
ENVIRONMENTAL PROTECTION

Classification 1990

NOVEMBER 1991 WQP/91/023 B L MILFORD

National Rivers Authority South West Region

GORDON H BIELBY BSc Regional General Manager

C V M Davies Environmental Protection Manager

ACKNOWLEDGEMENTS

The Water Quality Planner acknowledges the substantial contributions made by the following staff:

R. Broome - Co-ordinator and Editor

- A. Burrows Production of Maps and editorial support
- P. Grigorey Production of Maps and editorial support
- B. Steele Production of Forepage
- C. McCarthy Administration and report compilation

Special thanks are extended to A. Burghes of Moonsoft, Exeter for computer support and the production of statistical schedules.

The following NRA sections also made valuable contributions:

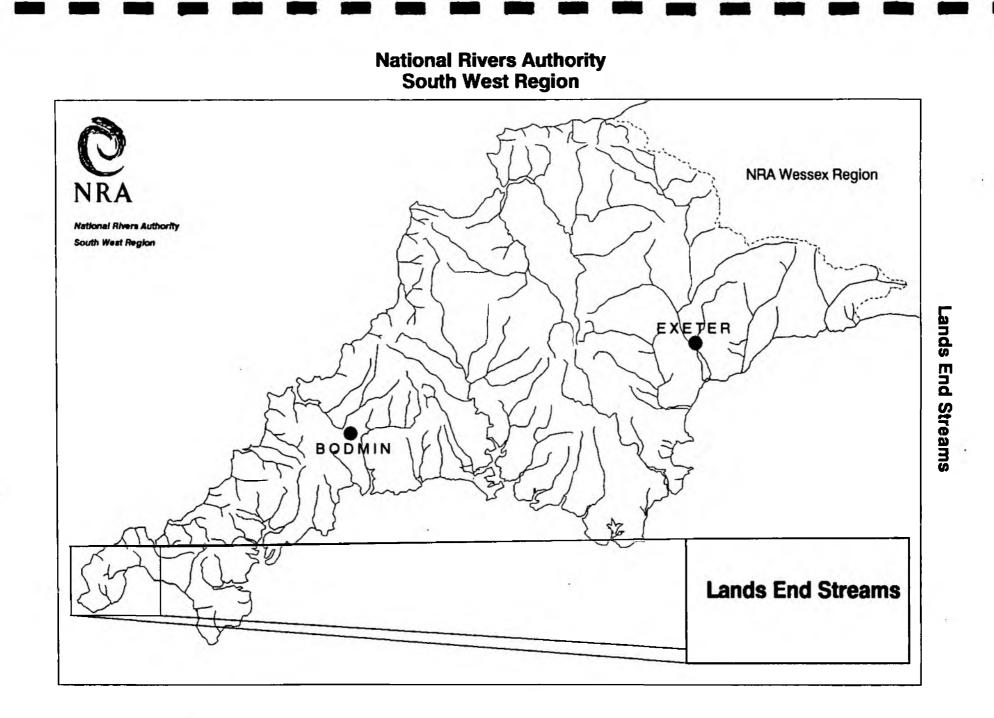
Pollution Control Field Control and Wardens Water Resources

Thanks also to R. Hamilton and J. Murray-Bligh for their contributions.

Suggestions for improvements that could be incorporated in the production of the next Classification report would be welcomed.

Further enquiries regarding the content of these reports should be addressed to:

Freshwater Scientist, National Rivers Authority, Manley House, Kestrel Way, EXETER, Devon EX2 7LQ



RIVER WATER QUALITY IN THE LANDS END STREAMS CATCHMENT

LIST OF CONTENTS

Page No. 1 1 Introduction 1 2 River Lands End Streams Catchment 2 3 National Water Council's River Classification System 3 4 1990 River Water Quality Survey 5 1990 River Water Quality Classification 4 Δ 6 Non-compliance with Quality Objectives 7 Causes of Non-compliance 5 6 8 Glossary of Terms 9 References 6 10 Appendices: River Quality Objectives including Monitoring points 10.1 10.2 Basic Determinand Analytical Suite National Water Council (NWC) River Classification System 10.3 10.4 NWC Criteria for Non-Metallic Determinands - Regional Variation 10.4.1 NWC Criteria for Metallic Determinands - Regional Variation 10.5 1990 River Water Quality Classification - tabular format 1990 River Water Quality Classification - map format 10.6 10.7 Calculated Determinand Statistics used for Quality Assessment 10.8 Compliant/Non-Compliant River Reaches 10.9 Number of Samples Results exceeding quality standards 10.10 Percentage Exceedance of Determinand Statistics from Quality Standard

10.11 Identification of Possible Causes of Non-Compliance with River Quality Objectives

1. INTRODUCTION

Monitoring to assess the quality of river waters is undertaken in thirtytwo catchments within the region. As part of this monitoring programme samples are collected routinely from selected monitoring points at a predetermined frequency per year, usually twelve spaced at monthly intervals. Each monitoring point provides data for the water quality of a river reach (in kilometres) upstream of the monitoring point.

River lengths have been re-measured and variations exist over those recorded previously.

Each water sample collected from each monitoring point is analysed for a range of chemical and physical constituents or properties known as determinands. The analytical results for each sample are entered into a computer database called the Water Quality Archive.

Selected data are accessed from the Archive so that the quality of each river reach can be determined based on a River Classification System developed by the National Water Council (NWC), (9.1).

This report presents the river water quality classification for 1990 for monitored river reaches in the Lands End Streams catchment.

2. LANDS END STREAMS CATCHMENT

Porthleven Stream and Newlyn River flow over a distance of 4.1 km and 11.6 km respectively from their source to the tidal limits, (Appendix 10.1). Water quality was monitored at approximately monthly intervals at four locations on each watercourse.

Trevaylor Stream (7.2 km), Chyandour Stream (5.3 km) and Lariggan River 6.5 km) were all monitored at approximately monthly intervals at two sites between their source and the tidal limits, (Appendix 10.1).

Lamorna Stream and Penberth Stream flow over a distance of 6.1 km and 6 km respectively from their source to the tidal limits, (Appendix 10.1) and were both monitored at three sites at approximately monthly intervals.

Marazion River flows over a distance of 10.5 km from its source to the tidal limit, (Appendix 10.1) and was monitored at three locations. Two sites were sampled at approximately monthly intervals and the site at Nancledra was sampled on fifteen occasions during 1990 because of no recent water quality data.

The Tregaseal Stream flows over a distance of 4.9 km from its source to the tidal limit, (Appendix 10.1) and was monitored at three locations. One site was sampled at approximately monthly intervals and the site at Bostraze and a site just prior to the sea were sampled on twenty occasions during 1990 because of no recent water quality data.

The Zennor Stream flows over a distance of 2.5 km from its source to the tidal limit, (Appendix 10.1) and was monitored at one location at approximately monthly intervals.

Throughout the Lands End Streams catchment one secondary tributary of the Marazion River, one secondary tributary of Trevaylor Stream, two secondary tributaries of the Newlyn River and one secondary tributary of the Lamorna Stream were monitored. In addition the Drift Reservoir was monitored at one location at approximately monthly intervals.

2.1 SECONDARY TRIBUTARIES

The Tregilliowe Stream flows over a distance of 2.7 km from its source to the confluence with the Marazion Stream, (Appendix 10.1) and was monitored at one location at approximately monthly intervals.

The Rosemorran Stream flows over a distance of 4.3 km from its source to the confluence with the Trevaylor Stream, (Appendix 10.1) and was monitored at one location at approximately monthly intervals.

The Trereife Stream flows over a distance of 1.6 km from its source to the confluence with the Newlyn River, (Appendix 10.1) and was sampled at two locations at approximately monthly intervals.

Sancreed Brook flows over a distance of 3.8 km from its source to the confluence with the Newlyn River, (Appendix 10.1) and was monitored at one location at approximately monthly intervals. Carn Euny Brook flows over a distance of 6.9 km from its source to the confluence with the Lamorna Stream, (Appendix 10.1) and was monitored at one location at approximately monthly intervals. Monitoring points are all situated in the lower reaches.

Each sample was analysed for a minimum number of determinands (Appendix 10.2) plus additional determinands based on local knowledge of the catchment. In addition, at selected sites, certain metal analyses were carried out.

The analytical results from all of these samples have been entered into the Water Quality Archive and can be accessed through the Water Act Register, (9.2).

3. NATIONAL WATER COUNCIL'S RIVER CLASSIFICATION SYSTEM

3.1 River Quality Objectives

In 1978 river quality objectives (RQOs) were assigned to all river lengths that were part of the routine monitoring network and to those additional watercourses, which were not part of the routine network, but which received discharges of effluents.

For the majority of watercourses long term objectives were identified based on existing and assumed adequate quality for the long term protection of the watercourse. In a few instances short term objectives were identified but no timetable for the achievement of the associated long term objective was set.

The RQOs currently in use in the Lands End Streams catchment are identified in Appendix 10.1.

3.2 River Quality Classification

River water quality is classified using the National Water Council's (NWC) River Classification System (see Appendix 10.3), which identifies river water quality as being one of five quality classes as shown in Table 1 below:

Table 1 - National Water Council - River Classification System

<u>Class</u>	Description
1A	Good quality
1B	Lesser good quality
2	Fair quality
3	Poor quality
4	Bad quality

Using the NWC system, the classification of river water quality is based on the values of certain determinands as arithmetic means or as 95 percentiles (5 percentiles are used for pH and dissolved oxygen) as indicated in Appendices 10.4.1 and 10.4.2.

The quality classification system incorporates some of the European Inland Fisheries Advisory Commission (EIFAC) criteria (Appendix 10.3) recommended for use by the NWC system.

4. 1990 RIVER WATER QUALITY SURVEY

The 1990 regional classification of river water quality also includes the requirements of the Department of the Environment quinquennial national river quality survey. The objectives for the Department of the Environment 1990 River Quality Survey are given below:

- To carry out a National Classification Survey based on procedures used in the 1985 National Classification Survey, including all regional differences.
- 2) To classify all rivers and canals included in the 1985 National Classification Survey.

3) To compare the 1990 Classification with those obtained in 1985.

In addition, those watercourses, which were not part of the 1985 Survey and have been monitored since that date, are included in the 1990 regional classification of river water quality.

5. 1990 RIVER WATER QUALITY CLASSIFICATION

Analytical data collected from monitoring during 1988, 1989 and 1990 were processed through a computerised river water quality classification programme. This resulted in a quality class being assigned to each monitored river reach as indicated in Appendix 10.5.

The quality class for 1990 can be compared against the appropriate River Quality Objective and previous annual quality classes (1985-1989) also based on three years combined data, for each river reach in Appendix 10.5.

The river water classification system used to classify each river length is identical to the system used in 1985 for the Department of the Environment's 1985 River Quality Survey. The determinand classification criteria used to determine the annual quality classes in 1985, subsequent years and for 1990 are indicated in Appendices 10.4 and 10.4.1.

Improvements to this classification system could have been made, particularly in the use of a different suspended solids standard for Class 2 waters. As the National Rivers Authority will be proposing new classification systems to the Secretary of State in the near future, it was decided to classify river lengths in 1990 with the classification used for the 1985-1989 classification period.

The adoption of the revised criteria for suspended solids in Class 2 waters would not have affected the classification of river reaches.

The river quality classes for 1990 of monitored river reaches in the catchment are shown in map form in Appendix 10.6.

The calculated determinand statistics for pH, temperature, dissolved oxygen, biochemical oxygen demand (BOD), total ammonia, un-ionised ammonia, suspended solids, copper and zinc from which the quality class was determined for each river reach, are indicated in Appendix 10.7.

6. NON-COMPLIANCE WITH QUALITY OBJECTIVES

Those monitored river reaches within the catchment, which do not comply with their assigned (RQO), are shown in map form in Appendix 10.8.

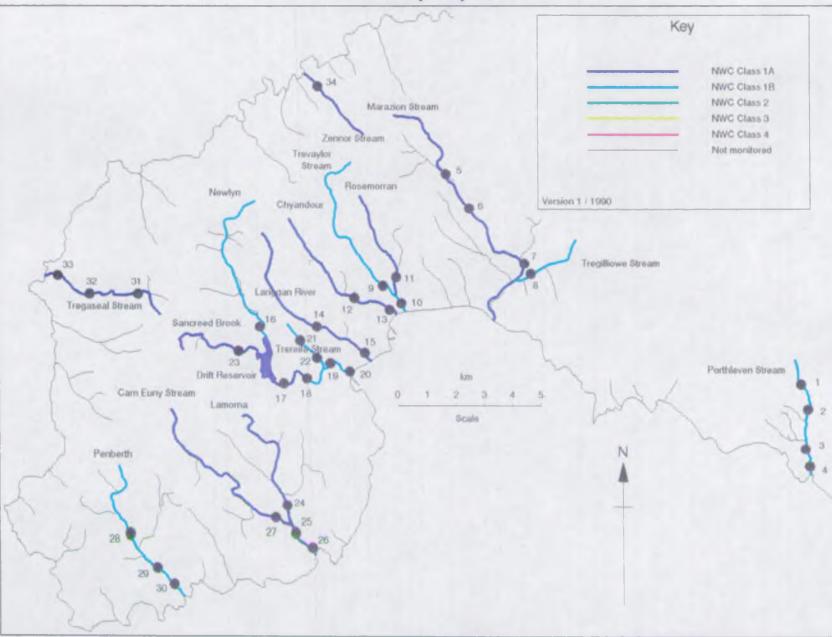
Appendix 10.9 indicates the number of samples analysed for each determinand over the period 1988 to 1990 and the number of sample results per determinand, which exceed the determinand quality standard.

For those non-compliant river reaches in the catchment, the extent of exceedance of the calculated determinand statistic with relevant guality standard (represented as a percentage), is indicated in Appendix 10.10.

7. CAUSES OF NON-COMPLIANCE

For those river reaches, which did not comply with their assigned RQOs, the cause of non-compliance (where possible to identify) is indicated in Appendix 10.11.

8. GLOSSARY OF TERMS


RIVER REACH	A segment of water, upstream from sampling point to the next sampling point.
RIVER LENGTH	River distance in kilometres.
RIVER QUALITY OBJECTIVE	That NWC class, which protects the most sensitive use of the water.
95 percentiles	Maximum limits, which must be met for at least 95% of the time.
5 percentiles	Minimum limits, which must be met for at least 95% of the time.
	A standard test measuring the microbial uptake of oxygen ~ an estimate of organic pollution.
рН	A scale of acid to alkali.
UN-IONISED AMMONIA	Fraction of ammonia poisonous to fish, NH ³ .
SUSPENDED SOLIDS	Solids removed by filtration or centrifuge under specific conditions.
USER REFERENCE NUMBER	Reference number allocated to a sampling point.
INFERRED STRETCH	Segment of water, which is not monitored and whose water quality classification is assigned from the monitored reach upstream.

9. REFERENCES

Reference

- 9.1 National Water Council (1977). River Water Quality: The Next Stage. Review of Discharge Consent Conditions. London.
- 9.2 Water Act 1989 Section 117
- 9.3 Alabaster J. S. and Lloyd R. Water Quality Criteria for Freshwater Fish, 2nd edition, 1982. Butterworths.

Lands End Streams River Quality Objectives

Appendix 10.1

BASIC DETERMINAND ANALYTICAL SUITE FOR ALL CLASSIFIED RIVER SITES

pH as pH Units Conductivity at 20 C as uS/cm Water temperature (Cel) Oxygen dissolved % saturation Oxygen dissolved as mg/1 O Biochemical oxygen demand (5 day total ATU) as mg/1 O Total organic carbon as mg/1 C Nitrogen ammoniacal as mg/l N Ammonia un-ionised as mg/l N Nitrate as mg/l N Nitrite as mg/l N Suspended solids at 105 C as mg/1 Total hardness as mg/l CaCO3 Chloride as mq/l Cl Orthophosphate (total) as mg/1 PSilicate reactive dissolved as mg/1 SiO2 Sulphate (dissolved) as mg/1 SO4 Sodium (total) as mg/l Na Potassium (total) as mg/1 K Magnesium (total) as mg/1 Mg Calcium (total) as mg/l Ca Alkalinity as pH 4.5 as mg/l CaCO3

APPENDIX 10.

iver Class	Quality criteria		Remarks	Curren	t potential uses
	Elass limiting criteria (95 percent	ile)			
	Dissolved oxygen saturation greater than 80% Biochemical oxygen demand not greater than 3 mg/l Anmonia not greater than 0.4 mg/l Where the water is abstracted for drinking water, it complies with requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii)	Average 800 probably not greater than 1.5 mg/l Visible evidence of pollution should be absent	(i) (ii) (iii)	Water of high quality suitable for potable supply abstractions and for all abstractions Game or other high class fisheries High amenity value
B Good (i) uality (ii) (iii) (iv) {v)	DO greater than 60% saturation BOD not greater than 5 mg/l Ammonia not greater than 0.9 mg/l Where water is abstracted for drinking water, it complies with the requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(iv)	Average BOB probably not greater than 2 mg/1 Average ammonia probably not greater than 0.5 mg/1 Visible evidence of pollution should be absent Waters of high quality which cannot be placed in Class 1A because of the high proportion of high quality effluent present or because of the effect of physical factors such as canalisation, low gradient or eutrophication	ł	Water of less high quality than Class 1A but usable for substantially the same purposes
EFair (i) Iuality (ii) (iii)	BO greater than 40% saturation BOD not greater than 9 mg/1 Where water is abstracted for drinking water it complies with the requirements for A3* water	(v) (i) (ii) (iii)	Class 1A and Class 1B together are essentially the Class 1 of River Pollution Survey (RPS) Average BOD probably not greater than 5 mg/l Similar to Class 2 of RPS Water not showing physical signs of pollution other than	the (i) (ii)	Waters suitable for potabl supply after advanced treatment Supporting reasonably good coarse fisheries

_				
Poor mality	(i) (ii) (iii)	DO greater than 10% saturation Not likely to be anaerobic BOD not greater than 17 mg/l. This may not apply if there is a high degree of re-aeration	Similar to Class 3 of RPS	Waters which are polluted to an extent that fish are absen only sporadically present. Way be used for low grade industrial abstraction purposes. Considerable potential for further use if cleaned up
Bad Jality	24	Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times	Similar to Class 4 of RPS	Waters which are grossly polluted and are likely to cause nuisance
		DO greater than 10% saturation		Insignificant watercourses and ditches not usable, where the objective is simply to prevent nuisance developing

- (a) Under extreme weather conditions (eg flood, drought, freeze-up), or when dominated by plant growth, or by aquatic plant decay, rivers usually in Class 1, 2, and 3 may have BODs and dissolved oxygen levels, or annonia content outside the stated levels for those Classes. When this occurs the cause should be stated along with analytical results.
 (b) The BOD determination of a state of the st
- (b) The BOD determinations refer to 5 day carbonaceous BOD (ATU). Ammonia figures are expressed as NH4. **
 (c) In most instances the chemical classification given above will be suitable. However, the basis of the classification is restricted to a finite number of chemical determinands and there may be a few cases where the presence of a chemical substance other than those used in the classification markedly reduces the quality of the water. In such cases, the quality classification of the water should be down-graded on the basis of biota actually present, and the reasons stated.
 (d) EIFAC (European Inland Fisheries Advisory Commission) limits should be expressed as 95 percentile limits.

EEC category A2 and A3 requirements are those specified in the EEC Council directive of 16 June 1975 concerning the Quality of Surface Water intended for Abstraction of Drinking Water in the Member State.

Ammonia Conversion Factors

(mg NHe/1 to mg N/1)

Class	18	0.4	ng	NH4/1	:	0.31	Bg	N/1
Class	18	0.9	ng	NH4/1	:	0.70	bg	N/1
		0.5	Bg	NHa/1	=	0.39	89	N/1

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR NON-METALLIC DETERMINANDS

- River Quality Criteria
- Class
- **1**A Dissolved oxygen % saturation greater than 80% BOD (ATU) not greater than 3 mg/l = 0Total ammonia not greater than 0.31 mg/1 N Non-ionised ammonia not greater than 0.021 mg/l NTemperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
- **1**B Dissolved oxygen % saturation greater than 60% BOD (ATU) not greater than 5 mg/1 0 Total ammonia not greater than 0.70 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
 - 2 Dissolved oxygen & saturation greater than 40% BOD (ATU) not greater than 9 mg/1 0 Total ammonia not greater than 1.56 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 28 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
 - 3 Dissolved oxygen % saturation greater than 10% BOD (ATU) not greater than 17 mg/1 0

Determinand

DH

4 Dissolved oxygen % saturation not greater than 10% BOD (ATU) greater than 17 mg/1 0

STATISTICS USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION

Dissolved oxygen BOD (ATU) Total ammonia 95 percentile 95 percentile Non-ionised ammonia Temperature 95 percentile 5 percentile 95 percentile Suspended solids arithmetic mean

5 percentile 95 percentile

Statistic

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR METALLIC DETERMINANDS

SOLUBLE COPPER

Total Hardness (mean) mg/l CaCO3	Statistic	Soluble Copper* ug/l Cu Class 1 Class 2
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	<pre>< = 5 > 5 < = 22 > 22 < = 40 > 40 < = 112 > 112</pre>

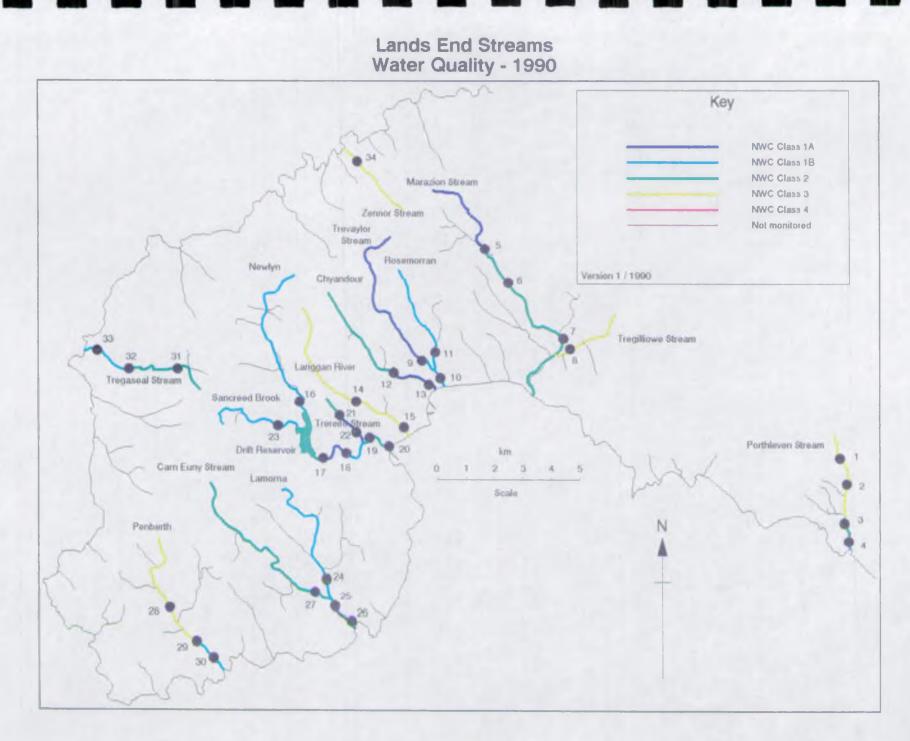
* Total copper is used for classification until sufficient data on soluble copper can be obtained.

TOTAL ZINC

Total Hardness (mean) mg/l CaCO3	Statistic	Total Zinc ug/l Zn Class 1 Class 2 Class 3
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	<pre>< = 30 < = 300 > 300 < = 200 < = 700 > 700 < = 300 < = 1000 > 1000 < = 500 < = 2000 > 2000</pre>

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION CATCHMENT: LANDS END STREAMS (23)

1990 Map	River	Reach upstream of	User	National	Reach	Distance	River	85	86	87	88	89	90
osition	Ì		Reference	Grid	Length	from	Quality	INKC	INC	AMC	I BHC	INC	18MC
Rumber	Í	i i	Runber	Reference	(km)	source	Objective	Class	Class	Class	Class	Class	Class
	Ì	İ	1	İ I	l	((kan)	ĺ	ĺ –	1	i	i	ĺ	İ
	1	1	1	!		1	1	ł	1	1	1	ł	1
			l.	1	!	1		ļ	1	ļ	!!!		!
1	PORTHLEVEN STREAM	PENBRO		SW 6283 2825	1.5	1.5	18	18	18			-2	
2	PORTHLEVEN STRENM	A394 BRIDGE, LITTLEASTRON		SW 6275 2769		2.1	18	j 1B	18	i i	i i	2	3
3	PORTHLEVEN STREAM	METHLEIGH	•	SW 6271 2667		3.1	18	1B	1B		i i	2	i 3
4	PORTHLEVEN STREAM	UPSTREAM OF HARBOUR, PORTHLEVEN	,	SW 6272 2600		3.8	18	18	1B	i i	i i	2	i 2
	PORTELEVES STREAM	MEAN HIGH WATER (INFERED STRETCH)	İ	1	0.3	4.1	18	1B	1B		l i	2	j 2
5	MARAZION RIVER	RASCLEDRA		SW 4965 3603	3.4	3.4		 1B	18	2	¦!	2	
6	MARAZION RIVER	CUCURRIAN MILL		ISW 5033 3494		4.7	1	1B	i 18	2	. !	2	2
-	MARAZION RIVER	TRUTHWELL MILL BRIDGE	•	SW 5237 3247		8.3	1.	18	18	2		2	2
,	MARAZION RIVER	MEAN HICH MATER (INFERRED STRETCH)			2.2	10.5	1	1 1B	10	2	1	2	2
	INTERATION REVER	ITTER CAPTER (THE DECOR STRETCH)	1	,	4.4		74			•	1	-	
8	TREGILLIONE STREAM	GRALLON	R21A026	SW 5256 3213	2.3	2.3	18	i	; 		i — İ		3
	TREGILLIONE STREAM	MARAZION R. COMPL. (INFERRED STRETCH)	1		0.4	2.7	18	l					3
<u> </u>		TRYTHOGGA	P212022	SW 4769 3180	6.2	6.2	18	1B				2	- 14
-	TREVAYLOR STREAM	IA.30 BRIDGE AT CHYANDOUR		SW 4812 3115		7.1	18	18	1A			2	1B
tu	TREVATIOR STREAM	(MEAN HIGH WATER (INFERED STRETCH)	RZIAUUS	5W 4012 3115 	0.9	7.2	18					2	1 18
	INSTALLAR STADAR			i i	•		10			i	i i	•	1
11	ROSEMORRAN STREAM	ENTEGIE COTTAGE	R21A021	SW 4788 3220	3.8	i <u>3.8</u>	1.	i —	ii		i — i		18
	ROSEMORRAN STREAM	TREVATLOR STREAM CONFL. (INF. STRETCH)	1		0.5	4.3	18						18
12	CHYANDOUR BROOK	HEANOOR	R21A023	5W 4615 3158	3.3	3.3	1.	2	2		18	18	2
	CHYANDOUR BROOK	A.30 BRIDGE AT CHYANDOUR	R21A006	SW 4785 3102	1.9	5.2	1. 1.	2	i 2 i	j	1B 1	18	11
	CHYANDOUR BROOK	MEAN HIGH WATER (INFERRED STRETCH)	i i		0.1	5.3	17	2	2		18	18	18
14	LARIGGAN RIVER	WEST LODGE		SW 4468 3085	3.7	3.7	<u> </u>	18	<u> </u>	¦	¦	3	3
15	LARIGGAN RIVER	WEIERRY TOWN BRIDGE	B21A007	SW 4675 2945	2.8	6.5	1.6	1B	1B	i	i	3	3
	······		_!i	i		ii		i	ii	i	i		
_	NEWLYN RIVER	SKINNEL BRIDGE	R21A003	SW 4335 3018	6.4	6.4	18	18	18	1B	18	18	18
	NEWLYN RIVER	INFLOW, DRIFT RES. (INFERRED STRETCH)			0.3	6.7	1. 1	18	18	18	18	18	18
	NEWLYN RIVER	DRIFT RESERVOIR	• •	SW 4381 2878	1.3	8.0	<u>ו אנ</u>	18	18	18	18	1.	2
	NEWLYN RIVER NEWLYN RIVER	Buryas Bridge Stable Hobba		SW 4475 2908	1.2	9.2 10.5	1. 1.	1B		18	18	1	1.
	NEWLYN RIVER	NEWLYN BRIDGE		SW 4625 2903		111.5	1B 1B	2	1B 1B	1B 1B	1B 19	2 2	1B 2
	NEWLYN RIVER	NORMAL TIDAL LIMIT (INFERRED STRETCH)		JW 4023 2303	0.1	11.6	1B	2	18	18	18	2	2
						!İ			ii	i	i		
	TREREIFE STREAM	DERNIS PLACE	, ,	SW 4461 3005	0.5	0.5	18				ļ	ļ	2
22	TREREIFE STREAM	Prior to newlyh river	K21W050	SW 4520 2928	1.1	1.6	18						18
23	SANCREED BROOK	LITTLE SELLAN BRIDGE	R21A017	SW 4256 2975	3.2	3.2	<u> </u>		ii	—-'i	¦	——	18
	SANCREED BROOK	(NORMAL TIDAL LIMIT (INFERRED STRETCH)	ļ		0.6	3.8	17			į	į	Ì	1B
24	LAMORRA STREAM	TREMOOFE	R21A025	SW 4415 2540	4.5	4.5			1.		<u> </u>	1.	18
	LAMORNA STREAM	HOTEL LANDERA		SW 4468 2458	1.0	j 5.5 j	1.4	_ı∧ j	1.	i	i	1.	1B
26	LAMORNA STREAM	LANDRNA	R21A011	SW 4502 2410	0.6	6.1	1. 1	1. 1	IN	i	i	1.	18

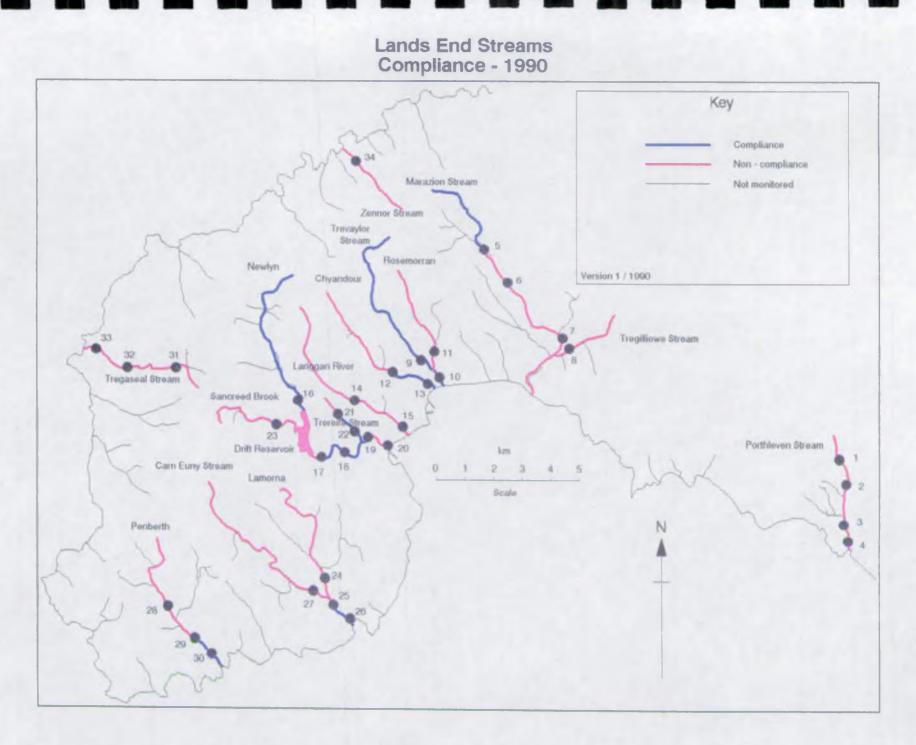

Appendix 10.5

.

NATIONAL RIVERS AUTHORITY - SOUTH MEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION CATCHMENT: LANDS END STREAMS (23)

1990 Map Position Number		Reach upstream of	User Reference Rumber					
 	 	- (/ / /				
27	CARE EURY STREAM	TREMOOFE LAMORHA STREAM CONFL. (INF. STRETCH)	R21A015	5W 4401 2524				
28	PERBERTE STREAM	BOTTOMS	R22A010	SW 3857 2423				
29	PENBERTH STREAM	TREAN		SW 3961 2329				
30	PENBERTH STREAM	PERBERTH BRIDGE MEAN HIGH WATER (INPERRED STRETCH)	R22A009	SW 4011 2289 				
31	TREGASEAL STREAM	BOSTRAZE	B22A012	SW 3887 3190				
32	TREGASEAL STREAM	TREGASEAL BRIDGE	R22A006	SW 3731 3180				
33	TREGASEAL STREAM	PRIOR TO SEA MEAN HIGH WATER (INFERED STRETCH)	R22A007	SW 3566 3231				
34	ZERNOR STREAM	ZERNOR MEAN HIGH WATER (INFERED STRETCH)	R22A008	5W 4521 3860				

Reach	Distance	River	85	86	87	88	89	90
Length	from	Quality	NHC	NWC	NHC	INC	NWC	BMC
(km.)	BOUICE	Objective	Class	Class	Class	Class	Class	Class
	()km)	i	i	í	i	i	i	i i
		i	i	i	i	i	i	i i
	i			i i		i		i i
	i		_		i			
	¦	·				_		
6.4	6.4	1.8	18					i- <u>2</u>
0.5	6.9	1.	18					i 2 i
		l						
3.4	3.4	1 <u></u> 1B	1	18	:	¦		3
1.6	5.0	18	11	1B	1			i 3
	•	•	•	•	!			
0.7	5.7	18	11	18	ļ	ļ	ļ	1B
0.3	6.0	18	11	18		ļ		18
		!			I	<u> </u>	<u> </u>	<u> </u>
1.1	1.1	A L	18	1B		1	1	2
1.7	2.8	1 λ	1B	1B	1		1	2
1.9	4.7	1.	18	18	1	1	1	18
0.2	4.9	j 1 a	18	18	İ	İ	İ	1B
	i	Ì	Ì	i	i	Ì	i	i i
1.9	1.9	1.	1.	1	i			<u> </u>
0.6	2.5	1.4	1.	1 1	i		i	i 3 i
			i	i				-
	ــــــــــــــــــــــــــــــــــــــ	·	' 	'	' <u> </u>	·	·	، ،



NRIJONAL RIVERS AURORITY - SOUTH WEST REJON 1990 RIVER WHER QUALTY CLASSIFICATION CN.CLLARED DETERMINING SUPPOSED FOR QUALITY ASSESSMENT CRICHMENT: LINDS END SIREPAS (23)

River	Reach upstream of	User	90	90 Calculated Determinend Statistics used for Quality Assessment																			
I	1	Ref.	NC	i		I I				1	-	ı Ē		1		1				1		1	
J	1	Number	Class	pH	Lower	j p⊞⊺	liper	Temp	erature	j DO	(\$)	j BOD	(2000)	Total	Ameria	Union.	Amonia	S.9	olids	Total	Orper	j Tota	al Zinc
J	1			Class	Stile	Class	95%ile	Class	95kila	Class	5kile	j Class	95kile	j Class	s 95kile	Class	95kile	ومعل ا	Moon	(Class	95kilo	Can	s 95kile
I	j	j – j	i	i –		i		i		i		i		i		i		i		i		1	
				ŀ		l								1		Ì				Ì		•	
PORTHLEVEN STREAM	PENERO	R21A013	•	1	6.1	1	7.1	7	16.4	1	84.0	18	2.4	18	0.420	1	0.010	14	2.2	2	134.2	3	1700.0
PORTHLEVEN STREAM	A394 HEIDE, LITTLEANDRON	FZ1A009	•	11	6.4	17	7.2	17	15.8	17	80.8	17	2.5	18	0.438	18	0.010	17	5.4	2	114.0	3	1600.0
FORTHLEVEN STREAM	PEDHLEDGH	F21A012	•	11	6.5	17	7.6	14	16.0	1A	87.0	1	2.1	118	0.383	14	0.010	1	4.1	2	ຜ.3	3	1096.0
PORTHLEVEN STREAM	UPSINERM OF HANBOUR, FORTHLEVEN	17217010	2	I IV	6.1	1A 	7.6	1 JA	15.8	118	71.0	1A 	2.7	1 17	0.183	17	0.010	1 λ 	13.8	2	179.9	2	912.0
MARAZION RIVER	IPPINCLEDERA	R21A028	•	1A	6.4	AL	7.6	18	15.8	1A I	87.2	i u	2.6	1	0.113	AL	0.010	11	3.5	AL	11.0	1	21.8
MARAZION RIVER	CLEERING MELL	R21A001	•	1A	6.1	Ι λ	7.3	1A	15.8	14	87.4	I IV	1.9	1 14	0.078	1 1	0.010	AL I	4.1	2	36.4		25.0
MARAZION RIVER	TRUTHELL MUL BRIDE	F21A002	2	1A 	6.7	1 λ 	7.6	1A 	16.5	1 118	68.0	2	5.1	2	0.790	1A 	0.010	1A	6.7	1A	17.5	1	31.8
TREALLINE STREM	GINLLON	1821A026	<u> </u> 3	1.	6.7	1 JA	7.6	17	16.2	3	12.5	18	3.7	18	0.445	1	0.010	11	8.5	Ì 1∧	99.0	2	1498.5
DEMANLOR SIDERM	TRYINGA	R212022	1	<u> </u>	6.4	1.	7.4	1A	17.1		86.4	1	2.3	1.	0.202	1	0.010	14	4.7	1	15.1	1	12.7
TREVAYLOR STREAM	A.30 BRIDGE AT GEARDOLR	R21A008	118	, vr	6.7	ј IX	7.5	AL	18.2	118	76.3	118	4.4	118	0.349	14	0.010	٦V.	9.3	11	17.1	1	43.3
ROSEMCRRAN STREAM	RENEGIE COTINGE	IR214021	18	1.	6.6	1	7.4	18	15.9	AL	85.2	118	3.1	18	0.350	1	0.010	1	4.3	1	12.8	18	10.0
CHANDOLR FROM	HEAMOOR	18214023	2	1	6.5	1A	7.6		14.3	L	82.2	1	2.5	2	0.899	1	0.010	1	4.7	14	10.6	1	17.8
GEZANDOUR ERCCK	A.30 BRIDGE AT CHEANCOLR	R21A006	•	ј IA	6.9	14	7.7	אנ	17.1	AL	88.5	٦X.	2.5	14	0.175	17	0.010	1	5.1	14	12.8	1	
LARILERN RIVER	WEST LODGE	R21A024	3	77	5.9	1.	7.4	1	15.5	AL	82.5	2	5.7	3	2.236	1	0.010	14	4.5	<u></u>	9.4	AL	20.4
LARIDGAN RIVER	MEXEZ TONI BRIDGE	R21A00 7	3 	1A 	6.7	3 	9.2	1 1	18.5	138 	79.1	18 	3.8	3	1.757	1A 	0.015	1 17	4.8	AL	15.4	1A	47.8
NEMLEN RIVER	SKUPPEL BRIDTE	R212003		17	6.4	<u>1</u>	7.0	14	16.8	AL	81.8	18	4.0	11	0.138	17	0.010	1	9.9	11	13.2	11	17.5
NEMLEN FIVER	IRIPT RESERVOIR	P214018		1 77	6.6	1 IX	7.4	2	22.0	1 IA	85.0	1 12	2.4	2	0.990	1 1	0.010	1 14	7.3	-	-	-	-
NEWLAN RIVER	BLEZAS BEIDE	R21A004		I IV	6.0	17	7.3	11	17.2	17	81.4	11	2.3	11	0.074	14	0.010	1 1	4.8	1 17	6.0	1 1 A	34.6
NEMLEN RIVER	STATLE HOTEA	R21A027	•	i iv	6.7	1 12	7.3	1 1	16.6	118	77.0		2.0	1 1 X	0.300	1	0.010	1	4.3	2	1500.0		39.0
NEMLER RIVER	NENLAN ERIDIE	7212005 	2 	1A 	6.1	I IX I	7.5	ענן ענן	16.7	I	82.8	18	4.6	1 x 	0.148	1 1	0.010	1A 	14.6	2	64.1	1A 	49.8
THEREDFE STREAM	DENNIS PLACE	R21A019	2	AL	6.0	1 1A	7.5	<u>۲</u> ۲	15.7	18	79.5	118	3.2	2	1.230	14	0.010	11	10.2	11	9.0	1	54.8
DEFEIPS SDEPH	FRICE TO NENLEY REVER	(R21)020	ТУ	I IV	5.9	AL I	7.6	1	16.4	, IV	83.3	11	3.0	AL I	0.115	X	0.010	, IV	17.0	j IA	18.8	JA	60.0
SHACKEED BROOK	LITTLE SELLAN BRIDE	1212017	118	17	6.1	AL	7.0	1	17.9	118	75.5	14	2.0	18	0.572	1	0.010	17	7.2	1	6.0	1	12.0
LANCREA STREAM	TREMOPE	R21A025	18	1	6.7	 1A	7.3	1.	16.9	18	79.3		2.8	118	0.344		0.010	 1	9.5	<u> 1</u>	8.4		32.7
Lancinga, Stream	HOTEL LINCRA	12212016	j 1B	j 1A	6.7	j IX	7.5	j IN	17.3	I IA	86.0	118	3.1	i 18	0.476	11	0.010	1	5.7	11	5.0	IN.	19.9
Landria Stream	LANDRA	R21A011	j IV	j 1A	7.0	, v	7.5	j 1A	16.2	11	84.4	Л	2.1	, IV	0.198	אני	0.010	1	4.7	, IV	7.0	1A	19.2
CHAN ELINY SURFAM	TREACOPE	 R21A015	2	I IA	6.8	1	7.6	 1A	16.9	LA	85.2	17	2.6	2	0.706	<u>, 17</u>	0.010	<u> </u>	5.9	 1A	6.0	1	23.3
PENDERTH STREAM	BUTIONS	 R2224010	3	AL	6.9	 1A	7.7	<u>مد</u>	16.9	<u> </u>	20.2	1	2.9	118	0.514	1	0.010	<u> </u>	6.1	1	7.0	<u> </u>	54.0
PINERCH SCREW	THEIN	P2224011	j 3	j DA	6.9	j 1A	7.7	j 1A	16.4	118	69.8	j 3	9.5	j 2	1.159	j 1A	0.010	j IA	4.7	j 1A	12.8	11	24.1
PENERIH STREAM	FENERCH ERIDCE	182254009	113	j 1∧.	7.0	j 1A	7.7	I IA	17.4	Į IX	81.0	11	3.0	118	0.340	1Y	0.010	7	6.4	1 IN	15.0	, YY	13.0
TRECASENL STREAM	BOSTRAZE	F222012	2	<u> 1</u>	5.5	1 14	6.9	[16.0	 2	56.2	2	6.1	2	1.076	<u>.</u>	0.010	<u> </u>	8.9		10.0		38.0

NREICHAL RIVERS AUHORITY - SOUTH WEST REGION 1990 RIVER WRIER QUALITY CLASSIFICATION CALCULATED DETERMINAND STRUCTURES USED FOR QUALITY ASSESSMENT CRICHMENT: LANDS END STRUCTURE (23)

River	Reach upstreem of	User	90			Calcul	ated Det	erminer	d Statis	tics us	ed for Q	ality.	Accession	nt.									
ĺ		Ref.	NAC	1				1				I		I				1		1		1	
ĺ	i i	Nurber	Class	ट्रांग	Lower	PH	upper	Temp	erature) (%)	BOD	(ATU)	Total	Amunia	Union.	Ameria	S.S	olids	Total	Cupper	Tota	al Zinc
İ	i	1		Class	5kile	Class	95kile	Class	95kile	Class	5kile	Class	95kile	Class	95kile	Class	95kile	dass	Mean	Class	s 95kile	Class	s 95kile
Ì		1				1						I		1		1				1		1	
1												I		1		1		1		1		1 *	
1			}					1		<u> </u>		l		<u> </u>						<u> </u>			
THEGREENL STREAM	TRECASEAL BRIDE	R22A006	2	1A	5.9	1A	7.4	14	17.0	1	82.1	2	5.4	2	1.161	I IA	0.010	1 JA	11.3	2	40.0	18	35.0
TREGASEAL STREAM	FRIDE TO SEA	F22A007	IB	1A	6.1	1A	7.3	I IA	16.8	1B	72.3	17	2.9	1A.	0.288	I IV	0.010	1 X	ш.з	1A	12.0	1 1	64.0
		1						[]				L						L					
ZENNOR SURFAM	ZENNOR	F22A008	3	1A	5.8	14	7.5	1A	15.0	118	60.2	2	8.7	3	2.532	11	0.010	٦٨.	4.6	<u>1</u>	11.0	1A	29.0
										I				۱		ł –						1	

Appendix 10.8

NYTHINGL RIVERS ALTHERTLY — SOLIDA WEST REGION 1990 RIVER WRIER GENLETY CLASSIFICATION RIMBER OF SIMPLES (N) AND RIMBER OF SIMPLES INCIDENTI GENLETY STREDARD (F) CRICHMENT: LIKES END STREMME (23)

River	Baach upstreem of	Uber Ber.	FH L		<u>द्रमा</u> र	tter.	Temper			(\$)	800	(700)	1 Total J	menia	Union.	Amonia	5.90	Lids	Total	Copper"	Total	Zinc
		Natar	Ħ	7	 21	7	IN IN	7	N	7	1	P		r	រា	P	ង	۲	N	r	व	F
				-	i –	-	i Ö		1	-	1		i		i		i		i		i	
					i I		Ì		i I				i I		l l		ĺ		 		 •	,
FORTHLEVEN STEREPH		 [R21x013]	22	_	22	-	22		22		1 22	_	22		22		22		22	21	22	21
PORTHLEVEN STREPH	A394 BODGE, LETTLEFEDROR	[R21A009]	23	-	j 23	-	į 23	-	23	-	1 23	-	1 23	-	23	- 1	23	-	12	10	12	12
PORTHEREN STREM	Design and the	121012	21	-	j 21.	-	1 21	-	21	-	21	-	1 21	-	21	-	21	-	21	6	21	19
FORTHLEMEN STERIOM	LESDERN OF HIGHLER, REPUBLICATI	1721.0010	24	-	j 24	-	24	-	24	-	24	-	į 24.	-	23	-	24	3	1 21	6	21.	21,
HERIZICH RIVER	PRICIZIER	12212028	22	-	22	-	22	-	1 22	-	22	-	22	-	20	-	22	-	22	-	22	-
MNAZION RIVER	KELELIREZHI MELL	F21.4001	23	-	23	-	23	-	23	-	1 23	-	23	-	22	-	23	-	23	1	23	-
MARKELON RIVER	THURSDELL MILL BRIDDE	R21 X002 	29	-	29	-	29	-	29	2	29	2	29	1	27	-	29	1	24	-	21	-
TREALLIONE STREAM	GINTER	[RZ11026]	21	-	2	-	1 21	-	21	6	<u> </u>	-	21	_	19	-	21	3	20	-	20	17
THEMASILOR STREAM	INCHOUGA	F21.022	23	-	23	-	23	-	23		23	-	23		23	- 75	23		22		22	1
TREAMLOR STREAM	(a. 30 Bridge at Chiandour I	8230008	28	-	28	-	28	-	28	-	28	1	28	-	26	-	28	1	1 25		1 25	-
ROSENCERON STREEM	ISIBAL COLDER	RZINOZI	21	-	21	-	20	-	20	-	i 21-	1	21	1) <u>18</u>	-	21	-	21	-	21	-
CHANDLE HOOK	DENCOR	1211023	21	-	21	-	20	-	20	-	i 2	-	21	4	20	-	21	-	21	-	21	-
CHIZNDOUR EROCK	A.30 BRIDGE AT CHANNELLR	jR211006 j	29	-	29	-	28	-	28	-	29	-	29	-	27	-	29	-	24		24	-
LARIER RIVER	MEST LODGE	P211024	22	_	22	-	22	-	22	-	22	1	22	1	22	-	22	-	22	-	22	-
LARDIGAN REVER	MERERAL ZOMA ERCITAR	[X21x007]	28	-	28	1	28	-	28	1	28	1	28	1	28	τ.	28 	1	1 25	-	25 	-
NEMLEN REVER		121,003	34	_	34		34	-	34	-	34	_	34	-	29	-	34	1	25	-	25	_
RENERN BILVER	icropt research	haman l	12	-	12	-	1 12	1	12	-	1 12	-	1 12	1	1 12	-	12	1	1 12	-	112	-
NEMCEN RIVER	BLROS BRIDE	R21A004	43	-	0	-	6	-	43	-	43	-	1 43	-	41	-	43	-	35	-	35	-
REMCEN EXVER	Somere Hohen	(F21)027	16	-	1 16	-	15	-	15	-	15	-	1 16		13	-	16	-	15	1	15	-
NEMEZIN REVER	PREMIARY BRIDGE		44	-	44	-	42	-	42	-	44 	1	44	-	41	-	44	2	36	2	36	-
TREASURE STREAM	DESELS PLACE	[<u>61041291</u>]		-	34	-	34	-	34	-	<u>)</u> 34	-	34	2	34	-	34	2	34	-	31	_
INDELLE SDRIM	PRICE 20 NEWLEN RIVER	R21A020	34	-	j 34	-	34	-	34	-	34	-	34	-	28		34	4	34 	-	K	-
SPACED BROOK	LITTLE SELLAN BRIDE	R21A017	20	•	20	-	20	•	20	1	20	•	20	1	20	-	20	-	19	-	19	-
LINCERA STREAM	TREACOPE	1221025	22	-	22		22	-	22	1	22	-	22	1	22	-	22	1	22	-	22	-
LANCERA, SUBREAM	HOUSE, LINCERA	barrarel	21	-	21	-	21	-	21	-	1 21	1	21	1	21	-	21	-	21	-	21.	-
LINCRIA SCHEDM	LINCER	RZ14011	27	-	27	-	1 27	-	27	-	27	-	27	-	25	-	27	-	27	-	27	-
CHEN ELINY STREAM	TRENCOPE	1 B211015	22	-	22	-	22	-	22	_	22		22	1	22	-	22	-	22	-	22	-
HARDON STREAM			22		22	-	22	-	22	1	22	-	22	-	1 21	-	22	1	22	-	22	
ENERGEI SONZAM	22222	JR222011	22	-	22	-	22	-	22	-	21	1	22	1	22	-	22	-	22	-	22	-
PRESIDE SURPRE	PENERSKI PECILCA;	822740 09	20	-	20	-	20	-	19	-	20	-	20	-	20	-	20	-	1 19	-	19	-
DREASENL STREAM	BOSTRAZE	R2220012	40	-	40		40	-	40	14	40	4	40	12	<u> </u>		40	2			K	

NATIONAL EIVERS AURORITY - SOUCH WEST REFEON 1990 RIVER WEER GENLITY CLASSIFICATION NUMBER OF SAMPLES (N) AND NUMER OF SAMPLES ENCEDERS GENLITY SOMEWAD (F) CRECHMENT: LANDS END SUMERAS (23)

River	Reach upstreem of	User	pH L	Charles	pH U	ffber	Tempera		CO	(\$)	BOD (A	IU)	Total A	• 111	Union.	Amonda	S.So	lids	Total (orther.	Total	Stric
		Bef.		_		11			!	-		_		_	_	-		_	!	_	1	
		Mather	R	F		F		r		r	61	F		r		F	i R	F		F		r i
											t C		1		ľ		1		1		1	ļ
		1 1							1		i		1						i			i
		i i			i		i		i		i		i		j		i i		i		i	i
TREGASEAL STREAM	THEREN, BRIDE	(RZZA006)	20	-	20	-	20	-	20	-	20	2	20	2	20	-	20	- 1	19	1	19	- 1
TREASENL STREAM	HEIGH TO SEA	\$ 222007	24	-	24	-	24	-	24	3	24	-	24	-	24	- (24	1	14	-	14	-
ł		<u> </u>		1	L		<u> </u>		L		<u> </u>				L		L		L	_	L	!
ZEARCH STREAM	ZENCR		21	-	21	-	21	-	1 21	4	21	2	21	7	20	-	21	-	17	-	17	- 1
l	1		_				L		L											_		

.

RATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION PERCENTINGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT: LANDS END STREAMS (23)

River	Reach upstream of	User		PERCENTAGE	EXCEEDENCE OF	STATISTIC	PROM QUALIT	Y STANDARD				
		Ref. Sumber	pH Lower	 pHUpper 	Temperature	DO (%)	BOD (ATU)	Total Asmonia	Un-ionised Ammonia 		Total Copper 	Total Sinc
		-					 		 		 235	466
PORTHLEVEN STREAM	PENBRO	R21A013		-	-	_	-	_			185	400
PORTHLEVEN STREAM	A394 BRIDGE, LITTLEANTRON	R21A009	19 9 1	-	-	-		-	-		56	265
PORTHLEVEN STREAM PORTHLEVEN STREAM	METHLEIGH UPSTREAM OF BARBOUR, PORTHLEVEN	R21A012 R21A010	-	-		-	-	-	1.1	1 -	350	203
				. <u> </u>							!	<u>!</u>
MARAZION RIVER	KANCLEDRA	B21A028	-	! -	-	-	-	-	-	-	-	
MARAEION RIVER	CUCURRIAN MILL	R21A001	-	-	-	-	-	_	! -	-	65	-
MARAZION RIVER	TRUTHWELL MILL BRIDGE	R21A002	-	-	-	15	1 70	155	-	-	-	-
TREGILLIONE STREAM	GRALLOS	R21A026	-	-	-	79		-			i -	200
TREVAYLOR STREAM	TRITHOGGA	R21A022										¦
TREVATLOR STREAM	A.30 BRIDGE AT CHYANDOUR	B21A008	-	-	-	-	 ->	-	-	-	-	-
ROSEMORRAN STREAM	XEREGIE COTTAGE	B21A021		-	-		3	13	 -			-
CHYANDOUR BROOK	HEAMOOR	R21A023		¦			-	190				
CHYANDOUR BROOK	A.30 BRIDGE AT CHYANDOUR	R21A006	-	- - -	-	-		-	-	-	i –	-
LARIGGAN RIVER	WEST LODGE	8214024		-	ii		89	621			¦	-
LARIGGAN RIVER	INHERRY TOWN BRIDGE	821A007		2	-	1	27	467	-	-	-	-
NEWLYN RIVER	SKINGEL BRIDGE	B21003	-	i	-				ii	-		-
NEWLYK RIVER	DRIFT RESERVOIR	9211016	i -	i -	2	-	-	219	i –	-	i –	-
NEWLYN RIVER	BURYAS BRIDGE	R21A004	-	i -	-	-		-	i -	i -	i -	i -
NEWLYN RIVER	STABLE HOBBA	B21A027	-	i -	-	i -		-	i –		3650	i –
NEWLYN RIVER	NEWLYN BRIDGE	B21A005	-	-	-	-	0 - 0	-	-	-	60	-
TREBEIFE STREAM	DEENIS PLACE	B21A019		·				76				
TREREIPE STREM	PRIOR TO NEWLYN RIVER	R21A020	-	1.0	-	-	: - :	-	_			
SANCREED BROOK	LITTLE SELLAN BRIDGE	B21A017	-	-		6	-	84				-
LAMORNA STREAM	TRENCOTS	B21A025				1					<u> </u>	
LAMORRIA STREAM	HOTEL LANDRRA	R21A016	i -	i -	i - i	i –	2	54	i –	i –	-	i _
LAMORISA STREAM	LANORHA	B21A011	-	-	-	-		-	-	ne ⁿ	-	-
CARN EUNY STREAM	TREMOOPE	R21A015		-	-		-	128				-
PENBERTH STREAM	BOTTONS	B22A010				66					<u> </u>	
PENBERTH STREAM	TREEN	R22A011	i -	i -		-	89	66		-		
PENBERTH STREAM	PENBERTH BRIDGE	B22A009	-	-	-	-	-	-	-	-	· -	-
		<u> </u>		!	<u> </u>	l <u></u>	I		l	I	l	l
TREGASEAL STREAM	BOSTRAZE	R22A012	-	I –	-	30	102	247	1 -	-	-	-

NATIONAL RIVERS ANTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT: LANDS END STREAMS (23)

River	Reach upstream of	User		PERCENTAGE	EXCEEDENCE OF	STATISTIC	FROM QUALIT	Y STANDARD				I
1	1	Rof.		1	1		1 1			i 1		1
1		Number	pH Lower	pH Upper	Temperature	DO (%)	BOD (ATU)	Total	Un-ionised		Total	Total
1	1	1		1	1		I I	Ammonia	Ammonia	Solida	Copper	Linc
1	1			1	1 1		1 1				l	
1	!	ł l			ļ							-
TREGASEAL STREAM		R22A006		-		-	80	275	-	-	82	- 1
TREGASEAL STREAM	PRIOR TO SEA	B22N007	-	-		10		-	-	-		- 1
t	I	اا					<u> </u>					
LENDOR STREAM	ZERROR	R22A006	-	-	1 - 1	25	186	717		- 1	-	- 1
l	l	اــــــا		ļ	اا		ll		ll	lI	I	ł

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION IDENTIFICATION OF POSSIBLE CAUSES OF NON-COMPLIANCE WITH BOO CATCHMENT: LANDS END STREAMS (23)

.........

* = WORK ALREADY IN HAND

1990 Map	River	Reach upstream of	User	Reach	Possible causes of non-compliance
Position	i i i i i i i i i i i i i i i i i i i	i -	Reference	Length	i -
Runber		i	Rumber	(km)	l
	Ì	j	i i		Ì
		i	i i		Í
		i	i i		
	l	i	i i		L
1	PORTHLEVEN STREAM	PERBRO	R21A013	1.5	MINING, CATCHMENT GEOLOGY
2	PORTHLEVEN STREAM	A394 BRIDGE, LITTLEANTRON	R21A009	0.6	MERTERG
3	PORTHLEVEN STREAM	METHLEIGH	R21A012	1.0	MENTERG
4	PORTHLEVEN STREAM	UPSTREAM OF HARBOUR, FORTHLEVE	R21A010	0.7	HENENG
6	NARAZION RIVER	CUCURRIAN HILL	R21A001	1.3	XUNING
- 1	MARAZION RIVER	TRUTHMELL MILL BRIDGE	j R21A002 j	3.6	CARALISATION, EUTROPHICATION, LAND RUN-OFF, FARMING ACTIVITIES
			i i		i i i i i i i i i i i i i i i i i i i
8	TREGILLIONE STREAM	GRALLON	R21A026	2.3	DROUGHT, MINING
11	ROSENORRAH STREAM	KENEGIE COTTAGE	R21A021	3.8	LAND RUN-OFF, WASTE DISPOSAL SITE, FARMING ACTIVITIES
11	BUSERUBERNI STREAM		R2120021 	3.0	I I I I I I I I I I I I I I I I I I I
12	CHYANDOUR BROOK	EEANDOR	B21A023	3.3	LAND RUN-OFF, CHIP SHOP
			<u> </u>		
	LARIGGAN RIVER	WEST LODGE	B21A024		LAND RUN-OFF, FARMING ACTIVITIES, POLLUTION (OS-GOING)
15	LARIGGAN RIVER	NEERRY TONN BRIDGE	R21A007	2.8	LAND RUN-OFF, UNKNOWS POINT SOURCE, URBANISATION
17	NEWLYN RIVER	DRIFT RESERVOIR	R21A018	1.3	BLUE-GREEN ALGAE, EUTROPHICATION, DROUGHT
20	NEWLYN RIVER	EEWLYN BRIDGE	R21A005	1.0	INDUSTRIAL ESTATE
21	TREREIPE STREAM	DERNIS PLACE	R21A019	0.5	LAND RUN-OFF, FARMING ACTIVITIES, FERTILISER RUN-OFF
	1		1		
23	SANCREED BROOK	LITTLE SELLAN BRIDGE	R21A017	3.2	LAND RUN-OFF, FARMING ACTIVITIES, SEMAGE TREATMENT WORKS
24	LAMORINA STREAM	* TREMOOFE			LAND RUN-OFF, FARMING ACTIVITIES
	LANDRIA STREAM	* Hotel Langeria	B21A025		LAND RUN-OFF, FARMING ACTIVITIES
47	CARLIEUR SIBLEAR		1	1.0	
27	CARN EURY STREAM	TREMOOPE	821A015	6.4	LAND RUR-OFF, FARMING ACTIVITIES, POLUTION (ON-GOING)
28	PENBERTH STREAM	BOTTONS	R22A010	3.4	DROUGHT
	PERBERTH STREAM	TREEN	R22A011		LAND RUN-OPP, PARNING ACTIVITIES
31	TREGASEAL STREAM				
		BOSTRALE	R22A012		LAND RUN-OFF
	TREGASEAL STREAM	TREGASEAL BRIDGE	R22A006		URBANISATION, CANALISATION, LAND RUN-OFF, CATCHMENT GEOLOGY
33	TREGASEAL STREAM	PRIOR TO SEA	R22A007	1.9	LAND RUN-OPT
34	ZENNOR STREAM	ZENNOR	R22A008	1.9	CANALISATION, URBANISATION, LAND RUN-OFF, SPATE
	1		i	i - · -	

.