Environmental Protection Report

River Fal Catchment River Water Quality Classification 1991

> April 1992 WQP/92/0022 Author: B L Milford Water Quality Planner

C V M Davies Environmental Protection Manager

ACKNOWLEDGEMENTS

The Water Quality Planner acknowledges the substantial contributions made by the following staff:

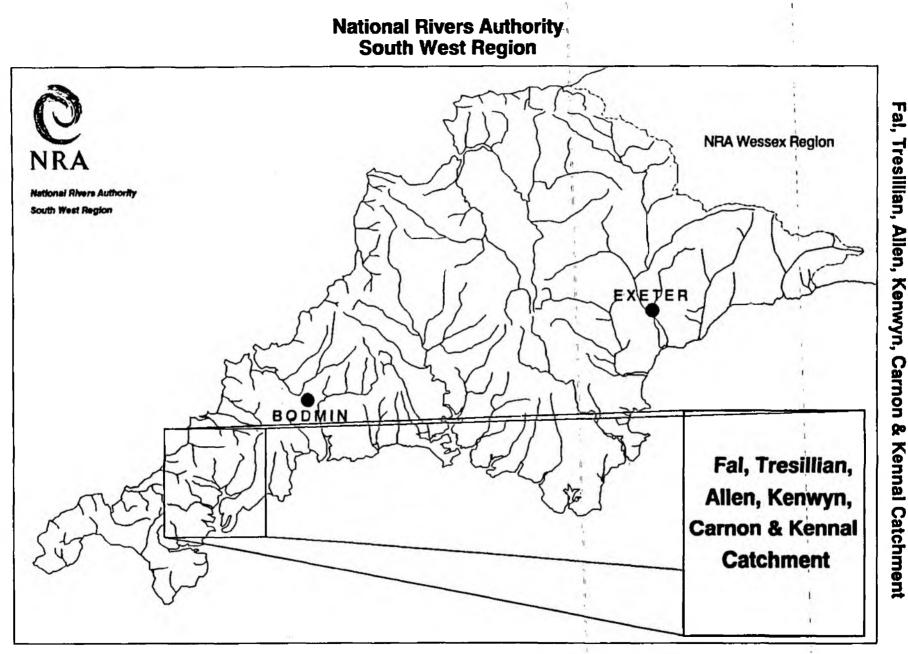
R Broome - Co-ordinator and Editor Freshwater Planning - Production of Maps C McCarthy - Administration and report compilation -A Gurney - Statistical Schedule production -----

Thanks are extended to A. Burghes of Moonsoft, Exeter for computer support.

Suggestions for improvements that could be incorporated in the production of -the next Classification report would be welcomed.

Further enquiries regarding the content of these reports should be addressed to:

Freshwater Officer, National Rivers Authority, Manley House, Kestrel Way, EXETER, Devon EX2 7LQ


RIVER WATER QUALITY IN THE RIVER PAL CATCHMENT

÷

LIST OF CONTENTS

			Page No									
1	Introdu	ction	1									
2	River F	al Catchment	1									
3	Nationa	l Water Council's River Classification System	3									
4	1991 Ri	ver Water Quality Classification	3									
5	Non-compliance with Quality Objectives											
6	Glossary of Terms											
7	Referen	ces	5									
8	Appendi	ces:										
	8.1	River Quality Objectives including Monitoring points - map format										
	8.2	Basic Determinand Analytical Suite										
	8.3	National Water Council (NWC) River Classification Syste	m									
	8.4	NWC Criteria for Non-Metallic Determinands - Regional Variation										
	8.4.1	NWC Criteria for Metallic Determinands - Regional Variation										
	8.5	1991 River Water Quality Classification - tabular format										
	8.6	1991 River Water Quality Classification - map format										
	8.7	Calculated Determinand Statistics used for Quality Assessment - tabular format										
	8.8	Compliant/Non-Compliant River Reaches - map format										
	8.9	Number of Samples Results exceeding quality standards - tabular format										
	8.10	Percentage Exceedance of Determinand Statistics from Quality Standard - tabular format										

.

1. INTRODUCTION

Monitoring to assess the quality of river waters is undertaken in thirty-four catchments within the region. As part of this monitoring programme samples are collected routinely from selected monitoring points at a pre-determined frequency per year, usually twelve spaced at monthly intervals. Each monitoring point provides data for the water quality of a river reach (in kilometres) upstream of the monitoring point.

Each water sample collected from each monitoring point is analysed for a range of chemical and physical constituents or properties known as determinands. The analytical results for each sample are entered into a computer database called the Water Quality Archive.

-- --

Selected data are accessed from the Archive so that the quality of each river reach can be determined based on a River Classification System developed by the National Water Council (NWC), (7.1).

This report presents the river water quality classification for 1991 for monitored river reaches in the River Fal catchment.

a contra la la la contra della

2. RIVER FAL CATCHMENT

The River Fal flows over a distance of 29 km from its source to the tidal limit, (Appendix 8.1). Water quality was monitored at seven locations on the main river at approximately monthly intervals.

The River Allen (9.6 km), River Kenwyn (7.5 km) and Calenick Stream (9.1 km) were all monitored at approximately monthly intervals at two sites between their source and the tidal limits, (Appendix 8.1).

The Percuil River (5.5 km), Trevella Stream (8 km), Penkevil Stream (5.6 km), Perranwell Stream (5.0 km), Penryn Stream (4.3 km) and Maenporth Stream (5.6 km) were all monitored at one site between their source and the tidal limits, (Appendix 8.1) at approximately monthly intervals.

Swanpool Stream flows over a distance of 3.2 km from its source to the tidal limit, (Appendix 8.1) and was monitored at one site at approximately monthly intervals.

Mylor Stream flows over a distance of 2.2 km from its source to the tidal limit, (Appendix 8.1) and was monitored at two locations at approximately monthly intervals.

The River Tresillian flows over a distance of 12.5 km from its source to the tidal limit, (Appendix 8.1) and was monitored at four locations at approximately monthly intervals.

The River Carnon flows over a distance of 9 km from its source to the tidal limit, (Appendix 8.1) and was monitored at six locations. Five sites were sampled at approximately monthly intervals and the site at Devoran Bridge, which is a National Water Quality monitoring point, was sampled fortnightly. In addition County Adit discharge was monitored at approximately monthly intervals.

The River Kennal flows over a distance of 12.1 km from its source to the tidal limit, (Appendix 8.1) and was monitored at three sites at approximately monthly intervals.

Throughout the Fal catchment three secondary tributaries of the River Fal, two secondary tributaries of the River Tresillian, one secondary tributary of the River Allen, three secondary tributaries of the River Carnon and one secondary tributary of the River Kennal were monitored. In addition Stithians Reservoir and College Reservoir were both monitored at one location at approximately monthly intervals.

2.1 SECONDARY TRIBUTARIES

The Trewithen Stream and Bodella Brook flow over a distance of 6.0 km and 1.4 km respectively from their source to the confluence with the River Fal, (Appendix 8.1) and were both monitored at one location at approximately monthly intervals. Monitoring points are located in the lower reaches.

The Gwindra Stream flows over a distance of 8.6 km from its source to the confluence with the River Fal, (Appendix 8.1) and was monitored at four locations at approximately monthly intervals.

Kestle Stream and Brighton Stream flow over a distance of 9.2 km and 6.8 km respectively from their source to the confluence with the River Tresillian, (Appendix 8.1) and were both monitored at one location at approximately monthly intervals.

Zelah Brook flows over a distance of 5.2 km from its source to the confluence with the River Allen, (Appendix 8.1) and was monitored at one location at approximately monthly intervals.

Baldhu Stream (1.6 km), Hick's Mill Stream (4.9 km) and St. Day Stream (3 km) were all monitored at one location between their source and confluence with the River Carnon, (Appendix 8.1) at approximately monthly intervals.

Stithians Stream flows over a distance of 5.6 km from its source to the confluence with the River Kennal, (Appendix 8.1) and was monitored at approximately monthly intervals.

Each sample was analysed for a minimum number of determinands (Appendix 8.2) plus additional determinands based on local knowledge of the catchment. In addition, at selected sites, certain metal analyses were carried out.

The analytical results from all of these samples have been entered into the Water Quality Archive and can be accessed through the Water Resources Act Register, (7.2).

3. NATIONAL WATER COUNCIL'S RIVER CLASSIFICATION SYSTEM

3.1 River Quality Objectives

In 1978 River Quality Objectives (RQOs) were assigned to all river lengths that were part of the routine monitoring network and to those additional watercourses, which were not part of the routine network, but which received discharges of effluents.

For the majority of watercourses long term objectives were identified based on existing and assumed adequate quality for the long term protection of the watercourse. In a few instances short term objectives were identified but no timetable for the achievement of the associated long term objective was set.

The ROOs currently in use in the River Fal catchment are identified in Appendix 8.1.

3.2 River Quality Classification

River water quality is classified using the National Water Council's (NWC) River Classification System (see Appendix 8.3), which identifies river water quality as being one of five quality classes as shown in Table 1 below:

Table 1 - National Water Council - River Classification System

Class	Description
1a	Good quality
1B	Lesser good quality
2	Fair quality
3	Poor quality
4	Bad quality

Using the NWC system, the classification of river water quality is based on the values of certain determinands as arithmetic means or as 95 percentiles (5 percentiles are used for pH and dissolved oxygen) as indicated in Appendices 8.4 and 8.4.1.

The quality classification system incorporates some of the European Inland Fisheries Advisory Commission (EIFAC) criteria (Appendix 8.3) recommended for use by the NWC system.

4. 1991 RIVER WATER QUALITY CLASSIFICATION

Analytical data collected from monitoring during 1989, 1990 and 1991 were processed through a computerised river water quality classification programme. This resulted in a quality class being assigned to each monitored river reach as indicated in Appendix 8.5.

The quality class for 1991 can be compared against the appropriate River Quality Objective and previous annual quality classes (1985-1990) also based on three years combined data, for each river reach in Appendix 8.5. The river water classification system used to classify each river length is identical to the system used both in 1985 and 1990 for the Department of the Environment's Quinquennial River Quality Surveys. The determinand classification criteria used to determine the annual quality classes in 1985, subsequent years and for 1991 are indicated in Appendices 8.4 and 8.4.1.

The river quality classes for 1991 of monitored river reaches in the catchment are shown in map form in Appendix 8.6.

The calculated determinand statistics for pH, temperature, dissolved oxygen, biochemical oxygen demand (BOD), total ammonia, un-ionised ammonia, suspended solids, copper and zinc from which the quality class was determined for each river reach, are indicated in Appendix 8.7.

5. NON-COMPLIANCE WITH QUALITY OBJECTIVES

Those monitored river reaches within the catchment, which do not comply with their assigned (RQO), are shown in map form in Appendix 8.8.

Appendix 8.9 indicates the number of samples analysed for each determinand over the period 1989 to 1991 and the number of sample results per determinand, which exceed the determinand quality standard.

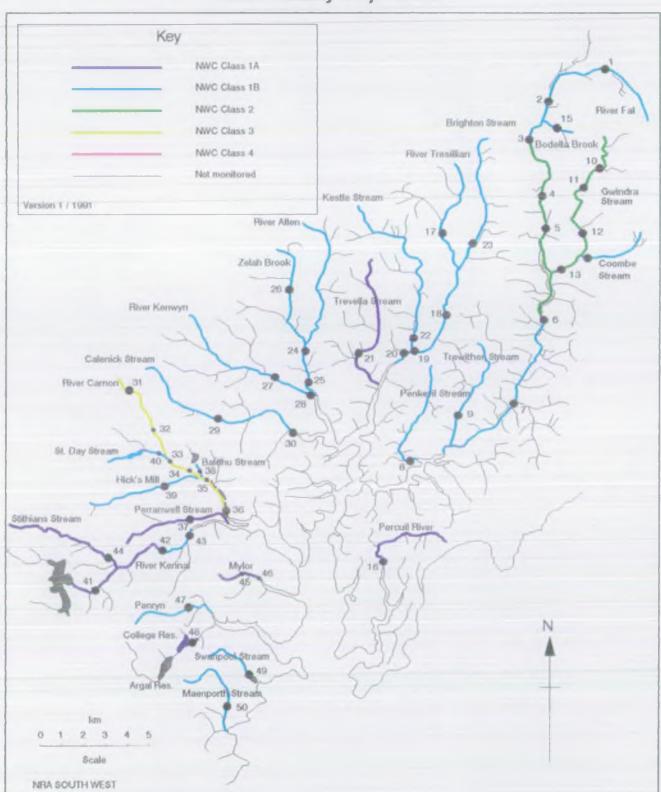
For those non-compliant river reaches in the catchment, the extent of exceedance of the calculated determinand statistic with the relevant quality standard (represented as a percentage), is indicated in Appendix 8.10.

GLOSSARY OF TERMS

RIVER REACH A segment of water, upstream from sampling point to the next sampling point. River distance in kilometres. RIVER LENGTH That NWC class, which protects the most RIVER QUALITY_OBJECTIVE --sensitive use of the water. 95 percentiles Maximum limits, which must be met for at least 95% of the time. Minimum limits, which must be met for at 5 percentiles least 95% of the time. BIOLOGICAL OXYGEN DEMAND A standard test measuring the microbial uptake of oxygen - an estimate of --(5 day carbonaceous ATU) organic pollution. A scale of acid to alkali. рĦ UN-IONISED AMMONIA Fraction of ammonia poisonous to fish, NH³. Solids removed by filtration or SUSPENDED SOLIDS centrifuge under specific conditions. Reference number allocated to a sampling USER REFERENCE NUMBER point.

> Segment of water, which is not monitored and whose water quality classification is assigned from the monitored reach upstream.

7. REFERENCES


Reference

INFERRED STRETCH

- 7.1 National Water Council (1977). River Water Quality: The Next Stage. Review of Discharge Consent Conditions. London.
- 7.2 Water Resources Act 1991 Section 190.
- 7.3 Alabaster J. S. and Lloyd R. Water Quality Criteria for Freshwater Fish, 2nd edition, 1982. Butterworths.

5

Appendix 8.1

Fal, Tresillian, Allen, Kenwyn, Carnon & Kennal Catchments River Quality Objectives

BASIC DETERMINAND ANALYTICAL SUITE FOR ALL CLASSIFIED RIVER SITES

pH as pH Units

Conductivity at 20 C as uS/cm

Water temperature (Cel)

Oxygen dissolved % saturation

Oxygen dissolved as mg/1 O

Biochemical oxygen demand (5 day total ATU) as mg/1 O

Total organic carbon as mg/1 C

Nitrogen ammoniacal as mg/1 N

Ammonia un-ionised as mg/l N

Nitrate as mg/l N

Nitrite as mg/l N

Suspended solids at 105 C as mg/1

Total hardness as mg/l CaCO3

Chloride as mg/1 Cl

Orthophosphate (total) as mg/l P

Silicate reactive dissolved as mg/1 SiO2

Sulphate (dissolved) as mg/l SO4

Sodium (total) as mg/l Na

Potassium (total) as mg/1 K

Magnesium (total) as mg/l Mg

Calcium (total) as mg/l Ca

Alkalinity as pH 4.5 as mg/l CaCO3

÷					÷	APPENDIX
		NAC BI	IVER QUALITY	CLASSIFICATION SYSTEM		
River Class		Quality criteria		Remarks	Curren	nt potential uses
		Class limiting criteria (95 percen	ntile)			8
TA Good Quality	(i) (ii) (iii) (iv) (v)	Dissolved oxygen saturation greater than 80% Biochemical oxygen demand not greater than 3 mg/l Ammonia not greater than 0.4 mg/l Where the water is abstracted for drinking water, it complies with requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(ii)	greater than 1.5 mg/l	(ii)	Water of high quality suitable for potable supply abstractions and for all abstractions Game or other high class fisheries High amenity value
tB Good Quality	(i) (ii) (iii) (iv) (v)	DO greater than 60% saturation BOD not greater than 5 mg/l Ammonia not greater than O.9 mg/l Where water is abstracted for drinking water, it complies with the requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii) (iii) (iv)	Average BOD probably not greater than 2 mg/l Average ammonia probably not greater than 0.5 mg/l Visible evidence of pollution should be absent Waters of high quality which cannot be placed in Class 1A because of the high proportion of high quality effluent present or because of the effect of physical factors such as canalisation, low gradient or eutrophication Class 1A and Class 1B together are essentially the Class 1 of th River Pollution Survey (RPS)		Water of less high quality than Class 1A but usable for substantially the same purposes
2 Fair Quality	(i) (ii) (iii) (iv)	DO greater than 40% saturation BOD not greater than 9 mg/1 Where water is abstracted for drinking water it complies with the requirements for A3* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii) (iii)		(i) (ii) (iii)	Waters suitable for potable supply after advanced treatment Supporting reasonably good coarse fisheries Moderate amenity value

.

B Poor	(i)	DO greater than 10% saturation	Similar to Class 3 of RPS	Waters which are polluted to
uality	(ii) (iii)	Not likely to be anaerobic BOD not greater than 17 mg/l. This may not apply if there is a high degree of re-aeration		an extent that fish are absent only sporadically present. Way be used for low grade industrial abstraction purposes. Considerable potential for further use if cleaned up
4 Bad Quality		Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times	Similar to Class 4 of RPS	Waters which are grossly polluted and are likely to cause nuisance
		DO greater than 10% saturation		Insignificant watercourses and ditches not usable, where the objective is simply to prevent nuisance developing
-				
lotes (a)	decay,	_rivers_usually in Class 1, 2, and 3 ma	drought, freeze-up), or when dominated by plant ay have BODs and dissolved oxygen levels, or and occurs the cause should be stated along with ana	nonia_content outside_the

- (b) The BOD determinations refer to 5 day carbonaceous BOD (ATU). Ammonia figures are expressed as NH4. **
- (c) In most instances the chemical classification given above will be suitable. However, the basis of the classification is restricted to a finite number of chemical determinands and there may be a few cases where the presence of a chemical substance other than those used in the classification markedly reduces the quality of the water. In such cases, the quality classification of the water should be down-graded on the basis of biota actually present, and the reasons stated.
 (d) EIFAC (European Inland Fisheries Advisory Commission) limits should be expressed as 95 percentila limits.

EEC category A2 and A3 requirements are those specified in the EEC Council directive of 16 June 1975 concerning the Quality of Surface Water intended for Abstraction of Drinking Water in the Member State.

Ammonia Conversion Factors

(mg $NH_4/1$ to mg N/1)

Class 1A 0.4 mg NH4/1 = 0.31 mg N/1 Class 1B 0.9 mg NH4/1 = 0.70 mg N/1 0.5 mg NH4/1 = 0.39 mg N/1

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR NON-METALLIC DETERMINANDS

River Quality Criteria Class

1A

3

Dissolved oxygen % saturation greater than 80% BOD (ATU) not greater than 3 mg/1 O Total ammonia not greater than 0.31 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1

1B Dissolved oxygen % saturation greater than 60% BOD (ATU) not greater than 5 mg/l O Total ammonia not greater than 0.70 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l

- Dissolved oxygen & saturation greater than 40% BOD (ATU) not greater than 9 mg/l O Total ammonia not greater than 1.56 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 28 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
 - Dissolved oxygen % saturation greater than 10% BOD (ATU) not greater than 17 mg/l O
 - Dissolved oxygen % saturation not greater than 10% BOD (ATU) greater than 17 mg/1 0

STATISTICS USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION

Determinand

Dissolved oxygen BOD (ATU) Total ammonia Non-ionised ammonia Temperature pH Statistic 5 percentile 95 percentile 95 percentile 95 percentile 95 percentile 5 percentile 95 percentile 95 percentile arithmetic mean

Suspended solids

.

NWC RIVER CLASSIFICATION SYSTEM

.

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR METALLIC DETERMINANDS

SOLUBLE COPPER

Total Hardness (mean) mg/l CaCO3	Statistic	Soluble Copper* ug/l Cu
		Class 1 Class 2
0 - 10	95 percentile	<= 5 > 5
10 - 50	95 percentile	<pre>< = 22 > 22</pre>
50 - 100	95 percentile	< = 40 > 40
100 - 300	95 percentile	<pre>< = 112 > 112</pre>

Total copper is used for classification until sufficient data on soluble copper can be obtained.

TOTAL ZINC

Total Hardness (mean) mg/l CaCO3	Statistic	Total Zinc ug/l Zn									
-		Class 1 Class 2 Class 3									
0 - 10	95 percentile	<pre>< = 30 < = 300 > 300</pre>									
10 - 50	95 percentile	<pre>< = 200 < = 700 > 700</pre>									
50 - 100	95 percentile	<pre>< = 300 < = 1000 > 1000</pre>									
100 - 300	95 percentile	<pre>< = 500 < = 2000 > 2000</pre>									

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION CATCHMENT: FAL

1991 Map	River	Reach upstream of	User	National
Position			Reference	• -
Rumber	,	i	Number	Reference
}	1		i	i
į	Í		1	!
!	j			1
<u> </u>	/ PAL	TREGOSS BRIDGE	R19C001	SW 9655 6013
-	FAL	GAVERIGAN BRIDGE	R19C002	SW 9373 5875
3	PAL	RETEW BRIDGE	R19C003	SW 9265 5696
4	FAL	KERNICK BRIDGE	•	SW 9325 5464
5	Pal	TERRAS BRIDGE		SW 9340 5361
	FAL	GRAMPOUND BRIDGE		SW 9336 4844
	FAL	TREGONEY GAUGING STATION	R19C006	SW 9205 4473
ł	FAL	(NORMAL TIDAL LIMIT (INFERRED STRETCH)		
	PENKEVIL STREAM	PARSON'S HILL WOOD	R198004	SW 8709 4185
, I	PENKEVIL STREAM	NORMAL TIDAL LIMIT (INFERRED STRETCH)		
	TREWITHEN STREAM	MELLINGOOSE	R19C016	SW 8955 4438
	TREWITHEN STREAM	(FAL CONFLUENCE (INPERRED STRETCH)	-	
10	GWINDRA STREAM	NANPEAN BRIDGE		SW 9632 5586
_	gwindra stream	GOONABARN		SW 9555 5491
	GWINDRA STREAM	GWINDRA BRIDGE		SW 9510 5290
	GWINDRA STREAM	TREWAY BRIDGE	R19C009	SW 9380 5065
	gwindra stream 	FAL CONPLUENCE (INFERRED STRETCH)		
14	COOMBE STREAM	COOMBE	R19C021	SW 9512 5167
	BODELLA BROOK	CARSELLA	R19C018	SW 9409 5765
	BODELLA BROOK	FAL CONFLUENCE (INFERRED STRETCH)	1	
	PERCUIL RIVER	TRETHEN MILL	R19A013	SW 8613 3638
	TRESILLIAN RIVER		 	SW 8868 5283
	TRESILLIAN RIVER	TRESONGAR BRIDGE		SW 8855 4810
	TRESILLIAN RIVER	TRESILLIAN PUMPING STATION		SW 8713 4706
1	TRESILLIAN RIVER	BELOW LADDOCK STN		SW 8710 4695
/	TRESILLIAN RIVER	NORMAL TIDAL LINIT (INFERRED STRETCH)		
	TREVELLA STREAM	TREGURRA BRIDGE	R19D014	SW 8483 4689
	TREVELLA STREAM	NORMAL TIDAL LIMIT (INFERRED STRETCH)	į į	
	KESTLE STREAM	CANDOR FORD	R19D008	SW 8737 4770
ļ	KESTLE STREAM	(TRESSILIAN R. CONFL. (INFERRED STRETCH)		
	BRIGHTON STREAM	NEW MILLS	,	SW 9001 5228
ļ	BRIGHTON STREAM	TRESSILIAN R. CONFL. (INFERRED STRETCH)	1 1	
	ALLEN	IDLESS BRIDGE		5W 8218 4701
25	ALLEN	MORESK LAUNDRY BRIDGE	R19D004	SW 8268 4505

	Distance	River	85	86	87	88	89	-90	91
Length	from	Quality	NHC	INC	NWC	NHC	NHC	INNC	INHC
(km)		Objective	Class	Class	Class	Class	Class	Class	CLASS
	(km)		1		ļ		[!	[[
	(ļ	ł –	ļ	ļ	}	ļ	
	1		ļ	ļ		!	1	1	
			<u> </u>	<u> </u>	<u> </u>				
3.3	3.3	1.8	18	(<u>ib</u>	19		10		3
4.2	7.5	1B	1B	2	2	1B	1B	18 3	18
2.3	9.8	1B	3	2	2	1B 3	18 3	3	1 3 1
3.0	12.8		3	2	1 2	3	13	13	
1.5		2	3		2	3	3	3	3
5.8 4.3	20.1	∡ 1B	13	1 4	12	13	13	1 3	
4.5	29.0	1B	13	1 2	1 2	13	13		
9.0	29.0	10		•					
5.2	5.2	<u> </u>	<u>1B</u>	¦	i	¦		2	- <u>18</u> -
0.4	5.6	18	1 1B		i –	í	í	iż	1B
							i .	1	i - i
4.1	4.1	18	18	;			·	2	i - J - i
1.9	6.0	18	1B	i	i	1	i	j 2	j 3 j
	İ	i I	i –	i	İ		i		
1.2	1.2	2	<u>3</u>	13	3	j <u>3</u>	3	2	18
1.4	2.6	2	j 3	3	j 3	j 3	j 3	j 3	j 3 j
2.8	5.4	2	j 3	3	3	j 3	3	3	3
3.1	8.5	2	j 3	2	3	3	3	3	3
0.1	8.6	2	3	2	3	3	3	3	131
3.2	3.2	<u> </u>	!					!	
3.2	3.4	TD TD			!		1		
0.7	0.7	18	3		¦	¦	¦	- 	
0.7	1.4	18	3		1	1	i	3	3
v.,				•	i	i	ì	-	i · i
5.5	5.5	1.	<u>1</u> B	18	i	i	1B	j <u></u>	i z j
			i	i '	i	i	i _	i	ii
4.0	4.0	18	1B	2	18	19	i 2	18	
5.6	9.6	18	2	12	2	2	2	18	1 1 1
2.1	11.7	j 1B	j 2	2	j 2	2	2	N	2
0.2	11.9	1B -	2	2	2	2	2	l II	131
0.6	12.5	18	2	2	2	2	2	I N	3
			! <u></u>	! <u> </u>		 	<u> </u>		
5.8	5.8	1	18		1B	1B 1B	12	18 18	
2.2	8.0	1λ	10	1	I TR	1 12	4		
6.5	8.5	<u> </u>	18	18	¦'	·	1B	2	
0.7	9.2	18	1B	18 18			1 1B	1 2	
v. /	1	40			i	i		i -	
5.5	5.5	18	18	2	2	2		18	18
1.3	6.8	18	1B	2	2	2	2	18	1B j
			i	i	i	i	j		
7.3	7.3	18	2	1B	18	1B	<u>1</u> B	IA	TA
2.2	9.5	1B	2	į 18	18	1B	18 '	į 1.B	18

Appendix 8.5

L

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION CATCHMENT: FAL

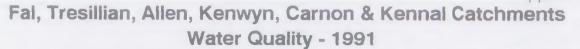
1991 Map Position Number		Reach upstream of	User (Reference Number	National Grid Reference	Reach Length (km)	Distance from	River Quality Objective	•	•		INC	89	90	91 NHC
	ĺ				i.	(kā)			1	Ū.				
					ý.									
	 ALLEN	NORMAL TIDAL LIMIT (INPERRED STRETCH)			0.1	9.6	18		18	18	18	18	 1B	- <u></u>
-	ZELAH BROOK	GWARNICK MILL	R190030	SW 8165 4923	3.0	3.0	1B						2	18
	ZELAH BROOK	ALLEN CONFLUENCE (INFERRED STRETCH)			2.2	5.2	18						2	18
27	KENWYN	NEW MILL		SW 8085 4587	5.1	5.1	18	<u>1</u> B	18		2	2	3	<u>1</u> B
28	KENWYN	BOSVIGO BRIDGE	R19D007	SW 8161 4528	1.0	1 6.1	18	1B	1B		2	2	1B	19
l	KENWIN	NORMAL TIDAL LIMIT (INFERRED STRETCH)	ļ	!	1.4	7.5	18	19	1B		2	2	1B	1B
29	CALENICK STREAM	HUGUS	R19D025	SW 7840 4381	4:5	4.5	18	18	18		-2	2	1-1-	
30	CALENICK STREAM	CALENICE BRIDGE	R19D006	[SW 8220 4310]	4.5	9.0	1B	18	1B		2	2	2	2
	CALENICK STREAM	NORMAL TIDAL LIMIT (INFERRED STRETCH)	1	}	0.1	9.1	18	19	18		2	2	2	2
31	CARNON RIVER	CHACEWATER VIADUCT	R19E016	SW 7446 4520	0.8	0.8	¦	3		3	3	-3-	3	1
32	CARNON RIVER	BELOW CHACEWATER S T W	R19E008	[SW 7560 4308]	2.1	2.9	3	3	3	3	3	3	3	3
33	CARNON RIVER	TWELVEHEADS	R19E001	SW 7618 4194	1.9	4.8	1 3	3	3	3	3	J 3	3	3
34	CARNON RIVER	BELOW COUNTY AND WELLINGTON ADITS		[SW 7669 4146]		1 5.7	1 3	3	3	31	3	3	3	3
35	CARNON RIVER	BISSOE BRIDGE	R19E003	SW 7758 4115	0.6	6.3	3	3	3	3	3	3	j 3	3
36	CARNON RIVER	DEVORAN BRIDGE	R19E004	SW 7910 3941	2.6	6.9	3	3	3	3.	3	3	3	3
	CARNON RIVER	NORMAL TIDAL LINIT (INFERRED STRETCH)	1		0.1	9.0	3	3	3	3	3	3	3	3
37	PERRANWELL STREAM	PERRANWELL	R19E020	SW 7758 3940	3.5	3.5	1 <u>1</u>	1.8	i				2	2
	PERRANWELL STREAM	NORMAL TIDAL LIMIT (INFERRED STRETCH)	1		1.5	5.0	L IN	18		101			2	2
38	BALDHU STREAM	BISSOE BRIDGE	R19E021	SW 7760 4146	1.4	1.4	19	3				 _	-3-	3
	BALDHU STREAM	CARSON CONFLUENCE (INFERRED STRETCH)	1	! !	0.2	1.6	18	3					3	3
	HICK'S MILL STREAM	HICK'S MILL	R19E019	SW 7673 4115	4.5	4.5	18	3					3	
	HICK'S MILL STREAM	(CARNON CONFLUENCE (INFERRED STRETCH)		1	0.4	4.9	18	3					2	3
40	ST DAY STREAM	PRIOR TO CARNON RIVER	R19E022	SW 7595 4225	2.9	2.9	18	3		<u> </u>			3	3
	ST DAY STREAM	CARNON CONFLUENCE (INFERRED STRETCH)			0.1	3.0	1B	3					3	3
	KENNAL	STITHIANS RESERVOIR (UNHON. STRETCH)		SW 7195 3635	-1.1	4.1		18	18	18	19	-2-	<u> </u>	U
	KENNALL	TREGOLLS BRIDGE		[SW 7300 3613]	1.6	5.7	14	1B	1B	1B	18	2	2	2
	KENNALL	PONSANOOTH GAUGING STATION		SW 7631 3768	4.6	10.3	1A	1B	1B	18	1B	2	18	18
	KENNALL	STICKEN BRIDGE	R19E007	5W 7735 3819	1.4	11.7) 1B	1B	18	18	18	2	3	3
	KENNALL	NORMAL TIDAL LINIT (INFERRED STRETCH)			0.4	12.1	18	18	18	1B	18	2	3	3
	STITHIANS STREAM	SEAUREAUGH MOOR	R19E023	5W 7349 3735	4.9	4.9		18			——		14	18
l	STITHLANS STREAM	KERNAL CONFLUENCE (INFERRED STRETCH)	1		0.7	5.6	1A	18					1	18
45	MYLOR STREAM	ENTS	R19A035	SW 7906 3651	0.6	0.6		18	18	- <u>-</u>	¦	-3-	-1 <u>B</u>	18
46	MYLOR STREAM	MYLOR BRIDGE	R19A014	SW 8043 3611	1.6	2.2	j 1A j	18 (18	- i i	Í	3	3	3
İ		<u> </u>	_1	<u> </u>	- C. ()	[f i	1	İ					

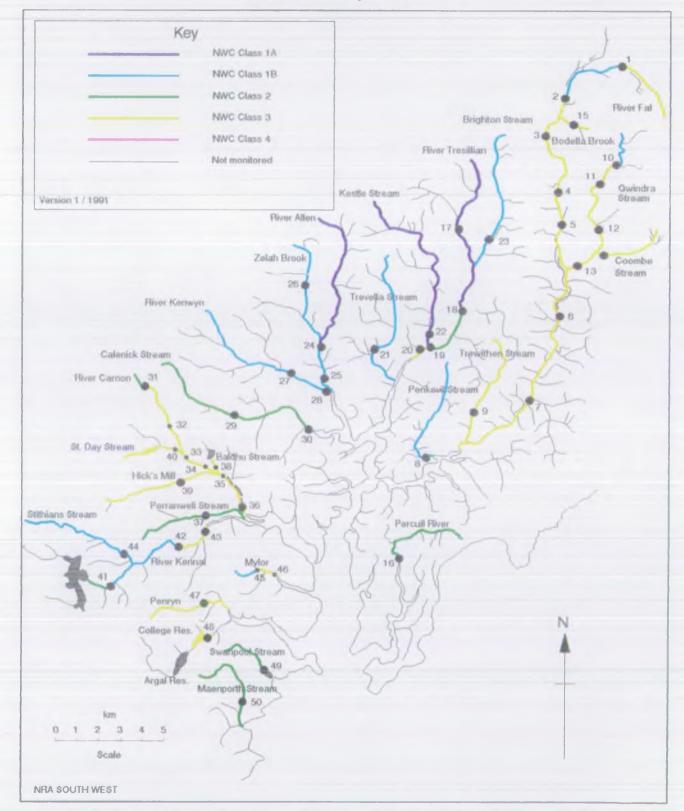
1

Appendix 8.5

1

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION CATCHMENT: FAL


1991 Map Position Number 	•	Reach upstream of	User Reference Rumber	National Grid Reference
47	PENRYN RIVER	TREMOUGH NORMAL TIDAL LIMIT (INPERRED STRETCH)		SW 7735 3505
48	ARGAL STREAM ARGAL STREAM ARGAL STREAM	INFLOW, COLLEGE RES. (UNMON. STRETCH) COLLEGE RESERVOIR NORMAL TIDAL LIMIT (URMON. STRETCH)	R19A033	SW 7718 3355
49	SWANPOOL STREAM SWANPOOL STREAM	ABOVE SWANPOOL (NORMAL TIDAL LIMIT (URMON. STRETCH)	R19A009	SW 8004 3166
50	MAENPORTH STREAM MAENPORTH STREAM	TREGEDNA BRIDGE NORMAL TIDAL LIMIT (INFERRED STRETCH)		SW 7883 3028


Reach	Distance	River	85	86	87	88	89	90	91
Length	from	Quality	NWC	NWC	INNC	INC	AW.	NWC	NHC
(km)	source	Objective	Class	Class	Class	Class	Class	Class	Class
	(km),	1	1	Ì		l	1 1	1	[
	1	j i	j 1		i 1	Í	i		
2.8	2.8	18	i IA	i	i	i	·	18	i 3
1.5	j 4.3	j 1B	i IA	i	i	1	i	j 18	j 3
	i	i	i	Í	i		ĺ	ĺ	İ
4.9	4.9	1.	i	i	j —	· · · ·	1	<u> </u>	j v
0.9	j 5.8	1 IA	İ	1	ĺ	i i i i i i i i i i i i i i i i i i i	1	12	3
1.8	7.6	14	ĺ	Ì	1	1	!	i a	l a
- 2.7	2.7	18	¦	¦	¦	18	2	2	2
0.5	3.2	1B	1	i	į	1B	j 2	U	ju
4.0	4.0	18	 	¦	¦			-2	1
1.6	5.6	18	i	i	i	- e	i	įż	2
	i	Í	í	Í	İ	Í	!	Í	<u>ا</u>

•

....

Appendix 8.6

NATIONAL RIVERS ANTACRITY - SOUTH WEST RELICN 1991 RIVER WARER QUALITY CLASSIFICATION CALCULATED DETERMINAND STRUSTICS USED FOR QUALITY ASSESSMENT CRICHENT: FAL

.

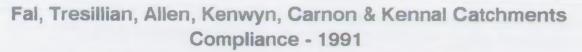
.

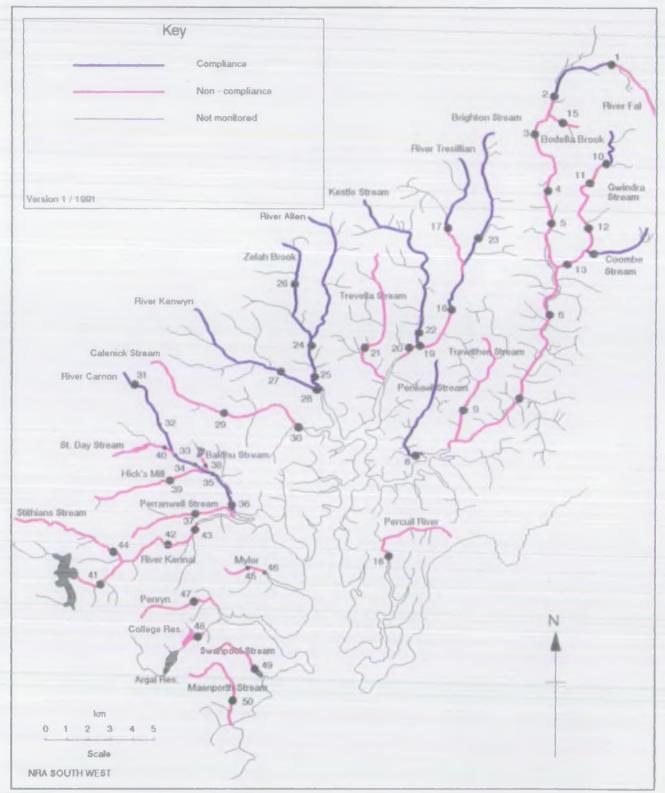
River	Peach upstreem of	User	RQD		_	Calada	ated Det	HIRINA	d Statis	tics us	ed for Q	ulity	Assessme	nt									
F	Ì	Pef.	1	ł		1		L		I		1		1		1		1		1		I	
1		j Nuther	1	pH Los			Upper	• • • •	entre	• -	(%)		• •	•		,	Ameria		alids .		Orper	•	al Zinc
		l l	!	Class !	Stile	Class	95 %ile		95%ile	Class	5tile	Class	95 hile		95kile	Class	95kile	Class	Heat		95610		s 95kile
			!	ļ		1		!		ļ				!		!		ł		!		ļ	
				1						1				!		1			1	}		I	
FNL	TRUCES HRUCE	R190001	110	1.4	5.9	<u>مر</u>	7.6	<u> 1</u>	14.3	1	80.3	1 14	2.2	<u>, 17</u>	0.207	AL	0.010	<u> </u>	37.5	14	10.6	I IA	37.5
FAL	GAVERIGAN BRIDGE	F19CD02	119	I IA	6.2	1A	7.4	X	15.3	119	78.3	1 IA	2.6	1 x	0.175	14	0.010	1	10.6	11	10.4	I IA	53.9
FAL	REDEW BRIDGE	R19(D03	18	I IA	5.9	11	7.4	JY	15.0	1	82.0	1 14	2.6	1A	0.252	1A	0.010	3	28.7	1 14	14.6	I IA	51.4
1774L	REAVICK HALDER	[RI9:011	2	IA	5.9	11	7.5	אנן	16.2	1A	81.3	1A	2.4	1A	0.191	1A	0.010	3	54.6	† 1A	9.4	1 1	45.9
INL	TERRAS BRIDGE	; 17,004	2	I IX	5.1	1 14	7.3	I IA	16.0	14	87.8	I IN	2.8	18	0.334	I IA	0.010	3	44.5	ţ 2	386.2	1 3	4051.8
FNL	GRAMPOUND BRIDGE		2	AL	6.3	J 1A	7.2	1 14	15.5	I IV	80.7	† 118	3.4	3	S.550	• 1 ∧	0.014	3	39.4	[1A	15.0	i n	106.0
INL	TREASNEY GAUGING STRETCH	. 190006	118	j 1A	6.5	N.	7.3	1	16.9	11	81.1	I IA	3.0	118	0.368	14	0.010	j 3	46.4	i w	20.2	1 1	73.0
FENREVIL STREAM	HARSON'S HILL WOOD	1R198004	118	 1A	6.9	AL	8.0	AL	15.6	1	84.1	118	4.2	118	0.474	1 28	0.010	1.	12.5	 1A	5.0	1	27.0
TREATHEN STREAM	MELLINGOSE	 	118		6.8	1	7.8		15.9	1	81.5	3	13.8		1.718	 1A	0.010		16.2	1	6.0		27.0
i	1		<u> </u>	<u>i</u>				<u>i</u>		<u>i</u>		<u>i</u>		<u>i</u>		<u>i </u>	-	<u>i</u>		<u>i</u>		<u>į</u>	
GHININA SIREAM	NAMEDAN BRIDGE	[R190014		•	5.7	17	7.2	17	15.4	119	69.3	118	4.5	1 17	0.097	I IA	0.010	18	17.4	1 18	0.0		42.0
(CHINERA STREAM	CONVENT	[R190017]	2	3	4.2	14	6.6	AI	16.1	118	74.3	18	3.9	2	0.883	1A	0.010	3	\$9.5	2	76.0	1 1	157.0
GHINTRA STREPH	(Grinera Bridee	F19CD08	2	1 V	6.1	 1 A	7.1	I IX	16.1	2	59.0	1 2	5.6	3	5.570	1A	0.013	3	51.7	1 17	15.8		103.8
(Goinera Sidezm	TROAT BRIDGE	[R190009]	2	18	6.1	11	7.3	I IV	16.0	19	79.3	1 2	5.7	3	3.991	1	0.012	3	35.7	11	15.4	N I	137.8
COOMER: STREAM	COME	R190021	18	3	4.6	1.	7.2	4	14.5	1	80.4	AL	2.0	LB	0,339	11	0.010	3	13.3	AI	38.0	.	290.0
BODELLA BROOK	ONSELLA	R190018	18	3	3.3	1	6.6	<u></u>	18.0	2	52.8	3	16.3	3	4.650	1	0.010	3	46.0	1	28.5	<u></u>	67.3
PERCULL RIVER	TREIHEM MILL	R194013	1	1.	7.3	1.	8.6		18.2	2	43.1	19	4.1		0.487	1	0.010	<u> </u>	19.8	1 1 A	5.0	<u></u>	11.0
			<u> </u>	<u>i</u>		<u> </u>		<u>į </u>		<u> </u>		<u>į </u>		<u>į </u>	A 4 140	<u>į </u>		<u>.</u>		į		<u> </u>	54.0
TRESILLIAN RIVER	TRINDENL	R190033			7.0	1 1	7.9	1 1	15.7	1	84.6		2.7	I IA	0.175	1	0.010	AL	5.2		6.0		
TRESULIAN RIVER	TRESONGAR BRIDGE	F19002	•	•	7.0	11	7.8	1 1	16.0	11	81.8	1	2.8	11	0.135	14	0.010	1 17	7.1	I A	7.0	I N	65.7
TRESILLIAN RIVER	TRESULION RUNING STREEM	F190032		•	6.9	17	7.8	1 1	16.0	10	72.9	1 1	2.6	2	0.813	1 14	0.010	11	8.1	114	9.5	IN	90.0
TRESILLIAN RIVER	(Below landook stw I	[R190034]	118	1A 	7.1	1 14	7.8	1A 	17.0	119	71.0	13 	4.6	3	2.300	1 14	0.011	 	16.0	1	-	-	-
TREVELLA STREPH	TREGURIA ERIDIZE	R190014	1	<u> 1</u>	7.1	A L	7.9	<u> 1</u>	16.6	1.	63.6	i 18	3.1	<u>)</u> 17	0.148	Î ÎA	0.010	<u>, vr</u>	13.3 (*	AL	6.0	1	25.5
KESTLE STREAM	CINICOR FORD	R190008	18	<u>л</u>	6.8	14	7.8	<u>^1</u>	15.9	1	81.9	Î	2.7	1	0.212	1	0.010	15	6.7	1	5.0	14	17.2
BUCKICH STREAM	NEW MILLS	R190005	18	14	6.5	14	7.7	-ia	16.1	I IB	67.4	1	2.6	1	0.234	AL	Ô.010	LA.	8.7	AL	10.0		195.0
ALLEN	IDLESS BRIDGE	R130018	18	<u> </u>	7.2	14	7.8	1	17.1		82.7	1	2.6	1	0.219		0.010	AL	5.4	<u></u>	9.6		29.9
NLEN	MCRESK LALNERY BRIDGE	R19004			7.2	λ.	7.9	Ι Iλ	17.5	18	78.5	, W	2.4	22	0.154		0.010	AL	8.5	Ж	8.0	A	11.0
ZZLAH BROCK	CHARMICK MILL	19190030	18	1.	7.1	1	7.8	7	20.2	18	72.4	118	4.7	118	0.456	AL	0.010	13	15.4	1	7.0	14	H.0
NEINMAR	NEW MILL	R190016	18	<u>مر ا</u>	7.0	1	7.7	1	17.0	18	79.4	1	2.6	<u>, 17</u>	0.090	1	0.010	14	20.9	14	24.0	1	127.4
KENNER	BOSVICIO ERIDICIE	[R190007]	18	А	7.1	٦X	7.9	1	18.2	IA	68.0	18	3.6	j IA	0.155	AL	0.010	1A.	7.3	14	9.6	14	57.1
CALENTOK SERENM	 HDIS	 R190025	118	<u>مد</u>	6.8	14	7.6	- 17	16.6	1.8	73.5	118	3.4	 18	0.340		0.010	14	8.5	1	29.4		803.0
OVENICK STREAM	CALDRICK BRIDGE	R190006		•	6.6	Ж	7.7	17	16.4	19	75.6	119	3.4	18	0.312	N.	0.010	17	9.1	2	48.3	2	328.3
														<u> </u>		I		L	1	L		L	

**1

1

1


Appendix 8.7


NGTIONE RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WHER QUALITY CLASSIFICATION CALLEADD DETERMINAND STRUTISTICS USED FOR QUALITY ASSESSMENT CRICHENT: FAL

River	Reach upstress of	User	RQD			ດຟລນ	ated Det	ecnill#	id Statis	tics us	ad for Q	hality	Assessie	nt.									
	1	Ref.		 	*			·					/ men 11	1	•i	 	 d			1	1 0	! 	
		Nutber	!		LONE	• •	Upper		orature .) (%) (%)	•			Amonia	•			olids				al zinc
		1	ļ		: 5kile	Class	95 tile		s 95kile		2610	Class	951110		s 95kile		951010		Heath	i crea	s 95kile		s 95tile
			ļ	!		!		!		ļ		!		!		!		!		!		ļ	
		ļ	1	!		Į.		ļ		!		!		!		!		ļ		ļ.		I	
			!	<u> </u>		<u> </u>		<u> </u>	17.4	<u> </u>	44.4	<u> </u>		<u> </u>	- 4/7	<u> </u>				<u>}</u>	107.6	T	914.5
CARNEN REVER	GREENRIER VIALLET	F19E016	•	1 12	6.0	1A	7.2	 	17.4		44.4	118	3.5	1 18	0.462		0.010	1 A	6.8	4	443.4	! :	•
CARAEN RIVER	BELOW OR CENTER S T W	R196008			6.3	1	7.3	AL I	17.4		60.2	118	4.5	18	0.668		0.010	13	31.4	1 4		! !	1556.0
CARACIN RIVER	TWELVEHEACS	R19E001	• -		5.2	14	7.3	I IA	16.8	I IB	76.3	IA IA	2.7	1B	0.366	1 1	0.010	1	7.2	1 2	651.4	1.5	3385.0
CHRICIN RIVER	BELOW COUNTY AND WELLINGTON ADITS	R195015		3	3.3	11	5.7	11	17.1	2	57.0	118	3.2	I IA	0,280	1 14	0.010	17	10.0	Z	2300.0	13	20520.0
CARNEN RIVER	BISSOE BRIDGE	R196003		3	3.2	14	6.3	I IA	20.3	1B	ଣ .2	2	6.3	2	1.100	11	0.010	14	20.2	2	1594.5	13	16355.(
CARNON RIVER	jdevoran hridge	R196004	3	3	3.5	1A 	6.5	IX	18.8	18 	67.4	1 14	2.9	1 2	1.218	1	0.010	1A 	17.3	2	1145.5	3	19660.(
PERRAINELL SILEZH	PERANNELL.	R190020	<u> 1</u>	A	6.2		7.3	AL	15.0	1.18	72.0	1	2.7	AL	0.274	1	0.010	1	11.0	2	1132.6	<u> </u>	64.2
BNLCHU STREAM	BISSOE BRIDGE	R196021	18	3	3.5	11	8.5	2	22.0	118	65.9	2	9.0	3	2.620	3	0.375	3	37.1	2	4100.0	3	87200.0
HICK'S MILL SIREAM	HICK'S MILL	R19E019	18	<u>ما</u>	6.5	11	7.4	1A	16.6	 18	78.5	18	3.7	2	0.860	1	0.010	<u></u>	7.0	1 2	715.2	-3	3850.0
ST DAY STREAM	HRICE TO CARNEN RIVER	R190722	18	1 3	3.2	X	6.6	2	21.6		61.6	11	2.2	2	1.124	1	0.010	<u> </u>	3.9	2	1933.0	-5	6770.0
TENTALL	TREATLS HUDE	18196005	1	14	6.4		7.2	A	18.1	14	82.1	2	5.5	2	0.929	14	0.010	14	6.9	14	13.9	1	2.7
NENNALL.	PONEWNOTH GALENG STRITCH	R19E006			6.6	i IA	7.6	i in	15.7	i M	88.0	1 18	3.4	i 1Ā	0.174	1 14	0.010	14	10.0	i IX	18.1	1 13	135.6
KENNALL	STICKEN BRIDE	R190007			6.6	1A	7.3	1	15.2	2	47.0	. 2	5.5	3	1.600	N I	0.010	, YY	12.1	<u> </u>	13.4	i N	4.1
Studians Stream	SEXURENCER MOOR	12199923	7	<u></u>	6.3	77	7.3	12	17.4	- 14	86.6	<u>at</u>	3.6	<u></u>	0.190	1	0.010	-74-	8.0	1	8.0	[43.0
MILOR STREAM		R194035	5		6.5	<u> </u>	7.3	1	16.0	18	73.0	1	2.7	14	0.147	<u> </u>	0.010	1	6.5	- IA	6.0	-	27.0
MILOR SURFAM	Malor Bridge	[R19A014]	או	14	6.9	, X	7.5	j IA	16.7	2	60.0	2	5.2	j 3	4.670	1 k	0.010	18	10,4	, N	12.6	A	78.2
PENRON RIVER	TREPOUR	R190037	1B	٨	6.9	1	7.9	1.	16.3	4	84.2	2	5.1	is	0.344	AI I	0.010	3	30.7	A	12.0	14	Q.0
ARCAL STREAM	COLLEGE RESERVOIR	R194033	1	14	6.7	3	9.2	2	23.8	18	77.5	2	8.4	14	0.084	AL	0.010	1A	13.4	14	4.0	AL	18.1
SANGOL SISEZM	HEOVE SHANFOOL	R194009	10	AL I	7.1	<u>I</u> A	7.7	Ā	18.6	1B	77.1	2	5.4	14	0.094	1A	0.010	1	18.5	14	23.0		115.0
MARARCRICK SURRAM	TREEDA BRIDE	[R1.9A008]	18	-14	6.9	1	7.5		18.7	2	56.2	118	3.2		0.240		0.010	1.	7.9		6.0		33.0

Appendix 8.7

Appendix 8.8

NATIONAL REVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WHER QUILLITY CLASSIFICATION NUMER OF SAMPLES (N) AND NUMER OF SAMPLES EXCEEDING QUALITY STANDARD (P) CALCHMENT: FAL

River	Reach upstream of	User	्रम प	OWNE	j pru	iper	Temper	euro	00	(3)	BOD	ATU)	Total I	minia	juhian. I	Ameria	S.So	uids	Total	Other	i total	l Zinc
		Raf. Number:	N	F	(N	F	1 17	r	1 17	F	1 1	F	19	F	N	7	1	P	1 11	P	N 1	
	i	1		-	1	-	i	-	į	-	i 4		İ		İ				Ì		İ	
					l		1		!		1		1					1				
					 		1		1		-lj		i		i		i	ł	<u> </u>	_	i	
FAL	TRENDS BRIDE	R190001			34	-	34	-	34	-	33	-	34	-	K	-	34	<u> 6 </u>			22	-
FAL.	GAVERIGAN ERODEE	R19C002	34	-	34	-	34	-	1 34	-	33	-	34	-	33	-	34	13			22	_
PAL	REIEW HRIDGE	R19CD03	34	-	34	-	1 34	-	1 34	-	1 33	-	34	-	34	-	<u>к</u>	6	22	-	•	-
FAL	KERNICK ERIDE	和90011	33	-	33	-	32	-	32	-	32	-	1 33	-	1 31	-	33	16	32	-	32 23	
I'AL	TERRAS BRIDGE	R19C004	35	1	35	-	34	-	34	-	34	-	35	-	1 32	-	35	16				
FAL	GRAMPOUND BRIDDE	R190005	32	-	1 32	-	32	-	32	-	31	- Z .,	1 32	6	1 22		22	14	19	-	19 ត7	
FAL	TRUTNEY GAUGING STATION	[R19006]	ศ	-	67	-	តា	-	66	-	66	•	្រត	1	15	-	ត	35	ត 	2	0/	-
PENKEVIL SIREAM	PARSON'S HILL WITD	R198004	33	-	33	-	<u> 13</u>	-	1 33	-	32	1	33	-	33	-	j <u>33</u>	1.3) u		<u> </u>	-
TREWITHEN STREAM	IMELLINGXOSE	R19C016	33		33	-	133	-	33	-	32	1	33	2	32	-	33	1	<u>i u</u>	-	<u>u</u>	•
GWINDRA SIREZAM	NAMESAN BRIDGE	R190014	32	_	1 32	-	32	-	32	-	n		32	-	27	-	32	1.5	19	-	19	-
CHINCRA STREAM	GCCNAEARN	R190017	32	3	j 32	-	j 32	-	j 32	-	1 31	-	1 32	-	j 31	-	32	, 21	19	-	19	-
GAINERA STREAM	GAINERA BRIDGE	F190008	33	-	j 33	-	j 33	-	j 33	-	32	- 1	j 33	7	j 33	-	33	18	21	-	1 21	-
CMINIRA STREAM	TROMAY BRIDGE	R090009	34	-	34	-	34	-	j 34	-	33	-	1 34	5	33	-	34	15	1 31	-	1 27	-
COOME SIREAM	000485	R190021	20	2	20	-	20	-	20	÷	20	-	20	-	16	•	20	8	1 12	-	12	
BODELLA BROOK	CARSELLA	RI9CD18	34	10	 34	_	<mark>і з</mark> т	-	34	2	33	9	34	16	28	-	34	12	24	•	24	•
PERCUIL RIVER	TRETHEM MILL	[R192013]	33	-	33	-	33	-	<u> </u> 32	6	33	3	32	4	30	-	33	<u>i</u> t.	18	-	18	1
INESELLEN RIVER	TRENTFAL	1190033	30	-	30	_	30	-	30	-	30		30		28	-	30	- 2	17	-	17	-
TRESTLLIAN RIVER	TRESO-GAR BRIDER	R190002	34	-	j 34	-	j 34	-	34	-	34	-	34	-	1 33	-	34	1	20	-	20	-
TRESTLLIAN RIVER	TRESILLON PUPPING SURGION	F19D032	30		j 30	-	j 30	-	j 30	-	30	-	j 30	1	j 30	-	30	1	29	-	29	-
TRESILLIAN RIVER	BELON LACIDOCK SIN	R190034	15	-	į 15	-	15	-	15	*	15	- +2	į 15	2	15	-	15	12	5	-	5	-
THEVELLA STREAM	TRULERA BRUDE	R190014	U	-	<u> </u>		<u> </u> 1 31	-	31	-	n	1	31	-	29	-	1 31	14	24	-	24	-
RESTLE STREAM	CINDOR FORD	R190008	32	-	32		<u>n</u>		32	-	32	÷.	2	-	n	-	32	1	17		रा	-
BRICHION STREAM	NEW MELLS	R190005	n	-	<u>n</u>		u	-	31		i ii	-	ी म	-	29	-	11	13	19		19	
ALLEN	ITLESS BRIDGE	[R190018]	37		37		- 37	_	 37		37		37		37		37		<u> x</u>			-
ALLEN	MORESK LAUNDRY BRIDER	F190004	32	-	12	-	22	-	32	-	32	-	1 22	-	n	-	32	3	29		29	-
721.AH BROOK	GNARRICK HILL	RL90030	28	-	28		28	1	28	-	28	1	28	-	28	-	28	-,3	8	-	15	
KENNAM	i	RU90016	33		<u>3</u> 3		1 33		1 3	-	13	-	1 11		33		£	3	23		21	-
RENAR	BOSVICIO ERIDOR	R19C007	34	-	3 4	-	j 34	-	34	-	34	1	34	-	34 	-	34	1	33	-		•
CALENECK SEREAM	article	R19025	34	-	34		Ж	-	34		34	i	И	1	29	-	34	3	2		े य	-3
ONLENECK STREAM	CALENECK BRIDGE	[R19006]	35	-	35	-	1 35	-	35	-	35	1	35	-	33	-	1 35	2	1 33	2	13	3

Appendix 8.9

NRICHNE, HVERS ALHORITY ~ SOUTH WEST REGION 1991 RIVER WHER QUELTY CLASSIFICATION NIMER OF SMPLES (N) AND NIMER OF SAMPLES EXCELLING QUELTY SUNDAND (F) CRICHMENT: FAL

River	Reach upstream of	User Ref.	pH 1	LOWER'	i phi	fter	Temper	ature		(\$)	BOD	(2010)	Total	Ameria	Union.	Amnia	5.5	lids	Total	Copper	Total	l Zinc
		Nutber	N	T	И	F	N	r	N	P	N	7	N	r	N	r	N	F	1 11	r	N I	7
							1		1		i.											
 							 		1										1	C.	 	
CARNON RIVER	GRADWATER VIALICT	R19E016	33	1.	33	-	1 31	-	1 31	-	33	-	33	-	28	-	33	-	30	-	30	
CANNIN RIVER	BELOW CHRCENNEER S T W	R19E008	35	-	35	-	35	-	35	-	35	-	35	-	35	-	35	-	1 11	-	1 31	-
CANON RIVER	TWELL/SHEADS	R19E001	33	-	1 33	-	j 33	-	j 33	-	33	-	33	-	1 32	-	33	-	j 30	-	30	-
CARNEN REVER	HELOW COUNTY AND WELLINGTON ADDES	R190015	34	-	34	- 41	34	-	1 34		34	-	34	-	1 17	-	34	-	1 31	-	1 31	-
CARNEN RIVER	BISSOE ERIDGE	R19003	35	-	35	-	33	-	1 33	-	35	-	35	-	20	-	35	-	1 32	-	1 32	-
CANNON RIVER	DEVORAN BRIDGE	R198004	66	-	66	-	67		66	-	66	-	67		10		ត	-	66	-	66	•
PERRAWELL STREAM	PERAMELL.		31	-	31	-	i n	-	31	2	31	1	31	1	29	-	<u> </u>	1	22	1	22	-
BALCHU STREAM	BISSOE BRIDGE	1191021	28	4	28	1	28	2	28		28	7	28	22	িস	2	28	9	19	1	19	19
HICK'S MILL STREAM	HICK'S MILL	R190019	29	-	29	-	29	_	29	-	29	-	29	3	27	-	29	2	22	21	22	21
ST DAY STREAM	PRICE TO CHINON RIVER	[R19ED22]	26	23	26	-	26	1	26	1	26	-	26	1	10	-	26	-	20	20	20	20
KENNALL	TREDCLLS BRIDGE	R19E005	32	-	32	-	30	-	30		31	3	32	4	28	-	32	1	22	. •	22	-
INAMEL	PONSMOOTH GAUGING STRATICH	R19E006	32	-	32	-	32	-	32	-	32	1	32	-	30	-	1 32	1	21	-	21	-
KENNALL	ISTICKEN ARIDGE	R19E007	34	9 - 22	34	-	34	-	34	6	34	1	34	3 ·	34	-	34	2	1 32	-	1 32	-
STITULIANS SINEAM	SEALREALCH MOOR		30	-	30		30		30	_	29	1	30	_	28	-	30	1	12	-	12	-
MILOR STREAM		R194035	- 30		30	1.41	29	•	29	2	29		30	-	25		30	2	1 12	1.2	<u> </u>	-
Malor Stream	(MALCR ERIDGE	R198014	32	-	32	-	32	-	32	13	32	9	32	19	1 32	-	32	2	22	-	22	-
PENRAN RIVER	INFOUGH	(FC199037)	30	-	30	-	- 30	-	30		29	1	30	-	28	-	30	7	12	-	12	-
ARCIAL SIREAM	CULIER RESERVOIR	R194033	22	-	22	1	22	2	22	1	22	12	22	-	18	-	- 22	2	21		2	-
SMANFOOL STREAM	ABOVE SWANDOL	12194009	32	-	32	+	32	-	32	. • *	32	1	32	-	29	-	32	5	19	-	19	-
MAENFORTH STREAM	TRUEINA BRIDE	180046171	30	-	30	-	- 30	-	30	2	- 29	-	30	-	30	-	30	-	12	-	11	

Appendix 8.9

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT: FAL

1

River	Reach upstream of	User	1	PERCENTAGE	EXCEEDENCE OF	STATISTIC	FROM QUALIT	TY STANDARD	1			
	1	Ref. Mumber 	 pH Lower 	 pH Upper 	 Temperature 	DO (3)	 900 (ATU) 	Total Ammonia	Un-ionised Ammonia	Suspended Solids	Total Copper	Total Zinc
			J I			-i			i			
FAL	TREGOSS BRIDGE	 				-				50		<u> </u>
FAL	GAVERIGAN BRIDGE	R19C002	i -	-	i - i	-		-	i -	i - i	-	-
FAL	RETEW BRIDGE	R19C003		-	i - i	.	-	-	- 1	j 15 j	-	-
FAL	KERNICK BRIDGE	R19C011		-	i _ i	1 _	_	_	- 1		_	-
FAL	TERRAS BRIDGE	R19C004		-	i _ i	1 1		· -		-	-	479
FAL	GRAMPOUND BRIDGE	R19C005		-		-	-	256	i _ '	-	-	-
FAL	TREGONEY GAUGING STATION	R19C006		-			1.1.1		-	86		-
Г АЦ	INEGONET GROSING STRITON	I							-			
PENKEVIL STREAM	PARSON'S HILL WOOD	R198004		-		-		-	-	-	-	
TREWITHEN STREAM	MELLINGOOSE	R19C016	-	-		<u> </u>	177	145			-	
GWINDRA STREAM	NANPEAN BRIDGE					-				¦		
GWINDRA STREAM	GOONABARN	R19C017			i - i	· ·	i – i	-	i -			-
GWINDRA STREAM	GWINDRA BRIDGE	R19C008		-	i – i	1 -		257	i -	-	- 1	-
GWINDRA STREAM	TREWAY BRIDGE	R19C009		-	-	1.4	-	156	-	- 1	-	-
COOMBE STREAM	COOMBE	R19C021	8		-				-	33	-	-
BODELLA BROOK	CARSELLA	R19C018		-	-	12	225	564			-	-
PERCUIL RIVER	TRETHEM MILL	R19A013	—— <u> </u>	-	-	46	35	- 57	-			
TRESILLIAN RIVER	TRENDEAL	R19D033		·	-¦							
TRESILLIAN RIVER	TRESONGAR BRIDGE	R19D002		-			i _ i	_			-	-
TRESILLIAN RIVER	TRESILLIAN PUPPING STATION	R19D032	•	_				16			-	_
TRESILLIAN RIVER	BELOW LADDOCK STW	R19D034	•	-	i - i		-	229	-	- 1	-	
TREVELLA STREAM	TREGURRA BRIDGE				-¦	<u>*</u>						
KESTLE STREAM	CANDOR FORD	R190008										-
	i	i				1						
BRIGHTON STREAM	NEW MILLS	R19D005		-	-	-	-		-	† - 	-	
ALLEN	IDLESS BRIDGE	R190018	-	-	· · · ·	<u>n</u> –	-	 ·			-	9 - 1
ALLEN	MORESK LAUNDRY BRIDGE	R190004		-	i - i	-	•	-	-	- 1	-	-
ZELAH BROOK	GWARNICK MILL	R19D030		-	-		-					-
KENWYN	NEW MILL	R190016		-	·			-				<u> </u>
KENWYN	BOSVIGO BRIDGE	R190007	-	-	-			-	-	-	-	100
CALENICK STREAM	HUGUS	R190025		-	;;		-			-		168
CALENICK STREAM	CALENICK BRIDGE	R19D006	-	-	-	-	-	-		-	21	9
the second second second second second second second second second second second second second second second s	· · · · · · · · · · · · · · · · · · ·	······································			· · ·		·					

Appendix 8.10

1

6

+

.

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT: FAL

River	Reach upstream of	User	4	PERCENTAGE	EXCEEDENCE OF	STATISTIC	FROM QUALIT	STANDARD	1			
		Ref. Number	 pH Lower 	 pH Upper	 Temperature	DO (%)	BOD (ATU)	Total Ammonia	 Un-ionised Ammonia	 Suspended Solids	Total Copper	Total Zinc
		1	i I						i I	i		
CARNON RIVER	CHACEWATER VIADUCT	R19E016	 		\{				<u> </u>			
CARNON RIVER		R19E008		4	i - i	-	- 1	-	i –	· •	-	
CARNON RIVER		R19E001		1.00	i - i	-	- 1	-	i –	-	-	-
CARNON RIVER	BELOW COUNTY AND WELLINGTON ADITS			-	i - i	-	- 1		i -		-	
CARNON RIVER		R19E003		-	i - i	-	- 1	-	i -	-	-	
CARNON RIVER	DEVORAN BRIDGE	R19E004	-	-		-	-		-	-	-	-
PERRANWELL STREAM	PERRANWELL	R19E020	-	-	-	10		-	-		2732	-
BALDHU STREAM	BISSOE BRIDGE	R19E021	29	-	2		79	274	1686	48	3561	17340
HICK'S MILL STREAM	HICK'S HILL	R19E019		-	-	<u> </u>		23	-		1688	1183
ST DAY STREAM	PRIOR TO CARNON RIVER	R19E022	35	-	-			61	-		4733	2823
KENNALL	TREGOLLS BRIDGE	R19E005	¦	-			83	200				-
KENNALL		R19E006		-	-	-	13	-	! -	-	- 1	-
KENNALL	STICKEN BRIDGE	R19E007	-		-	22	11	129	1 -	-	-	-
STITHIANS STREAM	SEAUREAUCH MOOR	R19E023	-	-			18		-		-	
MYLOR STREAM	ENYS	R19A035	-		ii	9				-		-
MYLOR STREAM	MYLOR BRIDGE	R19A014		-		25	74	1406	-		-	
PENRYN RIVER	TREMOUGH	R19A037	-		-		1		-	23	-	
ARGAL STREAM	COLLEGE RESERVOIR	R19A033	~	2	11	3	181	-	•		-	
SWANPOOL STREAM	ABOVE SWANPOOL	R19A009	-						-		-	-
MAENPORTH STREAM	TREGEDNA BRIDGE	R19A008	-	-		6						

Appendix 8.10