply	Disc	
1975 MF 450 mm HB V 1,13 6,10 725 E 130.0 415 SL 1988 A 400 mm LB V 0,50 3,30 950 E 415 SL 1978 A 400 mm LB V 0,50 3,30 950 E 415 SL 197 - </td <td></td> <td></td> <td></td> <td>•••</td> <td></td> <td>•••••</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>******</td> <td></td>				•••		•••••						******	
1975 HF 450 mm HB V 1.13 6.10 725 E 130.0 415 SL 1988 A 400 mm LB V 0.50 3.30 950 E 415 SL 1972 A 525 mm HB V 0.85 5.00 735 E 55.0 415 SI 1972 A 525 mm HB V 0.85 5.00 735 E 55.0 415 SI 1972 A 525 mm HB V 0.85 5.00 735 E 55.0 415 SI 1972 A 525 mm HB V 0.85 5.00 735 E 55.0 415 SI 1969 A 1050mm OO V 3.18 9.00 328 E 250.0 415 SI 1969 A 1050mm OO V 3.18 9.00 328 E 250.0 415 SI 1969 A 1057mm KB<	1975	MF	450 mm	KB	v	1.13	6,10	725	E	130.0	415	\$L	
1988 A 400 mm LB V 0.50 3.30 950 E 415 SL 197 -	1975	MF	450 mm	NB	v	1.13	6.10				415	SL	
1988 A 400 mm LB V 0.50 3.30 950 E 415 SL 197 -	1988		400 mm	LB	v	0.50	3.30	950	E		415	SL	
1972 A 525 mm HB V 0.85 5.00 735 E 55.0 415 S1 1972 A 525 mm HB V 0.85 5.00 735 E 55.0 415 S1 1972 A 525 mm HB V 0.85 5.00 735 E 55.0 415 S1 1969 A 1050mm CO V 3.18 9.00 328 E 250.0 415 S1 1969 A 1050mm CO V 3.18 9.00 328 E 250.0 415 S1 1969 A 1050mm CO V 3.18 9.00 328 E 250.0 415 S1 1977 A 1067mm HB V 3.77 3.80 321 E 415 S1 1977 A 1067mm HB V 0.60 12.50 735 - 41.0 415 S1 1977 A 525 mm HB<		Å	400 mm	LB									
1972 A 525 mm HB V 0.85 5.00 735 E 55.0 415 \$1 1972 A 525 mm HB V 0.85 5.00 735 E 55.0 415 \$1 1972 A 525 mm HB V 0.85 5.00 735 E 55.0 415 \$1 1969 A 1050mm CO V 3.18 9.00 328 E 250.0 415 \$1 1969 A 1050mm CO V 3.18 9.00 328 E 250.0 415 \$1 1969 A 1050mm CO V 3.18 9.00 328 E 250.0 415 \$1 1977 A 1067mm HB V 3.77 3.80 321 E 415 \$1 1977 A 1067mm HB V 3.77 3.80 321 E 41.0 415 \$1 1977 A 525 mm HB </td <td>19</td> <td>-</td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	19	-			•							-	
1972 A 525 mm HB V 0.85 5.00 735 E 55.0 415 S1 1972 A 525 mm HB V 0.85 5.00 735 E 55.0 415 S1 1969 A 1050mm 00 V 3.18 9.00 328 E 250.0 415 S1 1969 A 1050mm 00 V 3.18 9.00 328 E 250.0 415 S1 1969 A 1050mm 00 V 3.18 9.00 328 E 250.0 415 S1 1969 A 1050mm 00 V 3.18 9.00 328 E 250.0 415 S1 1977 A 1067mm HB V 3.77 3.80 321 E 415 S1 1977 A 1067mm HB V 0.60 12.50 735 - 41.0 415 S1 1977 A 675 mm HB													
1972 A 525 mm HB V 0.85 5.00 735 E 55.0 415 S1 1969 A 1050mm 00 V 3.18 9.00 328 E 250.0 415 S1 1969 A 1050mm 00 V 3.18 9.00 328 E 250.0 415 S1 1969 A 1050mm 00 V 3.18 9.00 328 E 250.0 415 S1 1969 A 1050mm 00 V 3.18 9.00 328 E 250.0 415 S1 1977 A 1067mm HB V 3.77 3.80 321 E 415 SL 1977 A 1067mm HB V 3.77 3.80 321 E 415 SL 1977 A 525 mm HB V 0.60 12.50 735 - 41.0 415 S1 1977 A 675 mm HB V <td>1972</td> <td>A</td> <td>525 mm</td> <td>KB</td> <td>v</td> <td>0.85</td> <td>5.00</td> <td>735</td> <td>Ε</td> <td>55.0</td> <td>415</td> <td>\$1</td> <td></td>	1972	A	525 mm	KB	v	0.85	5.00	735	Ε	55.0	415	\$1	
1969 A 1050 mm CO V 3.18 9.00 328 E 250.0 415 SI 1969 A 1050mm CO V 3.18 9.00 328 E 250.0 415 SI 1969 A 1050mm CO V 3.18 9.00 328 E 250.0 415 SI 1969 A 1050mm CO V 3.18 9.00 328 E 250.0 415 SI 1969 A 1067mm HB V 3.77 3.80 321 E 415 SL 1977 A 1067mm HB V 3.77 3.80 321 E 415 SL 1974 A 525 mm HB V 0.60 12.50 735 - 41.0 415 SI 1974 A 525 mm HB V 0.60 12.50 735 - 41.0 415 SI 1977 A 525 mm HB V<		A			v				Ε				
1969 A 1050mm 00 V 3.18 9.00 328 E 250.0 415 SI 1969 A 1050mm 00 V 3.18 9.00 328 E 250.0 415 SI 1969 A 1050mm 00 V 3.18 9.00 328 E 250.0 415 SI 1977 A 1067mm HB V 3.77 3.80 321 E 415 SL 1977 A 1067mm HB V 3.77 3.80 321 E 415 SL 1977 A 1067mm HB V 3.77 3.80 321 E 415 SL 1977 A 1067mm HB V 0.60 12.50 735 - 41.0 415 SI 1974 A 525 mm HB V 0.67 6.25 735 - 29.0 415 SI 1978 A 675 mm HB V 1.13 <td>1972</td> <td>A</td> <td>525 mm</td> <td>HØ</td> <td>۷</td> <td>0.85</td> <td>5.00</td> <td>735</td> <td>E</td> <td>55.0</td> <td>415</td> <td>S1</td> <td></td>	1972	A	525 mm	HØ	۷	0.85	5.00	735	E	55.0	415	S 1	
1969 A 1050mm 00 V 3.18 9.00 328 E 250.0 415 SI 1977 A 1067mm HB V 3.77 3.80 321 E 415 SI 1977 A 1067mm HB V 3.77 3.80 321 E 415 SI 1977 A 1067mm HB V 3.77 3.80 321 E 415 SI 1974 A 525 mm HB V 0.60 12.50 735 - 41.0 415 SI 1974 A 525 mm HB V 0.60 12.50 735 - 41.0 415 SI 1974 A 525 mm HB V 0.60 12.50 735 - 41.0 415 SI 1976 A 675 mm HB V 1.13 4.10 585 E 415 SI 1978 A 675 mm		A			v				_				
1969 A 1050mm 00 V 3.18 9.00 328 E 250.0 415 SI 1977 A 1067mm HB V 3.77 3.80 321 E 415 SL 1977 A 1067mm HB V 3.77 3.80 321 E 415 SL 1974 A 525 mm HB V 0.60 12.50 735 - 41.0 415 S1 1974 A 525 mm HB V 0.60 12.50 735 - 41.0 415 S1 1974 A 525 mm HB V 0.67 6.25 735 - 29.0 415 S1 1976 A 675 mm HB V 1.13 4.10 585 E 415 SL 1978 A 675 mm HB V 1.13 4.10 585 E 415 SL 1978 A 675 mm LB V <									-			-	
1977 A 1067mm HB V 3.77 3.80 321 E 415 SL 1977 A 1067mm HB V 3.77 3.80 321 E 415 SL 1977 A 1067mm HB V 3.77 3.80 321 E 415 SL 1974 A 525 mm HB V 0.60 12.50 735 - 41.0 415 S1 1974 A 525 mm HB V 0.60 12.50 735 - 41.0 415 S1 1974 A 525 mm HB V 0.67 6.25 735 - 410 415 S1 1978 A 675 mm HB V 1.13 4.10 585 E 415 SL 1978 A 675 mm LB V 0.80 4.50 580 E 415 S1 1982 A 675 mm LB <t< td=""><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					•								
1977 A 1067mm HB V 3.77 3.80 321 E 415 SL 1974 A 525 mm HB V 0.60 12.50 735 - 41.0 415 SI 1974 A 525 mm HB V 0.60 12.50 735 - 41.0 415 SI 1974 A 525 mm HB V 0.67 6.25 735 - 29.0 415 SI 1978 A 675 mm HB V 1.13 4.10 585 E 415 SL 1978 A 675 mm HB V 1.13 4.10 585 E 415 SL 1978 A 675 mm HB V 1.13 4.10 585 E 415 SL 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1982 A 675 mm LB	1707	~	105000			2.10	,	520	-	2,010	4.2	••	
1974 A 525 mm HB V 0.60 12.50 735 - 41.0 415 \$1 1974 A 525 mm HB V 0.67 6.25 735 - 41.0 415 \$1 1974 A 525 mm HB V 0.67 6.25 735 - 29.0 415 \$1 1978 A 675 mm HB V 1.13 4.10 585 E 415 \$1 1978 A 675 mm HB V 1.13 4.10 585 E 415 \$1 1978 A 675 mm HB V 1.13 4.10 585 E 415 \$1 1978 A 675 mm HB V 0.80 4.50 585 E 415 \$1 1978 A 675 mm LB V 0.80 4.50 580 E 415 \$1 1982 A 675 mm LB V 0.80 4.50 580	1977	A	1067mm	HB	v	3.77	3.80	321	Ε		415	SL	
1974 A 525 mm HB V 0.60 12.50 735 - 41.0 415 \$1 1974 A 525 mm HB V 0.67 6.25 735 - 29.0 415 \$1 1978 A 675 mm HB V 1.13 4.10 585 E 415 \$1 1978 A 675 mm HB V 1.13 4.10 585 E 415 \$1 1978 A 675 mm HB V 1.13 4.10 585 E 415 \$1 1978 A 675 mm HB V 1.13 4.10 585 E 415 \$1 1978 A 675 mm LB V 0.80 4.50 580 E 415 \$1 1982 A 675 mm LB V 0.80 4.50 580 E 415 \$1 1982 A 675 mm HB V 2.00 6.35 420 E	1977	A	1067mm	KB	۷	3.77	3.80	· 321	E		415	SL	
1974 A 525 mm HB V 0.60 12.50 735 - 41.0 415 S1 1974 A 525 mm HB V 0.67 6.25 735 - 29.0 415 S1 1978 A 675 mm HB V 1.13 4.10 585 E 415 SL 1978 A 675 mm HB V 1.13 4.10 585 E 415 SL 1978 A 675 mm HB V 1.13 4.10 585 E 415 SL 1978 A 675 mm HB V 0.80 4.50 585 E 415 SL 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1982 A 675 mm HB V 2.00 6.35 420 E	1974		525 mm	KB	v	0.60	12.50	735		41.0	415	\$1	
1978 A 675 mm HB V 1.13 4.10 585 E 415 SL 1978 A 675 mm HB V 1.13 4.10 585 E 415 SL 1978 A 675 mm HB V 1.13 4.10 585 E 415 SL 1978 A 675 mm HB V 1.13 4.10 585 E 415 SL 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB	1974				v	0.60	12.50	735	-				
1978 A 675 mm HB V 1.13 4.10 585 E 415 SL 1978 A 675 mm HB V 1.13 4.10 585 E 415 SL 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI <td>1974</td> <td>A</td> <td>525 mm</td> <td>KB</td> <td>V</td> <td>0.67</td> <td>6.25</td> <td>735</td> <td>•</td> <td>29.0</td> <td>415</td> <td>\$1</td> <td></td>	1974	A	525 mm	KB	V	0.67	6.25	735	•	29.0	415	\$1	
1978 A 675 mm HB V 1.13 4.10 585 E 415 SL 1978 A 675 mm HB V 1.13 4.10 585 E 415 SL 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td>													•
1978 A 675 mm HB V 1.13' 4.10 585 E 415 SL 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI <					-		4.10	585				-	
1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1982 MF 900 mm HB V 2.00 7.00 420 E 415 SI									_				
1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1982 MF 900 mm HB V 2.00 7.00 420 E 415 SI					1	•			10				
1982 A 675 mm LB V 0.80 4.50 580 E 415 SR 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1982 MF 900 mm HB V 2.00 7.00 420 E 415 SI													
1981 NF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1982 MF 900 mm HB V 2.00 7.00 420 E 415 SI					-								
1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 MF 900 mm HB V 2.00 6.35 420 E 415 SI	1702	~	07) mm	10	•	0.80	4.30	500			413	34	
1981 NF 900 mm HB V 2.00 6.35 420 E 415 SI 1981 NF 900 mm HB V 2.00 6.35 420 E 415 SI 1982 MF 900 mm HB V 2.00 7.00 420 E 415 SI	1981	MF	900 am	HB	v								
1981 NF 900 mm HB V 2.00 6.35 420 E 415 SI 1982 MF 900 mm HB V 2.00 7.00 420 E 415 SI					-		6.35		Ε				
1982 MF 900 mm HB V 2.00 7.00 420 E 415 SI			· ·										
1982 MF 900 mm HB V 2.00 7.00 420 E 415 SI	1981	MĘ	900 mm	HB	V	2.00	0.35				413	21	
1982 MF 900 mm HB V 2.00 7.00 420 E 415 SI		MF			v			420	E				
	1982	NF	900 mm	H B -	V	2.00	7.00	420	E		415	SI .	

.

-: 9,*

	Stn. Name	Natfonal Grid	Catchment	Total Capacity	No of	Manufacturer
* • • •		******	•••••	•••••		
012	ARNOLD AND RISTON	TA 107 43	.4	0.730	_	
						SULZER
					2	SULZER
013	FOSS BARRIER	SE 605 51	2 125.00	30.000		
		•• ••• •			1	FLYGT
						FLYGT
					3	FLYGT
					4	FLYGT
					5	FLYGT
						FLYGT
						FLYGT
					8	FLYGT
014	* PASTURES ROAD P.S.	SE 496 00	9 4.00	0.440		
•••		u				FLYGT CP3300
	6					FLYGT CP3300
015	* BARNBORGH GRANGE	FE 407 A1	L.	0.040		Ý.
015	- DAKNOVKUN UKANUL	32 472 47	0	0.040		GUINARD ER1000C617
						GUINARD ER1000C617
~~ /		AF / PA 84		0.000		
010	+ MILL LANE	SE 480 01	8	0.080		POITCH CUINADD
						BRITISH GUINARD British Guinard
		•		1.1		BKIIISH UVINANU
017	ADWICK-ON-DEARNE	SE 473 02	3 1.00	0.132		
•			· ··	••••=	1	FLYGT CP3151
					-	FLYGT CP3151
018	* BOLTON INGS P.S.	SE 439 DZ	2 0.30	0.066	-	
			6- E		1	
					2	FLYGT CP3101NT
n19	· OLIS MOOR	SE 435 02	1 0.30	0.120		
		96 798 VL				FLYGT CP3126
						FLYGT CP3126
					3	

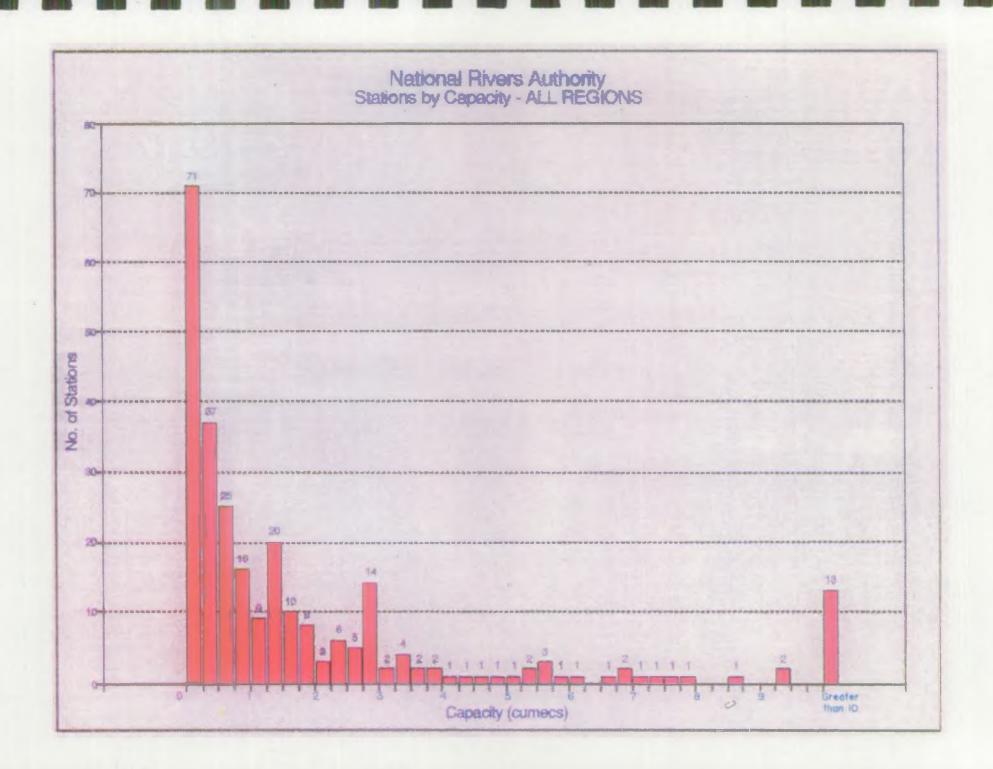
•

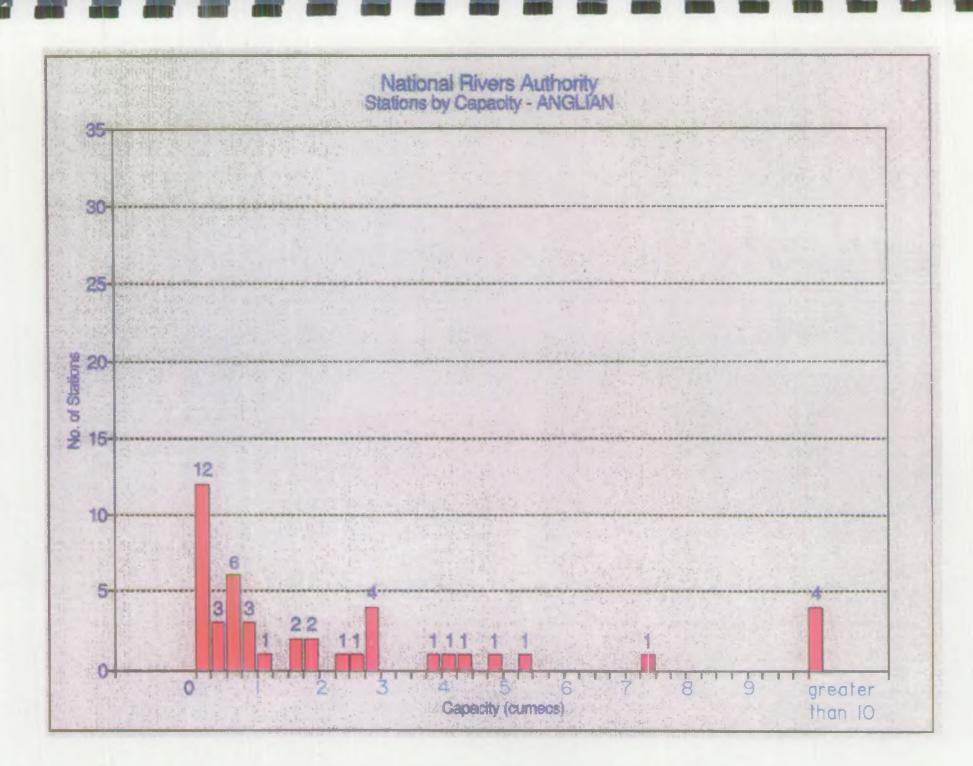
•

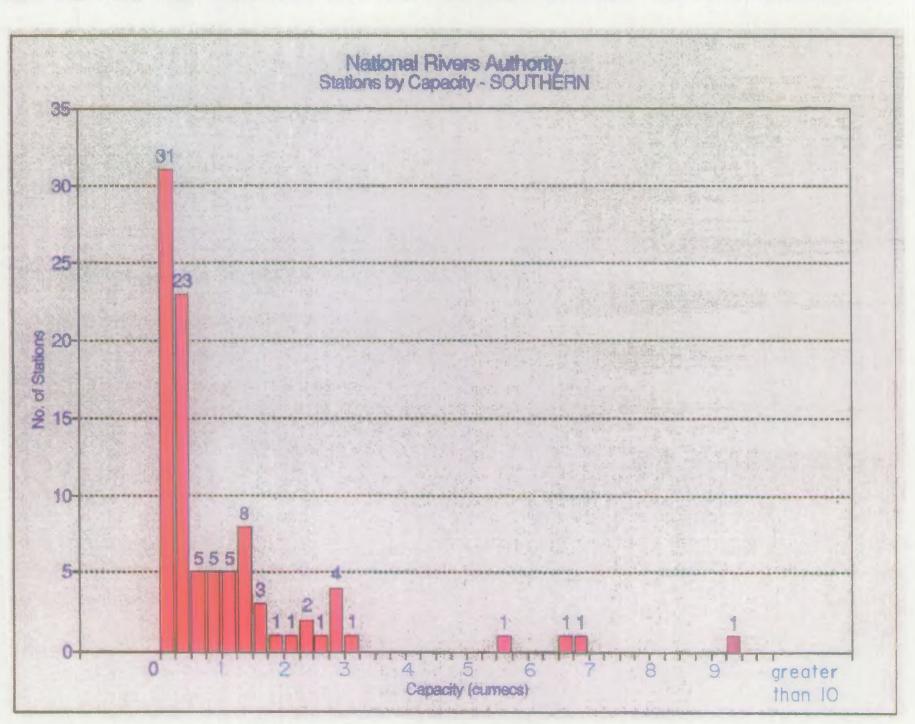
					============						
rear	Ритр Туре	Size Diam.			Capacity (cumecs)		Impel. Speed (R.P.M)			Supply Voltage	Oisc. Type
							,				
980 980	MF MF	400 mm 400 mm		V V	0.36 0.36	5.40 5.40	970 970	E E		415 415	SR SR
988	MF	930 mm	SB	v	3.80	3.70	490	E		415	SL
988	MF	930 mm	SB	V	3.80	3.70	490	E		415 415	SL SL
988 988	MF MF	930 mm 930 mm	58 58	v v	3.80 3.80	3.70 3.70	490 490	. E E		415	SL
988	MF	930 mm	58 58	v	3.80	3.70	490	Ĕ	·	415	SL
988	MF	930 mm	58		3.80	3.70	490	Ē		415	SL
988	MF	930 mm	58	v	3.80	3.70	490	Ē		415	SL
988	MF	930 mm	SB	v	3.80	3.70	490	E		415	SL
979	MF		SB	v	0.22	7.75		E		415	SL
979	MF		38 58	v	0.22	7.75		E		415	SL
~~ •		••	~ •		0.07	4.20		E	1 0	220	SL
991 991	MF MF	80 mm 80 mm	58 58	H H	0.02 0.02	4.20		E	2.0 2.0	220	SL
		00	00			~		-	2.1.4		••
98 2	NF	100 mm	SB	V	0.04	3.40	1,450	E		415	SL
982	MF	100 mm	SB	v	0.04	3.40	1,450	, E		415	SL
970			c 0	H	0.07	5.80		E	15.0	440	SL
970	MF MF		58 58	H	0.07	5.80		Ē	15.0	440	SL
,,,,	nr.		30	п	0.01	3.00		. •	1310	440	ŬĽ.
974	ĦF		58	v	0.03	5.87		E	4.0	415	SL
974	MF		\$8	V	0.03	5.87		E	4.0	415	SL
974	٨		5 9	v	0.06	6.10		E	8.0	415	SL
974	~			•					8.0		
986	A		SB	v	0.06	6.10		Ε	8.0	415	SL

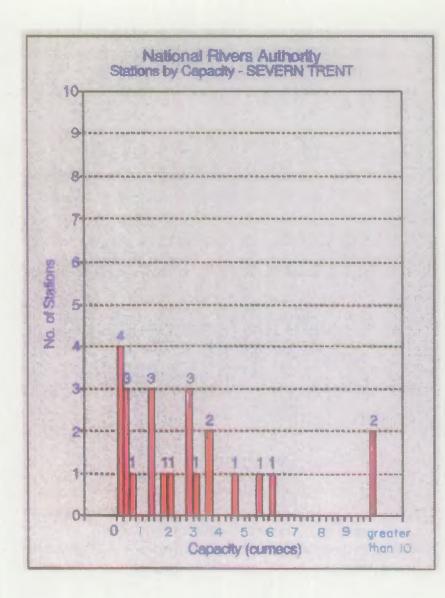
-

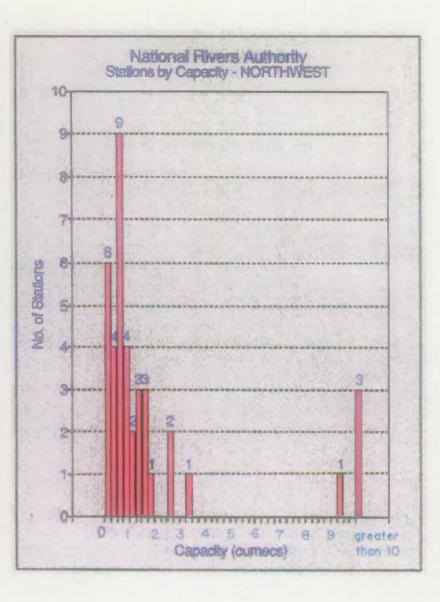
Bullen and Partners

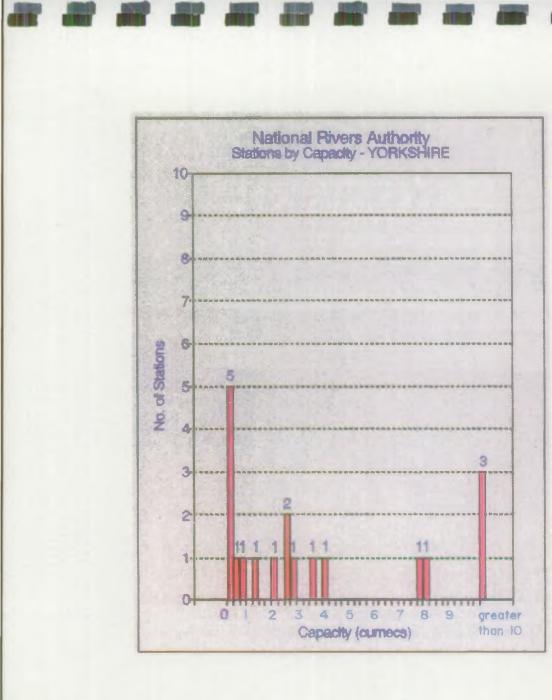

National Rivers Authority Pumping Station Research

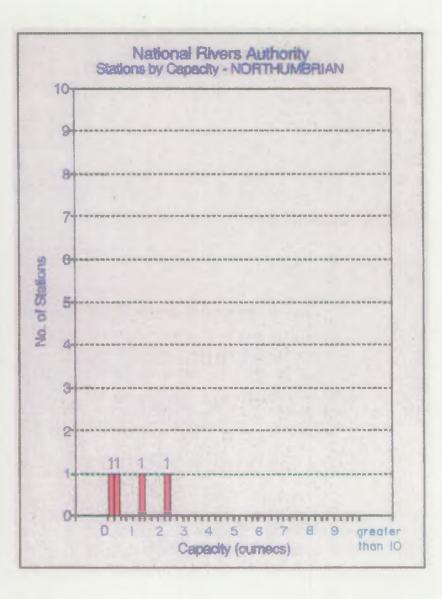

Appendix B2 Pump Analysis Listed by Capacity

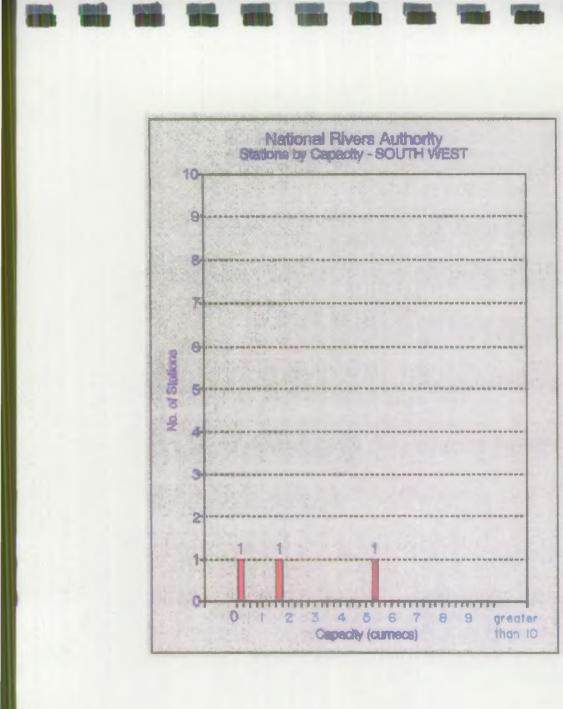

Contents

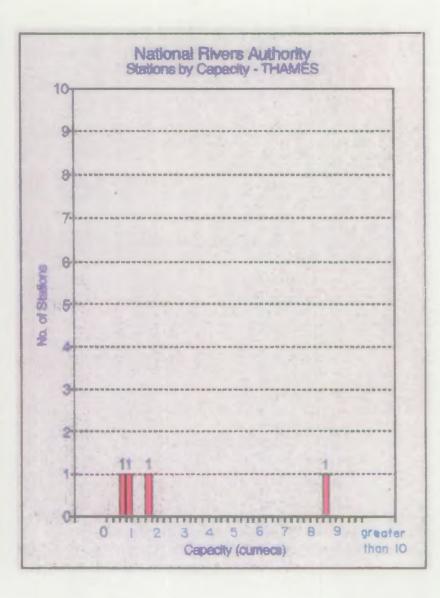

Stations by Capacity Stations by Capacity Stations by Capacity Stations by Capacity Stations by Capacity Stations by Capacity Stations by Capacity All Regions Anglian Region Southern Region Severn Trent and Northwest Regions Yorkshire and Northumbrian Regions South West and Thames Regions Welsh and Wessex Regions

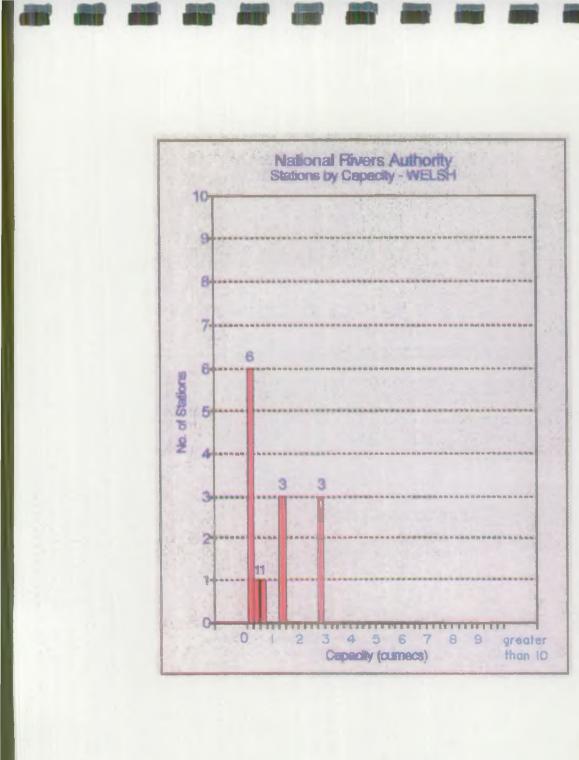

Ref: VH/91742/001/B

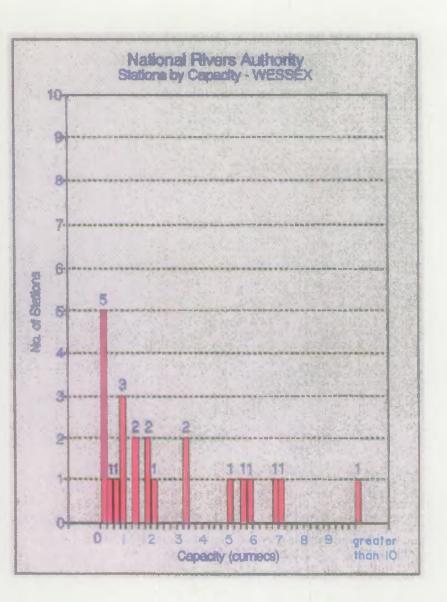




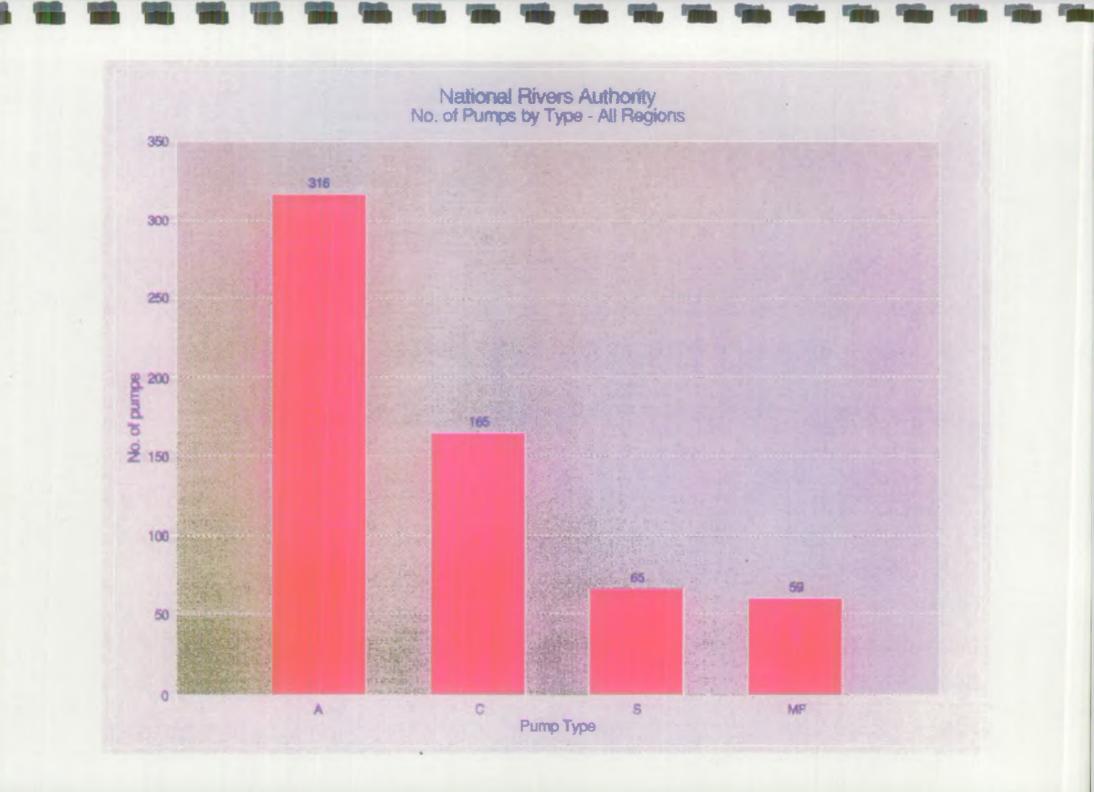


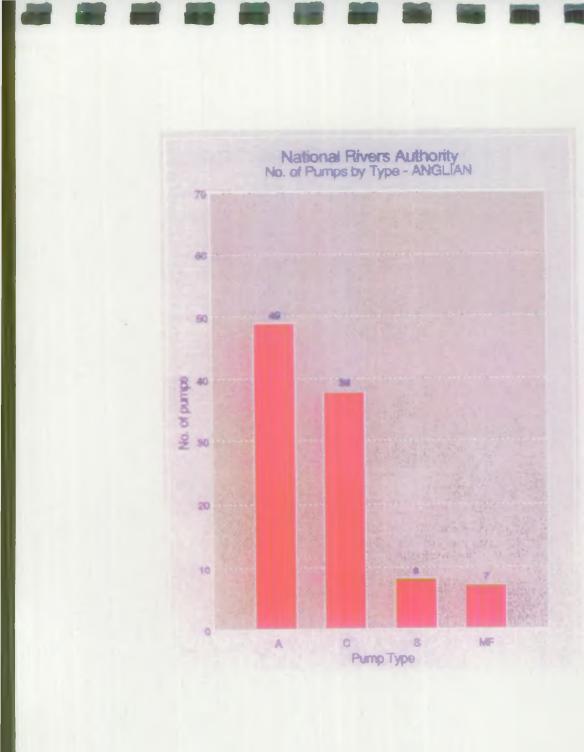


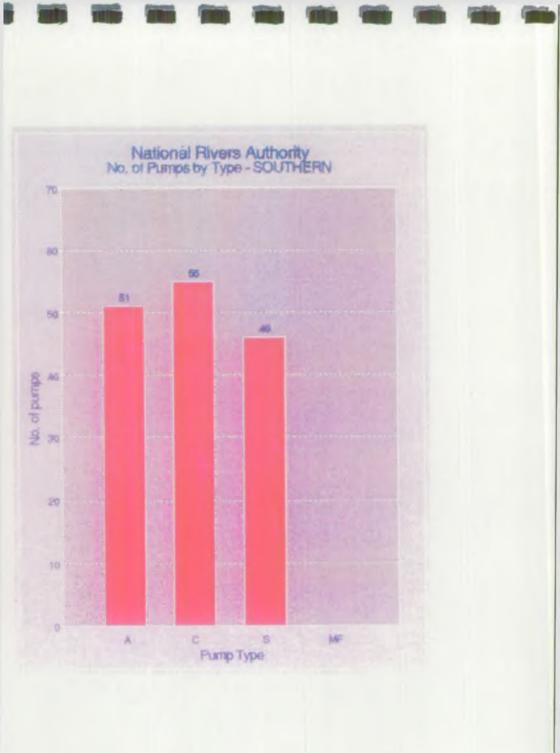


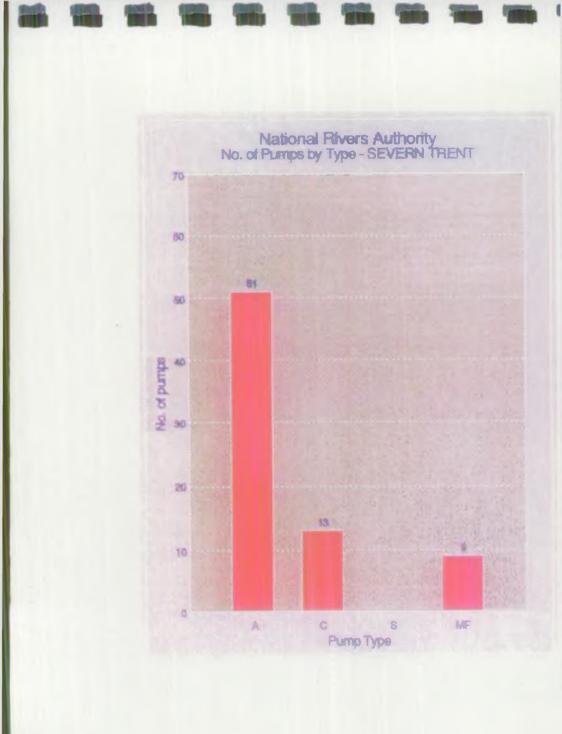


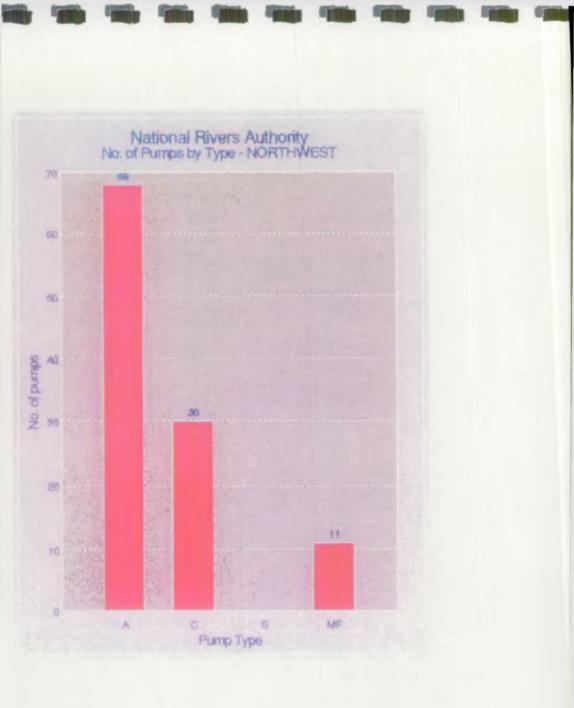
Bullen and Partners

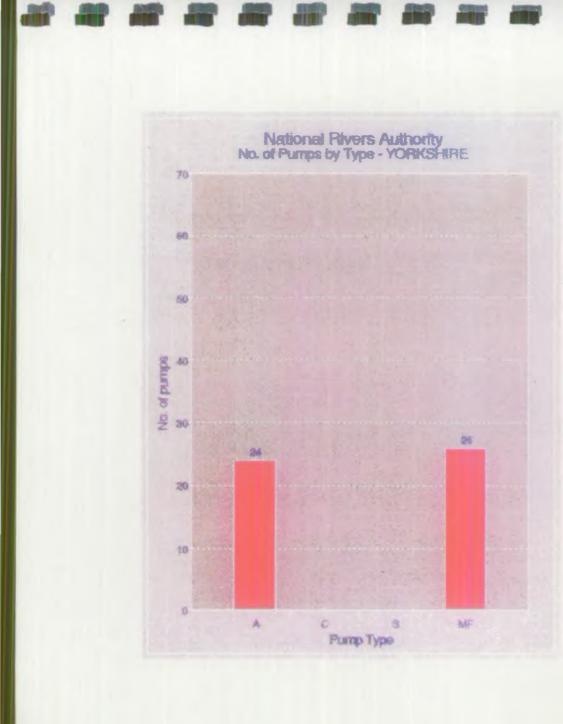

Appendix B3 Pump Analysis

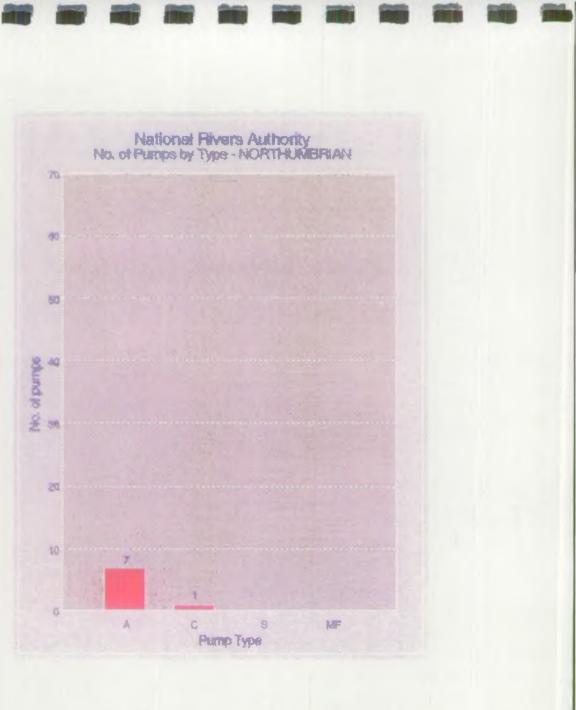

Listed by Pump Type

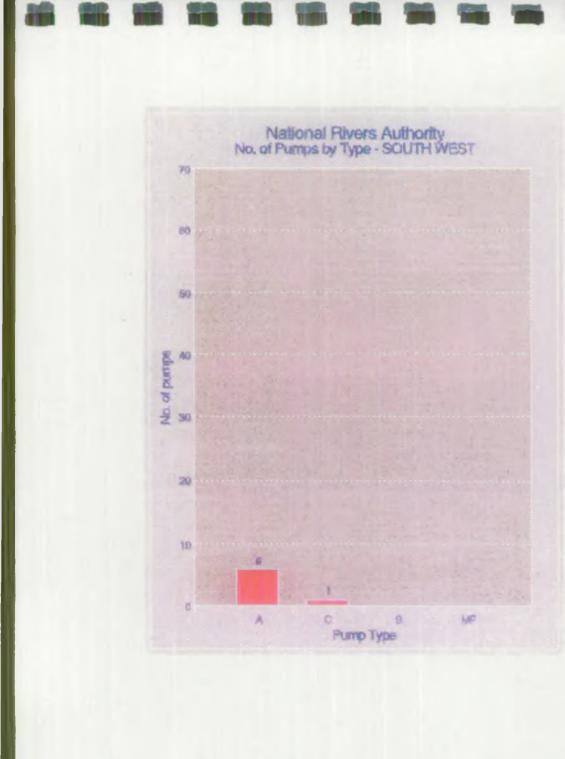

Contents

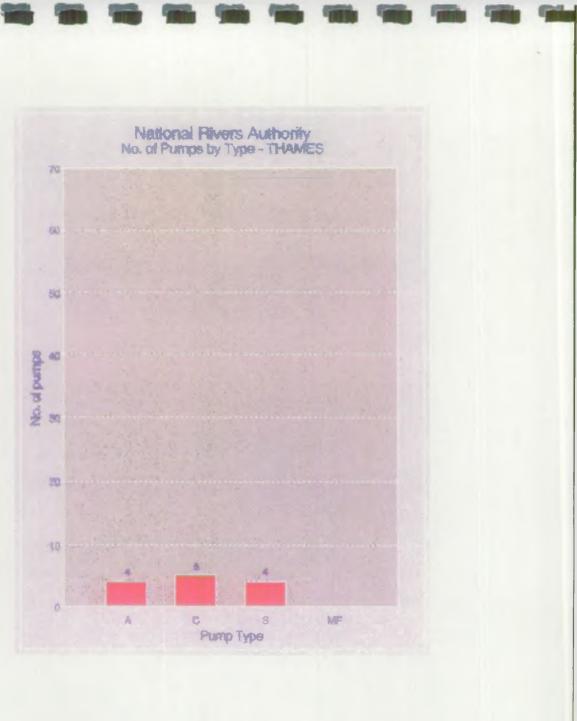

Pumps by TypeAll RegionsPumps by TypeAnglian and Southern RegionsPumps by TypeSevern Trent and Northwest RegionsPumps by TypeYorkshire and Northumbrian RegionsPumps by TypeSouth West and Thames RegionsPumps by TypeWelsh and Wessex Regions

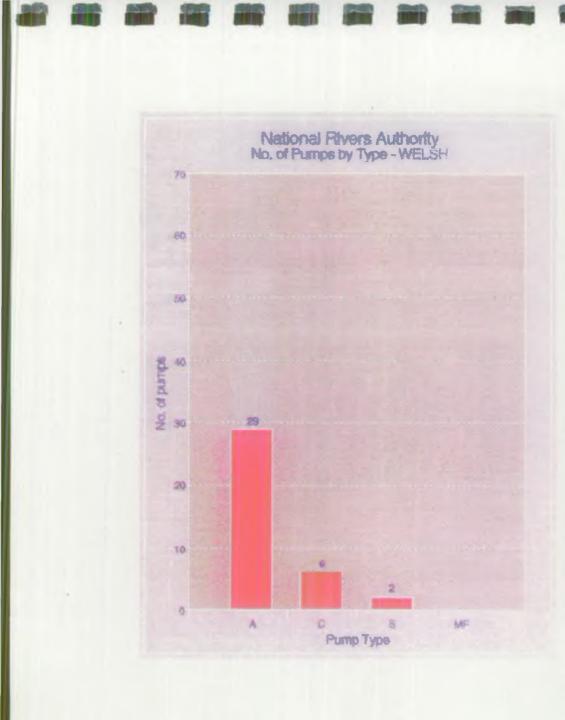

Ref: VH/91741/001/B

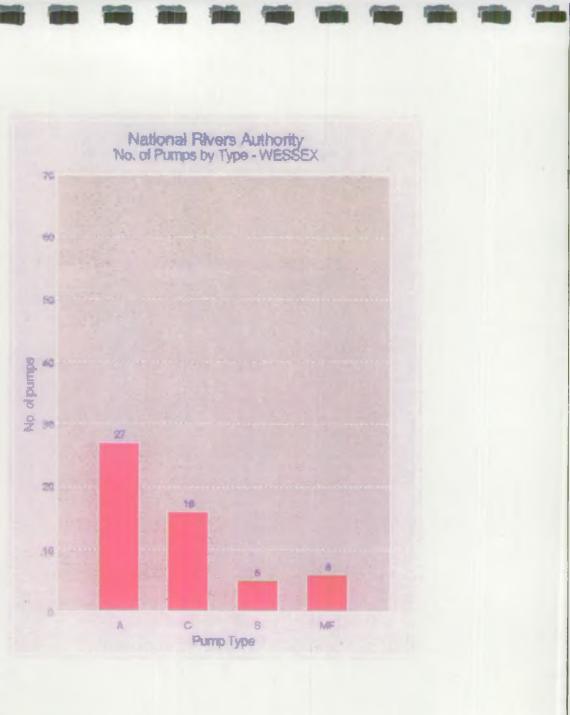












Bullen and Partners

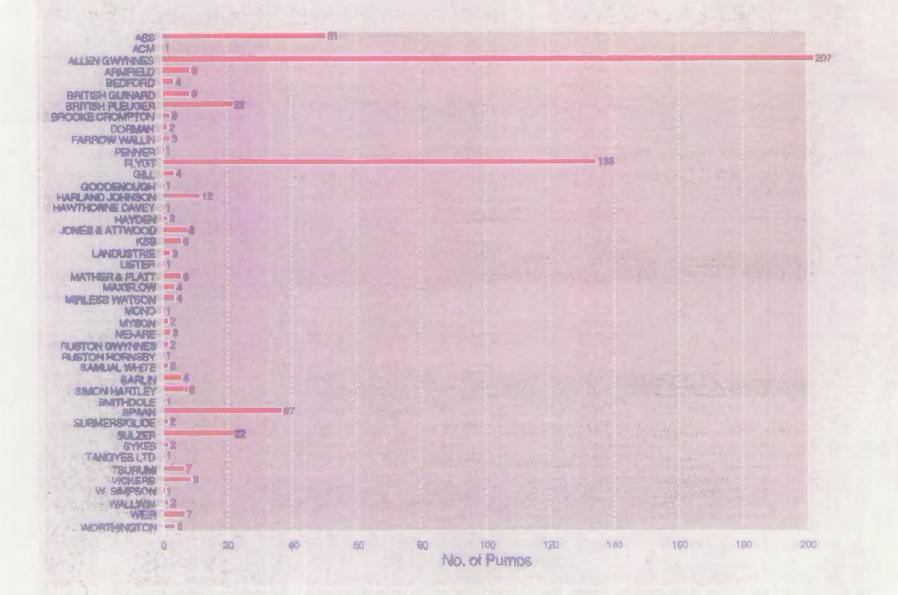
National Rivers Authority Pumping Station Research

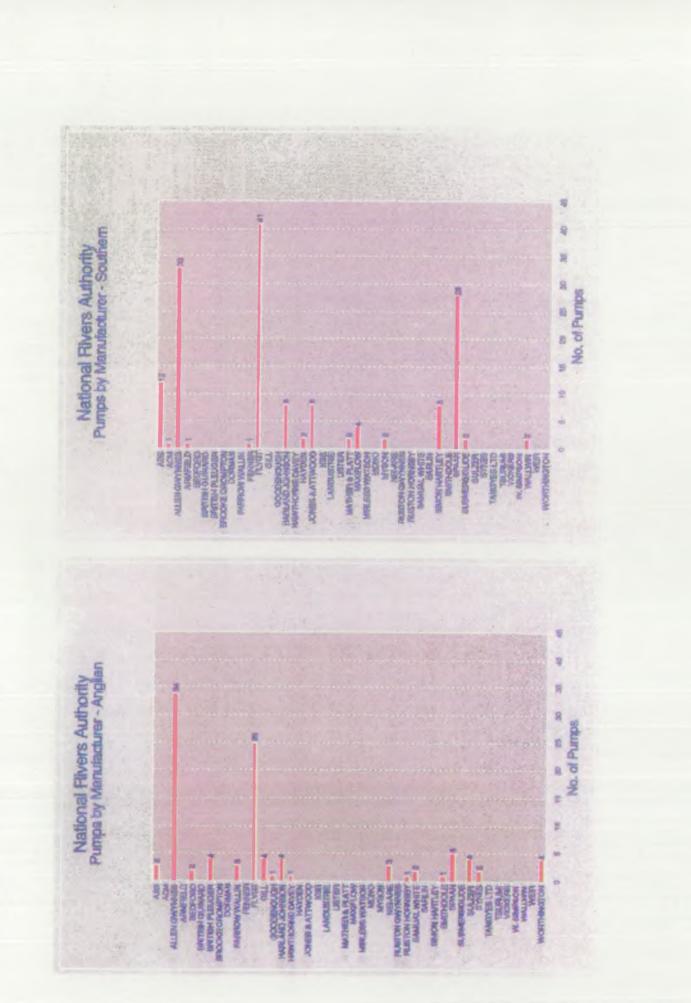
Appendix B4

Pump Analysis

Listed by Manufacturer

All Regions

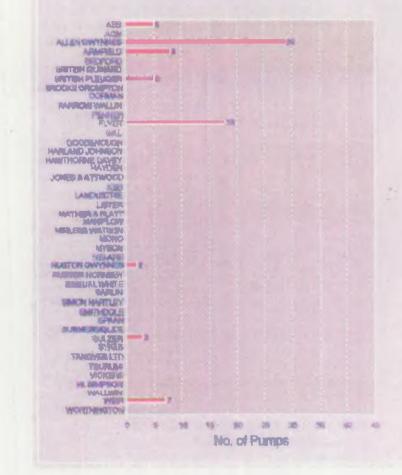

Contents


Pumps by Manufacturer Pumps by Manufacturer Pumps by Manufacturer Pumps by Manufacturer Pumps by Manufacturer Pumps by Manufacturer

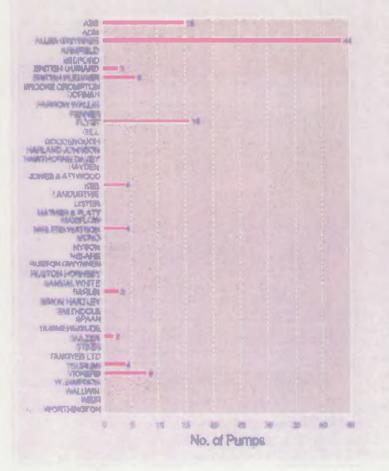
Anglian and Southern Region Severn Trent and North West Regions Yorkshire and Northumbrian Regions South West and Thames Regions Welsh and Wessex Regions

Bef: VH/91742/001/B

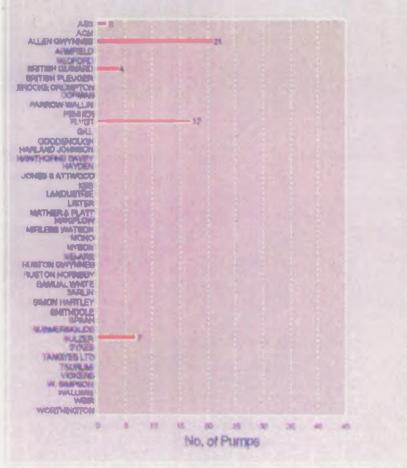
National Rivers Authority No. of Pumps by Manufacturer

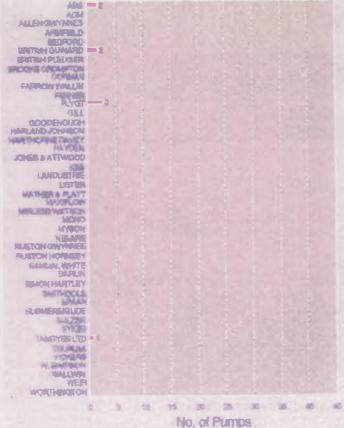


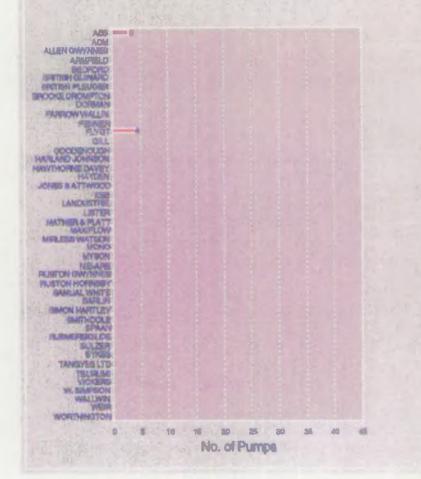
lir lir

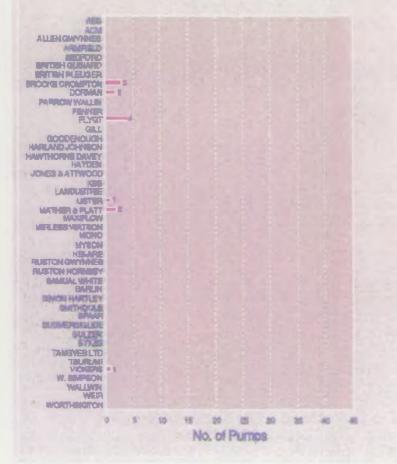

1

1

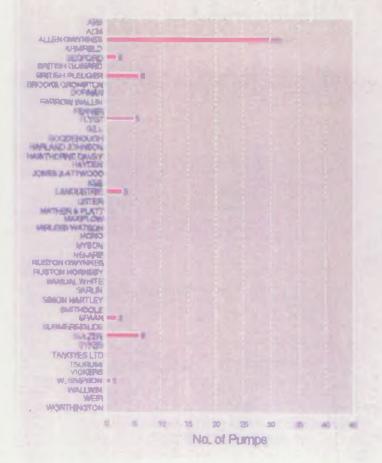

National Rivers Authority Pumps by Manufacturer - Severn Trent


National Rivers Authority Pumps by Manufacturer - North West


National Rivers Authority Pumps by Manufacturer - Yorkshire


National Rivers Authority Pumpe by Manutacturer - Northumbrian


National Rivers Authority Pumps by Manufacturer - Southwest


National Rivers Authority Pumps by Manufacturer - Thames

National Rivers Authority Pumps by Manufacturer - Weish

National Rivers Authority Pumps by Manufacturer - Wessex

Bullen and Partners

National Rivers Authority Pumping Station Research

Appendix B5

Cost of Stations by Capacity

Contents

Total Cost Against Capacity

Mechanical and Electrical Cost

Civil Cost

Ref: VH/91742/001/B

TOTAL COSTS vs CAPACITY	I UI AL COSTS (E)

(

ł

		$\frac{1}{100} + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $
101	Capacity (cumacs)	1001

Capacity (curriecs)					
Long La La La La La La La La La La La La La					
il and in the second se					

Bullen and Partners

National Rivers Authority Pumping Station Research

Appendix C

Design Philosophy

Contents

C1 Design Considerations

C2 Checklist

Ref: VE/91742/001/B

NRA PUMPING STATION RESEARCH PROJECT

DESIGN CONSIDERATIONS

REQUIRED CAPACITY

Catchment Characteristics :

- Size.

- Topography.

- Impermeability.

- Rainfall.

Design standard :

- Channel storage.

- Channel conveyance.

- Power supply constraints.

Gravity by-pass.

PUMPING HEAD

Low	:	- Axial flow.
		Screw pump.

.

High: - Mixed flow - bowl type centrifugal.

Range of heads - maximum, minimum, duty head.

Duty head - maximum efficiency at this head if pump design allows.

PUMP TYPE

Head and size

- Axial low heads (less than 6 metres).
- Mixed flow higher heads small size pumps.

Centrifugal - higher heads.

Concrete volute - large capacity.

Screw - low heads, fixed discharge level.

Pump Type (Contd/...)

Clearances

Axial pumps not suitable in small sizes below 360mm dia., small space between rotor blades can lead to "balling" of weed and choking of pump. Where weed is present use a mixed flow bowl unit in these circumstances.

Impellers must pass suspended solids - preferably up to 75mm dia., without blockage, damage, or undue wear.

Mounting Position

Can be horizontal, vertical or inclined. A number of problems experienced with horizontal submersible units of different manufacture - one pump firm has ceased production. Vertical position preferable.

Axial Pumps Impeller Tip Speeds

Problems of vibration and overloading can be experienced with axial flow pumps having high impeller tip speeds. Conservative values are recommended. One experienced manufacturer gives an upper limit of 20.0m/sec. The same manufacturer also recommends a maximum axial velocity through the rotor of 5.0m/sec. Liable to 'choke' on weed in small sizes - use mixed flow bowl or volute type if less than 36cm required.

Pump characteristic curves

> Curves of typical performance of the various types of pump can be found in pump manufacturers literature and technical publications.

> Can be a problem - need for adequate submergence of the impeller - related to suction lift, vapour pressure and pump speed. Causes vibration, increased power demand and can cause pitting and erosion of the impeller.

> All units should normally be tank tested and the tests witnessed, prior to delivery. Very large pumps cannot be tank tested -preliminary estimates of performance are normally made with a model and prototype performance measured by gauging on site, after erection.

Cavitation

Testing

DISCHARGE ARRANGEMENTS

Alternatives

- Siphonic.
- Sluice and reflux valve.
- Sluice and flap.
- Flap.
- Free discharge.

The various alternatives can have a marked effect on the pumping station structure and cost. Sluice valves and reflux valves are costly in the larger sizes and siphonic discharge pipes with siphon breaker valves are now usually adopted.

Problems

Siphon breakers can jamb, though this is not a common occurrence, and can allow water to flow into the catchment and might cause damage to the pump by contra rotation. They can also freeze and provision now usually made for heating in cold weather.

Where a siphonic discharge is used it is important that the velocity of discharge at on start at maximum head is greater than 2m/sec or the siphon may not prime -motor must be of adequate power to ensure this. Required pump priming head can be reduced by inclusion of priming aid in the siphon downstream leg. Charlton, J.A. 1972. Journal I.W.E., Vol.26, No.1.

Hammer can take place where flaps are used as a discharge control. The possibility of this can be reduced by keeping velocities through it low (not greater than 2m/sec.).

MOTIVE POWER

Electric

Most modern small to medium sized stations have electrically driven pumps which lend themself to automatic operation and supervision by less skilled staff than diesel powered units. Provision should be made for connecting a portable generator should the mains supply be disrupted for any length of time or provision made for bringing in mobile pumps.

Need for agreement with supply company on tariff.

Motive Power (Contd/...)

Power factor correction.

Limits on starting current can dictate type of starter or motor used.

Need for regular motor and starter maintenance.

Diesel

gearbox. The engine might be turbo blown and will require a skilled operator and maintenance personnel. Fuel storage tanks required and suitable road access for fuel tankers. Following the Miners Strike and strike of power

Used almost exclusively for the largest flood defence pumps, driving the pump through a right angle

workers, many of the subsequent medium sized stations have been designed with half their pumps diesel powered and half electric powered to guarantee some pumping capacity under similar conditions.

WATER QUALITY

General

Weed

Bearings

Flood defence pumps must be capable of dealing with river water that will normally contain quantities of weed, mud, sand and various floating debris. The pump manufacturer must be made aware of this. The pump should be capable of dealing with these conditions for long periods without undue wear or blockage. Chemical composition should be checked for possible adverse effects on pump materials.

As indicated above (Pump Type) clearances on small axial flow pumps are such that weed can cause problems and mixed flow, bowl pumps are preferable for small pumps where weed is present.

The presence of sand, grit and coal dust can cause lower bearing problems and special precautions are required - proper sealing, pumped lubrication, cutlass rubber bearings etc. Where pumped grease lubrication is used for lower bearings these should be sealed and a return provided to prevent pollution of watercourse.

STATION STRUCTURE

Туре

- High house and crane.
- Low building removable roof section.

Low building.

- Outdoor type weather proof motors.
- Submersible pump sump & switchgear cubicle or house.
- Housing for screw pump.

Floating station.

Ground Conditions

These can influence design.

Check for flotation when sump dewatered.

Pressure relief valves in floor?

Earth loading on sump.

- Ground water affect on concrete?
- Presence of gypsum ditto
- Good foundation material?
- Need for bearing piles?
- Coffer dam battered excavation.
- Need for dewatering?
- Steel sheet pile sump.
- Steel sheet pile with R.C. lining.

Sump design

Guidance - Prosser - "Design of pump sumps and intakes" CIRIA/BHRA and other publications - see refs. Even with guidance model tests advisable in all but smallest stations. Checks should be made during construction to ensure sump conforms to design drawing.

Adequate access to station required for installation and removal of equipment for repair. Turning space for vehicles.

Geotextile reinforcement for access roads on poor soils.

Access

Station Structure (Contd/...)

Screens

Adequate area - width 4 times the diameter of pumps

Bar spacing approx. 6cm. - spacing to be confirmed by pump manufacturer. Angle 60 to 70 degrees to facilitate raking. Any bracing to be set back from rear of screen on spacer bars to allow free raking.

Galvanized finish advisable.

Screen preferably "rolled over" at screen bridge to prevent debris falling back. Fabricate in sections for stiffness and reduced weight for installation and removal for repair or maintenance.

Use of automatic screen cleaning gear "Bosker" on large stations and others where economically justified.

Security

Need to make station vandal proof will vary with locality but must be considered.

ENVIRONMENTAL FACTORS

Visual amenity

Can be very important in National Parks and other areas.

Consider use of submersible pump station. Where house required model it on local farm building. Screen by planting. Keep profile below adjoining embankment - local raising of floodbank for this purpose, if necessary.

Consider possibility of several small, less obtrusive stations where this might be possible (might also reduce depth of excavation in poor ground, required for channel works):

Over head electricity cables sometimes objectionable, possible underground feed at higher cost.

Adverse visual effect of asphalt or concrete access roads and paving round stations can be reduced by use of "grasscrete" or other perforated concrete blocks.

Environmental Factors (Contd/...)

Noise

Can be problem with large diesel stations near residential property.

Good silencers and enclosure of exhausts can reduce noise to acceptable limits.

OPERATIONAL REQUIREMENTS

- Vary with circumstances and siting.
- Reliability always paramount.
- Easy to operate.
- Automatic operation.
- Operational procedures.
 - Long interval between need for major overhaul.
- Easy to maintain.
- Automatic screen cleaning.
- Good access.
- Adequate lighting (inside and out).
- Adequate warning instruments.
- Proper hand over including all maintenance and operating manuals.
 - Presence at commissioning.
 - Telemetry link to remote operations room.
- Self diagnostic instrumentation.
- Adequate fire fighting equipment.
- Pump hours run meters.
- U/s and d/s level recorders.
 - Need for post project appraisal confirm design assumptions and obtain information for improvement of subsequent stations.

SAFETY

All equipment and the complete station must comply with the requirements of the Health and Safety at work Act 1974 and any subsequent legislation and with all Board of Trade and Home Office Regulations which may be applicable.

Close co-operation with local Safety Adviser is required from early stages of design right through to completion and commissioning.

LIFETIME COSTING

The basic objective of the designer is to provide a pumping station that will pump all flows up to the maximum design flow, reliably and at minimum cost for the whole of the pumping station's life. This implies that all costs must be considered and not just the initial costs of the structure, pumping and ancillary equipment. These should include:-

Equipment capital cost. Structure capital cost. Routine operating. Power Labour Routine maintenance and inspection. Materials Labour Preventative maintenance. Materials Labour Repair and replacements. Materials Labour Other Major overhauls. **Materials** Labour Other In the absence of detailed records from a similar

station with similar equipment, subjective estimates will have to be made for some of these items.

There is a need to ensure that sufficiently detailed records are kept by operational staff to ensure that data is available to make more accurate assessments of lifetime costs in the future. More information and longer guarantees on the maintenance and replacement requirements, and performance of their products should be demanded from suppliers.

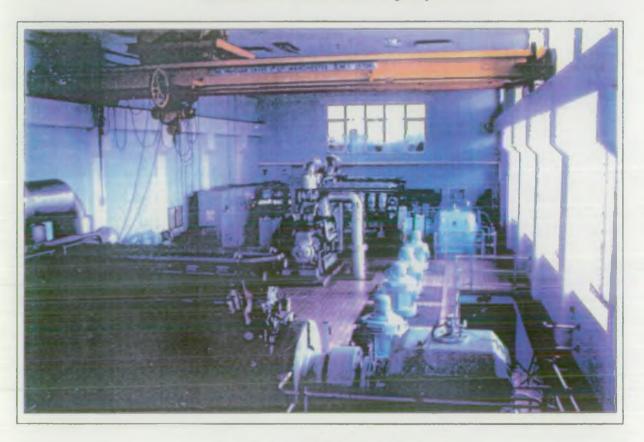
Bullen and Partners

National Rivers Authority Pumping Station Research

Appendix D


Photographs

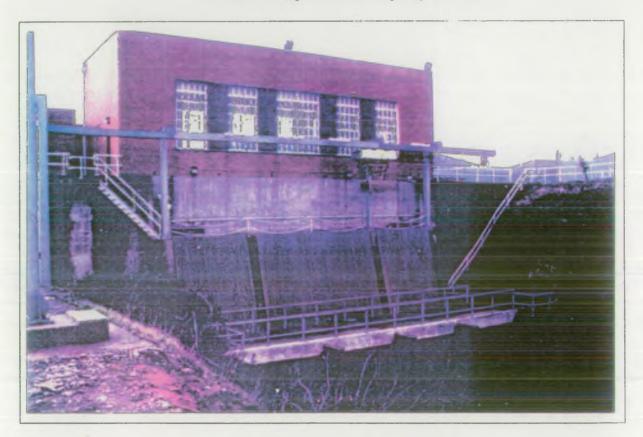
Ref: VH/91742/001/B


Bullen and Partners

1

1

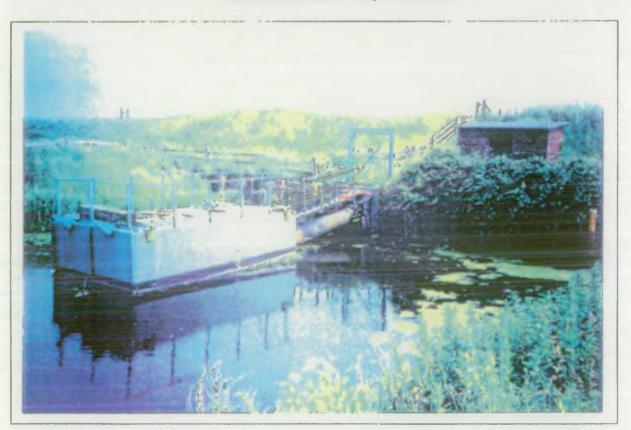
Altmouth Pumping Station - North West Region Axial Flow Vertical Lift Station Capacity 84 cumecs


Altmouth Pumping Station - North West Region Internal Layout

l

1

Wolsty Pumping Station - North West Region Submersible Pump Installation Capacity 0.80 cumees


Bedford Pumping Station - North West Region Capacity of Pumps Recently Upgraded

1

庸

Court Lodge Pumping Station - Southern Region Archimedean Screw Pump Installation

Rodmell Pumping Station - Southern Region Floating Pump Installation

Bullen and Partners

National Rivers Authority Pumping Station Research

Appendix E

References

Ref: VH/91742/001/B

PUMPS AND PUMPING STATIONS

REFERENCES

- 1. Clark, R.G. (1936) St.Germains sluice and pumping station. London: Journal I.C.E., No.6, April.
- 2. Clay, C. (1945) Pumping stations with special reference to land drainage and storm water disposal. London: Journal LC.E. No.5, March.
- 3. Lupton, H.R. (1949) Pumping machinery. London: Journal I.C.E., Vol.31, No.4, February.
- 4. Farran, C.E. (1952) The effects of mining subsidence on land drainage. London: Journal I.W.E., Vol vi. No.7, November.
- 5. Iverson, H.W. (1953) Studies of submergence requirements of high specificspeed pumps. Transactions A.S.M.E., May.
- 6. Addison, H. (1955) Centrifugal and other rotodynamic pumps. London: Chapman and Hall.
- 7. Brewer, D. (1957) Vortices in pump sumps. Bedford: The Allen Engineering Review, March.
- 8. Stepanoff, A.J. (1957) Centrifugal and axial flow pumps (2nd Ed.). New York: John Wiley & Sons.
- 9. Addison, H. (1958) The pump users handbook. London: Pitman.
- 10. Prus-Chacinski, T.M. and Harris, W.B. (1963) Standards for lowland drainage of peat lands with special reference to the Crossens scheme. London: Proc. I.C.E., Vol.24 February.
- 11. McLeod, G. (1965) Land drainage pumping stations. London: Chapter 23, River engineering and water conservation works (Ed. Thorn, R.B.). London: Butterworth.
- 12. Terry, J.B. (1967) Land drainage pumps. Bedford: Allen Gwynnes Publication, A.G.P. 6128.
- 13. Charlton, J.A. (1972) The priming of pump siphonic discharge lines. London: Journal of the Institution of Water Engineers, Vol.26, No.1, Feb. 1972.
- 14. Hockin, D.L. (1973) The River Alt improvement scheme. London: Association of River Authorities Year Book and Directory, 1973.

- 15. Noonan.G.A. (1973) Considerations made in choosing the type and layout of pumping machinery for Altmouth pumping station. London: Conference on Pumping Equipment, Institution of Mechanical Engineers.
- 16. Hydraulic Institute Standards, 13th Ed. (1975). Cleveland, U.S.A.

11155

- 17. Prosser, M.J. (1977) The hydraulic design of pump sumps and intakes. London: CIRIA/BHRA, Report Ref. UDC 621.65.03.
- 18. Radford, J.D. and Richardson, D.B. (1977) The management of manufacturing systems, Chpt.8, maintenance and replacement. London: Macmillan Press Ltd.
- 19. Sweeny, C.E. and Hay, D. (1982) Pump sump design experience:summary. U.S.A.: Hydraulics Division, A.S.C.E. Vol. 108, No.HY3, March.
- 20. Charnley, P.L. et Al (1987) Lowland drainage. London: Chapter 6. Water practice manual No.7. River Engineering, Pt.1, design principles. Institution of Water and Environmental Management.
- 21. Sansby, J.T. et Al (1989) Maintenance and general operations. London: Water Practice Manual No.8. River Engineering, Pt.2, structures and coastal defence works, ps.249,250. Institution of Water and Environmental Management.
- 22. Marshall,D.C.W. (1989) Toward optimal land drainage pumping (paper not published). Wallingford: Institute of Hydrology.
- 23. Prosser, M.J. (1992) Design of low-lift pumping stations. London: CIRIA Report 121, Construction Industry Research and Information Association.
- 24. "Life Cycle Costing" A Radical Approach. London CIRIA Report 122. Construction Industry Research and Information Association.

Dissemination a	ind Uptake Note		
	s details of how the attached o f how the customer wishes the		is to be disseminated to the end-
1. Project	1		
Commission	FLOOD DEFONCE	Topic Area	RIVER STULOCTURES.
Project Number	363 Project Leader	ALAN H. TAYLOR	Region North WEST
2. <u>Output</u>			
Title (AUMPING STATION - E	FFICIENCE OF OPERA BION LIFESPAN, SURV	TION AND COSTS FOR A
Relenence	R.J 363		PROJECT RECOVE ALLES T
ustribution Instru	an part of the state of the state of the		Record in the fuer our of
FLOOD DEFS	NCE MAUNGER	R-D Co. ORDINATO	ч у
Plosect Lev Topic Lead		Rab SECTION H.O.	
Commision	re.	Tenm deuters.	
Dissemination Sta	tus Internal Rece	Asch To Reci External	RESTRUCTED
Desening don Sta		uses to record Extremits	[[[[[]]]]]
3. <u>Uptake</u>			
Responsibility :	Front	DEFENCE	•
Details (shoul	d include any seminars, trainin	g sessions or Working Group co	nsiderations as necessary)
THIS AROT	er RECONS (PHATEI)) WILL FORM PART	OF THE BUSIS FOR
		CONTITUD GUIDAWCE	
JELICH N	B OVERATIONAL MY	NTEDANCE OF AUNPI	iog Statione.
4. Core Function/	Customer Authorization		
	1		
Project Leader	AR Parti	Topic Leader	
	Lout		1 D. How Mandacks and Static comments . Sou
Commissioner		Group Chairman ²	
Notes:	Reference to paper R&D(92)	3 Definition of R&D	Date Output
CC	Outpute.		ient
	² Signature of Chairman of Wo	orking Group II appropriate.	

R&D Note 1

Ì

1

ł

8

>