ENVIRONMENTAL PROTECTION

National Rivers Authority
South West Region

River Camel Catchment
River Water Quality
Classification 1990

NOVEMBER 1991 WQP/91/028 B L MILFORD

> GORDON H BIELBY BSc Regional General Manager

C V M Davies Environmental Protection Manager

ACKNOWLEDGEMENTS

The Water Quality Planner acknowledges the substantial contributions made by the following staff:

- R. Broome Co-ordinator and Editor
- A. Burrows Production of Maps and editorial support
- P. Grigorey Production of Maps and editorial support
- B. Steele Production of Forepage
- C. McCarthy Administration and report compilation

Special thanks are extended to A. Burghes of Moonsoft, Exeter for computer support and the production of statistical schedules.

The following NRA sections also made valuable contributions:

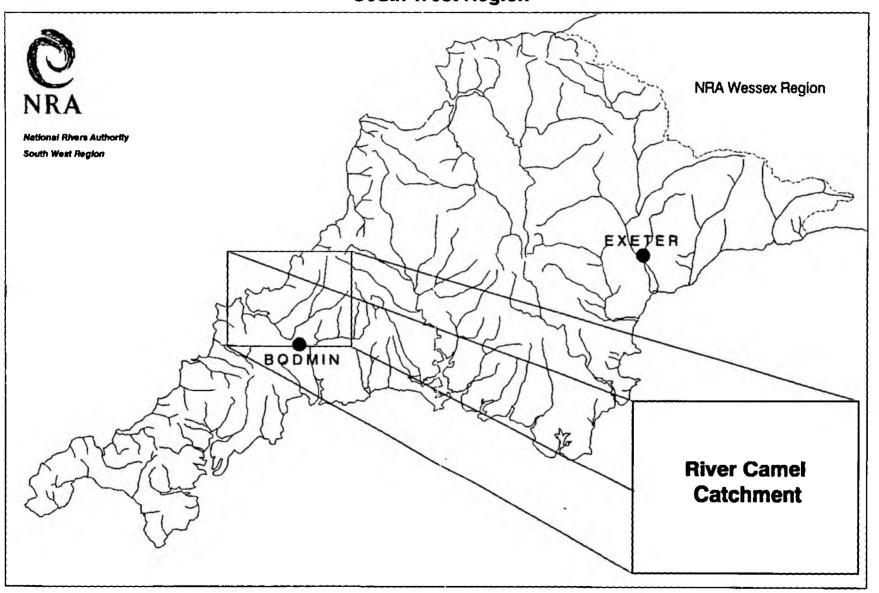
Pollution Control Field Control and Wardens Water Resources

Thanks also to R. Hamilton and J. Murray-Bligh for their contributions.

Suggestions for improvements that could be incorporated in the production of the next Classification report would be welcomed.

Further enquiries regarding the content of these reports should be addressed to:

Freshwater Scientist,
National Rivers Authority,
Manley House,
Kestrel Way,
EXETER,
Devon EX2 7LQ



RIVER WATER QUALITY IN THE RIVER CAMEL CATCHMENT

LIST OF CONTENTS

			Page	No.
1	Introdu	action	:	1
2	River (Camel Catchment	:	1
3	Nationa	al Water Council's River Classification System		2
4	1990 R	iver Water Quality Survey	•	3
5	1990 R	iver Water Quality Classification	•	3
6	Non-cor	mpliance with Quality Objectives		4
7	Causes	of Non-compliance	4	4
8	Glossa	ry of Terms	!	5
9	Refere	nces	!	5
10	Append:	ices:		
	10.1	River Quality Objectives including Monitoring points		
	10.2	Basic Determinand Analytical Suite		
	10.3	National Water Council (NWC) River Classification System		
	10.4	NWC Criteria for Non-Metallic Determinands - Regional Variation		
	10.4.1	NWC Criteria for Metallic Determinands - Regional Variation		
	10.5	1990 River Water Quality Classification - tabular format		
	10.6	1990 River Water Quality Classification - map format		
	10.7	Calculated Determinand Statistics used for Quality Assessment		
	10.8	Compliant/Non-Compliant River Reaches		
	10.9	Number of Samples Results exceeding quality standards		
	10.10	Percentage Exceedance of Determinand Statistics from Quality Standard		
	10.11	Identification of Possible Causes of Non-Compliance with River Quality Objectives		

National Rivers Authority South West Region

River Camel Catchment

1. INTRODUCTION

Monitoring to assess the quality of river waters is undertaken in thirty—two catchments within the region. As part of this monitoring programme samples are collected routinely from selected monitoring points at a predetermined frequency per year, usually twelve spaced at monthly intervals. Each monitoring point provides data for the water quality of a river reach (in kilometres) upstream of the monitoring point.

River lengths have been re-measured and variations exist over those recorded previously.

Each water sample collected from each monitoring point is analysed for a range of chemical and physical constituents or properties known as determinands. The analytical results for each sample are entered into a computer database called the Water Quality Archive.

Selected data are accessed from the Archive so that the quality of each river reach can be determined based on a River Classification System developed by the National Water Council (NWC), (9.1).

This report presents the river water quality classification for 1990 for monitored river reaches in the River Camel catchment.

2. RIVER CAMEL CATCHMENT

The River Camel flows over a distance of 34.6 km from its source to the tidal limit, (Appendix 10.1). Water quality was monitored at twelve locations on the main river; eleven of these sites were sampled at approximately monthly intervals. The site at Grogley Bridge, which is a National Water Quality Monitoring point, was sampled fortnightly.

Throughout the Camel catchment five secondary tributaries (River Ruthern, Lanivet Stream, St. Lawrence Stream, De Lank River, Clerkenwater Stream) of the River Camel were monitored at approximately monthly intervals and three secondary tributaries (Dunmere Stream, Stannon Stream, Davidstow Stream) were sampled on twenty occasions during 1990 because of no recent water quality data.

Issey Brook and Polmorla Stream flow over a distance of 4.9 km and 6.7 km respectively from their source to the tidal limit, (Appendix 10.1) and were each monitored at one location situated in the lower reaches. These streams were sampled on twenty occasions during 1990 because of no recent water quality data.

The River Amble flows over a distance of 10.7 km from its source to the tidal limit, (Appendix 10.1) and was monitored at two locations at approximately monthly intervals.

The River Allen flows over a distance of 19.1 km from its source to the tidal limit, (Appendix 10.1) and was monitored at four locations at monthly intervals.

2.1 SECONDARY TRIBUTARIES

The River Ruthern (9.4 km), Lanivet Stream (6.1 km) and St. Lawrence Stream (5.3 km) were monitored at three locations between their source and the confluence with the River Camel, (Appendix 10.1).

The River Dunmere (1.9 km), Clerkenwater Stream (4.7 km) Stannon Stream (6.8 km) and Davidstow Stream (4.8 km) were monitored at one location. Monitoring points are all located in the lower reaches of these streams.

The De Lank River flows over a distance of 14.8 km from its source to the confluence with the River Camel, (Appendix 10.1) and was monitored at two locations at approximately monthly intervals.

Each sample was analysed for a minimum number of determinands (Appendix 10.2) plus additional determinands based on local knowledge of the catchment. In addition, at selected sites, certain metal analyses were carried out.

The analytical results from all of these samples have been entered into the Water Quality Archive and can be accessed through the Water Act Register, (9.2).

3. NATIONAL WATER COUNCIL'S RIVER CLASSIFICATION SYSTEM

3.1 River Quality Objectives

In 1978 river quality objectives (RQOs) were assigned to all river lengths that were part of the routine monitoring network and to those additional watercourses, which were not part of the routine network, but which received discharges of effluents.

For the majority of watercourses long term objectives were identified based on existing and assumed adequate quality for the long term protection of the watercourse. In a few instances short term objectives were identified but no timetable for the achievement of the associated long term objective was set.

The RQOs currently in use in the River Camel catchment are identified in Appendix 10.1.

3.2 River Quality Classification

River water quality is classified using the National Water Council's (NWC) River Classification System (see Appendix 10.3), which identifies river water quality as being one of five quality classes as shown in Table 1 below:

Table 1 - National Water Council - River Classification System

Class	Description
1A	Good quality
1B	Lesser good quality
2	Fair quality
3	Poor quality
4	Bad quality

Using the NWC system, the classification of river water quality is based on the values of certain determinands as arithmetic means or as 95 percentiles (5 percentiles are used for pH and dissolved oxygen) as indicated in Appendices 10.4.1 and 10.4.2.

The quality classification system incorporates some of the European Inland Fisheries Advisory Commission (EIFAC) criteria (Appendix 10.3) recommended for use by the NWC system.

4. 1990 RIVER WATER QUALITY SURVEY

The 1990 regional classification of river water quality also includes the requirements of the Department of the Environment quinquennial national river quality survey. The objectives for the Department of the Environment 1990 River Quality Survey are given below:

- 1) To carry out a National Classification Survey based on procedures used in the 1985 National Classification Survey, including all regional differences.
- 2) To classify all rivers and canals included in the 1985 National Classification Survey.
- 3) To compare the 1990 Classification with those obtained in 1985.

In addition, those watercourses, which were not part of the 1985 Survey and have been monitored since that date, are included in the 1990 regional classification of river water quality.

5. 1990 RIVER WATER QUALITY CLASSIFICATION

Analytical data collected from monitoring during 1988, 1989 and 1990 were processed through a computerised river water quality classification programme. This resulted in a quality class being assigned to each monitored river reach as indicated in Appendix 10.5.

The quality class for 1990 can be compared against the appropriate River Quality Objective and previous annual quality classes (1985-1989) α lso based on three years combined data, for each river reach in Appendix 10.5.

The river water classification system used to classify each river length is identical to the system used in 1985 for the Department of the Environment's 1985 River Quality Survey. The determinand classification criteria used to determine the annual quality classes in 1985, subsequent years and for 1990 are indicated in Appendices 10.4 and 10.4.1.

Improvements to this classification system could have been made, particularly in the use of a different suspended solids standard for Class 2 waters. As the National Rivers Authority will be proposing new classification systems to the Secretary of State in the near future, it was decided to classify river lengths in 1990 with the classification used for the 1985-1989 classification period.

The adoption of the revised criteria for suspended solids in Class 2 waters would not have affected the classification of river reaches.

The river quality classes for 1990 of monitored river reaches in the catchment are shown in map form in Appendix 10.6.

The calculated determinand statistics for pH, temperature, dissolved oxygen, biochemical oxygen demand (BOD), total ammonia, un-ionised ammonia, suspended solids, copper and zinc from which the quality class was determined for each river reach, are indicated in Appendix 10.7.

6. NON-COMPLIANCE WITH OUALITY OBJECTIVES

Those monitored river reaches within the catchment, which do not comply with their assigned (RQO), are shown in map form in Appendix 10.8.

Appendix 10.9 indicates the number of samples analysed for each determinand over the period 1988 to 1990 and the number of sample results per determinand, which exceed the determinand quality standard.

For those non-compliant river reaches in the catchment, the extent of exceedance of the calculated determinand statistic with relevant quality standard (represented as a percentage), is indicated in Appendix 10.10.

7. CAUSES OF NON-COMPLIANCE

For those river reaches, which did not comply with their assigned RQOs, the cause of non-compliance (where possible to identify) is indicated in Appendix 10.11.

RIVER REACH A segment of water, upstream from sampling point

to the next sampling point.

RIVER LENGTH River distance in kilometres.

RIVER QUALITY OBJECTIVE That NWC class, which protects the most sensitive

use of the water.

95 percentiles Maximum limits, which must be met for at least

95% of the time.

5 percentiles Minimum limits, which must be met for at least

95% of the time.

BIOLOGICAL OXYGEN DEMAND A standard test measuring the microbial uptake of

(5 day carbonaceous ATU) oxygen - an estimate of organic pollution.

pH A scale of acid to alkali.

UN-IONISED AMMONIA Fraction of ammonia poisonous to fish, NH¹.

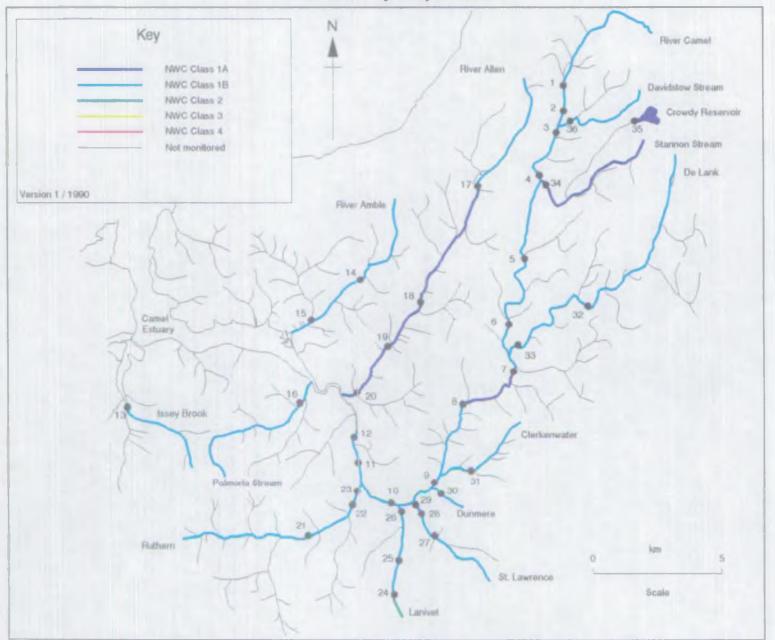
SUSPENDED SOLIDS Solids removed by filtration or centrifuge under

specific conditions.

USER REFERENCE NUMBER Reference number allocated to a sampling point.

INFERRED STRETCH Segment of water, which is not monitored and

whose water quality classification is assigned


from the monitored reach upstream.

9. REFERENCES

Reference

- 9.1 National Water Council (1977). River Water Quality: The Next Stage. Review of Discharge Consent Conditions. London.
- 9.2 Water Act 1989 Section 117
- 9.3 Alabaster J. S. and Lloyd R. Water Quality Criteria for Freshwater Fish, 2nd edition, 1982. Butterworths.

Camel Catchment River Quality Objectives

BASIC DETERMINAND ANALYTICAL SUITE FOR ALL CLASSIFIED RIVER SITES

pH as pH Units

Conductivity at 20 C as uS/cm

Water temperature (Cel)

Oxygen dissolved % saturation

Oxygen dissolved as mg/1 0

Biochemical oxygen demand (5 day total ATU) as mg/1 O

Total organic carbon as mg/1 C

Nitrogen ammoniacal as mq/1 N

Ammonia un-ionised as mg/1 N

Nitrate as mg/1 N

Nitrite as mg/l N

Suspended solids at 105 C as mg/l

Total hardness as mg/1 CaCO3

Chloride as mg/1 Cl

Orthophosphate (total) as mg/l P

Silicate reactive dissolved as mg/l SiO2

Sulphate (dissolved) as mg/1 SO4

Sodium (total) as mq/l Na

Potassium (total) as mg/1 K

Magnesium (total) as mg/l Mg

Calcium (total) as mg/l Ca

Alkalinity as pH 4.5 as mg/l CaCO3

NWC RIVER QUALITY CLASSIFICATION SYSTEM

River Class		Quality criteria		Remarks	Curren	t potential uses
		£lass limiting criteria (95 percentile)	*		
1A Good Quality	(i) (ii) (iii) (iv) (v)	Dissolved oxygen saturation greater than 80% Biochemical oxygen demand not greater than 3 mg/l Ammonia not greater than 0.4 mg/l Where the water is abstracted for drinking water, it complies with requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii)	Average BOD probably not greater than 1.5 mg/l Visible evidence of pollution should be absent	(i) (ii) (iii)	Water of high quality suitable for potable supply abstractions and for all abstractions Game or other high class fisheries High amenity value
1B Good Quality	(i) (ii) (iii) (iv)	DO greater than 60% saturation BOD not greater than 5 mg/l Ammonia not greater than 0.9 mg/l Where water is abstracted for drinking water, it complies with the requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii) (iii) (iv)	Average BOD probably not greater than 2 mg/l Average ammonia probably not greater than 0.5 mg/l Visible evidence of pollution should be absent Waters of high quality which cannot be placed in Class 1A because of the high proportion of high quality effluent present or because of the effect of physical factors such as canalisation, low gradient or eutrophication Class 1A and Class 1B together are essentially the Class 1 of River Pollution Survey (RPS)		Water of less high quality than Class 1A but usable for substantially the same purposes
		14 th 12 th 14		*		
2 Fair Quality	(i) (ii) (iii) (iv)	DO greater than 40% saturation BOD not greater than 9 mg/l Where water is abstracted for drinking water it complies with the requirements for A3* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii) (iii)	Average BOD probably not greater than 5 mg/l Similar to Class 2 of RPS Water not showing physical signs of pollution other than humic colouration and a little foaming below weirs	(i) (ii) (iii)	Maters suitable for potable supply after advanced treatment Supporting reasonably good coarse fisheries Moderate amenity value

B Poor $\{i\}$ DO greater than 10% saturation Similar to Class 3 of RPS Waters which are polluted to Duality Not likely to be anaerobic (iii) an extent that fish are absent. (iii) BOD not greater than 17 mg/l. only sporadically present. This may not apply if there is a Hay be used for low grade high degree of re-aeration industrial abstraction purposes. Considerable potential for further use if cleaned up 4 Bad Waters which are inferior to Similar to Class 4 of RPS blity Waters which are grossly Class 3 :7 Terms of dissolved polluted and are likely to crygen and "saly to be cause nuisance Engerco : El Times DC greater los saturation Insignificant watercourses and ditches not usable, where the objective is simply to prevent nuisance developing (a) Under example and itions (eg flood, drought, freeze-up), or when dominated by plant growth, or by aquatic plant decay, r: To Class 1, 2, and 3 may have BODs and dissolved oxygen levels, or ammonia content outside the stated leve : Classes. When this occurs the cause should be stated along with analytical results. (b) The BOD der as the refer to 5 day carbonaceous BOD (ATU). Ammonia figures are expressed as NHe. ** (c) In most in the last included the classification given above will be suitable. However, the basis of the classification is restricted = E True number of chemical determinands and there may be a few cases where the presence of a chemical substance ______ muse used in the classification markedly reduces the quality of the water. In such cases, the quality classes of the water should be down-graded on the basis of biote actually present, and the reasons stated. (d) EIFAC (Eur = isheries Advisory Commission) limits should be expressed as 95 percentile limits. category A2 and A2 are those specified in the EEC Council directive of 16 June 1975 concerning the Quality of Surface er intended for Abs. ____ Drinking Water in the Member State. donia Conversion F 368 1A 0.4 mg MHGmu: - 1 mmg N/1 0.9-29 Miles T Thomas N/1 U.5 ag Miles. T

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR NON-METALLIC DETERMINANDS

River Class	Quality Criteria
1 A	Dissolved oxygen % saturation greater than 80% BOD (ATU) not greater than 3 mg/l 0 Total ammonia not greater than 0.31 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
18	Dissolved oxygen % saturation greater than 60% BOD (ATU) not greater than 5 mg/l O Total ammonia not greater than 0.70 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
2	Dissolved oxygen & saturation greater than 40% BOD (ATU) not greater than 9 mg/1 O Total ammonia not greater than 1.56 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 28 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
3	Dissolved oxygen % saturation greater than 10% BOD (ATU) not greater than 17 mg/l O
4	Dissolved oxygen % saturation not greater than 10% BOD (ATU) greater than 17 mg/1 0

STATISTICS USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGICE

Determinand	Statistic	
Dissolved oxygen	5 percenti	le
BOD (ATU)	95 percenti:	
Total ammonia	95 percenti	
Non-ionised ammonia	95 percenti	
Temperature	95 percenti	
pH	5 percenti	
•	95 percenti	
Suspended solids	arithmetic	

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR METALLIC DETERMINANDS

SOLUBLE COPPER

Total Hardness (mean) mg/l CaCO3	Statistic	Soluble Copper* ug/l Cu Class 1 Class 2
0 - 10 10 - 50 50 - 100	95 percentile 95 percentile 95 percentile	< = 5 > 5 < = 22 > 22 < = 40 > 40
100 - 300	95 percentile	<pre></pre>

* Total copper is used for classification until sufficient data on soluble copper can be obtained.

TOTAL ZINC

Total Hardness (mean) mg/l CaCO3	Statistic	Total Zinc ug/l Zn Class 1 Class 2 Class 3
0 - 10 10 - 50 50 - 100 100 - 300	95 percentile 95 percentile 95 percentile 95 percentile	<pre>< = 30 < = 300 > 300 < = 200 < = 700 > 700 < = 300 < = 1000 > 1000 < = 500 < = 2000 > 2000</pre>

RUTHERN

LANIVET STREAM

LANIVET STREAM

LANIVET STREAM

LANIVET STREAM

DURMERE STREAM

DURNIERE STREAM

ST. LAWRENCE STREAM

ST. LAMBENCE STREAM

ST. LAMRENCE STREAM

24

25

26

27

28

29

30

1990 Map Position Number		Reach upstream of	User Reference Rumber 	
	!		7350021	SX 1093 855
	CANEL	SLAUGHTERBRIDGE CAMELFORD BRIDGE		SX 1093 838
_	CAMBL	PENCARROW		SX 1038 827
-	CAMEL	TRECARSE BRIDGE		SX 0973 805
-	CMEL CMEL	GAM BRIDGE		SX 0887 778
-	CMEL	WERFORD		SX 0850 751
	CMEL	TRESARRET ERIDGE		SX 0888 731
-	CAMEL	HELLANDERIDGE		SX 0655 715
-	CAMEL	DURNERE BRIDGE		SX 0480 678
-	CMEL	INANSTALLON BRIDGE		SX 0348 674
	CMEL	IGROGLEY		SX 0153 685
	CAMEL	POLEBOCK		SX 0138 694
,	CAMBL	HORMAL TIDAL LINIT (IMPERRED STRETCH)		
13	ISSEY BROOK	MRLLINGEY	R25A019	SW 9206 718
	ISSEY EROOK			
	AMBLE	ST KEW FORD		SX 0211 767
(anble anble	CHAPEL AMBLE BRIDGE BOSHAL TIDAL LIMIT (IMPERRED STRETCH)	R25A006	SW 9988 753
	POLHORIA STREAM	POLHORLA	R24A013	SW 9833 715
ŀ	POLMORLA STREAM	NORMAL TIDAL LIMIT (IMPERED STRETCH)]	
17	MILIA	KNIGHTSMILL ERIDGE	R25D001	SX 0713 8063
18	ALLEN	KELLYGREEN BRIDGE	R25D002	SX 0455 7586
,	ALLEN	DINHAM'S BRIDGE		SX 0317 739:
20 j	ALLEN	SIADESERIDGE	R25D003	SX 0107 714
	RUTHERN	WITHIEL BRIDGE		SW 9981 659
,	RUTHERN	RUTHERMERIDGE		SX 0129 668:
23	RUTHERN	GROGLEY DOWES BRIDGE	R258028	SX 0161 678

CAMEL COMPLUENCE (INTERRED STRETCH)

CAMEL CONFLUENCE (INFERRED STRETCH)

DUNMERE (BELOW SCARLETTS WELL STW)

CAMEL CONFLUENCE (INFERRED STRETCH)

R25B014 | SX 0373 6425|

R25B015 |SX 0390 6553|

R25B016 |SX 0358 6728|

R25B017 |SX 0515 6595|

R25B040 |SX 0450 6697|

R25B038 |SX 0433 6731|

R25B026 |SX 0478 6771|

LANIVET

HOOPER'S BRIDGE

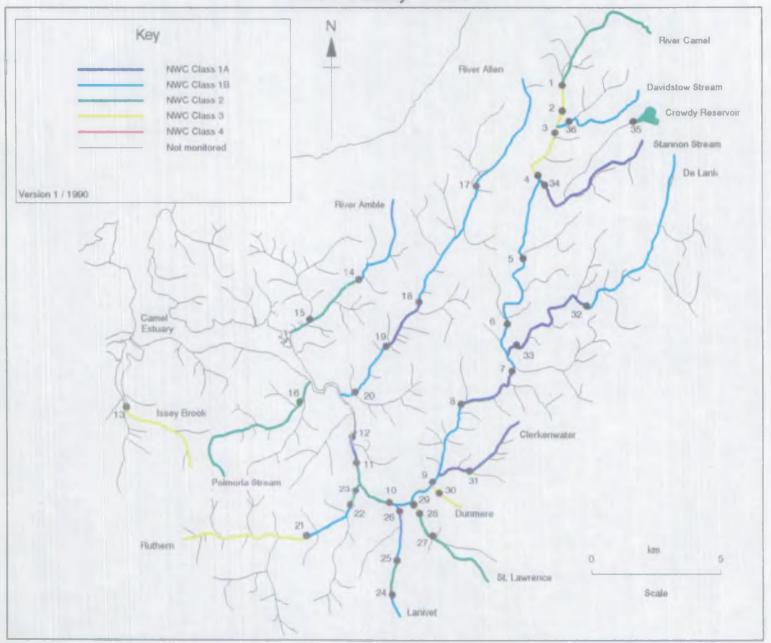
MANSTALLON BRIDGE

A30 BRIDGE, LAVEDDON

PRIOR TO RIVER CAMEL

ABOVE ST. LANGENCE S T W

Reach	Distance		85	86	87	88	89	90	
Length	from	Quality	HWC	BWC	RMC	BMC	NHC	m/C	
(km)		Objective	Class	Class	Class	Class	Class	Class	
	(km)	1	!	!	!	!	!	!!	
	<u> </u>	!	<u>!</u>	!	!	1	!	!!!	
	!	!	!	!	!	!	<u> </u>	! !	62.7
	4.9	1B				1B		2	620
4.9 1.9	6.8	1B	18	2 1B	1B	•	•	3	
1.3	8.1	1B	1B	•	1B	•	•	3	
2.9	11.0	•	1B	•	: .	•	•	•	
3.4	14.4	1B	1B	•	•	•		'	i
3.6	18.0	1B	I	•		,			
2.6		1 1B	1.8	•	,	•	•		
3.5	24.1	1 1	14	•	•	•	•	•	
4.8	28.9	1 1B	1B	•	•		•	•	
1.7	30.6	18	1B	•	IB	•	•	•	•
2.6	33.2	1B	1B	•	•	•	•	j 2 j	1
1.3	34.5	1B	1B	į 1B	18	1B	1B	1A	1
0.1	34.6	j 18 -	1B	1B	18	1B	1B	1A	1
	İ	!	l	I		ـــــــا	1	 	1
4.6	4.6	18	1B		t —	1	l	1 3 1	
0.3	4.9	j 1B	1B	l	[!	!] 3	
	<u> </u>	·	!			!	[[]	
5.1	5.1	1B	1B	3	3	1B	1B	1B	
3.2	8.3	18	2	[3	1 2	1B	1B	1 2 1	
2.4	10.7	1B	2	3	2	1B	1B	1 2 1	
6.0	6.0	1B	1B	¦	` 	¦	¦	<u> </u>	
0.7	6.7	1 1B	1B	i	i	i	i	2	
•.,	,	;	i ~~	i	i	i	i	i	i
6.3	6.3	1B	1B	<u> 2 </u>	18	11	18	1B	i
6.2	12.5	1.8	•	j 2	j 18	j 1A	18	1B	į
2.8	15.3	124	1.8		1B	1B	18	Į IA į	
3.8	19.1	j 1A	1B	j 1B	1B	1B	1B	1B	
	J	<u> </u>	!	!	!	!		احتوت	
5.9	5.9	1B	18		1B	18	3	3	
2.0	7.9	1B	18	2	18	18	2	18	, =
1.2	9.1	1B	1B	2 2	1B 1B	1B 1B	2	2 2	
0.3	9.4	1B	1B	1	1 15	l FD] _ '		
2.7	2.7		3	-3	 3	2		18	
1.5	4.2	1B	2	2	1 2	2	2	2	
1.8	6.0	18	1B	2	2	2	2	18	
0.1	6.1	18	18	2	2	2	2	1B	
=	i	i	į i	i	j	i	i	i i	
3.6	3.6	1B	1B	1B	1B		2	2	
1.3	4.9	18	18	19	1B	2	2	2	
0.4	5.3	1B	1B	1B	1B	2	1 2	131	i


1.8

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION

CATCHMENT: CAMEL (28)

1990 Map	River	Reach upstream of	User	Mational	Reach	Distance	River	85	86	87	88	89	90
Position	l		Reference	Grid	Length	from	Quality	BMC	MIC	BMC	MIC	RMC	IMC
Munber	l		Mumber	Reference	(km)	Source	Objective	Class	Class	Class	Class	Class	Class
	i	1	1	1)	(km)	1			l	l		1 1
			1	I	İ	1	I		١ '	l	l		1 1
		*	ļ	!	!	ļ	ļ l		ļ	ļ	ŀ		!
			- !	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u> -		!
31	CLERKERMATER	CLERKERIOTER	R25B018	5X 0688 6878	3.0	3.0	1B	-IA	12	IA.	¦	12	
	CLERKEROTER	CAMEL CONFLUENCE (INTERRED STRETCH)	1	i :	1.7	4.7	18	1A	1.	1A	ì	1A	1A
		(A)	_i	İ!	İ	i	i i	<u> </u>	ii	<u> </u>	İ		
32	DE LANK RIVER	BRADFORD BRIDGE	R25C001	SX 1191 7543	9.1	9.1	18	1	1	1B	2	LA	1B
33	DE LAME RIVER	KEYERIDGE	R25C002	SX 0888 7390	4.9	14.0	1B	1A	18	1B	2	1B	1A
	DE LANK RIVER	CAMEL COMPLUENCE (IMPERRED STRETCH)	ļ	<u> </u>	0.8	14.8	1B	IA	1.8	1B	2	1B	LA
34	STANSON STREAM	TRECARDS	R25B025	SX 0975 8053	6.8	6.8	1A	18	' -		¦		1A
	CRONDI STREAM	INFLOW, CROWDY RES. (URMON. STRETCH)			0.8	0.8					<u> </u>		!!
	CRONDY STREAM	CRONDY RESERVOIR	R25B031	 :3X 1392 8323	•	2.1	1A				!		
,	CROWDY STREAM	STANDON STREAM CONFL. (UNMON. STRETCH)	1 2535431		5.0	7.1	11.				! !		
	morning passings		i		5.0	i '' -	,				i :		i
36	DAVIDSTOW STREAM	TREGOODWELL	R25B024	5X 108 833	4.5	4.5	18	1B					1B
	DAVIDSTOM STREAM	CAMEL CONFLUENCE (INFERRED STRETCH)	Ì	i	0.3	4.8	1B	1B	i		i ı	i	1B
		İ	i	i		i	i	ì	i i	j .	i i	i	ı i

Camel Catchment Water Quality - 1990

RECURNAL REVERS ALCHORUTY — SOUTH WEST REGION

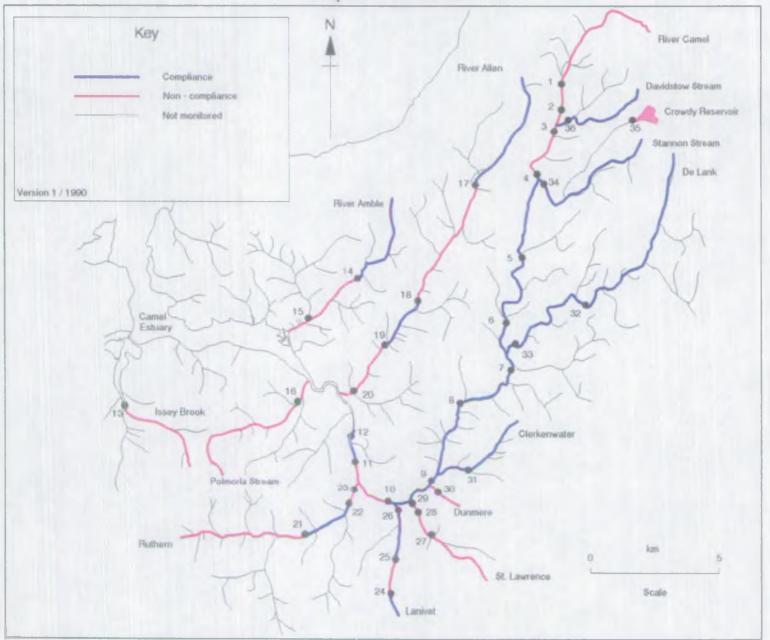
1990 REVER WEDER QUALITY CLASSIPTICATION

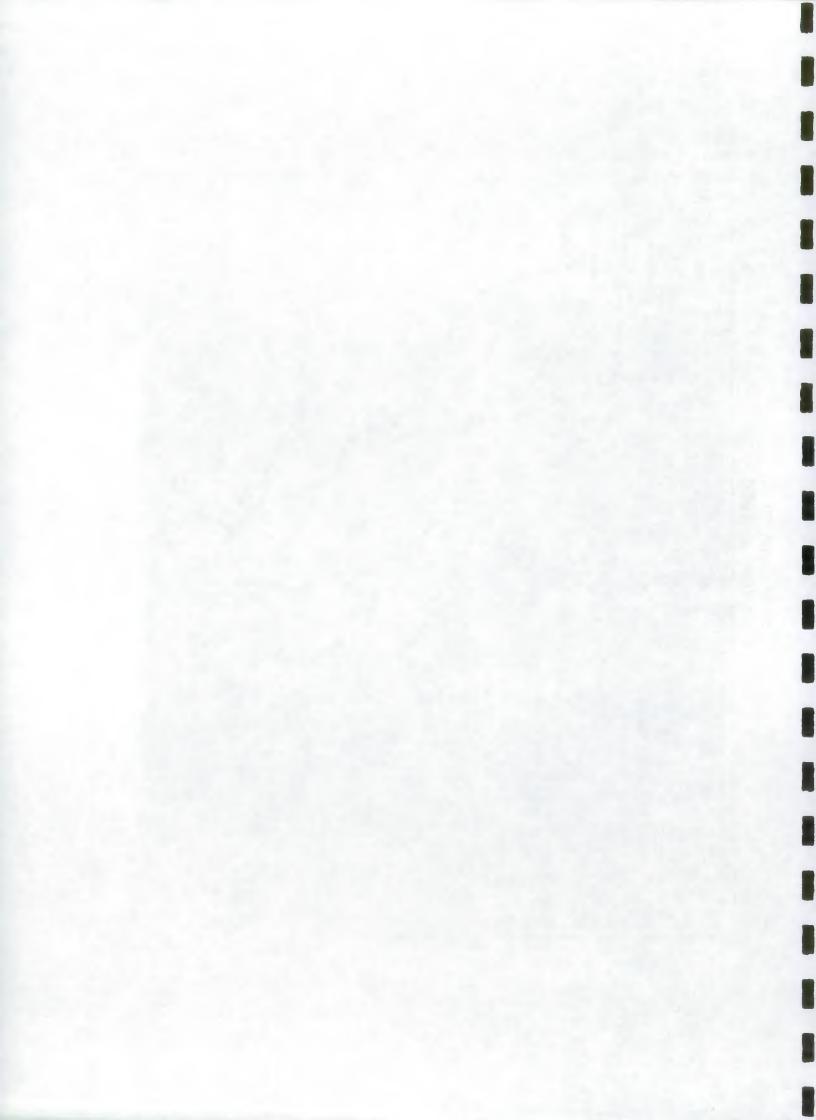
CALCULATED DETERMINAND STREETICS USED FOR QUALITY ASSESSMENT

CHICHENT: CIMEL (28)

River	Reach upstress of	User Ref.	90 NAC			Calcul I	arted Deta	भाग्येतस्य ।	d Statis	tics use I	ed for Q	uality I	A6966SIDE	nat. I		1		1					
	i	Number		l mH	Lower		Upper:	l Demo	erature	i no	(%)	ROE	(ACCU)	 Thtal	Accession.	i libion	Amenia	5.5	nlids .	Total	Copper	l I Toka	l Zinc
	\				Stile		95kile		95kile	•	Skile	•	95tile	• • • •	95kile	•	95kile		Mess	•	95kilo	•	95 kil e
	i	1	1				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, -)J4116		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						*	;	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		İ				į		<u> </u>		į				Ì		į				į		•	
CHET	SAUMMERIUE	R25B021	2	1A	6.4	1A	7.3	<u> </u>	15.5	18	75.8	1A	2.3	IB	0.368	13	0.010	1A	7.5	2	48.3	2	527.5
CHEL	CHETCHE BEDEE	R25B001	3	l 1A	6.6	1A	7.5	1A	15.1	1B	€9.3	1B	4.7	IX	0.264	1A	0.010	3	27.0	IA	9.5	IA	36.3
CHEL	PERCHECOV	R25B022	3	la	6.5	12	7.6	la	15.4	1B	78.4	18	4.8	3	2.625	I IA	0.010	l la	15.5	1A	10.3	1A	25.0
CIPPEL	TRUCKE HULGE	R25B002	3	la la	6.3	1A	7.6	1A	16.1	l 1x	63.2	2	5.1	1B	0.384	j 1A	0.010	3	28.2	IA	11.5	IA	39.5
CHEL	GPM BRODGE	R25B003	13	la	6.6	1A	7.5	lA	15.4	1A	63.2	1B	3.6	IY	0.184	13	0.010	1A	22.4	IA	9.1	l IA	35.4
CPPET	MERICAD	JR258023	18	la	6.5	12	7.9	1A	16.4	1A	83.0	1B	3.3	1A	0.178	IA	0.010	1A	16.1	1A	6.3	j 1A	19.5
CMEL	THE SAME THOUGH	R2SB004	1B	1A	6.6	IA	7.6	IA	15.9	1B	76.8	1B	3.9	LB	0.318	1A	0.010	1A	24.5] IA	12.8	i n	33.6
CHEL	HELLMADHKIDOR	[R25B005	1A	l la	6.6	1A	7.6	1A	16.6	l 1A	82. 6	1A	2.5	17	0.192	IA	0.010	la	8.8	1A	6.6	1A	40.8
CHET	DIMESE BRIDGE	JR25B006	18	1A	6.6	1A	7.5	j 1A	14.8	1B	70.5	1B	3.9	1B	0.324	j 1A	0.010	1A	15.3	1A	11.0	į 1A	30.8
CPEL	IMMEDATION BODIES	JR2SB007	1B	1A	6.7	1A	7.5	IA.	15.6	18	71.8	118	3.5	1B	0.319	j 1A	0.010	1A	17.0	IA.	11.8	Į JA	31.8
CHEL	GCGEN	JR25E008	2	1A	6.5	j 1A	7.5	j 1A	15.5	j 18	75.2	į 2	6.0	į JA	0.151	j 1A	0.010	13	16.8	j 1A	13.2	IA.	50.0
CPPEL	POLIFICA	JR25B029] IA	1A	6.7	j 1A	7.4	Į JA	16.6	1)	61.2	1A	2.4	į 1A	0.167	! -	-	1A.	11.7	1 A	13.8	17	68.9
ISSEY HROOK	harrings	P25N019	3	1A	7.1	13.	8.1	12	15.8	2	58.3	2	8.5	2	0.824	JA.	0.010	3	37.0	1A	6.0	1A	20.0
AME	ST KEN FORD	R25N010	1B	1A	6.8	1A	8.0	IA	17.5	1.8	69.0	12	3.0	18	0.668	1A	0.010	1A	23.1	1A	25.0	12	35.0
MELE	CAPEL WELL BRIDGE	P25N006	2	1A	7.1	j 1A	8.1	1A 	18.0	1B	71.8] 2	8.1	j 18	0.395	Į IA	0.010	IA.	21.0	1A 	26.3	l IV	21.0
ROMINA SUREM	REMERA	R24A013	2	13.	7.3	13	8.0	1A	15.9	18	76.0	2	6.5	18	0.620	12	0.010	13.	10.1	1A	5.0	1)	15.0
ALLEN	MUCHESHILL BRIDGE	R250001	13	11	7.1	12	8.1	1A	16.0	<u> </u>	83.0	118	3.2	1A	0.150	1A	0.010	12	11.4	1A	7.0	11.	250.5
ALLEN	KELLKEREDS ERIDGE	R250002	i 13	1A.	7.2	i 1A	8.1	אנו	17.0	į 1A	82.7	i 18	3.3	j 1A	0.139	i 1a	0.010	18	16.6	i 1a	6.9	i la	114.4
ALLEN	DESCRIPTS BEDGE	JR250032	ואנ	1A	7.1	j 1A	8.0	i 1a	16.9	11.	80.5	i 1A	3.0	j 1A	0.227	I IA	0.010	12	22.8	i 1A	15.4	i 1A	403.6
ALLEN	SARSKIDA	JR250003	139	13.	7.3	j 1x	8.1	11.	17.5	18	76.8	18	3.3	į 1A	0.224	1A	0.010	13.	12.1	12	11.3	1A	<i>எ.</i> 5
HOWAN	MITHUEL BRIDGE	R25B027	3	1A	6.9	13	7.5	12	16.2	11	85.2	18	2.6	1A	0.126	1A	0.010	14	13.2	2	262.4	3	1176.0
RUHERN	RUMERNERIDE	R25B039	18	11.	6.9	j 1A	7.9	1A	16.8	1A	65.1	<u> 18</u>	3.2	IA	0.179	1A	0.010	18	13.7	l 1A	11.0	1A	97.0
RIJERN	GROGEY DOWN BRUDGE	R25B028] 2	13	6.8] 1A	7.8	1A	15.9	į 1	86.4	1B	3.1	IA	0.158	1A	0.010	14	11.9	j 1A	13.2	2	622.7
LAUVET SIDEAM	LANIVET	R25B014	1B	1A	6.7	1A	7.5	1A	14.9	18	66.8	18	4.7	18	0.422	18	0.010	1A	17.4	12	13.8	110	35.9
LANIVET STREAM	HOOPER'S HEADER	R25B015	j 2 i	12	6.6	j 1A	8.1	į 1A	15.0	113	73.9	j 2	5.2	1B	0.335	1 A	0.010	12	16.6	j 1A	26.4	į ja	66.8
LANIVET SINEAM	INMEDIALION ERIDES	PC25B016	18	13.	6.7	j 1A	7.4	17	15.1	18	€.7	138	4.1	1B	0.330	j 1x	0.010	1A	20.2	13	21.9	12	75.2
ST. LINGENCE STREEM	A30 HRIDGE, LAVELDON	1825B017	 2		6.5	11.	7.5	1A	15.4	18	73.8	2	5.4	1B	0.324	13.	0.010	1A	17.4	12	38.1	18	106.3
ST. LIMENUS STREAM	ABOVE ST. LAMBENCE S T W	PR25B040	j 2	I)	6.7	j 1A	7.5	j 1A	16.1	11	83.3	j 2	5.1	j 1	0.200	j 1A	0.010	IA.	10.7	j 1A	37.3	12	93.3
ST. LAWENCE STEEM	PRIOR TO RIVER CHIEL	P25038	j 3	1λ	6.4	į 1A	7.2	1A	17.6	18	66.2	j 3	10.1	3	2.432	į 1A.	0.010	IA.	13.1	1 1 A	32.3	17	87.0
DUMENTE STREM	DINERE (BEION SCHRETTS WELL SIM)	1R25B026	3	1A	6.8	 1A	7.5	1A	16.4	13	81.4	2	5.4	3	2.607	1X	0.010	13	11.4	1A	17.0	1A	80.0
CLERGIWKIDE	CLEROSARDER	 R258018	1A	12	7.0	1A	7.9	I IA	15.4	13	83.9	13	2.3	11	0.147	1A	0.010	1A	4.9	13	11.6	13	54.8
DE LANK RIVER	I I I I I I I I I I I I I I I I I I I	 R250001	1B	1A	5.4	1A	7.4	1A	16.5	1A	86.4	18	3.1	L IA	0.092	l la	0,010	1A	2.0	1A	5.7	1 <u>1</u> A	7.9
DE LANK RIVER	KEYRODE	R250002		Į,	6.0	1 1A	7.3	12	16.4	l IA	87.4	1 13	2.8	1 1A	0.035	i ia	0.010	I IA	4.3	112	10.9	I IX	18.6
		1			2.0	. ~~		. ~.	₩.4	. ~~	U	. ~~	2.0	1	4.00	1	4.000	-	4.3	,		. ~~	٠.

RECEIVAL RIVERS AUTHORITY — SOUTH WEST REGION


1990 RIVER WIDER QUALITY CLASSIFICATION


CALLLADED DEDERMINAND STRITISTICS USED FOR QUALITY ASSESSMENT

CRICHMENT: CAMEL (28)

River	Reach upstream of	User	90	1		Calcul	ated Det	ecuinen	d Statis	tics us	ed for Q	ality !	6362218	呔									
	1	Ref.	NHC			1		1		i		1		1		1		1		1		1	
	1	Number	Class	gH :	LOWER	pH	Upper	Text	स्रक्षाम	1 00	(%)	BOD	(AIU)	Total .	Amerika	Union.	. America	S.S	Solids .	Total	Copper	Tota	al Zinc
		-1		Class	5kile	Class	95kile	Class	95%ile	(Class)	5%ile	Class	95%ile	Class	95kile	Class	s 95%ile	Class	Moon.	Class	95tile	Class	95ki)/
		1		1		l		l		ł		l				1		1		1		1	
	1	-1:				1		l		1		l				1		1		1		1 -	-01
		100	لسا					<u> </u>		<u> </u>		<u> </u>				<u> </u>							
MERGE NORMEE	TREAME	P(25B025	IA	1A	5.9	1A	7.2	l la	15.9	l la	83.7] la	2.6	IA	0.138	IX	0.010	la	11.7	IA	18.3] lA	12.0
			<u> </u>			<u> </u>		<u> </u>		<u></u>				<u> </u>		<u> </u>		<u> </u>					
CROADY STREEM	CRONDY RESERVOUR	JR25B031	2	1A	5.3	1A	6.9	2	23.3	1A	81.3	118	3.5	1A	0.215	1A	0.010	IA	19.8	-	-	-	-
	<u> </u>	l				L		L		L						<u>t</u>		<u>t</u>				<u> </u>	
DEVIDENCE STREEM	DESCONST.	R25B024	1B	1A	6.0	1A	7.5	1A	16.5	1A	87.0	IB.	4.2	1A	0.228	1A	0.010	1A	12.9	1A	12.9	1A	30.9

Camel Catchment Compliance - 1990

INITIONAL RIVERS MUHIRITY — SOUTH WEST REGION 1990 RIVER WRIER QUALITY CLASSIFICATION

NUMBER OF SAMPLES (N) AND NUMBER OF SAMPLES EXCEPTING QUALITY SURROAD (P)

CRICHENT: CHEL (28)

River	Reach upstream of	User Ref.	pH I	OHRE	EH	fiber	Tempe	капте	1 20	(₹)	800 	(ATU)	LIDENT	Amortia	Union.	Ameria	S.S:	LICE	Total	Officer	Total	l Zinc
	i	Number	N	P	П	•	N	7	N	F	N	F	N	F	N	F	ਸ	F	R	F	N	F
	!				!		!		!		1		!		!		<u> </u>		!			
		-			i		i		ì		İ		i		i		Ì		i			
CHEL,	SAUMORRUE	[] [R2 5 H021 [23		23		24		24		24		23		22		 23		24	2	24	2
CHEL	CHEIPERD BRIDE	R25B001	36	_	36	_	36	_	36	_	36	1	36	_	34	_	36	2	30	-	30	_
	PENCARCH	R25B0221	24	_	24	_	1 23	_	i ã	_	24	i	24	6	23	_	24	i	24	_	i ã	_
CNEL	TROORE BUDG	[R25B002]	35	_	35	_	35	_	1 35	_	35	1	35	_	1 32	_	35	2	29	_	. 29	_
CHET	GM HODGE	R25B003	38	_	1 38	_	1 38	_	1 38	_	1 38	i	1 38	_	34	_	38	2	1 22		, 23 32	_
CHET	•			_	24	-			1 24	-	30 24		30	_	23	_	24	2	24	_	1 24	_
CHEL	MENTORD	[R2SB023]	24		33	-	24	_	1 33	_	33	1	33	_	1 11	_	33	2	77	_	77	_
CHEL	DESARGE HOUSE	[R25B004]	33	-		-	•	-	1 23	-	•	•	•	-		-	•	4	•	-	•	-
CHEL	HEILANDERIDE	[R25B005]	23	_	23	-	23	-	. –	-	1 23	-	23	-	21	-	1 23	1	23	-] 23	-
CREL	DUPPE HIDE	JR258006	35 ~	-	35	-	34	-	34	-	22	1	35	-	33	-	35	2	1 34	-	34	-
CHEL	INVESTALION HOUSE	[R25H007]	36 ~	-	36	-	35	-	34	1	36	1	36	_	34	-	36	2	34	_	34	-
CNEL	GOGLEY	R25B008	36	-	36	-	36	-	36	-	36	2	36		36	-	36	4	1 31	-	31	-
CHEL	RELEFOCK	R25B029	41	-	41	_	41	-	41	-	41	-	41	•	5 	-	41	4	41	-	41	-
ISSEY BROOK	MELLINGEX	R25A019	40		40	-	40	-	40	2	40	2	40	2	40	-	40	8	24	-	24	_
ARE	ST NEW PORD	R25A010	21	-	21		1 18	_	16		21	_	21	1	1.8		21	3	1.6		1.0	_
PHE	COVEL AVER BRIDGE	[R25A006]	25	-	5	-	25	-	25	-	25	1	25	-	25	-	25	4	20	-	20	-
RUMERIA SUREM	RUPERA	R24N013	36	-	36	-	36	-	36	-	36	2	36	-	36	-	36	6	1 22	-	22	-
ALIEN	MATERIAL BATTE	P250001	29		29		29	_	29		29	-	29	-	29	-	29	4	22	_	22	-
ALLEN	NELLIGIEEN HRIDGE	R250002	30	-	30	_	30	_	30	1	30	2	j 30	_	29	-	30	3	22	-	22	-
ALLEN	DINERM'S HRIDGE	R250032	21	-	21	_	j 20	-	j 20	_	21	-	j 21	-	19	-	j 21	1	20	_	20	-
MILEN	SAPSKIDE	P250003	31	-	31	-	30	-	30	2	j 31	2	į 31	-	29	-	31	3	24	-	24	-
RUHERN	WITHOU, HRIDGE	 R2SB027(23		23		 		23		23		23		23	-	23	2	23	1	23	4
RUDERN	RUDERENDE	R25B039	40	_	i 40	_	i 40	_	į 40	_	j 40	_	j 40	_	38	-	40	2	24	-	24	-
RUER	GEORGE BRODE	JR25B028	27	-	į <i>2</i> 7	-	į .27	•	27	-	27	-	į <i>2</i> 7	-	25	-	27	1	1 21	-	21	2
Laniver Surean	LANIVET	[R25B014]	28		1 28		123		28		28		28		27		28	2	21		21	
LAUVET STEERN	HOOPER'S BRIDGE	R25B015	28	_	28	-	19	_	i 28	_	28	1	28	_	26	_	28	4	1 71	_	i <u>z</u> i	_
LANIVET SINEAR	ISSERATOR BUILD	R25B016	28	-	28	_	28	-	28	1	28	-	28	_	27	-	28	2	21	_	71	_
	1.30	_			ــــــا		<u></u>		<u> </u>		<u></u>		<u> </u>		<u>į </u>		<u></u>		<u> </u>		<u> </u>	
ST. LARRENCE STREAM	A30 HRIDE, LANDON	R25H017	33	-	33	-	33	-	1 33	-	32	2	33	-	1 32	-] 33	4	33	1	1 33	_
ST. LANGENCE STREET	ABOVE ST. LAMENCE S T W	[R25E040]	24	-	24	-	21	_	24	-	24	1	24	-	23	-	24	1	24	1	24	-
ST. LAMENCE SIREAM	ERRICA TO RIVER CHEL	[R25B038]	24	-] 24 i	-	22	-	22	-	24	5	24	4	22	-	24	1	24 	-	24 	-
DUMERE STREAM	DIRPERE (RELOW SCIRLETTS WELL SIM)	R25B026	20	-	20	-	20	-	20	•	20	1	20	3	19	-	20	2	16	1 -	16	-
CLERCESSERIER	CLEREDWEIDE	F25B018	25	-	25	-	25	_	25		25	÷	25	-	20	(-	25	-	23	-	23	-
DE LANK RIVER	HRADICAD BRIDGE	 R250001	26		26		26	_	26		26	_	26	_	21		26		22	_	22	_
	REVERTICE	P250002	28		28		i 28	_	28		28		28		i 21	-	28		i 26		25	_

PRINCIPAL RIVERS MUTHERITY — SOUTH WEST REGION

1990 RIVER WRIER QUALITY CLASSIFICATION

NUMBER OF SAMPLES (IN) AND NUMBER OF SAMPLES EXCEPDING QUALITY STANDARD (IF)

CHICHENT: CHEL (28)

Reach upstress of	User	pH L	OWEL	pH (fper	Temperature		(\$)	BOD (AUTU	Tota	Ameria	Union.	Amonia	\$.50	lids	Total	Copper	Total	Zinc
1	Ref.	10	F	17	,	 N P	 N	P	 16 1	, , N	,		P	ļ IN	F	 	7	 N	P
ľ	1	••	•	i "	•	i "	"	•	i	j "	-	<u> </u>			-	<u> </u>	-		-
	!			!		!	1		ļ			!		<u> </u>		!		!	
	1			¦ 		i	i		i			¦				<u>L</u>		•	
DECREE	P258025	28	-	28	-	28 -	28	-	28 -	2	-	25	-	28	2	20	_	20	-
CROMEN RESERVOIR	P25H031	24		24	-	23 2	22	-	24 3	2	-	23		24	5	23	-	23	
TEXCOET	R25B024	28		28		29 -	29	-	28 1	. 2	1.4	24		28	1	20		20	_
	TRECORNE CROMOV RESERVOIR	Ref. Rusber Rusber RESERVE RESERVE RESERVE RESERVE RESERVE RESERVE RESERVE RESERVE RESERVE	Ref.	Ref.	Ref.	Ref. Runber N F N P	Ref.	Ref.		Ref.	Ref.	Ref. Rusher N F N	Ref. Ristber N F N	Ref. Rusher N F N F N F N F N F N F N F N F N F N	Ref. Righter N F N	Ref. Righer N F N	Ref. Righer N F N	Ref.	Ref. Rusher N F N F N F N F N F N F N F N F N F N

Appendix 10.10

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION

1990 RIVER WATER QUALITY CLASSIFICATION

PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS

CATCHMENT: CAMEL (28)

River	Reach upstream of	User Ref.		PEF:CENTAGE	EXCEEDENCE OF	STATISTIC	FROM QUALIT	Y STANDARD	ı	.) 1	1
	8	•	pE Lower	pH Upper	Temperature	DO (%)	BOD (ATU)	Total Ammonia	 Un-ionised Ammonia		Total Copper	Total Zinc
	3	i 		140	į į		į		i			•
CAMEL	 SLAUGHTERBRIDGE	 R25B021			. i				<u> </u>	-	119	164
CAMEL	•	R25B001	_		; - ;	_	35.1	_	_	8	113	104
CAMEL		R25B022		_		_	- 121	275	<u> </u>	,		
CAMEL		R25B002			! - !	_	2	213	<u> </u>	13	_	
CAMEL	•	R25B003		-	-	_	- 2	_	<u> </u>	_	_	
CAMEL	•	R25B023		-		_		_	_	_	_	
CAMEL		R258004			-	Ξ	2.0	_	- -	_	_	
CAMEL		R25B005		<u> </u>	-	_	1130	_	<u> </u>	_	_	
CAMEL		R25B005			! [!	_		-	<u> </u>	_	_	_
CAMEL		R25B007		1 2	-	_		_	<u> </u>	_	_	
CAMEL		R25B007	, -		-	<u> </u>	20	_	Ī	_	_	
CAMEL		R25B029	-	=	-	_	-	-	-	-	<u>-</u>	
ISSEY BROOK	MELLINGEY	R25A019		-	-	3	70	18	<u> </u>	48		-
AMBLE	ST KEW FORD	R25A010			- }		-		-			-
AMBLE	CHAPEL AMBLE BRIDGE	R25A006	-	1.2	-	-	62	_	į –	-	-	-
POLMORLA STREAM	POLMORLA	R24A013	12.				30	-		-		(9)
ALLEN	RNIGHTSMILL BRIDGE	R250001		-	-		-		 -			
allen	KELLYGREEN BRIDGE	R25D002	–	-	i - i	_	9 1	_	i -	i - i	i	_
ALLEN	DINHAM'S BRIDGE	R250032	-	-	i - i	-	11.60	_	i -	-	-	-
ALLEN	SLADESBRIDGE	R25D003	-	-	- 1	4	9	-	-	-	-	-
RUTHERN	WITHIEL BRIDGE	R25B027	· -		-						606	292
RUTHERN	•	R25B039		-		_	-	_	· -	10.2	-	_
RUTHERN		R25B028	1.4		-	-	-		-	-	- ,	108
LANIVET STREAM	LANIVET	R258014	- -		- 		-	-	<u> </u>			-
LANIVET STREAM	HOOPER'S BRIDGE	R25B015	-		i - i	_	i ai	-	i -	-	_ i	_
LANIVET STREAM	NANSTALLON BRIDGE	R25B016	-	-	-	-	-	-	i -	0.0	-	-
ST. LAMRENCE STREAM		R25B017		-	 		8		¦			·
ST. LAWRENCE STREAM		R25B040		1 -	i - i	-	j 1 j	-	i - i	- 1	-	-
ST. LAWRENCE STREAM	PRIOR TO RIVER CAMEL	R25B038	_	1 -1	-	-	102	247	i - i	-	-	13.
DUNNERE STREAM	DUNNERE (BELOW SCARLETTS WELL STW	R25B026	1.15	-	120		7	272		-	-	-
CLERKENMATER	CLERKENMATER	R25B018	_	-	(4)	-	-	_	-	-		-
DE LANK RIVER	BRADFORD BRIDGE	R25C001		-	 		- 2		¦			74
DE LANK RIVER	•	R25C002	-	1.0	-	-	-	_		-	_	

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION

1990 RIVER WATER QUALITY CLASSIFICATION

PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS

CATCHMENT: CAMEL (28)

River	Reach upstream of	User		PERCENTAGE	EXCEEDENCE OF	STATISTIC	FROM QUALIT	Y STANDARD)		•	
	!	Ref.	pH Lower	pH Upper	 Temperature	DO (%)	BOD (ATU)		•	 Suspended	Total	Total
				! !	! !			Ammonia	Ammonia	Solids	Copper	Zinc
	}				1		! !			!		•
STANNON STREAM	TRECARNE	R25B025	•	-	-	-	-	-	-	-	-	
CRONDY STREAM	CROWDY RESERVOIR	R25B031	-	-	8		16	-	; -		-	-
DAVIDSTOW STREAM	TREGOODWELL	R25B024	-	-5-	-		12		-	-	-	-

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION IDENTIFICATION OF POSSIBLE CAUSES OF NON-COMPLIANCE WITH RQO CATCHMENT: CAMEL (28)

* = WORK ALREADY IN HAND

.990 Map Position Number	•	Reach upstream of	User Reference Number		Possible causes of non-compliance
Number .			Marian 	(KM)	
	 	SLAUGHTERBRIDGE	 	4.9	
_	CAMEL	CAMELFORD BRIDGE	R25B001		LAND RUN-OFF, CATCHMENT GEOLOGY, SPATE
1	CAMEL	PENCARROW	R25B001		SEWAGE TREATMENT WORKS
	CAMEL	TRECARNE BRIDGE	R25B022		LAND RUN-OPP, UP-STREAM ABSTRACTION
	CAMEL	GROGLEY	R25B008		LAND RUN-OFF
13	ISSEY BROOK	MELLINGEY	R25A019	4.6	FISH FARM EPPLUENT, LAND RUN-OFF
15	AMBLE	CHAPEL AMBLE BRIDGE	R25A006	3.2	LAND RUN-OFF, EUTROPHICATION
16	POLMORLA STREAM	POLMORIA	R24A013	6.0	LAND RUN-OFF, POLLUTION (ON-GOING)
18	ALLEN	KELLYGREEN BRIDGE	R25D002	6.2	LAND RUN-OFF
20	ALLEN	SLADESBRIDGE	R25D003	3.8	LAND RUN-OFF, EUTROPHICATION
21	RUTHERN	WITHIEL BRIDGE	R25B027	5.9	CATCHMENT GEOLOGY, MINING
	RUTHERN	GROGLEY DOWNS BRIDGE	R25B028	1.2	CATCHMENT GEOLOGY
25	LANIVET STREAM	HOOPER'S BRIDGE	R25B015	1.5	SEPTIC TANK, OLD TIP
27	ST. LANRENCE STREAM	* A30 BRIDGE, LAVEDDON	R25B017	3.6	SEWAGE TREATMENT MORKS, LAND RUN-OFF, FARMING ACTIVITIES
	ST. LAWRENCE STREAM	* ABOVE ST. LAWRENCE S T W	R25B040		(— — — — — — — — — — — — — — — — — — —
29	ST. LAMRENCE STREAM	• PRIOR TO RIVER CAMEL	R25B036	0.4	LAND RUN-OFF, SEWAGE TREATMENT WORKS
30	DUNNERE STREAM	DUNNERS (BELOW SCARLETTS WELL)	R25B026	1.8	SEWAGE TREATMENT WORKS (HISTORIC)
35	CROWDY STREAM	CROWDY RESERVOIR	R25B031	1.3	DROUGHT, FARMING ACTIVITIES