Environmental Protection Report

Red River Catchment River Water Quality Classification 1991

> April 1992 WQP/92/0027 Author: B L Milford Water Quality Planner

C V M Davies Environmental Protection Manager

ACKNOWLEDGEMENTS

The Water Quality Planner acknowledges the substantial contributions made by the following staff:

R Broome - Co-ordinator and Editor Freshwater Planning - Production of Maps C McCarthy - Administration and report compilation A Gurney - Statistical Schedule production

Thanks are extended to A. Burghes of Moonsoft, Exeter for computer support.

Suggestions for improvements that could be incorporated in the production of the next Classification report would be welcomed.

Further enquiries regarding the content of these reports should be addressed to:

Freshwater Officer, National Rivers Authority, Manley House, Kestrel Way, EXETER, Devon EX2 7LQ

RIVER WATER QUALITY IN THE RED RIVER CATCHMENT

LIST OF CONTENIS

			190
1	Introdu	ction	1
2	River R	ed River Catchment	1
3	Nationa	1 Water Council's River Classification System	2
4	1991 Ri	ver Water Quality Classification	3
5	Non-com	pliance with Quality Objectives	4
6	Glossar	y of Terms	5
7	Referen	ces	5
8	Appendi	Ces:	
	8.1	River Quality Objectives including Monitoring points - map format	
	8.2	Basic Determinand Analytical Suite	
	8.3	National Water Council (NWC) River Classification System	
	8.4	NWC Criteria for Non-Metallic Determinands - Regional Variation	
	8.4.1	NWC Criteria for Metallic Determinands - Regional Variation	
	8.5	1991 River Water Quality Classification - tabular format	
	8.6	1991 River Water Quality Classification - map format	
	8.7	Calculated Determinand Statistics used for Quality Assessment - tabular format	
	8.8	Compliant/Non-Compliant River Reaches - map format	
	8.9	Number of Samples Results exceeding quality standards - tabular format	
	8,10	Percentage Exceedance of Determinand Statistics from Quality Standard - tabular format	

1

Page No.

Red River, Portreath, Bolingey & Perranporth Catchment

1. INTRODUCTION

Monitoring to assess the quality of river waters is undertaken in thirty-four catchments within the region. As part of this monitoring programme samples are collected routinely from selected monitoring points at a pre-determined frequency per year, usually twelve spaced at monthly intervals. Each monitoring point provides data for the water quality of a river reach (in kilometres) upstream of the monitoring point.

Each water sample collected from each monitoring point is analysed for a range of chemical and physical constituents or properties known as determinands. The analytical results for each sample are entered into a computer database called the Water Quality Archive.

Selected data are accessed from the Archive so that the quality of each river reach can be determined based on a River Classification System developed by the National Water Council (NWC), (7.1).

This report presents the river water quality classification for 1991 for monitored river reaches in the River Red River catchment.

2. RED RIVER, PORTREATH, BOLINGEY AND PERRANPORTH CATCHMENT

The Red River flows over a distance of 13.1 km from its source to the tidal limit, (Appendix 8.1). Water quality was monitored at five locations on the main river. Four of these sites were sampled at approximately monthly intervals and the site at Gwithian Towans, which is a National Water Quality monitoring site, was sampled fortnightly.

The Portreath Stream and the St. Agnes Stream flow over a distance of 8.4 km and 2.2 km respectively from their source to the tidal limit, (Appendix 8.1) and were each monitored at one site at approximately monthly intervals.

The Porthtowan Stream flows over a distance of 4.1 km from its source to the tidal limit, (Appendix 8.1) and was monitored at two sites at approximately monthly intervals.

Perranporth Stream flows over a distance of 7.5 km from its source to the tidal limit, (Appendix 8.1) and was monitored at three sites at approximately monthly intervals.

The Trevellas Stream and Porth Joke Stream flow over a distance of 4.6 km and 5.3 km respectively from their source to the tidal limits, (Appendix 8.1) and were both monitored at one site at approximately monthly intervals.

Bolingey Stream flows over a distance of 8.3 km from its source to the tidal limit, (Appendix 8.1) and was monitored at two sites at approximately monthly intervals.

The Holywell Stream flows over a distance of 9.2 km from its source to the tidal limit, (Appendix 8.1) and was monitored at two locations at approximately monthly intervals.

Throughout the Red River, Portreath, Bolingey and Perranporth catchment two secondary tributaries and two tertiary tributaries of the Red River, one secondary tributary of the Portreath Stream and one secondary tributary of the Porthtowan Stream were monitored. In addition Cargenwen No. 1 Reservoir was monitored at one site at approximately monthly intervals.

2.1 SECONDARY TRIBUTARIES

The Roseworthy Stream flows over a distance of 9.2 km from its source to the confluence with the Red River, (Appendix 8.1) and was monitored at three locations at approximately monthly intervals.

The Tehidy Stream flows over a distance of 7.1 km from its source to the confluence with the Red River, (Appendix 8.1) and was monitored at three locations at approximately monthly intervals.

The Redruth Stream flows over a distance of 5.5 km from its source to the confluence with the Portreath Stream, (Appendix 8.1) and was monitored at one site at approximately monthly intervals.

The Menagissey Stream flows over a distance of 2.3 km from its source to the confluence with Porthtowan Stream, (Appendix 8.1) and was monitored at one site at approximately monthly intervals.

2.2 TERTIARY TRIBUTARIES

The Praze River and Reen Stream flow over a distance of 6.7 km and 4.2 km respectively from their source to the confluence with the Roseworthy Stream, (Appendix 8.1). The Praze River was monitored at two locations, at approximately monthly intervals. Reen Stream was monitored at one site located in the lower reaches at approximately monthly intervals.

Each sample was analysed for a minimum number of determinands (Appendix 8.2) plus additional determinands based on local knowledge of the catchment. In addition, at selected sites, certain metal analyses were carried out.

The analytical results from all of these samples have been entered into the Water Quality Archive and can be accessed through the Water Resources Act Register, (7.2).

3. NATIONAL WATER COUNCIL'S RIVER CLASSIFICATION SYSTEM

3.1 River Quality Objectives

In 1978 River Quality Objectives (RQOs) were assigned to all river lengths that were part of the routine monitoring network and to those additional watercourses, which were not part of the routine network, but which received discharges of effluents. For the majority of watercourses long term objectives were identified based on existing and assumed adequate quality for the long term protection of the watercourse. In a few instances short term objectives were identified but no timetable for the achievement of the associated long term objective was set.

The RQOs currently in use in the River Red River catchment are identified in Appendix 8.1.

3.2 River Quality Classification

River water quality is classified using the National Water Council's (NWC) River Classification System (see Appendix 8.3), which identifies river water quality as being one of five quality classes as shown in Table 1 below:

Table 1 - National Water Council - River Classification System

Class	Description
1A	Good quality
1B	Lesser good quality
2	Fair quality
3	Poor quality
4	Bad quality

Using the NWC system, the classification of river water quality is based on the values of certain determinands as arithmetic means or as 95 percentiles (5 percentiles are used for pH and dissolved oxygen) as indicated in Appendices 8.4 and 8.4.1.

The quality classification system incorporates some of the European Inland Fisheries Advisory Commission (EIFAC) criteria (Appendix 8.3) recommended for use by the NWC system.

4. 1991 RIVER WATER QUALITY CLASSIFICATION

Analytical data collected from monitoring during 1989, 1990 and 1991 were processed through a computerised river water quality classification programme. This resulted in a quality class being assigned to each monitored river reach as indicated in Appendix 8.5.

The quality class for 1991 can be compared against the appropriate River Quality Objective and previous annual quality classes (1985-1990) also based on three years combined data, for each river reach in Appendix 8.5.

The river water classification system used to classify each river length is identical to the system used both in 1985 and 1990 for the Department of the Environment's Quinquennial River Quality Surveys. The determinand classification criteria used to determine the annual quality classes in 1985, subsequent years and for 1991 are indicated in Appendices 8.4 and 8.4.1.

=

The river quality classes for 1991 of monitored river reaches in the catchment are shown in map form in Appendix 8.6.

The calculated determinand statistics for pH, temperature, dissolved oxygen, biochemical oxygen demand (BOD), total ammonia, un-ionised ammonia, suspended solids, copper and zinc from which the quality class was determined for each river reach, are indicated in Appendix 8.7.

5. NON-COMPLIANCE WITH QUALITY OBJECTIVES

Those monitored river reaches within the catchment, which do not comply with their assigned (RQO), are shown in map form in Appendix 8.8.

Appendix 8.9 indicates the number of samples analysed for each determinand over the period 1989 to 1991 and the number of sample results per determinand, which exceed the determinand quality standard.

For those non-compliant river reaches in the catchment, the extent of exceedance of the calculated determinand statistic with the relevant quality standard (represented as a percentage), is indicated in Appendix 8.10.

6.

GLOSSARY OF TERMS

RIVER REACH

RIVER LENGTH

RIVER QUALITY OBJECTIVE

95 percentiles

5 percentiles

BIOLOGICAL OXYGEN DEMAND (5 day carbonaceous ATU)

рН

UN-IONISED AMMONIA

SUSPENDED SOLIDS

USER REFERENCE NUMBER

INFERRED STRETCH

A segment of water, upstream from sampling point to the next sampling point.

River distance in kilometres.

That NWC class, which protects the most sensitive use of the water.

Maximum limits, which must be met for at least 95% of the time.

Minimum limits, which must be met for at least 95% of the time.

A standard test measuring the microbial uptake of oxygen - an estimate of organic pollution.

A scale of acid to alkali.

Fraction of ammonia poisonous to fish, NH³.

Solids removed by filtration or centrifuge under specific conditions.

Reference number allocated to a sampling point.

Segment of water, which is not monitored and whose water quality classification is assigned from the monitored reach upstream.

7. REFERENCES

Reference

- 7.1 National Water Council (1977). River Water Quality: The Next Stage. Review of Discharge Consent Conditions. London.
- 7.2 Water Resources Act 1991 Section 190.
- 7.3 Alabaster J. S. and Lloyd R. Water Quality Criteria for Freshwater Fish, 2nd edition, 1982. Butterworths.

Appendix 8.1

BASIC DETERMINAND ANALYTICAL SUITE FOR ALL CLASSIFIED RIVER SITES

pH as pH Units Conductivity at 20 C as uS/cm Water temperature (Cel) Oxygen dissolved % saturation Oxygen dissolved as mg/1 O Biochemical oxygen demand (5 day total ATU) as mg/1 O Total organic carbon as mg/1 C Nitrogen ammoniacal as mg/l N Ammonia un-ionised as mq/1 N Nitrate as mq/1 N Nitrite as mg/l N Suspended solids at 105 C as mg/1 Total hardness as mg/l CaCO3 Chloride as mg/l Cl Orthophosphate (total) as mg/1 P Silicate reactive dissolved as mg/1 SiO2 Sulphate (dissolved) as mg/1 SO4 Sodium (total) as mg/l Na Potassium (total) as mg/1 K Magnesium (total) as mg/l Mg Calcium (total) as mg/l Ca Alkalinity as pH 4.5 as mg/l CaCO3

APPENDIX 8.3

NWC RIVER QUALITY CLASSIFICATION SYSTEM

River Class		Quality criteria		Remarks	Current	; potential uses
		Class limiting criteria (95 percentile	e)			
1A Good Quality	(i) (ii) (iii) (iv) (v)	Dissolved oxygen saturation greater than 80% Biochemical oxygen demand not greater than 3 mg/l Ammonia not greater than 0.4 mg/l Where the water is abstracted for drinking water, it complies with requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii)	Average BOD probably not greater than 1.5 mg/l Visible evidence of pollution should be absent	(i) (ii) (iii)	Water of high quality suitable for potable supply abstractions and for all abstractions Game or other high class fisherias High amenity value
1B Good Quality	(i) (ii) (iii) (iv) (v)	DO greater than 60% saturation BOD not greater than 5 mg/l Ammonia not greater than 0.9 mg/l Where water is abstracted for drinking water, it complies with the requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii) (iii) (iv)	Average BOD probably not greater than 2 mg/l Average ammonia probably not greater than 0.5 mg/l Visible evidence of pollution should be absent Waters of high quality which cannot be placed in Class 1A because of the high proportion of high quality effluent present or because of the effect of physical factors such as canalisation, low gradient or eutrophication Class 1A and Class 1B together are essentially the Class 1 of th River Pollution Survey (RPS)	16	Water of less high quality than Class 1A but usable for substantially the same purposes
2 Fair Quality	(i) (ii) (iii) (iv)	DO greater than 40% saturation BOD not greater than 9 mg/l Where water is mbstracted for drinking water it complies with the requirements for A3* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) {ii) (iii)	Average BOD probably not greater than 5 mg/l Similar to Class 2 of RPS Water not showing physical signs of pollution other than humic colouration and a little foaming below weirs	(i) {ii) (iii)	Waters suitable for potable supply after advanced treatment Supporting reasonably good coarse fisheries Moderate amenity value

l Boor	(1)	DC creater than 10% returntion	Finilar to flace 1 of 800	Wettern which and polluted as
luality	(ii) (iii) (iii)	Not likely to be anaerobic BOD not greater than 13 mg/l. This may not apply if there is a	31 11167 (U (1658 3 VI RF J	an extent that fish are absent only sporadically present. Nay be used for low grade
		high degree of re-aeration		industrial abstraction purposes. Considerable potential for further use if cleaned up
4 Bad Quality		Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times	Similar to Class 4 of RPS	Waters which are grossly polluted and are likely to cause nuisance
		DO greater than 10% saturation		Insignificant watercourses and ditches not usable, where the objective is simply to prevent nuisance developing
otes (a)	Under decay stated	extreme weather conditions (eg flood, drou , rivers usually in Class 1, 2, and 3 may h d levels for those Classes. When this occu	ight, freeze-up), or when dominated by ave BODs and dissolved oxygen levels, a ars the cause should be stated along wi	plant growth, or by aquatic plant

- (b) The BOD determinations refer to 5 day carbonaceous BOD (ATU). Ammonia figures are expressed as NH4. **
- (c) In most instances the chemical classification given above will be suitable. However, the basis of the classification is restricted to a finite number of chemical determinands and there may be a few cases where the presence of a chemical substance other than those used in the classification markedly reduces the quality of the water. In such cases, the quality classification of the water should be down-graded on the basis of biota actually present, and the reasons stated.
 (d) EIFAC (European Inland Fisheries Advisory Commission) limits should be expressed as 95 percentile limits.

EEC category A2 and A3 requirements are those specified in the EEC Council directive of 16 June 1975 concerning the Quality of Surface Water intended for Abstraction of Drinking Water in the Wember State.

Ammonia Conversion Factors

(mg NH+/1 to mg N/1)

Class 1A 0.4 mg NH4/l = 0.31 mg N/l Class 1B . 0.9 mg NH4/l = 0.70 mg N/l 0.5 mg NH4/l = 0.39 mg N/l

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR NON-METALLIC DETERMINANDS

River Quality Criteria Class

1A

Dissolved oxygen % saturation greater than 80% BOD (ATU) not greater than 3 mg/l O Total ammonia not greater than 0.31 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l

1B Dissolved oxygen % saturation greater than 60% BOD (ATU) not greater than 5 mg/l O Total ammonia not greater than 0.70 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l

- 2 Dissolved oxygen & saturation greater than 40% BOD (ATU) not greater than 9 mg/1 O Total ammonia not greater than 1.56 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 28 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
- 3 Dissolved oxygen % saturation greater than 10% BOD (ATU) not greater than 17 mg/l O
- 4 Dissolved oxygen % saturation not greater than 10% BOD (ATU) greater than 17 mg/l 0

STATISTICS USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION

Determinand

Dissolved oxygen BOD (ATU) Total ammonia Non-ionised ammonia Temperature pH 5 percentile 95 percentile 95 percentile 95 percentile 95 percentile 95 percentile 95 percentile arithmetic mean

Statistic

Suspended solids

5

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR METALLIC DETERMINANDS

SOLUBLE COPPER

Total Hardness (mean) mg/l CaCO3	Statistic	Soluble Copper* ug/l Cu Class l Class 2	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Total copper is used for classification until sufficient data on soluble copper can be obtained.

TOTAL ZINC

Total Hardness (mean) mg/l CaCO3	Statistic	Total Zinc ug/l Zn										
2		Class 1	Class 2	Class 3								
0 - 10	95 percentile	< = 30	< = 300	> 300								
10 - 50	95 percentile	< = 200	< = 700	> 700								
50 - 100	95 percentile	< = 300	< = 1000	> 1000								
100 - 300	95 percentile	< = 500	< = 2000	> 2000								

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION CATCHMENT: RED

1991 Maj	PRiver	Reach upstream of	User	National	Reach	Distance	River	85	86	87	88	89	90	91
Position	n (1	Reference	Grid	Length	from	Quality	NHC	NHC	THAC	I INC	I NWC	NHC	I EMC
Rumber			Number	Reference	(km)	Source	Objective	Class	Class	Class	Class	Class	Class	Class
ť.	1	1	1	1	1	(km)	l I	1	1	1	1	I 1	1	} I
	1		1	1	1	1	I	l	ł		ļ		1	
ļ			ł	ļ	ļ	1	!	ļ	ļ	ļ	ļ	ļ		ļļ
! <u> </u>	IDED DITIED	ADOUTE ODEA THE LODKE	P233001	1 194 6690 3930	1 <u></u>					\ <u> </u>	<u> </u>	_ 		
	INCO NIVER	ADOVE DALLA TIN MORES	1 0233002	154 6613 4000	1 1 0	1 2 0	1 1							
		ADOVE SOUTH CROTTE FINE	1 0230002	10W 0013 4090	1 1 7									
	KED KIVER	KUSCRUGGAN BRIDGE	R23A003	15W 0302 4201	1 1.7	1 3.0								
	RED RIVER	KIEVE BRIDGE	1 R23A005	15W 6293 4230	1 6 3	1 17 1								! : !
>	RED RIVER	IGWITHLAN TOWANS	KZJAUVO	SW 5825 4222	1 2.4	1 13.1	1 3	•	1 9		4		3	
6	ROSEWORTHY STREAM	BOTETOE BRIDGE	R23A038	SW 6413 3774	3.0	3.0	1B	- IA	2	2	2		2	<u></u> i
1 7	ROSEWORTHY STREAM	PENPONDS	R23A008	JSW 6302 3908	1.8	4.8	18	18	2	2	2	j 2 j	2	j 2 j
i 8	ROSEWORTHY STREAM	NANCEMELLIN	R23A009	SW 6062 4107	3.8	8.6	18	1B	2	2	2	i 2 i	18	i 2 i
İ	ROSEWORTHY STREAM	RED R. CONFLUENCE (INFERRED STRETCH)	į	Į	0.6	9.2	1 1 8	18	2	2	2	2	18	2
	PRAZE RIVER	INFLOW, CARGENNYN RES. (UNMON, STRETCH)	·}	·¦	0.4	0.4	18	18					- 	[
i a	IDDATE DIVED	CADGENNER NO 1 DESEDUCTD	1 8211050	ISW 6508 3521	0.1	0.7	1 18	1 18					18	191
10	IDDATE BINED	DDA7F	1 9233045	1SW 6400 3563	1 1 3	2 0	1 18	1 18					2	2
10	IDDATE DIVED		1 9238037	15W 6330 3810	1.8	I SA	ta ta	1 18					18	
	DDATE DIVED	DOCEMONING CODENN COMPT. (THE CODENCE)	1 11221027	000000000000000000000000000000000000000	1 0 9	67	1 18	1 19				: i	18	
	I TRACE REVER	ROSEWORTHI STREAM CONFL. (IMF. STREICH)	1	1]	1 0.7				1.1.2		i i		
12	REEN STREAM	RAMSGATE	R23A007	SW 6416 3849	3.4	3.4	18	2	2	2	2	i <u>2</u> i	2	2
	REEN STREAM	ROSEWORTHY STREAM CORPL. (INF. STRETCH)	Ì	Í.	0.8	4.2	18	2	2	2	2	2	2	2
13	TEHIDY STREAM	TOLVADOON BRIDGE	R23A042	SW 6637 4217	2.6	2.6	1B	19	19	18	-14		-3-	- <u>-</u>
1 14	TEHIDY STREAM	IOLD MERROSE	I R23A041	SW 6510 4327	1.8	j 4.6	j 1A	18	19	18	1.	i in i	18	i 18 j
15	TEHIDY STREAM	COOTIBE	R23A017	ISW 6299 4240	i 2.4	i 7.0	i 1 a :	i 18	18	i 18 i	IA I	1 1 1	1.4	1 1 1
	TEHIDY STREAM	RED R. CONFLUENCE (INFERRED STRETCH)	1	i	0.1	1 7.1	1.	1 B	1.8	1B	1.	i mi	14	14
					<u> </u> _	<u> </u>	!						<u> </u>	
16	PORTREATH STREAM	BRIDGE BELOW CAMBROSE	RZJAULS	SW 6739 4485	0.2	6.2							4	
	PORTREATH STREAM	(MEAN HIGH WATER (INFERRED STRETCH)			2.2	1 8.4	3		3		4		4	4
17	REDRUTH STREAM	NORTH COUNTRY BRIDGE	R23A014	SW 6896 4386	3.1	3.1	1B	-3	3	2	2	- 	3	-2-1
	REDRUTH STREAM	PORTREATH STREAM CONFL. (INF. STRETCH)	ļ.		2.4	5.5	1B	3	3	2	2	3	3	2
18	PORTHTOMAN STREAM	MOINT HAWKE	R23A043	SW 7142 4795	0.8	0.8	18	-3-	- 3 -				-18	-18
19	PORTHTOMAN STREAM	PORTHTOWAN BRIDGE	8234013	ISW 6950 4747	2.6	3.4	18	3	3		i i		3	3 1
	PORTHTOWAN STREAM	NORMAL TIDAL LIMIT (INFERRED STRETCH)	1	1	0.7	4.1	18	3	3	i i		. 4	3	3
	MERACICCEV CODEAN	INSUGTOESY BRIDES	P234053	1 Sk 7101 4636						!	!]	<u> </u>	<u> </u>
40	INTRACTORY CTORAS	DODTUTIONAL CTORAM (THEFT. (THE CEDETICA)	1	101 101 1010	1 1 3	1 2 3	1 10 1 10						2	
		PORTITIONAL STREAM CORED. (INF. STRETCH)	1	i	1.5	2.3			2.00				, , , , , , , , , , , , , , , , , , ,	1
21	ST AGNES STREAM	PRIOR TO CULVERT ST AGNES	R23A016	SW 7217 5138	2.0	2.0	18	18	18	i i i i i i i i i i i i i i i i i i i	i	TA		-
	ST AGNES STREAM	MEAN HIGH WATER (INPERRED STRETCH)	!		0.2	2.2	IB	18	1B		İ	иj	- 4 - j	4
77	TREVELLAS STREAM	ABOVE TREVAINANCE COVE	P212051	SW 7280 5172	4.3						;	¦	- ,	
•••	TREVELLAS STREAM	MEAN HIGH WATER (INFERRED STRETCH)	1		0.3	4.6	ta i	3				- i	2	2 1
			i	ii		· ···						i		
23	PERRANPORTH STREAM	SILVERWELL	R23A046	SW 7473 4775	0.3	0.3	I IA	18	2	2	21	3 (N	3

Appendix 8.5

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION CATCHMENT: RED

1991 Map	River	Reach upstream of	User	National
Position		i -	Reference	Grid
Number	k	ĺ	Number	Reference
1				
24	PERRANPORTH STREAM	MITHIAN	R23A047	SW 7467 5060
25	PERRANPORTH STREAM	(PLEASURE GARDENS PERRANPORTH NORMAL TIDAL LIMIT (INFERRED STRETCH)	R23A012	SW 7560 5407
26	BOLINGEY STREAM	PERRANWELL	R23A048	SW 7685 5286
27	BOLINGEY STREAM	PONSMERE BRIDGE	R23A011	SW 7602 5443
1	BOLINGET STREAM	NORMAL TIDAL LIMIT (INFERRED STRETCH)	l I	
28	HOLYWELL STREAM	TRELASKE	R23A049	SW 7893 5681
29	HOLYWELL STREAM	HOLYMELL BAY BRIDGE	R23A010	SW 7673 5885
Ì	HOLYWELL STREAM	NORMAL TIDAL LIMIT (INPERRED STRETCH)		
30	PORTH JOKE STREAM	PRIOR TO BEACH	R23A061	SW 7736 6028
ļ.	PORTH JOKE STREAM	NORMAL TIDAL LIMIT (INFERRED STRETCH)		j ! I
1	F			·

Reach	Distance	River	85	86	67	88	89	90	91
Length	from	Quality	NHC	INC	INC	INHC	NHC	INC	INC
()kun)	source	Objective	Class	Class	Class	Class	Class	Class	Class
	(km)	i		i I	İ	İ	Ì	İ	i i
	j	j		i	i	ì	i	i	i
	Í	i i			i	i	i	i	i
		i i		· ·	İ	İ.	İ	İ.	i
3.1	3.4	1.1.1.	18	2	2	2	3	1 3	1 3
3.8	7.2	1 1 1	18	2	2	j2.	3	13	3
0.3	7.5	1 1 A	19 -	2	j 2	j 2 '	3	j 3	3
		1		i	İ	İ '	Í	İ	i
6.0	6.0	1.	1	2	i	ì	2	2	2
1.9	7.9	1 1 1	2	12	i	Ì	2	2	2
0.4	j 8.3	1 1 1	2	12	i i	Ì	2	2	2
	i	İ				İ	İ	İ	İ I
5.5	5.5	1A	18	1	1B	18	2	18	19
3.4	8.9	1 14	1B	j LA	18	1 B	2	1B	1B
0.3	9.2	ג ו	1B	1 1 1	18	18	2	1B	19
	İ	j	i i						Í
5.1	5.1	19	18	i T				18	18
0.2	5.3	1 B	18		i	i ·		18	j 1B
	ł	i		i i		i	İ	İ	İ
		•		·	·	·		·	·

 $|\psi_{i}|$

Appendix 8.5

.

.

Appendix 8.6

NACHANI, RIVER AUFORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION CALCULATED DETERMINAND STRUISTICS USED FOR QUALITY ASSESSMENT CARCIMENT: RED

•

_ _ _ _ _

1

River	Reach upstream of	Üser	RD	1		Calcul	ated Data	າວໜ້າສາ	d Statis	tics us	ed for Q	uality .	1 6916910	rit.									
Ì		Ref.	1	1		1		ł		I		ŧ		1		· · ·				!			
ĺ		Nutber	:	j gH∶	Смес	pH !	Upper	Тепр	ana crista	100	(\$)	i BOD	(UDA)	Intal	Associa	Union.	, Jesonia	S-3	olida	Total	Copper	Tota	al Zinc
i	i	Í	1	Class	ملناد	Class	95tile	Class	95 %10	(Class	Skile	Class	95 tile	Class	95 tile	Class	s 95%ile :	Class	Manna	Cases	: 95%ile	Class	s 9541e
i		Ì	1			1		1		1		1		1		I		ł		1			
l I	Ì		1	1		1		1		1		1		1		1		l		ļ			
t	<u> </u>	_!	<u> </u>	<u> </u>		<u> </u>		<u> </u>		<u> </u>		<u> </u>		!		<u> </u>		<u></u>		<u> </u>	44 - 7		
FRED REVER	ABOVE HERA TIN WORKS	R23A001	2	1A	5.8	I IA	7.5	AL I	17.1	1 18	77.3	IA	3.0	I IA	0.135		0.010	I IA	5.2	1 2	41.3		19.5
HED RIVER	ABOVE SOUTH CROPTY MINE	[R23A002	2] 3	אנן	6.6	I IV	7.6	אנן	19.0	I IA	61.2	I IA	2.1	I IV	0.090	I IV	0.010	, N	4.6	1 2	162.2	, W	112.4
FED RIVER	ROSCROGON ERODICE	RZ3A003)[]	אנן	6.5	3	9.1	אנן	21.0	I IV	82.5	2	7.0	2	1.010	3	0.031	3	46.9	1 2	1527.0	3	11194.5
RED RIVER	KIEVE BRIDGE	(R23N00	5 3	I IV	6.9	AL	7.6	אנן	18.7	18	77.3	I IX	2.1	18	0.554	1	Q.010	11	17.3	2	311.1	3	3387.5
RED RIVER	GNITHIAN TOWNS	R23A006	5] 3	A	6.7	1	7.9) 1A	17.7	1A	81.0	1X	2.3	1	0.270	1 17	0.010	18	23.0	1 2	131.2	3	Z258.0
i	1	1	1			<u> </u>		l		<u> </u>		<u> </u>		<u> </u>		I				<u> </u>			
ROSENCRUHY SUREAM	BOILER BRIDGE	F23A03	B IB	14	6.5	14	7.5	<u> 1</u> A	16.3	1 2	59.5	1	1.9	1 1	0.042	אנן	0.010	14	3.8	2	99.0	2	348.0
ROSENCRUHY SUBERM	PENFONES	R23A008	Ц 1 В	1A	6.7	1A	7.8	אנן	16.9	1B	77.5	1A	2.2	1 14	0.195	11	0.010	1 A	9.7	2	101.7	1A	209.5
ROSENCRUHY SUREAM	NEWSTER	F23A009) 1B	1.	6.8	1A	7.8	1A	16.4	18	74.8	I	1.9	11	0.132	1A	0.010	14	9.7	1A	48.3	2	1012.5
i	i		i –	Ì		İ.		i i		İ.		1		I		۱				L			
PRAZE RIVER	ONCENSEN NO.1 RESERVCER	17234050		LA I	6.8	AL (8.6	1.	20.6	18	72.4	1 14	2.8	1 12	0.211	1 1	0.010	1	3.1	<u> </u>	21.5	1 A	142.8
FRAZE RIVER	PRAZE	R23404	5 19	į 1Λ	6.3	j IA	7.4	<u>j</u> 1A	15.8	18	68.3	2	5.2	118	0.363	1A	0.010	J	7.6	1 14	18.8	A L	48.0
IPRAZE RIVER	BARGPER	R23A037	τĺ1∎.	1 14	6.5	j IA	7.4	Í 1A	16.7	118	73.0	j IA	2.8	118	0.384	j IA	0.010	1A	5.1	2	40.5	1 A	146.3
1		i	i	i		i		i		i		i		i		İ		ĺ		Í.	_	l	
REEN STREPH	RAMEGROE	R23A00	71 18	<u>i I</u>	6.4	<u> </u>	7.6	1	16.0	i lb	76.2	14	2.2	11	0.078	AL 1	0.010	AI I	2.3	12	80.7	18	207.2
1	1	1	i –	i		i		i		Ì.		i		i		i		ĺ		Ì			
TEHLER STREAM	TULVALLIN BRIDE	R23A04	ZÍ 1B	AL I	7.0	1 IA	7.7	1	17.3	18	78.6	<u> </u>	10.6	18	0.413	1 1	0.010	14	10.7	<u> </u> 2	51.0	14	93.0
TITHILK SURAM	ICLD MERROSE	R23A043	LÍ IA.	ί 1A	6.9	Í 1A	7.5	11	17.4	118	74.3	i IA	2.6	j IA	0.053	j 1A	0.010	1.	8.1	j 1A	49.0	1A	150.0
TENILY STREAM	COME:	IR23A011	n n	i 1A	7.3	i 1A	7.9	i 1A	16.8	Í 1A	63.3	1 IA	2.0	i 1A	0.153	j 1A	0.010	A	4.5	j 1A	32.7	14	ଶ୍ୱ : ଶ
i		1	1	1		i		i		i –		i i		i		i		i		i			
PORDEZOH SUREAM	BRIDE BLOW CAMEROSE	IR23401	5 3	1	7.0	<u>i 1a</u>	7.7	1	15.3	i la	61.3		3.1	ή IA	0.254	Ì IA	0.010	- IA	9.5	<u>1</u>	328.8		674.0
i		i	i	i		i		i		i		i		i		i		i		İ			
REDEWIK STREAM	INCRUH COUNTRY BRIDLE	R23A014	i 10	<u> 1</u>	6.6	<u> 1</u>	7.5	1	14.2	118	78.6	<u>î 2</u>	5.7	<u>A Î</u>	0.108	<u> 1</u>	0.010	14	7.5	2	300.2	7	832.0
1		i i	i	1		i		i		i		i		i		i				i		ĺ	
BORTHTONNI STORENH	MOLINE HEWE	R23404	<u>10</u>	1	7.0	i la	7.8	1 IA	15.6	Í IA	85.0	1.0	3.4	118	0.430	1 14	0.010	14	12.0	Ì IA	30.0		374.0
DORTHICHEN STREAM	PORTHONIN HOLDE	IR23A01	118	14	5.9	i 1a	7.3	1 14	16.0	i 3	34.7	2	8.4	13	3.348	i 1A	0.010	1.	7.4	i 2	678.0	j 3	3372.0
1	1	i	1	1		i —		1		i -		1 -		i Č		4		i i		i		i	ĺ
MENAGESSEX STREAM	INNELISEY BUILTE	IR23405	21 18	1.	6.5	i ja	7.7		15.9	1 2	56.6		2.9	<u>j 18</u>	0.616	<u>i</u> 1A	0.010	i IA	6.5	2	562.0	3	2600.0
			1			i		i —		i		i		i		i		i		i		İ	ĺ
ST ACNES STREAM	FREER TO CLEMENT ST ACRES	R234016	51 18	14	7.1	<u>i la</u>	8.3	1	16.1		82.5	<u>i 4</u>	24.3	i 1	0.885	1	0.013	IA I	16.2	1 14	51.2	A	258.4
1		i	i	i		í		i		i		i		i		i		i		i			Ì
TREVELLAS SUREAM	ABOVE TREVALAPANCE COME	R23A05	18	11	7.0	1 14	7.9	14	16.1	18	77.3	1	2.2	<u>1 14</u>	0.133	<u>i</u> 1a	0.010	Î î a	3.5	Î Z	42.6	2	756.0
i i i i i i i i i i i i i i i i i i i		i	1	-		i		ì		ł		i		1		i		í		i -			
FERRINIPCION STREAM	SILVEWELL	R2304	A I	1 IA	6.5	<u>i ia</u>	1.7	14	14.0	12	51.0	<u>i 3</u>	15.0	Ì IA	0.220	1	0.010	i 3	39.3	1	90.0	1A	100.0
PERFORMEDRICH STORENM	INCIDENT	IR238047	ni IN	1 18	6.7	í la	7.8	1 1	15.4	i 1Ā	80.4	1 18	4.8	i 10	0.537	1 14	0.010	i 1Ă	6.6	i 2	218.5	3	2490.0
PERMINECTURE SURFAM	PLEASURE GRADENS PERMANACION	T23A012	21 IA	11	7.2	i 3	9.5	Í 1A	16.9	118	76.3	i 1B	4.7	1 14	0.258	1 14	0.020	A	15.0	i 1A	41.7	2	591.4
1		i	1	1		i				1		i —		1		1						_	
BOLINEY STREPH	PERMITL	1823404	1 IA	14	6.7	<u>1 18</u>	7.5	1 14	15.1	2	52.3	18	3.3	2	1.305		0.010		14.6	1 13	45.3	2	1560.0
IRCLINEY STREAM	BUNNERS BRIDER	18232011	1 1	I IA	7.0	1 12	7.6	1 1A	15.5	1 2	42.7	i 18	3.6	1 2	0.717	1 14	0.010	18	12.2	1 14	21.9	2	1126.0
		1	1	ι <u>-</u>	•••	í	•••	i		ί -		i —		1 -		; —		; <u> </u>		i			
HET MARTE, STREAM	30PA 1971	122304	01 1A	1	7.3		79	1.	15.1	18	78 Å	1 IB	41	1 18	0.580	1 18	0.010	1	15.7	1 IA	68.6	18	476.0
HEIMELL STREM	HEISWEIL BAY FRITTE	10726010	1 1	11	7.4	114	8.0	1	14.6	1 18	74.7	i jn	3.7	i IA	0,152	1 14	0.010	14	13.1	1 1	11.7	14	36.5
1		1	1	-		i -		i		1		; —		i		; <u> </u>				; <u> </u>			
IKONTH JOKE STREAM		IRZUOKI	1 18	i ta	7.9		8.5	1	15.4	1 18	61.0	1	24	1 14	0.290	1	0 010	18	70		-	-	
	1	1			•••	1			9.9.U		.v.		6.4	1	0.250		0.410		1.0	! -	12.5		
·			<u> </u>	·		·				·				<u> </u>						L			

Appendix 8.7

:

.....

Appendix 8.8

NACIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION NUMER OF SAMPLES (N) AND RUMER OF SAMPLES DECERCING QUALITY SUMDAND (F) CATCHENT: RED

River	Reach upstreem of	User: Ref.	pH L	DHBC	pH U	ffer	Temper			(%)	iedo (J	CU)	fiotal A 		(Union. (Amonia)	\$.So	Lids	Total	C T T T	Total	
 		Rusbec 	R	r	Π	r	171 	r	FT 	r	N	÷.	0 	r		r	N	r		r	CI	
 }	 								 				 		 				1		- 14	!
RED RIVER	ABOVE BREATIN WORKS	R234001	36	-	24 36	-	1 7	-	1 35	_	- X	_	8	_	2	-	35	- 2	1 35	-	35	
IND RIVER	ABOVE SOUTH CHOPIE PLANE	122220021	25	_	ענין אנין	_		-	1 20	-	i x	-	i x	_	2		36	-	36	-	36	- i
INED REVER		107320051	30		1 36 1 36	-	1 36		1 24	_	36	-	i 36	-	34	1.4	36	-	36	-	36	- i
INED REVER	KIEVE CRIECE	107330061	6		50		Â	-	6	-	68	1	ี่ ดิ	-	10	-	69	-	ี ส	-	67	- 1
I I I I I I I I I I I I I I I I I I I							<u> </u>						<u> </u>					-	<u>i</u>			
ROSENCREDAY STREAM	BOILETOE BRIDDE	R23A038	35	-	35	-	К	-	34	1	35	-	35	-	1 32	- !	35	-	35	3	35	3
ROSENCREAT STREAM	PENCINES	R234008	37	- 1	37	-	37	-	37	-	37	-	37	-	1 37	-	37	2	36	7	35	
ROSENCRIHY STREAM	(NANCE MELLEDA	F23A009	34		34 	-	Э 	-	34	-	34	-	34	-	34	-	34	3	34	-	34	- 1
FRAZE RIVER	CHCENNEN NO.1 HESEROLR	1723-050	ъ	-	25	-	25	-	25	-	25		2	-	23	-	Z	-	24	1	ĸ	i
PRAZE RIVER	HAZE	(R23x045)	48	-+	48	-	48	-	48	-	45	2	40		47	- 1	48	2			20	
FRAZE RIVER	BARIPER	[R23A037]	31	-	31	-		-	1 11	-	1 21	-	। य	-	и я. 1	-	34		24		-	-
REEN STREAM	RAMEGROE	[R234007]	28	-	23		28		28	-	28	-	j 28 I		<u>ি</u> য়া	-	28		28	13	28	-
TENUE STREAM	TOD/ADDN BRIDGE	17234042	54	-	54	~	SI SI	-	54	-	54	10	54	2	49	-	54	8	36	4	36	
TEHLOX STREAM	JOLD MERCIE	R23x041	54	-	54	-	54	-	54	4	54	-	54	-	45	-	54	6	5.	-	30	
TEHEDY SURFAM	CODINEE	[R230017]	34	-	34	-	ј 34 I	-	34	-	34	-	34	-	(30 	•	34	I	1 32	-	2	-
PORTREADH STREAM	BUDE BION ONBOE	1723-0015	35	-	35	-	34	-	34	-	35	-	35	9	1 32		B	-	35	-	35	-
REDRUTH STREAM	NORTH COUNTRY BRODON	[R234014]	35	-	35	•	35	-	¦	-	<u> </u> 	1	<u>i 35</u>	-	1 32	-	35	2	35	35	35	
FORCHECKINN STREAM	MUNT HINE	1234043	51	-	<u> 11</u>	-	69	-	49	-	51	1	51	-	46	-	51	3	30	-	28	
FORDHICKEN STREAM	PORTONIN BRIDE	17234013	33	-	133	-	33	-	133	4	33	1	1 3	7	j 32	÷.	30	2	1 32	30	n	26
MENRGISSEY STREAM	MENAGISSEN BRIDGE	R234052	51	_	<u> </u>		50	-	50	2	51	1	51	-	6	-	51	1	29	2	77	<u> </u>
		IR2360163	- 34			_		-		-	34	4	34	1	33		- 34 -	5	1 32	-	31	-
					<u></u>		<u> </u>		<u> </u>		<u> </u>				<u>i</u>							
TREVELLAS STREAM	LABOVE TREVALINANCE COVE	R234051 	53	-	53 	-	53 	-	1 23	-	50	-	5	•	49 	•	53	-	15	1	33	
PERMANERIA SIDRAM	SILVEWELL	R23A046	15	-	15	~	<u>म</u>	-	<u> </u>	3	15	1	15	-	<u> </u>	-	L L	2	14	1	U T	-
PERRANECRUS SURVAM	MITHURN	RZ3A047	33	-	22	-	I B	-	1 23	1	<u></u>	1		1	1 3	- 1	1	-	1 1	*	- -	
FERRINGREAL STREAM	HELASLIFE GARCENS SERVINGEREE	[RZ3A012]	35	1. T	1 35	6	34	-	1 34	2	3 5.		1 35	1		•	æ	•		-	–	- -
BULINEY STREAM	IFISONELL.	17234048	34		34	_	31	-	ÌЖ	10	34	2	<u>і ж</u>	10	<u>і </u> Э	+	34	3	34	-	IJ	- 2
BLINEY STRAM	FORMERE IRCLOR	RZ3011	32	-	32	-	1 22	-	1 32	ប	32	2	1 32	5	1 22	-	32	3	32	-	31	- 30 j
ILLINELL STREAM	TRALARE	RZ32049	31	-	31	-	1 31		<u>n</u>	- <u>i</u>	<u> </u>	3	<u>1</u>	1	<u> 1</u>		n	4	28		27	
HOLYWELL STREAM	HELIMELL BAY BRIDE	R23x010	32	-	32	-	32	-	32	6	32	1	(32 	-	22	-	32	3	30	-	29	-
HARRIE SHOE HERE	IRIGR TO BEACH	- 7234061	18	•	10	-	18	-	i 18 1	-	1 <u>10</u>	-	<u> 19</u> 	-	15	-	18	2	0	•	0	

Appendix 8.9

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT: RED .

River	Reach upstream of	User	1	PERCENTAGE	EXCEEDENCE OF	STATISTIC	PROM QUALIT	TY STANDARD				
]		Ref.	İ	1	j	1	† 1		1	1	I	I
i		Runber	pH Lower	pH Upper	Temperature	00 (%)	BOD (ATU)	Total	(Un-ionised	Suspended	Total	Total
;	j	i	İ	1	i i		1 1	Amonia	Amonia	Solids	Copper	Linc
i i i i i i i i i i i i i i i i i i i	i	i	i	Ì	1 1		1 1		1	1		1
i		i	i	i	1	•	t i	1	Ì	Ì	1	1
i	i	_!	t	1	II	·	tl		!			
RED RIVER	ABOVE BREA TIN WORKS	R23A001	} -	1 -	-	-	-		-	-	-	! -
RED RIVER	Above South Cropty Mine	R23A002	I –	-	-	-	-	• •	! -	-	-	! -
RED RIVER	ROSCROGGAN BRIDGE	R23A003	- 1	- 1	-	-	-	-	- 1	-	-	! -
RED RIVER	KIEVE BRIDGE	R23A005	- 1	1 -	-	-	- (-	-	-	-
RED RIVER	gwithian tomans	R23A006		-	-		-	-	-			
DOCEMONIAL CODEAM		12234038	·		·{							15
DOSENDRING CODEN	I DEVIDONDE	12234008	_			1		-	1 - 1		154	
INCLOSED OR AN AND AND AND AND AND AND AND AND AND	PENFONDS	10232000	_	, – 1 –	12	1.0.0						103
I I I I I I I I I I I I I I I I I I I			-									
PRAZE RIVER	CARGENWEN NO.1 RESERVOIR	R23A050		i	'i			- <u></u>	i -	-	-	-
PRAZE RIVER	PRAZE	R23A045	-	- 1	- 1	-	3 1	-	1 -	- 1	- 1	
PRAZE RIVER	BARRIPPER	R23A037	-	-	-	-	- 1	1 C C C		- 1	1	-
		1			·							
REEN STREAM	RAMSGATE	18238007	-	-	-		-	-	-		102	, –
TEHIDY STREAM	TOLVADON BRIDGE	R23A042		i	i		<u> </u>				28	
TEHIDY STREAM	OLD MERROSE	R23A041	-	i –	i - i	7	- 1	-	-			
TEHIDY STREAM	COOMBE	R23A017	-	i –	i - i	-	- 1	-	- 1	i - i	-	. –
PORTREATH STREAM	BRIDGE BELOW CAMBROSE					-						
PERPITER CTREAM											[
	NORTH COUNTRY BRIDGE	1 1 1	_				- 1					• * * *
PORTHTOWAN STREAM	HOUNT HAWKE	R23A043			i — — i		-	_		-	-	
PORTHTOWAN STREAM	PORTHTOWAN BRIDGE	R23A013	- i	-	- 1	42	68	378	-		1595	1024
i	!	_ii			!!	!	!				i	
MENAGISSEY STREAM	MENAGISSEY BRIDGE	R23A052	-	-	-	6	-	-	-	-	1280	767
ST AGNES STREAM	PRIOR TO CULVERT ST AGNES	R23A016		-		-	385	26	-		-	
TREVET LAG CTOFAM	A DOUR TREVAINANCE COUR	-10232051			!!·						ł	
							1.0	_			· ;	
PERRANPORTH STREAM	SILVERWELL	R23A046		-		36	400			53	125	-
PERRANPORTH STREAM	MITHIAN	R23A047	- 1	- 1	- 1	- 1	59	73	-	- 1	446	730
PERRANPORTH STREAM	PLEASURE GARDENS PERRANPORTH	R23A012	-	6	-	5	56	· -	- 1	- !		18
BOLINGEY STREAM	PERRANWELL					<u> </u>					¦	
BOLINGEY STREAM	PONSMERE BRIDGE	R23A011	-	-	-	47	21	131	-	-	-	125
UNT VART COREAM		-				;¦			!	!		
HOLIWELL SIKLAN	LINELINGE LUCENNELL RAY RETROP	182320101	2				21	0/		_ !		
nouncle direm	Inchingen der Oktors		-			· · ·	4.7		_	-		-
PORTH JOKE STREAM	PRIOR TO BEACH	R23A061	-			-		i		i	-	-
		_!!								i		

.