ENVIRONMENTAL PROTECTION

River Hayle Catchment

River Water Quality

Classification 1990

NOVEMBER 1991 WQP/91/024 B L MILFORD

National Rivers Authority South West Region

GORDON H BIELBY BSc Regional General Manager

C V M Davies Environmental Protection Manager

ACKNOWLEDGEMENTS

The Water Quality Planner acknowledges the substantial contributions made by the following staff:

- R. Broome Co-ordinator and Editor
- A. Burrows Production of Maps and editorial support
- P. Grigorey Production of Maps and editorial support
- B. Steele Production of Forepage
- C. McCarthy Administration and report compilation

Special thanks are extended to A. Burghes of Moonsoft, Exeter for computer support and the production of statistical schedules.

The following NRA sections also made valuable contributions:

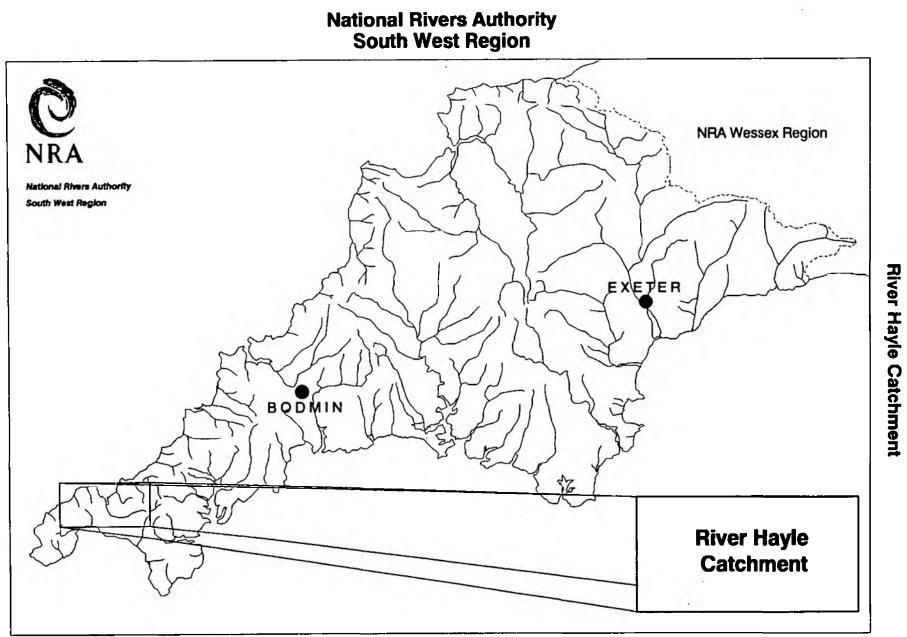
Pollution Control Field Control and Wardens Water Resources

Thanks also to R. Hamilton and J. Murray-Bligh for their contributions.

Suggestions for improvements that could be incorporated in the production of the next Classification report would be welcomed.

Further enquiries regarding the content of these reports should be addressed to:

Freshwater Scientist, National Rivers Authority, Manley House, Kestrel Way, EXETER, Devon EX2 7LQ



RIVER WATER QUALITY IN THE RIVER HAYLE CATCHMENT

LIST OF CONTENTS

Page No. 1 Introduction 1 2 River Hayle Catchment 1 3 National Water Council's River Classification System 2 4 1990 River Water Quality Survey 3 5 1990 River Water Quality Classification 3 6 Non-compliance with Quality Objectives 4 7 Causes of Non-compliance 4 8 Glossary of Terms 5 9 References 5 10 Appendices: 10.1 River Quality Objectives including Monitoring points 10.2 Basic Determinand Analytical Suite 10.3 National Water Council (NWC) River Classification System 10.4 NWC Criteria for Non-Metallic Determinands - Regional Variation 10.4.1 NWC Criteria for Metallic Determinands - Regional Variation 10.5 1990 River Water Quality Classification - tabular format 10.6 1990 River Water Quality Classification - map format Calculated Determinand Statistics used for Quality 10.7 Assessment 10.8 Compliant/Non-Compliant River Reaches Number of Samples Results exceeding quality standards 10.9 10.10 Percentage Exceedance of Determinand Statistics from Quality Standard

10.11 Identification of Possible Causes of Non-Compliance with River Quality Objectives

1. INTRODUCTION

Monitoring to assess the quality of river waters is undertaken in thirtytwo catchments within the region. As part of this monitoring programme samples are collected routinely from selected monitoring points at a predetermined frequency per year, usually twelve spaced at monthly intervals. Each monitoring point provides data for the water quality of a river reach (in kilometres) upstream of the monitoring point.

River lengths have been re-measured and variations exist over those recorded previously.

Each water sample collected from each monitoring point is analysed for a range of chemical and physical constituents or properties known as determinands. The analytical results for each sample are entered into a computer database called the Water Quality Archive.

Selected data are accessed from the Archive so that the quality of each river reach can be determined based on a River Classification System developed by the National Water Council (NWC), (9.1).

This report presents the river water quality classification for 1990 for monitored river reaches in the River Hayle catchment.

2. RIVER HAYLE CATCHMENT

The River Hayle flows over a distance of 15.1 km from its source to the tidal limit, (Appendix 10.1). Water quality was monitored at six locations on the main river. All of these sites were sampled at approximately monthly intervals.

The Nance Stream flows over a distance of 3.6 km from its source to the tidal limit, (Appendix 10.1) and was monitored at one site at approximately monthly intervals.

The St. Erth Stream flows over a distance of 4.5 km from its source to the tidal limit, (Appendix 10.1) and was sampled at one site on fifteen occasions during 1990 because of no recent water quality data.

The Angarrack Stream flows over a distance of 7.8 km from its source to the tidal limit, (Appendix 10.1) and was monitored at two locations at approximately monthly intervals.

Throughout the Hayle catchment three secondary tributaries of the River Hayle were monitored. In addition, Bussow Reservoir was sampled at one site at approximately monthly intervals.

2.1 SECONDARY TRIBUTARIES

Mill Pool Stream (2.9 km) and Godolphin Stream (1.7 km) were monitored at approximately monthly intervals at one location between their source and confluence with the River Hayle, (Appendix 10.1).

Nancegollan Stream flows over a distance of 2.8 km and was monitored at Trenwheal on fifteen occasions during 1990 because of no recent water quality data. Monitoring points are all located in the lower reaches of these streams.

Each sample was analysed for a minimum number of determinands (Appendix 10.2) plus additional determinands based on local knowledge of the catchment. In addition, at selected sites, certain metal analyses were carried out.

The analytical results from all of these samples have been entered into the Water Quality Archive and can be accessed through the Water Act Register, (9.2).

3. NATIONAL WATER COUNCIL'S RIVER CLASSIFICATION SYSTEM

3.1 River Quality Objectives

In 1978 river quality objectives (RQOS) were assigned to all river lengths that were part of the routine monitoring network and to those additional watercourses, which were not part of the routine network, but which received discharges of effluents.

For the majority of watercourses long term objectives were identified based on existing and assumed adequate quality for the long term protection of the watercourse. In a few instances short term objectives were identified but no timetable for the achievement of the associated long term objective was set.

The RQOs currently in use in the River Hayle catchment are identified in Appendix 10.1.

3.2 River Quality Classification

River water quality is classified using the National Water Council's (NWC) River Classification System (see Appendix 10.3), which identifies river water quality as being one of five quality classes as shown in Table 1 below:

Table 1 - National Water Council - River Classification System

Class	Description
1A	Good quality
1B	Lesser good quality
2	Fair quality
3	Poor quality
4	Bad quality

Using the NWC system, the classification of river water quality is based on the values of certain determinands as arithmetic means or as 95 percentiles (5 percentiles are used for pH and dissolved oxygen) as indicated in Appendices 10.4.1 and 10.4.2.

The quality classification system incorporates some of the European Inland Fisheries Advisory Commission (EIFAC) criteria (Appendix 10.3) recommended for use by the NWC system.

4. 1990 RIVER WATER QUALITY SURVEY

The 1990 regional classification of river water quality also includes the requirements of the Department of the Environment quinquennial national river quality survey. The objectives for the Department of the Environment 1990 River Quality Survey are given below:

- To carry out a National Classification Survey based on procedures used in the 1985 National Classification Survey, including all regional differences.
- 2) To classify all rivers and canals included in the 1985 National Classification Survey.
- 3) To compare the 1990 Classification with those obtained in 1985.

In addition, those watercourses, which were not part of the 1985 Survey and have been monitored since that date, are included in the 1990 regional classification of river water quality.

5. 1990 RIVER WATER QUALITY CLASSIFICATION

Analytical data collected from monitoring during 1988, 1989 and 1990 were processed through a computerised river water quality classification programme. This resulted in a quality class being assigned to each monitored river reach as indicated in Appendix 10.5.

The quality class for 1990 can be compared against the appropriate River Quality Objective and previous annual quality classes (1985-1989) also based on three years combined data, for each river reach in Appendix 10.5.

The river water classification system used to classify each river length is identical to the system used in 1985 for the Department of the Environment's 1985 River Quality Survey. The determinand classification criteria used to determine the annual quality classes in 1985, subsequent years and for 1990 are indicated in Appendices 10.4 and 10.4.1.

Improvements to this classification system could have been made, particularly in the use of a different suspended solids standard for Class 2 waters. As the National Rivers Authority will be proposing new classification systems to the Secretary of State in the near future, it was decided to classify river lengths in 1990 with the classification used for the 1985-1989 classification period.

The adoption of the revised criteria for suspended solids in Class 2 waters would not have affected the classification of river reaches.

The river quality classes for 1990 of monitored river reaches in the catchment are shown in map form in Appendix 10.6.

The calculated determinand statistics for pH, temperature, dissolved oxygen, biochemical oxygen demand (BOD), total ammonia, un-ionised ammonia, suspended solids, copper and zinc from which the quality class was determined for each river reach, are indicated in Appendix 10.7.

6. NON-COMPLIANCE WITH QUALITY OBJECTIVES

Those monitored river reaches within the catchment, which do not comply with their assigned (RQO), are shown in map form in Appendix 10.8.

Appendix 10.9 indicates the number of samples analysed for each determinand over the period 1988 to 1990 and the number of sample results per determinand, which exceed the determinand quality standard.

For those non-compliant river reaches in the catchment, the extent of exceedance of the calculated determinand statistic with relevant quality standard (represented as a percentage), is indicated in Appendix 10.10.

7. CAUSES OF NON-COMPLIANCE

For those river reaches, which did not comply with their assigned RQOs, the cause of non-compliance (where possible to identify) is indicated in Appendix 10.11.

8. GLOSSARY OF TERMS

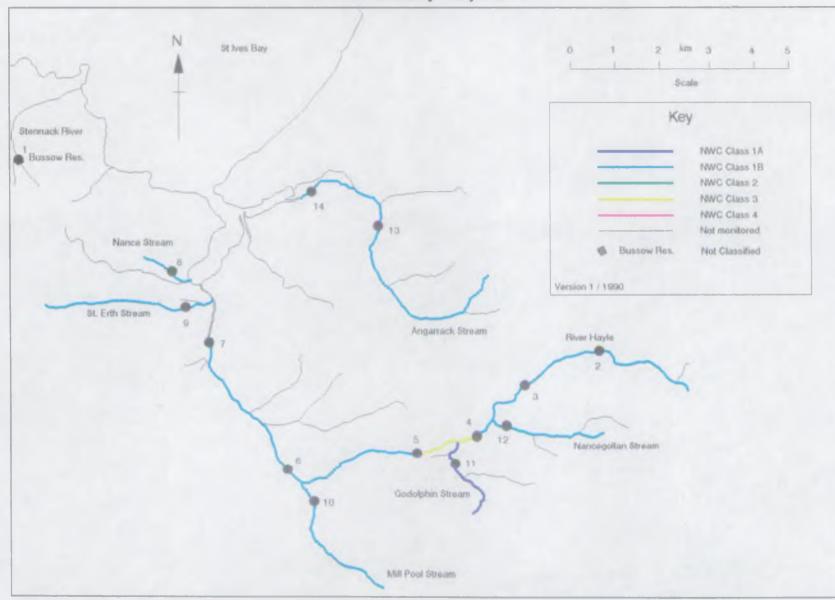
F

I

ľ

RIVER REACH	A segment of water, upstream from sampling point to the next sampling point.
RIVER LENGTH	River distance in kilometres.
RIVER QUALITY OBJECTIVE	That NWC class, which protects the most sensitive use of the water.
95 percentiles	Maximum limits, which must be met for at least 95% of the time.
5 percentiles	Minimum limits, which must be met for at least 95% of the time.
	A standard test measuring the microbial uptake of oxygen - an estimate of organic pollution.
рн	A scale of acid to alkali.
UN-IONISED AMMONIA	Fraction of ammonia poisonous to fish, NH ³ .
SUSPENDED SOLIDS	Solids removed by filtration or centrifuge under specific conditions.
USER REFERENCE NUMBER	Reference number allocated to a sampling point.
INFERRED STRETCH	Segment of water, which is not monitored and whose water quality classification is assigned from the monitored reach upstream.

.


9. REFERENCES

Reference

- 9.1 National Water Council (1977). River Water Quality: The Next Stage. Review of Discharge Consent Conditions. London.
- 9.2 Water Act 1989 Section 117
- 9.3 Alabaster J. S. and Lloyd R. Water Quality Criteria for Freshwater Fish, 2nd edition, 1982. Butterworths.

5

Hayle Catchment River Quality Objectives

Appendix 10.1

BASIC DETERMINAND ANALYTICAL SUITE FOR ALL CLASSIFIED RIVER SITES

pH as pH Units Conductivity at 20 C as uS/cm Water temperature (Cel) Oxygen dissolved % saturation Oxygen dissolved as mg/1 O Biochemical oxygen demand (5 day total ATU) as mg/1 O Total organic carbon as mg/1 C Nitrogen ammoniacal as mg/1 N Ammonia un-ionised as mg/1 N Nitrate as mg/l N Nitrite as mq/l N Suspended solids at 105 C as mg/l Total hardness as mg/l CaCO3 Chloride as mg/l Cl Orthophosphate (total) as mg/1 P Silicate reactive dissolved as mg/1 SiO2 Sulphate (dissolved) as mg/1 SO4 Sodium (total) as mg/l Na Potassium (total) as mg/l K Magnesium (total) as mg/1 Mg Calcium (total) as mg/1 Ca Alkalinity as pH 4.5 as mg/l CaCO3

APPENDIX 10.

-

NWC RIVER QU	ALITY C	LASSIFICATION SYSTEM				
River Class		Quality criteria		Remarks	Currer	nt potential uses
		Class limiting criteria (95 percenti	ile)			
1A Good Quality	(i) (ii) (iii) (iv) (v)	Dissolved oxygen saturation greater than 80% Biochemical oxygen demand not greater than 3 mg/l Ammonia not greater than 0.4 mg/l Where the water is abstracted for drinking water, it complies with requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii)	Average BOD probably not greater than 1.5 ng/l Visible evidence of pollution should be absent	(i) (ii) (iii)	Water of high quality suitable for potable supply abstractions and for all abstractions Game or other high class fisheries High amenity value
1B Good Quality	(i) (ii) (iii) (iv) (v)	DC greater than 60% saturation BOD not greater than 5 mg/l Ammonia not greater than O.9 mg/l Where water is abstracted for drinking water, it complies with the requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii) (iii) (iv)	Average BOD probably not greater than 2 mg/1 Average anmonia probably not greater than 0.5 mg/1 Visible evidence of pollution should be absent Waters of high quality which cannot be placed in Class 1A because of the high proportion of high quality effluent present or because of the effect of physical factors such as	5	Water of less high quality than Class 1A but usable for substantially the same purposes
4		•	(v)	canalisation, low gradient or eutrophication Class 1A and Class 1B together are essentially the Class 1 of 1 River Pollution Survey (RPS)	the	
2 fair Quality	(i) (ii) (iii) (iv)	DO greater than 40% saturation BOD not greater than 9 mg/l Where water is abstracted for drinking water it complies with the requirements for A3* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii) (iii)	Average BOD probably not greater than 5 mg/l Similar to Class 2 of RPS Water not showing physical signs of pollution other than humic colouration and a little foaming below weirs	(i) (ii) (iii)	Waters suitable for potable supply after advanced treatment Supporting reasonably good coarse fisheries Woderate amenity value

÷

				•
B Poor Quality	(i) (ii) (iii)	DO greater than 10% saturation Not likely to be anaerobic BOD not greater than 17 mg/l. This may not apply if there is a high degree of re-aeration	Similar to Class 3 of RPS	Waters which are polluted to an extent that fish are absent only sporadically present. May be used for low grade industrial abstraction purposes. Considerable potential for further use if cleaned up
é Bad Buality	ž.	Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times	Similar to Class 4 of RPS	Waters which are grossly polluted and are likely to cause nuisance
x F		DO greater than 10% saturation		Insignificant watercourses and ditches not usable, where the objective is simply to prevent nuisance developing
Notes (a			ought, freeze-up), or when dominated by p (have BODs and dissolved oxygen levels, o	

- stated levels for those Classes. When this occurs the cause should be stated along with analytical results.
- (b) The BOD determinations refer to 5 day carbonaceous BOD (ATU). Ammonia figures are expressed as NH4. **
- (c) In most instances the chemical classification given above will be suitable. However, the basis of the classification is restricted to a finite number of chemical determinands and there may be a few cases where the presence of a chemical substance other than those used in the classification markedly reduces the quality of the water. In such cases, the quality classification of the water should be down-graded on the basis of biota actually present, and the reasons stated.
 (d) EIFAC (European Inland Fisheries Advisory Commission) limits should be expressed as 95 percentile limits.

EEC category A2 and A3 requirements are those specified in the EEC Council directive of 16 June 1975 concerning the Quality of Surface Water intended for Abstraction of Drinking Water in the Hember State.

** Ammonia Conversion Factors

(mg NH4/1 to mg N/1)

Class	1A	0,4	ng	8H4/1	=	0.31	Mg	N/1
Class	18	0.9	ng	NHc/1	Ξ	0.70	ng	N/1
		0.5	ng	NH4/1	=	0.39	ng	N/1

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR NON-METALLIC DETERMINANDS

River Quality Criteria

Class

- 1A Dissolved oxygen % saturation greater than 80% BOD (ATU) not greater than 3 mg/l = 0Total ammonia not greater than 0.31 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
- 1B Dissolved oxygen % saturation greater than 60% BOD (ATU) not greater than 5 mg/l 0 Total ammonia not greater than 0.70 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
- 2 Dissolved oxygen & saturation greater than 40% BOD (ATU) not greater than 9 mg/1 0 Total ammonia not greater than 1.56 mg/l N Non-ionised ammonia not greater than 0.021 mg/l NTemperature not greater than 28 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
- 3 Dissolved oxygen % saturation greater than 10% BOD (ATU) not greater than 17 mg/1 0
- 4 Dissolved oxygen % saturation not greater than 10% BOD (ATU) greater than 17 mg/1 0

STATISTICS USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION

Determinand	Statistic
Dissolved oxygen	5 percentile
BOD (ATU)	95 percentile
Total ammonia	95 percentile
Non-ionised ammonia	95 percentile
Temperature	95 percentile
pH	5 percentile
-	95 percentile
Suspended solids	arithmetic mean

.

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR METALLIC DETERMINANDS

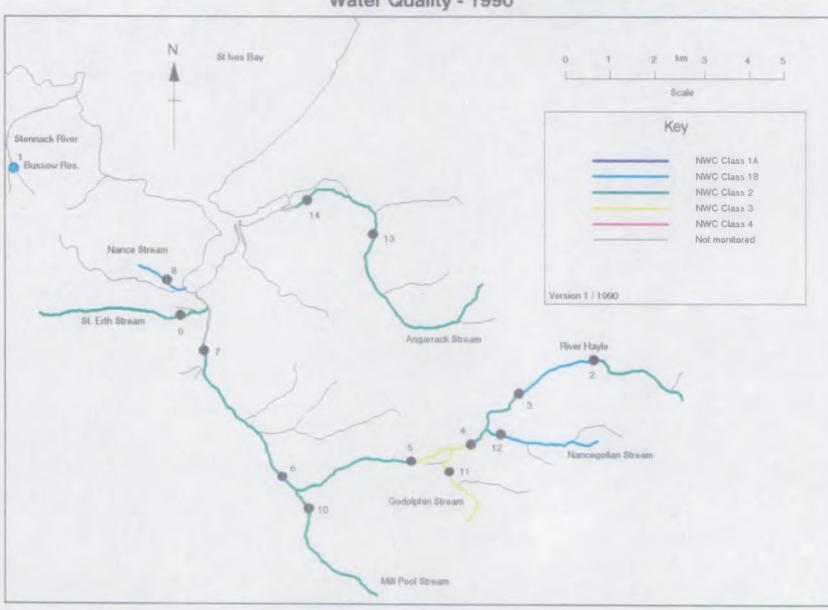
SOLUBLE COPPER

Total Hardness (mean) mg/l CaCO3	Statistic	Soluble Copper* ug/l Cu Class 1 Class 2
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

* Total copper is used for classification until sufficient data on soluble copper can be obtained.

TOTAL ZINC

Total Hardness (mean) mg/l CaCO3	Statistic	Total Zinc ug/l Zn Class 1 Class 2 Class 3									
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	<pre>< = 30 < = 300 > 300 < = 200 < = 700 > 700 < = 300 < = 1000 > 1000 < = 500 < = 2000 > 2000</pre>									

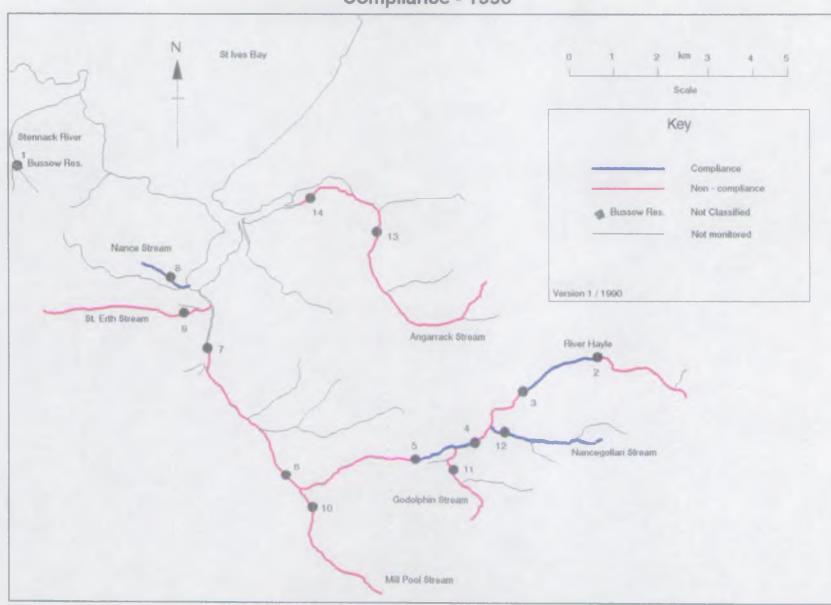

. -

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION CATCHMENT: HAYLE (24)

1990 Mag	•	Reach upstream of	User	National	• • • • • • • • •	Distance		85	86	87	88	89	90
Position			Reference		Length	from	Quality	•		RMC	UNC	•	I INC
Number	ľ		Runber	Reference	(km)	•	Objective	CLASS	CLASS	CLASS	C1855	CLASS	CLASS
	1		1		!	(km)	ţ		1		ļ	1	!
	1		1			1		1			1	1	
	1				1	1		ļ					
	I		_!!		[!						<u> </u>	اا
	STENNACK RIVER	INFLOW, BUSSOW RES. (UNMON. STRETCH)	1 1		0.7	0.7	18		[[1	l I	
1	STERNACK RIVER	BUSSOW RESERVOIR	R22A013	SW 5015 3915		0.9	18				1	1	18
	STERNACK RIVER	MEAN HIGH WATER (UNMONITORRED STRETCH)	1		2.6	3.5	1B	l	1 1		l	l l	
	l				<u> </u>	!		!				!	!!
2	HAYLS	B3303 BRIDGE, CROMAN		SW 6382 3466		2.2	18	18	2		18		
3	BAYLE	DRYN FARM		SW 6203 3376	•	4.4	18	1B	4	4	18	18	18
4	HAYLE	BINNER BRIDGE		SW 6110 3273	•	6.0	18	18	4	2	18	118	2
5	HAYLE	GODOLPHIN BRIDGE		SW 5961 3241		7.6	3	3		3	3	3	3
6	HAYLE	RELUBBUS	• •	SW 5661 3196		11.2	18	18	1 3	1B	2	2	2
7	BAYLE	ST ERTH GAUGING STATION	R228004	SW 5490 3508	3.9	15.1	18	1B	2	2	2	2	2
	NASCE STREAM	LELANT	1	SW 5411 3650	3.3	3.3	 1B	18	1			18	1B
	INANCE STREAM	NORMAL TIDAL LIMIT (INFERRED STRETCH)		1 212 2030	0.3	3.6	18	18	1			1 18	18
			i i	i i								1	
9	ST.ERTH STREAM	TRELOWETH	R22B018	SW 5430 3556	3.6	3.6	18					i	2
	ST.ERTH STREAM	(NORMAL TIDAL LIMIT (INFERRED STRETCH)	i i	Í	0.9	4.5	18	i	i			i	2
	1	i	i i	i	140	i i				i		i i	-
10	MILLPOOL STREAM	MILLPOOL	R22B013	SW 5761 3145	2.7	2.7	18	18	2	- 2	2	2	2
	MILLPOOL STREAM	HATLE CONFLUENCE (INFERRED STRETCH)	i i	İ	0.2	2.9	18	18	2	2	2	2	2
	GODOLPHIN STREAM	GMEDNA		5W 6040 3212		![
11		•	R22B017	SW 6040 3212	1.2		1A 1A		1				3
	GODOLPHIN STREAM	HAYLE CONFLUENCE (INPERRED STRETCH)	1 1	ļ	0.5	1.7	-10						3
12	NANCEGOLLAN STREAM	TRENNOIEAL	B22B016	5W 6145 3307	2.6	2.6	18		¦	i			18
	NANCEGOLLAN STREAM	HAYLE CONFLUENCE (INFERRED STRETCH)	ii		0.2	2.8	1B		i	ļ			18
	l	!	ii	i		ii		i	i	i	i	ii	i
13	ANGAREACK STREAM	NANPUSKER	• •	SW 5885 3737	4.7	4.7	18	<u>18</u>	18	I		2	2
	ANGARRACK STREAM	PHILLACK - COPPERHOUSE	R22A001	SW 5687 3830	2.9	7.6	1B	18	1B	1	Í	2	2
	ARGARRACK STREAM	NORMAL TIDAL LINIT (INFERRED STRETCH)	1 1	1	0.2	7.8	1B	1B j	1B	İ	Í	2	2 j

Appendix 10.5

Hayle Catchment Water Quality - 1990



NYTCHAL HAVES ANTHERTY - SOUTH WST HERCH 1990 RIVER WRER GINLTY CLASSIFICATION ONCLLARED DEDRYINGHD STATISTICS USED AUR GINLEY ASSESSMENT CATCHERT: HAVE (24)

River	Peech upstreem of	Uber		ł		Qulau	ated Deb	erndner	d Statis	tics u	nd for C)ality	harrown		-		-						
		Baf. Naibar		dae Cae	Lower Skile	• •	Upper 595kile		s 95tile) (%) : Stile	•) (JELU) : 95%ile				. America 5 95kile		Maan		Copper 95kile		al Sinc s 95kile
SIENNACK RIVER	BUSSOM RESERVOIR	 	 18	 1A	6.4	 1A	8.3		20.0	18	80.0	1.8	3.1	1 1	0.070	 -		 1A	4.4	 -	-	-	•
I			2	12	6.3	1 13	7.8		17.2	18	74.6	<u> </u>	2.4		0.121		0.010		6.7	1 2	83.5	<u> </u>	401.5
HATLE	IDRING PARA	IR228015	•	A	6.7	1 18	7.9	i 1a	17.0	i 18	75.5	118	3.4	1 14	0.050	11	0.010	11	9.3	1 14	14.8	1 14	53.0
HAVER	ALIGNER SECTION	hR228001	2	1 1	6.4	i 1	7.5	AL I	17.0	118	73.6	i IA	2.6	i IA	0.122	j IN	0.010	i 1A	9.5	j 2	64.0	j IA	253.3
INTE	CONCEPTION HECTOR	IR228002	i 3	AL I	6.2	i 1	7.3	1 1	16.5	i 1B	78.6	1	2.4	i IA	0.058	i IA	0.010	I IA	3.5	i 2	204.0	j 3	1055.0
HALE		T22E003	i 2	גנ ו	6.5	Í 1A	7.4	גני	17.0	118	79.6	j 1A	2.2	j IA	0.030	i IA	0.010	i 1A	1.9	i 2	65 .2	i 2	835.2
BINE	ST MER GUIDE SDELL	18228004	2	, TY	6.7	j 1A	7.5	j 1A	17.2	18	77.0	Į IV	2.8	11	0.283	A L	0.010	14	2.7	į 2	45.0	į 2	721.8
ANNUE SUREAN		12220005	18	1.	6.8	12	7.7	1	15.9	118	78.2	1	2.8	<u> </u>	0.078	1	0.010	 	5. 5	1.	25.7	14	24.7
ST.DECH SUBERN	JISELONEEH		2	1	6.8	1	7.7	7	15.1	138	67.2	2	5.8	1	0.153	11	0.010	1	8.9	AL IA	21.9	2	705.0
MILLECCE. STREAM	PELLECEL	R228013	2	1.	6.1	14	7.5	18	16.6	18	67.0	18	3.2	1	0.242	1	0.010	1	14.5	2	90.3	1.	168.9
GCCCCLENCEN STEREM	GIEDR	 R228017	3	1	5.8	1A	7.3	18	16.9	2	56.3	13	1.9	1	0.150	1.	0.010	18	4.8	2	226.7	3	1020.5
NINCECCLARI SENENI	TRANSA.	R228016	110	1	6.6	-1A	7.4	1.	16.0	18	73.2	12	2.6	13	0.156	<u>, 17</u>	0.010	18	4.3	18	35.7	1	138.5
ANGARRACK SERENI	NEWEUSESE	9222014	2	- 14	6.7	14	7.6		16.9	18	71.8	<u> </u>	2.8	<u> 1</u>	0.234		0.010		5.9	2	157.9	1	482.0
NEWRACK STREPM	HULLACK - CEPPERELSE	192229001	2	JY	7.3	1	8.8	17	18.3	118	74.0	1 1 A	3.0	j 1 .	0.080	1 1 1	0.010	AL	7.9	(2	122.7	مد (322.2

Appendix 10.7

Hayle Catchment Compliance - 1990

Appendix 10.8

NRTIONAL RUVERS AUTHORITY — SOUTH WEST REGION 1990 RIVER WRIER QUALITY CLASSIFICATION NUMBER OF SAMPLES (N) AND NUMBER OF SAMPLES EXCEEDING QUALITY SIMONRO (F) CRICHMENT: HAVLE (24)

.

.....

:

1:

River	Reach upstreem of	Uber	머니	CMBE	∏ pH t	tper	Temper	stare	D0	(%)	BOD(ATU)	Total 7	mania	Union.	Amonia	S.90	lids	Total	Offer	Total	l Zinc
		Ref. Number	N	7	 N	7	1	F	i N	F	. N	7	। । स	7	N	F	R	F	8	7	 N	F
	i	i i			i		i		i		i		i		i		1		i		İ	
	ļ				ļ		1]		!		ļ				1		!			
					ł		1		1		1		í		í –		1		i			
STENNACK RIVER	HUSSON RESERVOIR	[R222A013]	12	-	12	-	<u>i</u> 11	-	<u>u</u>	-	12	-	12	-	9	-	12	-	12	-	12	-
HRYLE	83303 BRIDGE, CROMIN	(R22E014)	22	-	22	14-1	22	- -	22	-	22	-	22	-	20	-	22	-	21	2	21	2
HAYLE	ITEM PREM	R228015	20	-	20	-	20	-	20	-	20	-	20	-	20	-	20	-	20	-	20	-
HAVLE	BINNER BRIDGE	R228001	31	-	31	-	31	-	31	-	1 31	-	1 31	-	29	-	1 31	1	1 30	2	30	1
HAVLE	GODOLIHUN BRIDGE	F228002	32	-	32	-	1 31	-	31	-	32	-	32	-	30	-	32	-	1 31	-	31	-
HAVLE	RELIHELS	F(22E003	32	-	32	-	31	-	31	-	1 32	-	32	-	1 19	-	32	-	31	9	31	31
HNIE	ST ERCH GALEING STRETCH	F22E004	36	-	36	-	ं उग	-	30	-	36	-	36	-	28	-	36	-	31	3	31	31
IRICE SUSERM	LELANT	R22A005	23	_	23	-	23	-	23		23	-	23	-	22		23	-	21	-	21	-
ST.ERIH SINEM	TRELCHETH	[R228018]	22	-	22	_	22	-	22	_	22	1	22	-	22	-	22	2	20	-	20	1
HILLFOOL STREAM		F228013	-27	-	27	-	27	-	27	1	27	_	27	-	25	-	27	3	25	1	25	-
CODOLIHUN SUREM	(DEZIA	18228017	20	-	20	•	20	-	20	6	20	-	20	_	20	-	20	-	20		20	1
NUCEDILLAN STREAM	INTRONERI.		23	-	23	-	23	-	23	-	23	-	23	7	22		23	-	20	-	20.	-
ACARINCK STREM			21	-	21	1.201	21	-	21	-	21	-	21	-	21	-	21	1	21	1	21	-
ANGARMACK STREAM	HULLACK - COPPERIEUSE	R22M001	27	-	27	-	27	-	26	-	27	-	27	-	24	-	27	2	5	1	25	-

Appendix 10.9

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT: HAYLE (24)

River	Reach upstream of	User		PERCENTAGE	EXCEEDENCE OF	STATISTIC	FROM QUALIT	Y STANDARD				
	i	Ref.		1	1 1		1 1		1	J I		1.2.2.2
		Number	pH Lower	pH Upper 	Temperature	DO (%)	BOD (ATU)	Total Annonia	Un-ionised Ammonia	Suspended Solids	Total Copper	Total Zinc
STERNACK RIVER	BUSSOW RESERVOIR						 					•
SIENNER REVER		1										1.11
HAYLE	B3303 BRIDGE, CROWAN	R228014	-			-	-	-		-	280	112
HAYLE	DRYM FARM	R22B015	-	-			- 1	-		-	- 	
HAYLE	BINNER BRIDGE	R22B001	-	-	- 1	-		-	1. A. I.	÷	60	-
HAYLE	GODOLPHIN BRIDGE	R22B002	-	-	- 1	-	-	-	-	- 1	-	-
HAYLE	RELUBBUS	R22B003	-	-	- 1	-	-	-	-	- 1	63	178
HAYLE	ST ERTH GAUGING STATION	R22B004	-	1.1		-	-		-		20	141
NANCE STREAM	LELANT	R22A005		-	-		-	-	-			-
ST.ERTH STREAM	TRELOWETH	R22B018			-	-	15		-	-	-	135
MILLPOOL STREAM	MILLPOOL	R228013	T CEO		·		-			-	126	-
GODOLPHIN STREAM	GWEDRA	R228017	-	-	-	30	-	-	-	-	467	240
NANCEGOLLAN STREAM	TREMHEAL	R22B016	-	-	-	-				-		-
ANGARRACK STREAM	NANPUSKER	8221014									-41	-
ANGARRACK STREAM	PHILLACK - COPPERHOUSE	R22A001		-	i – i	-	- 1	-	- 1	- 1	10	-

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION IDENTIFICATION OF POSSIBLE CAUSES OF NON-COMPLIANCE WITH RQO CATCHMENT: HAYLE (24)

.

1990 Map	River	Reach upstream of	User	Reach	Possible causes of non-compliance
Position	1		Reference	Length	
Number	1	I	Number	(km.)	
1	1	I			1
1	ļ	ļ			
<u> </u>		B3303 BRIDGE, CROWAN	R22B014	2.2	MINING, CATCHMENT GEOLOGY
•	HAYLE	BINNER BRIDGE	R22B001		MINING
•	HAYLE	RELUBBUS	R22B003		
	-				MINING
1 7	HAYLE	ST ERTH GAUGING STATION	R22B004	3.9	MINING
9	ST.ERTH STREAM	TRELOWETH	R22B018	3.6	MINING, LAND RUN-OFF
10	HILLPOOL STREAM	MILLPOOL	R22B013	2.7	MINING, CATCHMENT GEOLOGY
11	GODOLPHIN STREAM	GWEDRA	R22B017	1.2	MINING
13	ANGARRACK STREAM	NANPUSKER		4.7	MINING
	ANGARRACK STREAM	PHILLACK - COPPERHOUSE	R22A001		MINING, URBANISATION, CANALISATION
14	ANGARRACK STREAM 	PHILLACK - COPPERHOUSE	R22A001 	2.9	MINING, URBANISATION, CANALISATION

Appendix 10.11

.