NRA South West 166

Environmental Protection Report

River Dart Catchment River Water Quality Classification 1991

> April 1992 WQP/92/009 Author: B L Milford Water Quality Planner

South West Region

C V M Davies Environmental Protection Manager

ACKNOWLEDGEMENTS

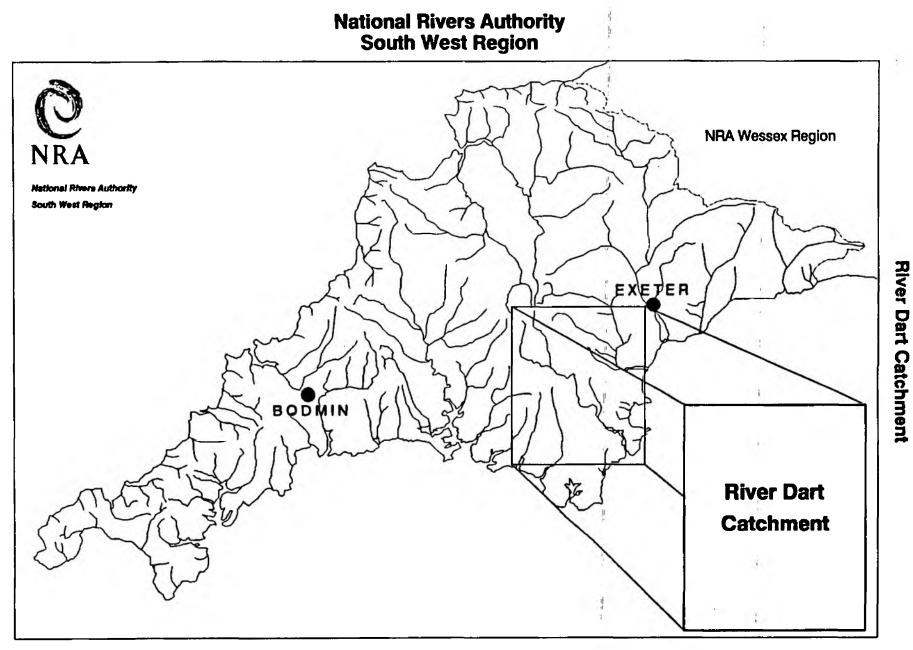
The Water Quality Planner acknowledges the substantial contributions made by the following staff:

R Broome - Co-ordinator and Editor Freshwater Planning - Production of Maps C McCarthy - Administration and report compilation A Gurney - Statistical Schedule production

Thanks are extended to A. Burghes of Moonsoft, Exeter for computer support.

Suggestions for improvements that could be incorporated in the production of the next Classification report would be welcomed.

Further enquiries regarding the content of these reports should be addressed to:


Freshwater Officer, National Rivers Authority, Manley House, Kestrel Way, EXETER, Devon EX2 7LQ

RIVER WATER QUALITY IN THE RIVER DART CATCHMENT

LIST OF CONTENTS

Page No. 1 Introduction 1 2 River Dart Catchment 1 National Water Council's River Classification System 3 3 4 1991 River Water Quality Classification 3 5 4 Non-compliance with Quality Objectives 5 6 Glossary of Terms 5 7 References 8 Appendices: 8.1 River Quality Objectives including Monitoring points - map format Basic Determinand Analytical Suite 8.2 8.3 National Water Council (NWC) River Classification System NWC Criteria for Non-Metallic Determinands - Regional 8.4 Variation NWC Criteria for Metallic Determinands - Regional 8.4.1 Variation 8.5 1991 River Water Quality Classification - tabular format 1991 River Water Quality Classification - map format 8.6 8.7 Calculated Determinand Statistics used for Quality Assessment - tabular format Compliant/Non-Compliant River Reaches - map format 8.8 Number of Samples Results exceeding quality standards 8.9 - tabular format Percentage Exceedance of Determinand Statistics from 8.10 Quality Standard - tabular format

1.14

1. INTRODUCTION

Monitoring to assess the quality of river waters is undertaken in thirty-four catchments within the region. As part of this monitoring programme samples are collected routinely from selected monitoring points at a pre-determined frequency per year, usually twelve spaced at monthly intervals. Each monitoring point provides data for the water quality of a river reach (in kilometres) upstream of the monitoring point.

Each water sample collected from each monitoring point is analysed for a range of chemical and physical constituents or properties known as determinands. The analytical results for each sample are entered into a computer database called the Water Quality Archive.

Selected data are accessed from the Archive so that the quality of each river reach can be determined based on a River Classification System developed by the National Water Council (NWC), (7.1).

This report presents the river water quality classification for 1991 for monitored river reaches in the River Dart catchment.

2. RIVER DART CATCHNENT

The River Dart flows over a distance of 47.2 km from its source to the tidal limit, (Appendix 8.1). Water quality was monitored at nine locations on the main river; eight of these sites were sampled at approximately monthly intervals. The site at Totnes Weir, which is a National Water Quality monitoring point, was sampled fortnightly.

Throughout the Dart catchment nine secondary tributaries of the River Dart and one secondary tributary of the River Hems were monitored. In addition Venford Reservoir (1.5 km) was monitored at one location at approximately monthly intervals.

The River Hems flows over a distance of 10.8 km from its source to the tidal limit, (Appendix 8.1) and was monitored at two locations at approximately monthly intervals.

The Bidwell Brook flows over a distance of 8.9 km from its source to the tidal limit, (Appendix 8.1) and was monitored at two sites at approximately monthly intervals.

The River Harbourne flows over a distance of 19.5 km from its source to the tidal limit, (Appendix 8.1) and was monitored at three locations at approximately monthly intervals.

The River Wash flows over a distance of 7.2 km from its source to the tidal limit, (Appendix 8.1) and was monitored at one location at approximately monthly intervals.

1

2.1 SECONDARY TRIBUTARIES

The East Dart River flows over a distance of 17.9 km from its source to the confluence with the River Dart, (Appendix 8.1) and was monitored at two locations, at approximately monthly intervals.

River Ashburn (10 km), Holly Brook (6.6 km), River Swincombe (6.6 km), Cherry Brook (7.9 km), River Mardle (10.1 km), Blackbrook River (7.9 km) and Cowsic (7.1 km) were all monitored at approximately monthly intervals at one location between their source and confluence with the River Dart, (Appendix 8.1). Monitoring points are all located in the lower reaches of these streams.

The Webburn River flows over a distance of 10.8 km from its source to the confluence with the River Dart, (Appendix 8.1) and was monitored at two locations at approximately monthly intervals.

The Am Brook flows over a distance of 6.7 km from its source to the confluence with the River Hems, (Appendix 8.1) and was monitored at two locations at approximately monthly intervals.

2.2 TERTIARY TRIBUTARIES

Dean Burn flows over a distance of 9.7 km from its source to the confluence with the River Mardle, (Appendix 8.1) and was sampled at one site at approximately monthly intervals.

Walla Brook flows over a distance of 7.3 km from its source to the confluence with the East Dart River, (Appendix 8.1) and was sampled at one location at approximately monthly intervals.

The West Webburn River flows over a distance of 10.2 km from its source to the confluence with the East Webburn River, (Appendix 8.1) and was monitored at one location at approximately monthly intervals.

Monitoring points were all located in the lower reaches of these streams.

Each sample was analysed for a minimum number of determinands (Appendix 8.2) plus additional determinands based on local knowledge of the catchment. In addition, at selected sites, certain metal analyses were carried out.

The analytical results from all of these samples have been entered into the Water Quality Archive and can be accessed through the Water Resources Act Register, (7.2).

3. NATIONAL WATER COUNCIL'S RIVER CLASSIFICATION SYSTEM

3.1 River Quality Objectives

In 1978 River Quality Objectives (RQOs) were assigned to all river lengths that were part of the routine monitoring network and to those additional watercourses, which were not part of the routine network, but which received discharges of effluents.

For the majority of watercourses long term objectives were identified based on existing and assumed adequate quality for the long term protection of the watercourse. In a few instances short term objectives were identified but no timetable for the achievement of the associated long term objective was set.

The ROOs currently in use in the River Dart catchment are identified in Appendix 8.1.

3.2 River Quality Classification

River water quality is classified using the National Water Council's (NWC) River Classification System (see Appendix 8.3), which identifies river water quality as being one of five quality classes as shown in Table 1 below:

Table 1 - National Water Council - River Classification System

Description
Good quality
Lesser good quality
Fair quality
Poor quality
Bad quality

Using the NWC system, the classification of river water quality is based on the values of certain determinands as arithmetic means or as 95 percentiles (5 percentiles are used for pH and dissolved oxygen) as indicated in Appendices 8.4 and 8.4.1.

The quality classification system incorporates some of the European Inland Fisheries Advisory Commission (EIFAC) criteria (Appendix 8.3) recommended for use by the NWC system.

4. 1991 RIVER WATER QUALITY CLASSIFICATION

Analytical data collected from monitoring during 1989, 1990 and 1991 were processed through a computerised river water quality classification programme. This resulted in a quality class being assigned to each monitored river reach as indicated in Appendix 8.5.

The quality class for 1991 can be compared against the appropriate River Quality Objective and previous annual quality classes (1985-1990) also based on three years combined data, for each river reach in Appendix 8.5. The river water classification system used to classify each river length is identical to the system used both in 1985 and 1990 for the Department of the Environment's Quinquennial River Quality Surveys. The determinand classification criteria used to determine the annual quality classes in 1985, subsequent years and for 1991 are indicated in Appendices 8.4 and 8.4.1.

The river quality classes for 1991 of monitored river reaches in the catchment are shown in map form in Appendix 8.6.

The calculated determinand statistics for pH, temperature, dissolved oxygen, biochemical oxygen demand (BOD), total ammonia, un-ionised ammonia, suspended solids, copper and zinc from which the quality class was determined for each river reach, are indicated in Appendix 8.7.

5. NON-COMPLIANCE WITH QUALITY OBJECTIVES

Those monitored river reaches within the catchment, which do not comply with their assigned (RQO), are shown in map form in Appendix 8.8.

Appendix 8.9 indicates the number of samples analysed for each determinand over the period 1989 to 1991 and the number of sample results per determinand, which exceed the determinand quality standard.

For those non-compliant river reaches in the catchment, the extent of exceedance of the calculated determinand statistic with the relevant quality standard (represented as a percentage), is indicated in Appendix 8.10.

6.

GLOSSARY OF TERMS

RIVER LENGTH

95 percentiles

5 percentiles

RIVER QUALITY OBJECTIVE

BIOLOGICAL OXYGEN DEMAND

(5 day carbonaceous ATU)

UN-IONISED AMMONIA

SUSPENDED SOLIDS

INFERRED STRETCH

USER REFERENCE NUMBER

RIVER REACH A segment of water, upstream from sampling point to the next sampling point.

River distance in kilometres.

That NWC class, which protects the most sensitive use of the water.

Maximum limits, which must be met for at least 95% of the time.

Minimum limits, which must be met for at least 95% of the time.

A standard test measuring the microbial uptake of oxygen — an estimate of organic pollution.

A scale of acid to alkali.

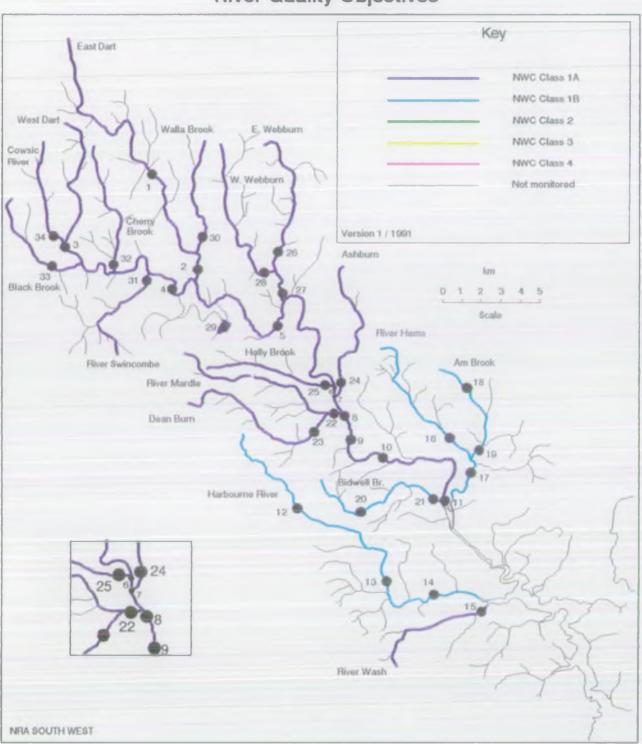
Fraction of ammonia poisonous to fish, NH^3 .

Solids removed by filtration or centrifuge under specific conditions.

Reference number allocated to a sampling point.

Segment of water, which is not monitored and whose water quality classification is assigned from the monitored reach upstream.

7. REFERENCES


рH

Reference

- 7.1 National Water Council (1977). River Water Quality: The Next Stage. Review of Discharge Consent Conditions. London.
- 7.2 Water Resources Act 1991 Section 190.
- 7.3 Alabaster J. S. and Lloyd R. Water Quality Criteria for Freshwater Fish, 2nd edition, 1982. Butterworths.

5

Appendix 8.1

Dart Catchment River Quality Objectives

BASIC DETERMINAND ANALYTICAL SUITE FOR ALL CLASSIFIED RIVER SITES

pH as pH Units Conductivity at 20 C as uS/cm Water temperature (Cel) Oxygen dissolved % saturation Oxygen dissolved as mg/1 O Biochemical oxygen demand (5 day total ATU) as mg/1 0 Total organic carbon as mg/1 C Nitrogen ammoniacal as mg/l N Ammonia un-ionised as mg/1 N Nitrate as mg/l N Nitrite as mg/l N Suspended solids at 105 C as mg/1 Total hardness as mg/l CaCO3 Chloride as mg/l Cl Orthophosphate (total) as mg/1 P Silicate reactive dissolved as mg/1 SiO2 Sulphate (dissolved) as mg/1 SO4 Sodium (total) as mg/1 Na Potassium (total) as mg/1 K Magnesium (total) as mg/l Mg Calcium (total) as mg/l Ca Alkalinity as pH 4.5 as mg/l CaCO3

		NWC RIVE	ER QUALITY	CLASSIFICATION SYSTEM		
River Class	÷	Quality criteria		Remarks	Currei	nt potential uses
		Class limiting criteria (95 percenti	ile)			
TA Good Quality	(i) (ii) (iii) (iv) (v)	Dissolved oxygen saturation greater than 80% Biochemical oxygen demand not greater than 3 mg/l Ammonia not greater than 0.4 mg/l Where the water is abstracted for drinking water, it complies with requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii)	Average BOD probably not greater than 1.5 mg/l Visible evidence of pollution should be absent	(i) ; ;;;) ;(iii)	fisheries
19 Good Quality	{i) {ii) (iii) (iv) (v)	DO greater than 60% saturation BOD not greater than 5 mg/l Anmonia not greater than 0.9 mg/l Where water is abstracted for drinking water, it complies with the requirements for A2* water Non-toxic to fish in ElFAC terms (or best estimates if ElFAC figures not available)	(i) (ii) (iii) (iv)	Average BOD probably not greater than 2 mg/l Average ammonia probably not greater than 0.5 mg/l Visible evidence of pollution should be absent Waters of high quality which cannot be placed in Class 1A because of the high proportion of high quality effluent present or because of the effect of physical factors such as canalisation, low gradient or eutrophication Class 1A and Class 1B together are essentially the Class 1 of 1 River Pollution Survey (RPS)		Water of less high quality than Class 1A but usable for substantially the same purposes
2 Fair Quality	(i) (ii) (iii)	DO greater than 40% saturation BOD not greater than 9 mg/l Where water is abstracted for drinking water it complies with	(i) (ii) (iii)	Average BOD probably not greater than 5 mg/l Similar to Class 2 of RPS Water not showing physical	(i) (ii)	Waters suitable for potable supply after advanced treatment Supporting reasonably good

.

- drinking water it complies with the requirements for A3* water (iv) Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)
- (iii) Water not showing physical (ii) Supporting reasonably g signs of pollution other than coarse fisheries humic colouration and a little (iii) Moderate amenity value foaming below weirs
 - (ii) Supporting reasonably good

APPENDIX 8

(i) (ii) (iii)	DO greater than 10% saturation Not likely to be anaerobic BOD not greater than 17 mg/l. This may not apply if there is a high degree of re-aeration	Similar to Class 3 of RPS	Waters which are polluted to an extent that fish are absent only sporadically present. May be used for low grade industrial abstraction purposes. Considerable potential for further use if cleaned up
	Natare which are inferior to	Similar to flace 4 of BDC	Matare which are greecly
	Class 3 in terms of dissolved oxygen and likely to be anaerobic at times	almiter LU Vidas 4 UF RF3	Waters which are grossly polluted and are likely to cause nuisance
	DD greater than 10% saturation		Insignificant watercourses and ditches not usable, where
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	e, se tome te cen estatean a entre estateanes	the objective is simply to prevent nuisance developing
	(11)	 (ii) Not likely to be anaerobic (iii) BOD not greater than 17 mg/l. This may not apply if there is a high degree of re-aeration Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times 	 (ii) Not likely to be anaerobic (iii) BOD not greater than 17 mg/l. This may not apply if there is a high degree of re-aeration Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times DO greater than 10% saturation

- decay, rivers usually in Class 1, 2, and 3 may have BODs and dissolved oxygen levels, or ammonia content outside the stated levels for those Classes. When this occurs the cause should be stated along with analytical results.
- (b) The BOD determinations refer to 5 day carbonaceous BOD (ATU). Ammonia figures are expressed as NH4. **
 (c) In most instances the chemical classification given above will be suitable. However, the basis of the classification is restricted to a finite number of chemical determinands and there may be a few cases where the presence of a chemical substance other than those used in the classification markedly reduces the quality of the water. In such cases, the quality classification of the water should be down-graded on the basis of biota actually present, and the reasons stated.
 (d) EIFAC (European Inland Fisheries Advisory Commission) limits should be expressed as 95 percentile limits.

EEC category A2 and A3 requirements are those specified in the EEC Council directive of 16 June 1975 concerning the Quality of Surface Water intended for Abstraction of Drinking Water in the Nember State.

Aamonia Conversion Factors

(mg $KH_{\ell}/1$ to mg K/1)

Class 1A 0.4 mg NH4/1 = 0.31 mg N/1 Class 1B 0.9 mg NH4/1 = 0.70 mg N/1 0.5 mg NH4/1 = 0.39 mg N/1

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS ANTHORITY - SOUTH WEST REGION FOR NON-METALLIC DETERMINANDS

River Quality Criteria Class

- 1A Dissolved oxygen % saturation greater than 80% BOD (ATU) not greater than 3 mg/1 0 Total ammonia not greater than 0.31 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
- 1B Dissolved oxygen % saturation greater than 60% BOD (ATU) not greater than 5 mg/l O Total ammonia not greater than 0.70 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
 - 2 Dissolved oxygen & saturation greater than 40% BOD (ATU) not greater than 9 mg/l O Total ammonia not greater than 1.56 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 28 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
 - 3 Dissolved oxygen % saturation greater than 10% BOD (ATU) not greater than 17 mg/l O
 - 4 Dissolved oxygen % saturation not greater than 10% BOD (ATU) greater than 17 mg/l 0

STATISTICS USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION

Statistic

Dissolved oxygen BOD (ATU) Total ammonia Non-ionised ammonia Temperature pH

Determinand

Suspended solids

5 percentile 95 percentile 95 percentile 95 percentile 95 percentile 95 percentile 95 percentile arithmetic mean

1.2.2.2.

.....

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR METALLIC DETERMINANDS

SOLUBLE COPPER

	1 Cu	ug/.			Statistic	Total Hardness (mean) mg/l CaCO3
lass 2	Cl	s 1	a s:	Cl		
 5	>	5	-	<	95 percentile	0 - 10
22	>	22	-	~ <	95 percentile	10 - 50
40	>	40	-	<	95 percentile	50 - 100
 112	>	112	•]	<	95 percentile	100 - 300

Total copper is used for classification until sufficient data on soluble copper can be obtained.

TOTAL ZINC

Total Hardness (mean) mg/l CaCO3	Statistic	Total Zinc ug/l Zn Class 1 Class 2 Class 3
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION CATCHPIENT: DART

.

۰.

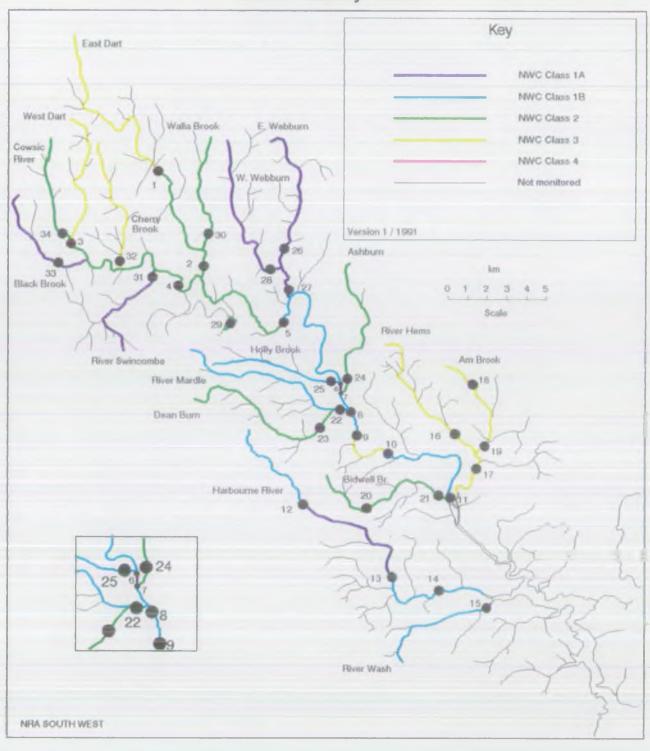
991 Map	River	Reach upstream of	User	Mational		Distance		85	•	87 NNC	88 I MMC	89 NWC	90 NWC	91
osition		1	Reference		Length	from	Quality Objective			[
lumber		1	Number	Reference	(km)		ODJective.	CT#20	107999	CTE99	CTUDD	CTEDO	i cress	
			1			(km)								
			1			1								
			j			ł			1 .					
1	EAST DART RIVER	POSTBRIDGE	R07B001	SX 6478 7893	10.2	10.2	1.	14	18	18	1	18	3	1
-	EAST DART RIVER	CLAPPER BRIDGE DARTHEET	R07B002	SX 6720 7320	7.6	17.8	I IA	1	19	1	1 1	18	2	2
-	EAST DART RIVER	DART CONFLUENCE (INFERRED STRETCH)	1		0.1	17.9	1 12	אנן	1B	ענ	1	18	2	2
	WEST DART RIVER	TNO BRIDGES	R078003	SX 6080 7499	7.9	7.9	1.	14	2	TA	1.	2	3	
-	WEST DART RIVER	HUCCABY	R07B004	SX 6588 7292	6.4	16.3	j 1A ') 1 A	2	1.	1 18	2	2	2
-	DART	INEW BRIDGE	R078005	SX 7116 7090	9.0	25.3	1 λ	1.	1 A	1.		18	2	2
-	DART	BUCKPAST ABBEY	R07B007	SX 7430 6730	9.6	34.9	1A	1	1 A '	I IA	1 1 1	18	18	18
-	DART	BELOW BUCKFAST PLATING (DART BRIDGE)	R07B038	SX 745 668	0.7	35.6	1A	14	1A	1.	1 1	18	L LA	1 17
	DART	AUSTIN'S BRIDGE	R078008	SX 7500 6600	1.0	36.6	j 1A	1 14	1 A	14	גג	1. 1.	18	18
-	DART	BELOW BUCKPASTLEIGH STW	R07B053	SX 7536 6531	0.8	j 37.4	1A	14	18	1B	1B	1A	19	18
-	DART	RIVERFORD BRIDGE	R07B009	SX 7720 6372	3.5	40.9	j 1a.	ן גע ן	1B	18	18	1	3	3
	DART	TOTNES WEIR		SX 8010 6122		47.2	1	1 18	2	1B	18	18	18	18
12	HARBOURNE RIVER			SX 7175 6232	4.4	4.4	18	18	1	-14	- IA	1.	1	11
_	HARBOURNE RIVER	LEIGH BRIDGE		SX 7710 5666	9.7	j 14.1	18	1 1 1	j 1.a.	1 1 1	1B	2	1B	່ມ
	HARBOURNE RIVER	BEENLEIGH		SX 7973 5660	3.8	j 17.9	j 18	1 1 1	j 1 A	1 A	18	2	3	11
	HARBOURNE RIVER	NORMAL TIDAL LIMIT (INFERRED STRETCH)			1.6	19.5	j 18	1.	1	18	19	2	3	11
15	WASH	TUCKENHAY	R07A004	SX 8176 5590	7.0	7.0	17	1	j IA		18	18	19	11
	WASH	NORMAL TIDAL LIMIT (INFERRED STRETCH)	1	1	0.2	7.2	1 λ	1 1	1	1	18 	18	1.8	
-16	HEMS	PORTBRIDGE		SX 7889 6588	4.9	4.9	18	18	18	3		3	3	3
17	HEMS	LITTLEHENPSTON	R07B012	SX 8115 6237	5.9	10.8	19 1	18 	18	3	3 	3	3	
18	AM BROOK	COLLACOMBE BRIDGE		SX 8107 6745	2.2	2.2	1B	2	3	3	3	3	3	3
19	AM BROOK	FISHACRE BRIDGE	R07B017	SX 8190 6445		5.9	1B	2	1B	1 2	121	3	3	3
	AM BROOK	(HEMS CONFLUENCE (INFERRED STRETCH)			8_0_1	6.7	18 1	2	18 	12 1		. 3	1 3 	3
20	BIDWELL BROOK	TIGLEY		SX 7573 6086	3.5	3.5	18	2	3	3	2	1	3	2
	BIDWELL BROOK	DARTINGTON LODGE	R07B019	SX 7990 6150		8.7	18	2	13	1 3	2	2	3	2
	BIDWELL BROOK	DART CONFLUENCE (INFERRED STRETCH)			0.2	8.9	18	2 	3	3	2	2	3	2
22	MARDLE	RAILWAY BRIDGE BUCKPASTLEIGH	R07B014	SX 7472 6612	10.1	10.1	14		<u></u>	<u></u>	<u>_</u>	1	17	j li
23	DEAN BURN	BJ380 BRIDGE	R07B052	SX 7328 6511		8.2	LA		i	i			2	-1
	DEAN BURN	MARDLE CONFLUENCE (INFERRED STRETCH)		†	1.5	9.7	1 1A	1.A. 	(E		1		2	2
24	ASHBURN	DART BRIDGE	R078050	SX 7456 6678	-	9.8	<u> </u>	18	i	i			18	2
	ASHBURN	DART CONFLUENCE (INFERRED STRETCH)			0.2	10.0	1 7	1B 					1B	2
25	HOLY BROOK	NORTHWOOD BUCKPAST	R078020	SX 7401 6767		6.5	LA	72	2	1	18	18	18	j <u>1</u>
	HOLY BROOK	DART CONFLUENCE (INFERRED STRETCH)		(0.1	1 6.6	(1A 1	1 IA 	2	AL	18 	18	18	1E
26	EAST WEBBURN RIVER			SX 7168 7508	6.9	6.9		;	-IA			18	18	Ū

Appendix 8.5

...

RATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION CATCHMENT: DART

ł


1991 Map Position Number		Reach upstream of	User Reference Number	Rational Grid Reference	Reach Longth (km)		River Quality Objective		•				-	91
						(km) 1					 		1	
27	WEBBURN	BUCKLAND BRIDGE	R078015	5X 7189 7196	3.9	10.6		-17	-1A	-IA	18		18	-
	WEST WEBBURN RIVER WEST WEBBURN RIVER	PONSMORTHY BRIDGE WEBBURN CONFLUENCE (INFERRED STRETCH)	R078037	SX 7011 7390	8.7 1.5	8.7 10.2			1A 1A	1A 1A	<u>іл</u> 1л	1B 1B	18 18	1A 1A
29	VENFORD BROOK VENFORD BROOK VENFORD BROOK	INFLOW, VENFORD RES. (UNMON. STRETCH) VENFORD RESERVOIR DART CONFLUENCE (UNMONITORED STRETCH)	 R07B048 	5X 6858 7105	0.9 0.6 1.0	0.9 1.5 2.5	1A 1A 1A				[ม 2 บ	2 2 U
	WALLA BROOK WALLA BROOK	BABENY EAST DART CONFLUENCE (INFERRED STRETCH)	R07B051	SX 6730 7516		6.8 7.3	 	1A 1A	 				2	2
31	SWINCOMBE	PRIOR TO WEST DART RIVER	R07B021	SX 6475 7370	6.6	6.6	IA	1.	-3-	1	18	<u>1</u> B	3-	AL
	CHERRY BROOK CHERRY BROOK	LOWER CHERRYBROOK BRIDGE WEST DART CONFLIENCE (INFERRED STRETCH)	R07B032	SX 6311 7484	6.7 1.3	6.7 Y	1A 1A	1B 18	2	1A 1A	1A 1A	1A 1A	3	3
	BLACKBROOK RIVER BLACKBROOK RIVER	TOR ROYAL WEST DART CONFLUENCE (INFERRED STRETCH)	R078049	SX 6017 7383	6.0 1.9	6.0 7.9	<u>1</u> λ 1λ	18 18	 			 	18 18	1A 1A
34	CONSIC RIVER CONSIC RIVER	BEARDOWN FARM WEST DART CONFLUENCE (INFERRED STRETCH)	R07B057	SX 6031 7530	6.6 0.5	6.6	1A 1A		 			 !		2

14

5

× . .

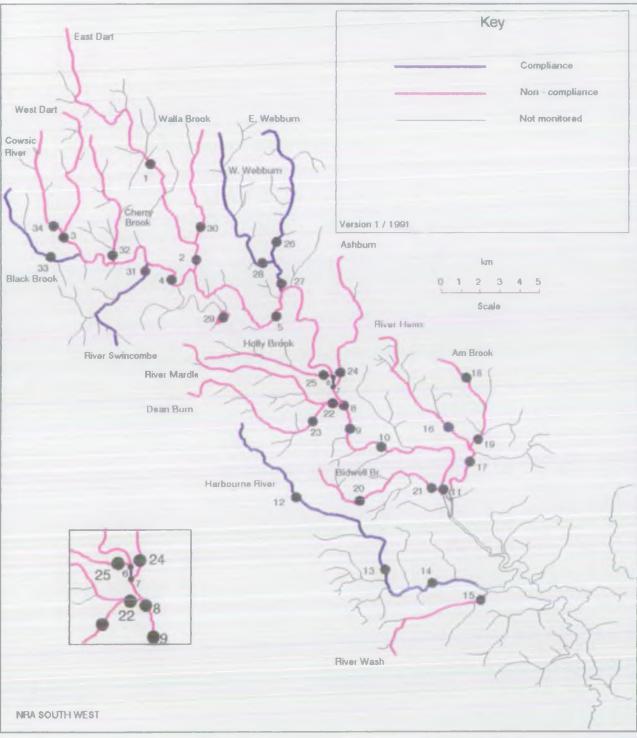
Dart Catchment Water Quality - 1991

NUTLINEL RIVERS AUTHORITY - SOURH WEIT REGIN 1991 RIVER WHER QUALITY CLASSIFICATION CALLARED LEADERINNED STRUISTICS USED FOR QUALITY ASSESSMENT CRICHENT: DNT

6

River	Reach upstress of	User	ROD	T		Orlan	ted Det	ecairon	d Statis	tics us	ed for Q	unlity a	Assesses	nt									
	ļ	Per.	ļ	!	_]		!				!		Ľ.,		<u>t</u>		!					
	!	Number	!		Lower		iper :		erature	•	· (%)		· ·			• • • • • • • • • • • • • • • • • • • •	Amorda		alida –	•	Copper		ul zine: 195kile
		1	!	Class	5kile	Class	95 hi le	0.0059	95kile		Stile	CLASS	956110		1 APRITO		: 95kile				95416		· ADATTO
	1	!	!	!		!		1		!		1	4	1		1		1		!			
, ' 	1	-	1	1		ľ		1 1		1 1		i i		i						1		•	
ENST UNKT RIVER	POSTERIDUE	R078001	AL	<u> 3</u>	4.9	<u> 1</u>	6.9	<u>1</u> A	14.8	1.8	78.6	1	2.0	I IA	0.052	1	0.010	•	2.5	<u> 1</u>	5.0	14	9.9
EAST DART RIVER	CLAPPER BRIDGE DNOMEET	F078002	AL	j IA	5.2	AL	7.3	I IA	16.5	IA	85.2	1	1.9	1A	0.061	11	0.010	14	1.9	1 2	5.1	I IA	10.2
	1	1	I	١		<u> </u>		I		<u>t </u>		<u> </u>		I		1		L		<u> </u>			
WEST DART RIVER	TWO BRIDGES	R078003	•	•	4.7		6.8	<u> 1</u>	15.8	1 14	67.8	14	1.8		0.055	17	0.010		1.5	1 1	5.9	N I	18.2 .
WEST DART RIVER	HUCCNEY	F078004	•	•	5.5	I IA	7.3	I IV	16.0	I IV	67.0	I IA	2.1	1 17	0.040	17	0.010	17	1.7	2	11.0	1	12.0
DART	INEW BRODGE	19078005	•	•	5.4	I IV	7.4	I IV	17.1	1 18	72.0	I IV	3.0	1 14	0.101	14	0.010	I IX	1.9	2	6.0	1	8.9
DAKI	BUCKPAST NEED	F078007	•	•	6.3	אנן	7.4	אנן	21.0	119	77.2	1A	1.8	1A	0.032	14	0.010	1 17	2.2	14	6.7	I IX	12.6
DAG	(BELOW BUCKYAST PLACING(DART BRODGE)	PO78038	•	•	6.4	I N	7.7	I W	20.8	I IA	93.0	AL I	2.1	I IA	0.037	1	0.010	1	2.4	I IA	6.5	I IA	70.9
DAAC	ALETIN'S BRIDE	(R078008	•	•	6.8	1 17	7.9	1	20.8	118	ស.3	AL	2.2	1	0.037	1 1	0.010	1	3.1		5.8	I IX	9.5
DARD	HELOW BULRYNSTLEIGH SIM	8078053	•	•	6.7	17	7.8	1 17	18.4	18	តា.4	AL	2.6	I IB	0.390	1 14	0.010	1 1	4.1	1 1	5.5	I 1A	27.0
DNT	RIVERCED BRIDDE	12078009	•		6.9	AL I	8.3	1 14	20.1	1B	78.8	14	2.1	1	0.145	3	0.023	1 14	6.0		13.0		19.0
DNC	TUINES WEIR	R078010	IV	I IV	6.9	I IA	7.7	I IA	18.1	118	75.9	JA	3.0	1 IV	0.269	1 14	0.010	i IV	6.7	I IA	7.0	1 14	B .0
<u> </u>		_!	<u> </u>	<u>ļ</u>		<u> </u>		<u> </u>		ļ		ļ	i		-	<u> </u>		!		ļ		ļ	
HARBOURNE RIVER	HARBOURNERCHD	R072001	•	•	6.8	1 14	8.1	I IA	15.5	1 12	81.1	118	4.7	1	0.110	I N	0.010	14	4.0	-	-	-	
HAMBOURNE REVER	JEIGH BRIDGE	R072002	•	•	7.3	1A	8.0	1A	16.7	1 1A	82.2	AL I	2.9	1A	0.75	I W	0.010	14	7.3		12.6	14	11.7
PAREOUNE RIVER	HEADER	R072003	1 78	I IV	7.4	N N	8.3	I IA	16.0	118	71.2	1B	4.9	1B	0.350	I N	0.010	14	23.3	I IV	6.0	1	27.0
1	<u> </u>		<u> </u>	<u> </u>				<u> </u>		ļ				ļ		ļ		<u> </u>		ļ			
WPKSH2	TUCKENIAY	R072x004	אנן ו	1A 	7.4	<u> </u>	8.2	1A 	15.6	1A 	83.9	IA 	2.5	118	0.404	1A 	0.010	1 77	7.5	1 14	5.1	AL 	117
HENG	REPERINCE	1070011	<u>i lb</u>	1	7.2	<u>i in</u>	8.1	<u>i i</u> a	15.9	<u> 3</u>	29.1	<u>)</u> 2	6.4	2	1.503	1	0.020	Ì	29.9	i la	53.0	A I	50.0
HPE		12078012	113	1 14	7.6	I IV	8.3	1A	16.0	at	73.7	2	7.2	2	1.010	1	0.018	3	26.4	1	6.0	I IA	15.7
I		1078016	18	1	7.4	<u> 1</u>	8.2	14	15.7	- 2	56.6	2	7.7		4.244	1 3	0.075	5	29.2		50.0	<u> </u>	51.0
AM SPOOK	FISHCRE BRIDGE	F078017	-	•	7.7	i IA	8.2	1	15.0	i 10	64.5	1 2	5.1	i 3	2.261	i i	0.056	ĂL Î	15.5	I IA	6.0	i 1A	9.0
		1	i —	i		i –		i —		i —		i i		i 👘				- X -		i		i	
BIDNELL BROOK	THEFT	F076018	118	1 <u>1</u> 1	7.5	Í IA	8.2	i la	15.5	<u> 18</u>	69.2	<u>i 2</u>	6.2	i ib	0.378	14	0.010	i ia	19.8	14	10.8	i la	2.9
BIDNELL BROCK	DARTERICA LODE	9078019	•	j 1A	7.5	A L (8.0	1 14	16.0	1 2	45.4	2	7.7	2	0.937	14	0.010	1	10.1	14	9.1	1A.	20.9
	IRAIDAN BRIDGE BUCKASTLEICH	 R078014			7.3		8.4	 A	18.0	(119	79.6	 	2.6		0.114	1	0.010	14	11.8	 A	22.4		22.0
			1)			0.4	1	10.0		/3.0		2.9		V.114		0.000				44.7		44. V
DENN BLIRN	BU380 BRIDE	IF078052	11	<u>ì i</u> a	6.7	i la	8.0	م د أ	16.0	<u>i 2</u>	56.2	<u>i 1a</u>	2.6	1	0.180	i JA	0.010	1 14	14.0	i 2	47.8	IA	103.0
i (1	i		i —		i –		i		i –		1		,		1				i -			
AHELIRI	DART BRODGE	R078050	1	<u> </u>	7.2	<u>1</u>	8.5	<u>k i</u>	18.7	12	55.2	2	5.5	<u>x</u>	0.241	1 14	0.010	Î ÎĂ	7.8	1 14	6.0	1A	10.2
	i i	i	i i	i		i		i		i		i		i		i		i		1			
HOLY HROCK	NURTHICOD BUCKINST	F076020	12	<u>i la</u>	6.8	i la	7.6	1 14	10.5	i 1B	72.0	i la	2.6	<u>A</u>	0.086	Ì IA	0.010		6.7	À IA	6.0	AL	13.0
	i	i	i	i		i		i		i		i		i				i 🐑		i i			
EKST WEHLIN RIVER	COCIUNCPORD	R078036	TA	1 1	6.6	11	7.4	I IA	16.0	<u>i i</u> a	84.0	14	2.2	I IA	0.090	14	0.010	i ia	4.5	14	0.0	14	12.0
WEIBLIN	BLOCARD BRIDGE	1078015	11	j 1A	6.6	j 1A	7.6	j sa	14.6	i 1A	81.5	גע ו	2.0	j 1A	0.050	i 1a	0.010	j la	2.2	j 1A	5.1	14	7.1
P F	i	i	Í	i		i		i		i		ì		i		i		i		İ			
WEST WEHLINN RIVER	HONSMORTHY BRIDGE	19078037	11	1	6.6	1	7.4	<u>الا</u>	14.5	<u> 1</u>	85.0	<u>İ la</u>	1.6	Í IA	0.050	<u> 1</u>	0.010		2.2	14	5.0	1A	11.0
<u> </u>	<u> </u>	1		<u>i</u>		t		İ		i		Í .		i .		i		1		E _			
VENEORD BROOK	VENPORD RESERVOIR	19078048	I IA	<u> 1</u>	- 3.5	<u> </u>	7.2	I IA	18.9	2	57.1	1 10	1.5	j la	0.075	14	0.010	I IA	2.1	2	6.5	- AL	17.0
	1	1		I		I		ł		ŧ		İ		İ		i		1.0		i	1		
MALLA BROOK	BREENE	R078051	14	<u> </u>	6.0	1	7.3	18	14.6	14	80.3	14	1.8	1	0.047	1	0.010	14	-1.7	2	6.7	IA.	23.0
	1	1		1		1.1		1		Í		i		İ		Î.				İ	J		

1


NUTLINI, RIVER AUHORITY - SOUR WEST REGION 1991 RIVER WIER GURLITY CLASSIFICATION ONCILATED DETERMINING STRUSTICS USED FOR GURLITY ASSESSMENT ORIGHENT: DAT

River	Reach upstress of	User	FQD	1		Oulcul	ated bete	ecmine	nd Statis	tics u	ed for Q	unlity	Assesse	nt.									- I
Ì		Ref.	I	1		1		ļ		1		1		1				!		!	_	!	
1	ļ	Nutber	ļ		LONIET		thet		persture) (1)						. Jeennia		alids	•	Copper		ul Sinc
			!	CLASS	Stile	Cass	958LLO		s 95kile		; Skile	CLass	951110		5 95114		s 95kile			i Cirrent I	95410		:95kile (
				1				:		-		-				!				1			ľ
1		1) 	1 1		, 1		i		ł				i –		i		ì		Ì		1	ľ
SHENCOME	PRIOR TO WEST DART RIVER	R078021	11	1.	5.1	1.	7.0	1	15.5	<u>, 1</u>	90.0	1A	1.9	<u>AL</u>	0.039	<u> </u>	0.010	<u> </u>	1.7	1	5.0	<u> 77</u>	10.0
GENEY BROOK	LOVER CHEVROMERCOCK BRODDLE	 12079032	<u></u>		5.0		7.0		16.0	<u> </u>	65.7	<u></u>	1.8	<u></u>	0.049	<u> 1</u>	0.010	14	2.3	1	5.0	 	21.2
		1	i	i		i		i		i		i		İ		İ.		İ		İ		j	
BLACKERCOK REVER	TOR ROAM	R078049	1	1	5.9	X I	7.3	1	15.8	A I	83.3	<u> 1</u>	2.3	1 1	0.111	1 14	0.010	14	4.1	17	7.7		20.2
CONSIC RIVER	BEZHOOMI FARM	1078057	7		5.2	١٨	7.0	<u></u>	16.9	<u> 1</u>	89.0	<u> 1</u>	1.8	1	0.049	1	0.010	14	2.1	2	50.0		50.0
İ	_l							l		I		I		I		1				l		L	

.

Dart Catchment Compliance - 1991

i

NATURAL RIVERS ADDRIVED - SOUTH WEST REGION 1991. RIVER WEDER QUALITY CLASSIFICATION NUMER OF SAMPLES (N) AND NUMER OF SAMPLES EXCEPTING QUALITY SUNDARD (P) . GEOMENT: DART

River	Reach upstream of	Uber Ref.	pH I	CHRI	EH (ther	Tempe	rature		(\$)	1300 (ATU)	Total #	din tia	junian. 	Ammia	S.90 	Lids	I TOCAL	Officer	Total 	ul Zint
		Nuntaer 	N	r	N 	P	1 1 1	P	j 19 	F	N 	r 4	19 	F	157 	۲	N 	P	N 	r	11 	F
AST LAKT KIVER	FOSTBRIDGE	 	35	<u>i</u>	 35		 35		 35	1	 		 35		24		35	1	22		 22	
DAT DART RIVER	CLAPPER BELLE DARIMENT	R078002	38	-	38 	-	j 38		38 	1	38	-	38 	-	24		38	•	38	1	38	-
EST DART RIVER	TWD ERIDGES	F078003	34	2	34	_	<u>j</u> 34	_	<u> </u>	-	34	-	<u> </u> 34	-	19	-	j 34		1 2	1	1 21	-
WEST DART RIVER	HUDDEN	8078004	39	-	j 39	-	39	-	39	1	39	- 1	39	-	28	-	39	-	39	4	39	-
DAKT	NEW BRIDGE	R078005	32	-	j 32	-	j 32	→	j 31	1	j 32	1 :	32	-	j 21	-	32	-	20	1	20	-
DART	HUNPAST ATTEX	R078007		-	j 37	-	j 36	-	j 35	1	j 37		36	-	j 23	-	j 37	-	j 26	-	25	-
DART	HELON BUCKFAST PLATING (DRT BRIDE)	R078038		-	45		i 44		ios	-	1 45	- "	65	-	i 35	-	145	-	j 36	-	j 36	-
DART	ALSTIN'S BRIDE	R078008		-	44	-	43	1	i 41	2	44		i 44	-	1 31	-	44	-	i 44	-	ì 44	-
	•	[R078053]		-	29	_	1 30	-	28	ī	29	_	29	3	28	-	29	1	29	-	29	-
DARC	HELOW BUCKASILEDH SIN				30	-	1 28	-	1 27	1	30	1	1 30	-	25	1	30	2	i 16	-	i ii	_
	RIVERCRO BRIDE	[R078009]			30 81	-	1 78	-	1 7	8	1 79	3	1 80	1	175	-	179	ŝ	79	-	79	_
DART	TOTNES WEIR	FO7E010 	81.	-	1 84	-		-	<u> "</u>	0	· · ·	j		•				,				1
PARBOLINE RIVER	HARBOURNEFORD	R072001	31	-	1 31	-	1 31	-	<u> 30</u>	-) U	1	31	-	1 27	-	। ज	1	1	-	1	-
ANECHNE RIVER	LEICH BRIDGE	F072002	32	-	32	-	1 31	-	30	-	32	-	32	-	29	-	(32	-	20	-	(20)	-
PHECHNE RIVER	HENLEICH	1072003	39	-	1 39	-	38	-	37	-	39 1	1 -2	39	-	37	-	39 1	3	39	-	39 	-
HEA	TANGTHAY		38	-	38	-	38	-	37	1	38	i	38	3	1 37		38	1	38		38	-
HQ15	RRIFILLE	R078011	24	121	24		i 23 i 39	-	22	3	24	2	24 39	4	22	-	j 24 39	2	<u> 12</u> 40	-	12	-
HEMS		R078012 	39	-	39	-	1 39	-	«د ا ا	-	1 39 	4			к		i		<u>i</u>		i	
AM ERCOK	TILLATINE BRIDE	R07E016	30	-	30	-	30	-	30	3	30	- 3	30	- 5	28	3	30	6	1 12	-	1 12	-
am Brook	FISHCRE BRIDGE	R078017	30	-	30	-	30	-	29	-	1 30	1	† 30 I	2	29	1	30	3	1 12	-	1 12	-
BILINELL HECOK	TRAFY	F078018	32	•	1 12	-	1 32		1 31	1	1 32	2	32	-	30	-	2	4	20	-	20	-
BUDAELL BROOK	DARTINGTON LODGE	R078019	30	-	30	-	29	-	28	7	30 	1	30	2	1 27		30	1	25		1 25	-
MNRLE	RAIDWAY BRIDGE BLENFRSTLEICH		38	-	j <u>3</u> 8	-	38	-	<u> 37</u>	1	38	1	38		35	-	38	4	38 	-	38	,
CEAN BURN	B3380 BRIDGE	18078052	32	-	32	-	32	-	<u>u</u>	2	32	-	32		27	-	32	1	20	1	20	1
ASELRI	DAKT BRIDGE	19078050	32	-	32	-	32	-	31	2	32	2	32	1	27	-	1 32	3	28	-	28	
HOLY BROOK	NORTHHCOD BUCKPAST	R078020	л	-	<u> u</u>	-	30	-	29	2	i n	- 1	<u> </u>		24	-	n	3	19	-	19	-
AST WEHELINN RIVER			- 39		39		39	-	39	1	39	_	39	-	37		39		39		39	
EBURN	BUCKLAND BRIDGE	1078015		-	39	-	1 37	-	36	ī	38	-	38	-	25	-	38	-	38	-	38	-
EST WEIBLEN REVER	PONSHORDER BRIDGE	11078037	- 19		39		39	-	39	1	39	100	39	1	28	-	39	-	39	-	39	
ZENFORD ERCOK	VENFORD RESERVOIR	R078048	52	-	52	-	52	1	42	2	51	-	्य		16	-	52	÷.	34	2	Ж	-
ALLA ERCOK	BNENY	1078051	- 34	-	<u>н</u>	•	- 34	-	34	1	34	-	34	-	25	-	34	-	22	-1	22	-

Appendix 8.9

÷.,

NRITCHAL RIVERS AND RETY - SOUR WEST REGION 1991. RIVER WHER QUALITY CLASSIFICATION NUMBER OF SAMPLES (N) AND NUMBER OF SAMPLES EXCEEDING QUALITY SUMDARD (F) CRICHMENT: DART

	P
	r
	ļ
1	
1	
i	i
39	-
23	~ !
	{
1 4	~ !
	¦
1	-
1 - -	

.

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT: DART

1

River	Reach upstream of	User Ref.		PERCENTAGE	EXCEEDENCE OF	STATISTIC	FROM QUALIT	Y STANDARD		1 1	1	
•			pH Lower	pH Upper 	Temperature	DO (%)	BOD (ATU)	Total Ammonia	Un-ionised Ammonia 	Suspended Solids	Total Copper	Total Zinc
· ·		1		i i								
EAST DART RIVER	POSTBRIDGE	R07B001	1	-		2	li .—	-	-	-	-	•
EAST DART RIVER	CLAPPER BRIDGE DARTMEET	R07B002 	-	-	-	-	-	-	-	-	2	-
WEST DART RIVER	TWO BRIDGES	R078003	7		i	T AL		-	-	-	18	-
WEST DART RIVER	HUCCABY	R078004	1.1	-		-	1 - · · ·	-	-	-	120	
DART		R07B005		-	-	10	i i	-	-	- 1	19	-
DART	•	R07B007		-	i - i	4	1		-		-	-
DART	BELOW BUCKFAST PLATING (DART BRIDG	• •		-		-	1-	121		-	-	-
DART		R078008			1.01	21	h	-	_		-	
DART		R078053		_		16	<u> </u>	26				-
DART		R078003		-		1	1		10		1.0	
				-	-	-		-				
DART	TOTNES WEIR	R07B010	-	-	-	5	-		-	-	-	
HARBOURNE RIVER	HARBOURNEFORD	R07A001	-		-	-		-	-	< # 0	-	
HARBOURNE RIVER	LEIGH BRIDGE	R07A002	-	-	1 - 1	-	-	-	- 1	-	-	-
HARBOURNE RIVER	BEENLEIGH	R07A003	-	-		- -	-	• •	-	-	-	•
NASH	TUCKERHAY	R07A004		-	-	-		30			-	
HEMS	•	R078011	-			52	29	115	-	19		
HEMS	LITTLEHEMPSTON	R07B012 	-	-	-	-	44	44	-	6	-	-
AM BROOK	COLLACOMBE BRIDGE	R07B016	-	-		6	55	506	256	17	-	
AH' BROOK	•	R07B017	-	-	-	-	1	223	165	· • ·	-	-
BIDWELL BROOK	TIGLEY	R07B018	-		·	in the second second	25			-		
BIDWELL BROOK	DARTINGTON LODGE	R07B019 	-	-	-	24	54 k	34	-	-	-	-
MARDLE	RAILWAY BRIDGE BUCKPASTLEIGH	R07B014	1.2	-		1		•		-	-	-
DEAN BURN	B3380 BRIDGE	R07B052		-	-	31	-	-	-		117	
ASHBURN	DART BRIDGE	R07B050	-	-		31	85	-	-			-
HOLY BROOK	NORTHWOOD BUCKPAST	R078020	1.50	-		10		्र २		-		-
EAST WEBBURN RIVER	COCKINGFORD	R078036				-		-				
WEBBURN	BUCKLAND BRIDGE	R07B015	-	-	-	-	-\$	-	-	-	-	-
WEST WEBBURN RIVER	PONSWORTHY BRIDGE	R07B037		-	-		- 1	-	-		-	
VENFORD BROOK	VENFORD RESERVOIR	R076048	-	-		29			-		30	-
MALLA BROOK	BABENY	R078051	-		-{	-	 					<u></u>

Appendix 8.10

....

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT: DART

. .

River	Reach upstream of	User		PERCENTAGE	EXCEEDENCE O	F STATISTIC	FROM QUALIT	Y STANDARD)			
1	I	Ref.		I	1				<u> </u>			
1	l l	Runber	pH Lower	pH Upper	Temperature	DO (%)	BOD (ATU)		Un-ionised		Total	Total
		f i		!	Į.	!		Amonia	Ammonia	Solida	Copper	Zinc
1				!	ļ				!			
1									!			
SWINCOMBE	PRIOR TO WEST DART RIVER	R07B021	~		-		-	-	; -	-		- !
	LOWER CHERRYBROOK BRIDGE		<u> </u>						·¦			
CHERRY BROOK	I I I I I I I I I I I I I I I I I I I	14010032	*	-				-	-	_	1.20	
BLACKBROOK RIVER	TOR ROYAL	R078049							¦			1.64
									i			
CONSIC RIVER	BEARDOWN FARM	R078057		-	-						900	67
							iii		i	i i		
		· · · · · · · · · · · · · · · · · · ·		·	· · · · · · · · · · · · · · · · · · ·		·		·	· · · · · · · · · · · · · · · · · · ·	' سے	