NRA South West 1	169
------------------	-----

Environmental Protection Report

River Otter Catchment River Water Quality Classification 1991

> April 1992 WQP/92/006 Author: B L Milford Water Quality Planner

C V M Davies Environmental Protection Manager

ACKNOWLEDGEMENTS

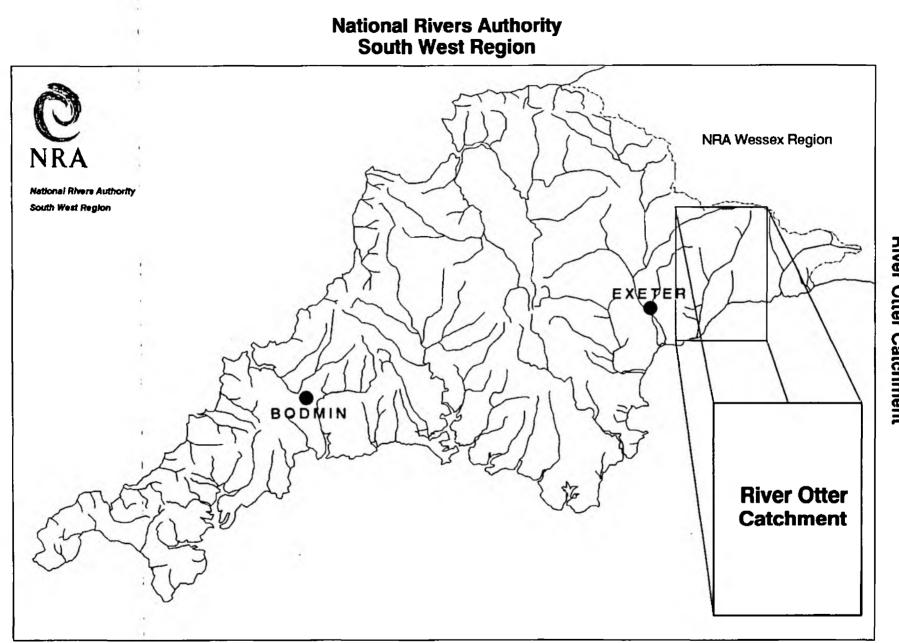
The Water Quality Planner acknowledges the substantial contributions made by the following staff:

R Broome - Co-ordinator and Editor Freshwater Planning - Production of Maps C McCarthy - Administration and report compilation A Gurney - Statistical Schedule production

Thanks are extended to A. Burghes of Moonsoft, Exeter for computer support.

Suggestions for improvements that could be incorporated in the production of the next Classification report would be welcomed.

Further enquiries regarding the content of these reports should be addressed to:


Freshwater Officer, National Rivers Authority, Manley House, Kestrel Way, EXETER, Devon EX2 7LQ

RIVER WATER QUALITY IN THE RIVER OTTER CATCHMENT

LIST OF CONTENTS

Page No. 1 1 Introduction 2 River Otter Catchment 1 National Water Council's River Classification System 3 2 4 1991 River Water Quality Classification 3 5 Non-compliance with Quality Objectives 3 Glossary of Terms Δ 6 7 References ۵ 8 Appendices: River Quality Objectives including Monitoring points 8.1 - map format 8.2 Basic Determinand Analytical Suite 8.3 National Water Council (NWC) River Classification System 8.4 NWC Criteria for Non-Metallic Determinands - Regional Variation NWC Criteria for Metallic Determinands - Regional 8.4.1 Variation 1991 River Water Quality Classification - tabular 8.5 format 8.6 1991 River Water Quality Classification - map format Calculated Determinand Statistics used for Quality 8.7 Assessment - tabular format 8.8 Compliant/Non-Compliant River Reaches - map format Number of Samples Results exceeding quality standards 8.9 - tabular format 8.10 Percentage Exceedance of Determinand Statistics from Quality Standard - tabular format

11

River Otter Catchment

1. INTRODUCTION

Monitoring to assess the quality of river waters is undertaken in thirty-four catchments within the region. As part of this monitoring programme samples are collected routinely from selected monitoring points at a pre-determined frequency per year, usually twelve spaced at monthly intervals. Each monitoring point provides data for the water quality of a river reach (in kilometres) upstream of the monitoring point.

Each water sample collected from each monitoring point is analysed for a range of chemical and physical constituents or properties known as determinands. The analytical results for each sample are entered into a computer database called the Water Quality Archive.

Selected data are accessed from the Archive so that the quality of each river reach can be determined based on a River Classification System developed by the National Water Council (NWC), (7.1).

This report presents the river water quality classification for 1991 for monitored river reaches in the River Otter catchment.

2. RIVER OTTER CATCHMENT

The River Otter flows over a distance of 43.8 km from its source to the tidal limit, (Appendix 8.1). Water quality was monitored at eleven locations on the main river; ten of these sites were sampled at approximately monthly intervals. The site at Dotton Mill, which is a National Water Quality monitoring site, was sampled fortnightly.

Throughout the Otter catchment four secondary tributaries of the River Otter were monitored. In addition Squabmoor Reservoir (5.8 km) was monitored at one location at approximately monthly intervals.

2.1 SECONDARY TRIBUTARIES

The River Gissage, River Wolf and Wick Stream flow over a distance of 6.0 km, 6.4 km and 8.3 km respectively from their source to the confluence with the River Otter, (Appendix 8.1) and were each monitored at one location at approximately monthly intervals.

The River Tale flows over a distance of 14.2 km from its source to confluence with River Otter (Appendix 8.1) and was monitored at two locations at approximately monthly intervals.

Each sample was analysed for a minimum number of determinands (Appendix 8.2) plus additional determinands based on local knowledge of the catchment. In addition, at selected sites, certain metal analyses were carried out.

The analytical results from all of these samples have been entered into the Water Quality Archive and can be accessed through the Water Resources Act Register, (7.2).

3. NATIONAL WATER COUNCIL'S RIVER CLASSIFICATION SYSTEM

3.1 River Quality Objectives

In 1978 River Quality Objectives (RQOs) were assigned to all river lengths that were part of the routine monitoring network and to those additional watercourses, which were not part of the routine network, but which received discharges of effluents.

For the majority of watercourses long term objectives were identified based on existing and assumed adequate quality for the long term protection of the watercourse. In a few instances short term objectives were identified but no timetable for the achievement of the associated long term objective was set.

The RQOs currently in use in the River Otter catchment are identified in Appendix 8.1.

3.2 River Quality Classification

River water quality is classified using the National Water Council's (NWC) River Classification System (see Appendix 8.3), which identifies river water quality as being one of five quality classes as shown in Table 1 below:

Table 1 - National Water Council - River Classification System

Description
Good quality
Lesser good quality
Fair quality
Poor quality
Bad quality

Using the NWC system, the classification of river water quality is based on the values of certain determinands as arithmetic means or as 95 percentiles (5 percentiles are used for pH and dissolved oxygen) as indicated in Appendices 8.4 and 8.4.1.

The quality classification system incorporates some of the European Inland Fisheries Advisory Commission (EIFAC) criteria (Appendix 8.3) recommended for use by the NWC system.

. 1991 RIVER WATER QUALITY CLASSIFICATION

Analytical data collected from monitoring during 1989, 1990 and 1991 were processed through a computerised river water quality classification programme. This resulted in a quality class being assigned to each monitored river reach as indicated in Appendix 8.5.

The quality class for 1991 can be compared against the appropriate River Quality Objective and previous annual quality classes (1985-1990) also based on three years combined data, for each river reach in Appendix 8.5.

The river water classification system used to classify each river length is identical to the system used both in 1985 and 1990 for the Department of the Environment's Quinquennial River Quality Surveys. The determinand classification criteria used to determine the annual quality classes in 1985, subsequent years and for 1991 are indicated in Appendices 8.4 and 8.4.1.

The river quality classes for 1991 of monitored river reaches in the catchment are shown in map form in Appendix 8.6.

The calculated determinand statistics for pH, temperature, dissolved oxygen, biochemical oxygen demand (BOD), total ammonia, un-ionised ammonia, suspended solids, copper and zinc from which the quality class was determined for each river reach, are indicated in Appendix 8.7.

5. NON-COMPLIANCE WITH QUALITY OBJECTIVES

Those monitored river reaches within the catchment, which do not comply with their assigned (RQO), are shown in map form in Appendix 8.8.

Appendix 8.9 indicates the number of samples analysed for each determinand over the period 1989 to 1991 and the number of sample results per determinand, which exceed the determinand quality standard.

For those non-compliant river reaches in the catchment, the extent of exceedance of the calculated determinand statistic with the relevant quality standard (represented as a percentage), is indicated in Appendix 8.10.

6. GLOSSARY OF TERMS

RIVER LENGTH

95 percentiles

5 percentiles

RIVER QUALITY OBJECTIVE

BIOLOGICAL OXYGEN DEMAND

(5 day carbonaceous ATU)

UN-IONISED AMMONIA

SUSPENDED SOLIDS

INFERRED STRETCH

USER REFERENCE NUMBER

RIVER REACH A segment of water, upstream from sampling point to the next sampling point.

River distance in kilometres.

That NWC class, which protects the most sensitive use of the water.

Maximum limits, which must be met for at least 95% of the time.

Minimum limits, which must be met for at least 95% of the time.

A standard test measuring the microbial uptake of oxygen - an estimate of organic pollution.

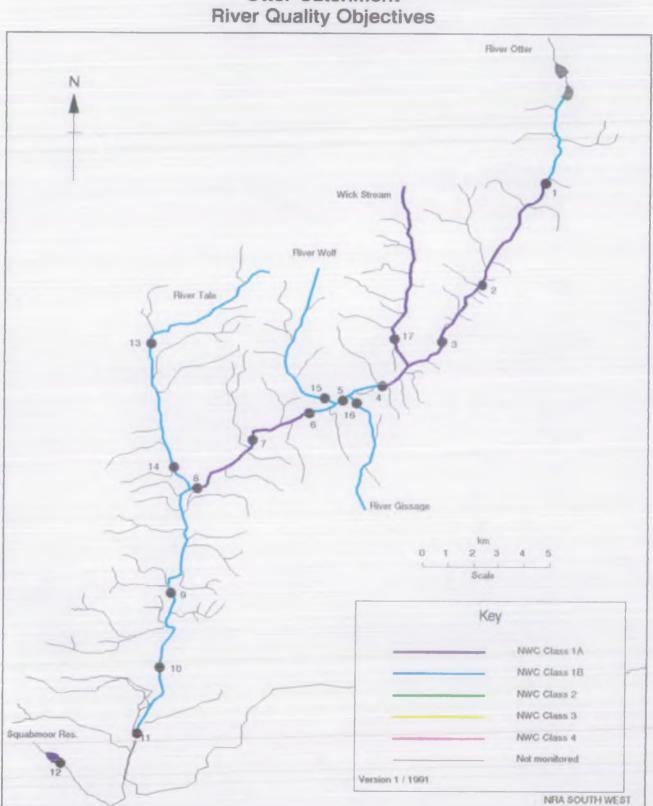
A scale of acid to alkali.

Fraction of ammonia poisonous to fish, NH³.

Solids removed by filtration or centrifuge under specific conditions.

Reference number allocated to a sampling point.

Segment of water, which is not monitored and whose water quality classification is assigned from the monitored reach upstream.


7. REFERENCES

рH

Reference

- 7.1 National Water Council (1977). River Water Quality: The Next Stage. Review of Discharge Consent Conditions. London.
- 7.2 Water Resources Act 1991 Section 190.
- 7.3 Alabaster J. S. and Lloyd R. Water Quality Criteria for Freshwater Fish, 2nd edition, 1982. Butterworths.

Otter Catchment

BASIC DETERMINAND ANALYTICAL SUITE FOR ALL CLASSIFIED RIVER SITES

pH as pH Units Conductivity at 20 C as uS/cm Water temperature (Cel) Oxygen dissolved % saturation Oxygen dissolved as mg/1 O Biochemical oxygen demand (5 day total ATU) as mg/1 O Total organic carbon as mq/1 C Nitrogen ammoniacal as mg/l N Ammonia un-ionised as mg/l N Nitrate as mg/l N Nitrite as mg/l N Suspended solids at 105 C as mg/1Total hardness as mg/l CaCO3 Chloride as mg/1 Cl Orthophosphate (total) as mg/1 PSilicate reactive dissolved as mg/l SiO2 Sulphate (dissolved) as mg/1 SO4 Sodium (total) as mg/l Na Potassium (total) as mg/1 K Magnesium (total) as mg/l Mg Calcium (total) as mg/l Ca Alkalinity as pH 4.5 as mg/l CaCO3

	NWC RI	VER QUALITY (CLASSIFICATION SYSTEM		APPENDIX 8
River Class	Quality criteria		Remarks	Curren	it potential uses
	Class limiting criteria (95 percen	tile)			
(i	greater than 80% ii) Biochemical oxygen demand not greater than 3 mg/l iii) Ammonia not greater than 0.4 mg/l iv) Where the water is abstracted for drinking water, it complies with requirements for A2* water	(ii) (Average BOD probably not greater than 1.5 mg/l /isible evidence of pollution should be absent	(i) (ii) (iii)	Water of high quality suitable for potable supply abstractions and for all abstractions Game or other high class fisheries High amenity value
(i	 BOD not greater than 5 mg/l Ammonia not greater than 0.9 mg/l Where water is abstracted for drinking water, it complies with the requirements for A2* water 	(ii) (iii) (iv) (v)	Average BOD probably not greater than 2 mg/l Average ammonia probably not greater than 0.5 mg/l Visible evidence of pollution should be absent Waters of high quality which cannot be placed in Class 1A because of the high proportion of high quality effluent present or because of the effect of physical factors such as canalisation, low gradient or eutrophication Class 1A and Class 1B together are essentially the Class 1 of t River Pollution Survey (RPS)		Water of less high quality than Class 1A but usable for substantially the same purposes
Quality (i (i	 DO greater than 40% saturation BOD not greater than 9 mg/l Where water is abstracted for drinking water it complies with the requirements for A3* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available) 	(ii) (iii)	Average BOD probably not greater than 5 mg/l Similar to Class 2 of RPS Water not showing physical signs of pollution other than humic colouration and a little foaming below weirs	(i) (ii) (iii)	Waters suitable for potable supply after advanced treatment Supporting reasonably good coarse fisheries Woderate amenity value

.

.

 D0 greater than 10% saturation (ii) Not likely to be anaerobic (iii) BOD not greater than 17 mg/l. This may not apply if there is a high degree of re-aeration 	Similar to Class 3 of RPS	Waters which are polluted to an extent that fish are absen only sporadically present. May be used for low grade industrial abstraction purposes. Considerable potential for further use if cleaned up
Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times	Similar to Class 4 of RPS	Waters which are grossly polluted and are likely to cause nuisance
DO greater than 10% saturation		Insignificant watercourses and ditches not usable, where the objective is simply to prevent nuisance developing
	 (ii) Not likely to be anaerobic (iii) BOD not greater than 17 mg/l. This may not apply if there is a high degree of re-aeration Naters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times 	 (ii) Not likely to be anaerobic (iii) BOD not greater than 17 mg/l. This may not apply if there is a high degree of re-aeration Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times

- Notes (a) Under extreme weather conditions (eg flood, drought, freeze-up), or when dominated by plant growth, or by aquatic plant decay, rivers usually in Class 1, 2, and 3 may have BODs and dissolved oxygen levels, or ammonia content outside the stated levels for those Classes. When this occurs the cause should be stated along with analytical results.
 - (b) The BOD determinations refer to 5 day carbonaceous BOD (ATU). Ammonia figures are expressed as NH4. **
 (c) In most instances the chemical classification given above will be suitable. However, the basis of the classification is restricted to a finite number of chemical determinands and there may be a few cases where the presence of a chemical substance other than those used in the classification markedly reduces the quality of the water. In such cases, the quality classification of the water should be down-graded on the basis of biota actually present, and the reasons stated.
 (d) EIFAC (European Inland Fisheries Advisory Commission) limits should be expressed as 95 percentile limits.

* EEC category A2 and A3 requirements are those specified in the EEC Council directive of 16 June 1975 concerning the Quality of Surfac: Water intended for Abstraction of Drinking Water in the Wember State.

Annonia Conversion Factors

 $(Bg NH_1/1 \text{ to } Bg N/1)$

Class	18	0.4	ng	NBc/1	:	0.31	Bg	N/1
Class	18	0.9	69	NH4/1	Ξ	0.70	ng	N/3
		0.5	Ng	NH4/1	Ξ	0.39	ng	N/1

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR NON-METALLIC DETERMINANDS

River Quality Criteria Class

1A

Dissolved oxygen % saturation greater than 80% BOD (ATU) not greater than 3 mg/l O Total ammonia not greater than 0.31 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l

- 1B Dissolved oxygen % saturation greater than 60% BOD (ATU) not greater than 5 mg/1 O Total ammonia not greater than 0.70 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
 - 2 Dissolved oxygen & saturation greater than 40% BOD (ATU) not greater than 9 mg/1 O Total ammonia not greater than 1.56 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 28 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
 - 3 Dissolved oxygen % saturation greater than 10% BOD (ATU) not greater than 17 mg/l O
 - 4 Dissolved oxygen % saturation not greater than 10% BOD (ATU) greater than 17 mg/10

STATISTICS USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION

Dissolved oxygen BOD (ATU) Total ammonia Non-ionised ammonia Temperature pH

Determinand

Suspended solids

Statistic

5 percentile 95 percentile 95 percentile 95 percentile 95 percentile 95 percentile 95 percentile arithmetic mean

NWC RIVER CLASSIFICATION SYSTEM

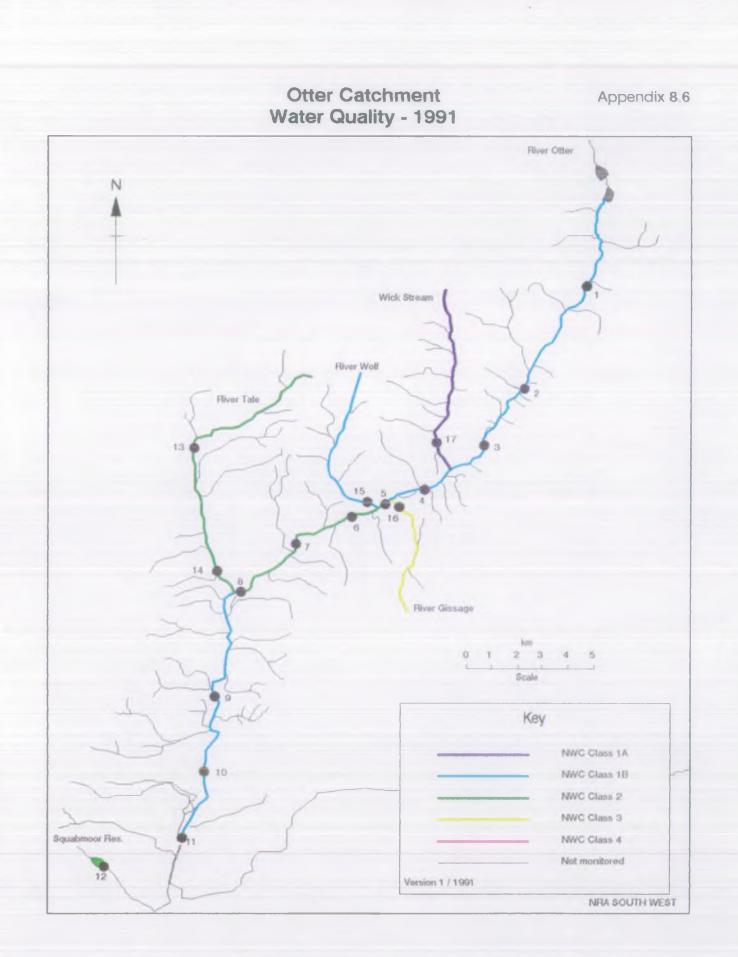
CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR METALLIC DETERMINANDS

SOLUBLE COPPER

Total Hardness (mean) mg/l CaCO3	Statistic	Soluble Copper* ug/l Cu Class 1 Class 2
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Total copper is used for classification until sufficient data on soluble copper can be obtained.

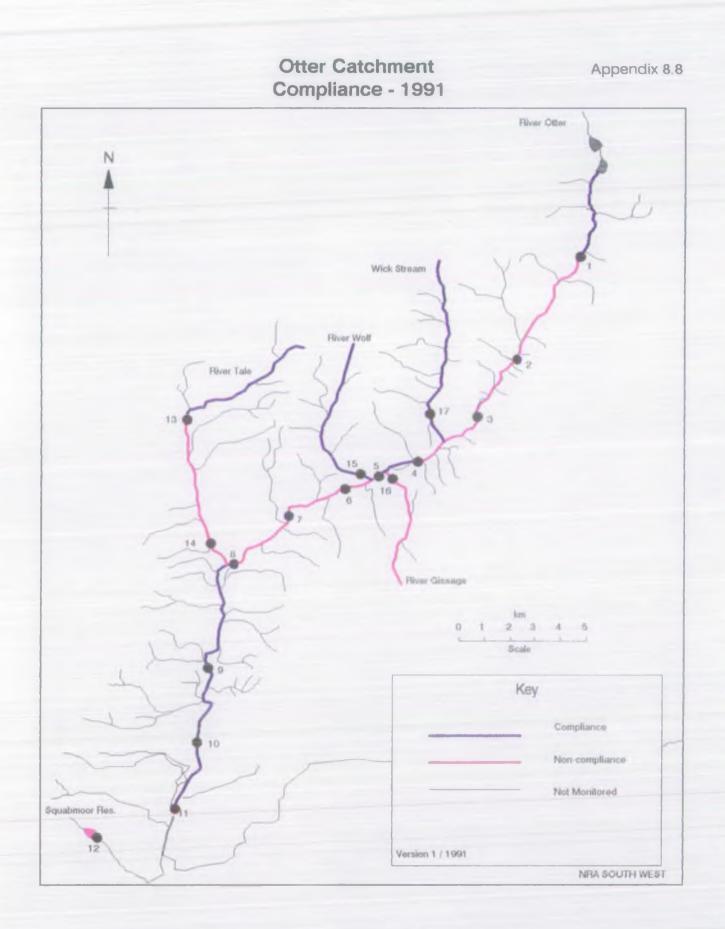
TOTAL ZINC


Total Hardness (mean) mg/l CaCO3	Statistic	Total Zinc ug/l Zn
		Class 1 Class 2 Class 3
0 - 10	95 percentile	<pre>< = 30 < = 300 > 300</pre>
10 - 50	95 percentile	<pre>< = 200 < = 700 > 700</pre>
50 - 100	95 percentile	<pre>< = 300 < = 1000 > 1000</pre>
100 - 300	95 percentile	<pre>< = 500 < = 2000 > 2000</pre>

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION CATCHMENT: OTTER

.

1991 Map	River	Reach upstream of	User	National	Reach	Distance	River	85	86	87	88	89	90	91
Position			Reference	Grid	Length	from	Quality		NWC	NWC	NWC	•	NWC	NWC
Number			Number	Reference	(km)	source	Objective	Class	Class	Class	Class	Class	Class	Class
forma o r			Í) (km)	1	1	1	1	ł	1	1	1
			ł				ĺ		Í	Í	l I	1	t	1
			i	Í		i	l		i	1	ł	1	1	1
			, I			i	Ì		Í	İ	İ	Í	Í _	1
	OTTER	SOURCE TO OTTER LAKES (UNMON. STRETCH)	i	·i	3.1	3.1	18	18	18	14	1B	18	10	្រប
	OTTER	HOEMORE FARM	R048001	ST 2210 1035	3.0	6.1	18	1B	1B	j 1A	18	IB	1B	18
	OTTER	RAWRIDGE		ST 1983 0625	5.1	j 11.2	j 1.	2	į 2	2	2	1B	j 1⊼.	18
- 1		IMONKTON		ST 1836 0306	4.1	15.3	I IA	2	j 2	j 2	2	1B	į 1.	18
- 1	OTTER	CLAPPERLANE BRIDGE	•	ST 1633 0120		18.4	i la	i 2 i	i 2	i 2	2	1 B	1 B	1B
-	OTTER OTTER	COTTARSON FARM		ST 1480 0075		20.6	1B	2	i 2	j 2	2	2	1B	18
-	OTTER	IWESTON		ST 1430 0009	1.2	21.8	i 18	2	i 2	i 2	i 2	j 2	j 2	2
- 1	OTTER	PENNY BRIDGES		SY 1148 9858	3.8	25.6	Ì 1A	2	2	2	2	j 2	1B	j 2
	OTTER	B3176 BRIDGE OTTERY ST MARY		SY 0935 9606	3.8	29.4	i 1a	2	j 2	2	2	2	2	2
-	OTTER	TIPTON ST JOHN		SY 0901 9180	5.0	34.4	ј 1в	2	j 2	j 2	12	1B	1B	1B
-	OTTER	DOTTON MILL		SY 0873 8853	4.2	38.6	ј 1в	2	j 2	2	2	2	18	1 18
	OTTER	OTTERTON		SY 0791 8529		42.5	, 1 B	2	j 2	j 2	j 2	18	18	1B
	OTTER	NORMAL TIDAL LIMIT (INFERRED STRETCH)			1.3	j 43.8	і І 1В	2	i 2	j 2	2	1B	1B	18
			i	i		i	i		i	İ	İ	Ì	4	1
	KNOWLE BROOK	SOURCE TO SQUARMOOR RES. (UNMON. STRETCH)	¦	·	1.1	1.1	IA		i	1	i	1	ע ו	ן ט
	KNOWLE BROOK	SOUARMOOR RESERVOIR	R04B041	SY 0400 8393	0.3	1.4	<u> </u> 1A		1	Í	İ 👘	1	Ιλ	2
	KNOWLE BROOK	(NORMAL TIDAL LIMIT (UNMON. STRETCH)	i		4.4	5.8	j 1A	1	Í	Í	1	1	(U	U U
			i			i	Ì		1	Í	I	I		and the second
13	TALE	DANES MILL	R04B008	ST 0762 0329	6.0	6.0	1B	2	2	2	2	1B	18	2
	TALE	TALEFORD	R04B009	ST 0899 9688	6.9	12.9	18	10	2	2	18	1B	18	2
	TALE	OTTER CONFLUENCE (INFERRED STRETCH)	Ì	1	1.3	14.2	(18	18	2	2	18	1B	18	2
			I	l	<u> </u>	I	l		<u> </u>	! <u></u>	!		<u> </u>	.!
15	WOLP	WINNIFORD FARM	R04B011	ST 1433 0057	5.9	5.9	1B	2	2	2	2	18	18	18
	WOLF	OTTER CONFLUENCE (INFERRED STRETCH)	I		0.5	6.4	1B	2	2	2	2	18	18	118
			I	II		<u> </u>	!	I	<u> </u>	<u> </u>	!	!	<u> </u>	.!
16	GISSAGE	PRIOR TO RIVER OTTER	R04B023	ST 1533 0115	5.9	5.9	18	18	ļ	ļ	ļ	!	4	1 3
I	GISSAGE	OTTER CONFLUENCE (INFERRED STRETCH)			0.1	6.0	1B	18	ł	l l	!	!	14	1 3
			l			!		. <u> </u>	! <u> </u>	!	!	!		· <u> </u> -
17	WICK STREAM	MILL HOUSE NURSERY	R04B010	ST 1689 0288	7.2	7.2		18	1B	18	1B	18	18	
	WICK STREAM	OTTER CONFLUENCE (INFERRED STRETCH)	1		1.1	8.3	1A	ÍB	18	18	1B	1B	18	I IN


Appendix 8.5

NYCHINAL RIVERS AUTHORITY - SOUTH WEST HELDON 1991 RIVER WHER QUALITY CLASSIFICATION CALLARED DETERMINIPAD STRUISTICS USED FOR QUALITY ASSESSMENT CARCHMENT: OTTER

1

River	Reach upstream of	User	RQO	l		Calcul	ated Det	acminte	nd Statis	tics us	ad for Q	uality	Assesse	nt.				_		-			
		Ref. Nuter		 pH L			Upper		erature		(%)			•		•	Amonia	•	olids	•	Opper		al Zinc
	1			Class	5 tile	CLass 	95 1:1 0	Class 	95tile	CLASS 	: Skile		: 95%ile	CLASS 	: 95 % 1.1e	CLASE 	: 95 tile	Class 			95kile	C11488 	I YOUM
OTTER	HEPCRE PARM	 (R048001	 		7.4	18	8.1		16.8		85.6	 1B	3.3		0.140		0.010		6.0	<u> </u>		· · _	
OTTER	RARIDE	F042042	•	•	7.4	Ι IA	8.1	1 1A	16.9	Î ÎN	85.6	1 18	4.0	I IA	0.234	Î ÎN	0.010		6.7	i -	-	-	-
OTER	MONICON	R042035			7.4	i IX	8.1	I IA	17.1	i IA	82.7	i 1B	3.4	14	0.171	1	0.010	11	9.5	i –	-	ì –	-
OTTER	CLAPPERANE BRIDGE	F048002		•	7.5	11	8.5	, <u>I</u> A	20.0	118	79.3	1 18	4.4	14	0.160	1	0.010	1	8.7	i -		i –	-
OTTER	COTTINESON PARM	R048014	,	•	7.5	i JA	8.3	14	16.8	1 18	72.6	i 13	4.7	18	0,488	1	0.010	14	9.6	j 1A	7.9	j 1A	18.6
OTTER	WESTON	F048003		,	7.4	i JA	8.3	14	19.4	j 1B	73.8	į 2	6.3	j 18	0.361	j 1A	0.010	j IA	12.8	j 1A	9.9	1 1	18.0
OTTER	PENNY BRIDGES	R04B019	•	•	7.4	Î ÎN	8.4	j IA	18.1	j 1A	81.6	į 2	6.5	Ì IA	0.254	1	0.010	i 1v	20.8	i -	-	i -	-
OTD2R	163176 BRIDGE OTDERY ST MARY	R042004	Ι Ιλ	j 1A	7.4	j 1A	8.3	j 1A	19.1	AL I	80.1	į 2	6.0	j DA	0.271	1 A	0.010	j IA	15.1	i -	-	i -	-
ÓTIER	TIPION ST JOHN	1048005	118	11.	7.5	j 1A	8.3	j 1A	20.0	j 1A	84.6	118	4.2	j 1A	0.233	A L	0.010	j 1A	10.7	i -	-	-	-
CITIER	DOPTON MILL	1042006	118	j IA	7.6	j 1A	8.4	j 1A	18.9	1 1A	80.5	118	4.3	1A	0,286	1 1	0.010	1 1	11.4	1 λ	10.8	14	14.6
OFTER	CITERION .	F0428007 	18 	1A 	7.5	1 . 	8.5	1 7	20.3	18 	74.0	18 	3.9	18 	0.330	1 x 	0.010	1 7	9.8	-	-	-	- 1
NOWLE BROOK	SQUAPOOR RESERVOIR	 F048041	1A 	1A 	6.5	Î ÎÂ	7.6	2	23.1	AL	85.3	1A 	2.0	AL	0.198	1 18	0.010	1A 	4.9	14	9.5	AL	24.5
TNE	DINES MILL	(FO48008	18	1.1	7.4	11	8.1	I IA	18.3	118	79.0	2	5.1	14	0.216	1	0.010	1	10.8	<u> - </u>	-	í –	-
THE	TALEFORD	(R042009	18 	i IV	7.4	j 1A	7.9	I IV	18.5	18 	76.5	2	5.3	18 	0.322	11	0.010	1A 	17.5	1A 	7.7	1A 	16.2
WCLP	MINUFORD PNM	F048011	18	אנ	7.6	AL	8.2	1	18.4	18	73.3	1 18	4.6	1B	0.424	1	0.010	<u>, 17</u>	10.7	<u> 1</u>	7.0	1	20.0
0.554GE	FRIER TO RIVER OTHER	8049023	18	4	7.4	.	8.3	14	16.9	2	49.3	3	13.6	<u> </u>	0.144	1	0.010	1	17.2	<u> </u> -	-	i -	-
WICK STREAM	MULL HOUSE NURSERY	R049010	1	14	7.5	18	8.1	17	18.0	<u> </u>	80.3	<u>, n</u>	2.7	1.	0.117	1	0.010	1	7.3	1	6.0	<u> </u>	12.4

NOTIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WHER QUALITY CLASSIFICATION NUMER OF SAMPLES (N) AND NUMER OF SAMPLES EXTERING QUALITY SUMOND (F) CRIGHENT: OTHER

River	Reach upstress of	User	다. 다	CMBC	j ⊒H C	fiber	Temper	ature	00	(%)	BOD (ATU)	Total A	monia	Union.	Amria	S.90	Lids	Total	Copper	Total	lZinc
		Pef.			ļ		1		1		1		1		!		[[_
		Nunber	N	P	1 N	F	N N	F	N N	F	N	F	N	F	N	F	N	F	N	F	N	F
					1		1		1		ļ		ļ		ļ		!		ļ		1	
					ļ		!		ļ		l I		ļ		ļ		!		ļ		ļ	
					ļ		ļ		ļ		1		1		ļ		[ļ		!	
					ļ	-			<u></u>				<u>ļ </u>		!		<u> </u>		!		ļ	
DIMER	HDEMORE FARM	R04B001	51	-	াম	-	51	-	1 51	-	51	1	51	-	50	-	51	-	1 1	-		-
OTTER	RAWRIDGE	R04B042	30	-	30	-	30	-	30	-	30	2	30	-	30	-	30	-	1 1	-	1 1	-
OTTER	MINKION	R04B035		-	1 32	-	32	-	32	-	32	1	32	-	1 31	-	1 32	2	l a	-	(0	-
OTTER	CLAPPERLANE BRIDGE	R04B002		-	52	-	52	-	52	2	52	3	52	1	48	-	52	3	0	-		-
OTER	COTTARSON FARM	(R04B014)		-	33	-	33	-	32	-	33	-	33	-	32	-	33	2	20	-	20	-
OTTER	WESTON	PO4B003	52	-	52	-	52	-	51	-	52	6	52	-	51	-	52	5	40	-	40	-
OFTER	FENNY BRIDGES	R048019		-	ļ 32	-	32	-	। अ	-	32	8	32	-	32	-	32	4	0	-	0	-
OTTER	B3176 BRIDGE OTTERY ST MARY	R042004	51	-	51	-	51	-	50	2	51	7	51	-	48	-	51	8	0	-	0	-
OTTER	TIPION ST JOHN	R04B005	50	-	50	-	50	-	50	-	I 50	-	50	-	50	-	50	3	0	-	0	-
OTTER	DOTION MILL	F04B006		-	87	-	85	2	84	1	86	1	86	-	80	-	87	5	87	-	87	-
OFTER 1	OTTERION	[F04B007]	54	-	54	-	54	1	54	1	54	1	1 54	-	51	-	(54 	3	3	-	3	-
RNOWLE BROOK	SQUAR OR RESERVOIR		24	-	24	-	24	2	24	-	24	-	24	-	17	-	24	-	24	-	24	-
THE	DANES MILL	R042008	- 53	_	53	-	53		52		5	2	53	_	50	-	53	5	0	-	0	-
THE	TALEFORD	[R04B009]	51	-	51	-	50	-	49	1	51	2	51	-	50	-	51	5	45	-	45	-
WOLF	WINIFORD FARM	R04B011	52	-	52	-	52		52	1	52	2	52	-	52	-	52	4	47		47	-
GISSIGE	FRICE TO RIVER OTTER	R048023	32	-	32	_	32		32	1	32	3	32	-	30	÷	32	3	0		0	-
wick stream	MILL HUSE NURSERY		52		 52	-	52		52	2	52	1	52	-	52	-	52	1	47	-	47	-
1		<u> </u>			1		I		[1		1	_	1		I		L		L	

• •

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1991 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCREDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT: OTTER

River	Reach upstream of	User		PERCENTAGE	EXCEEDENCE OF	STATISTIC	FROM QUALIT	Y STANDARD)			
		Ref. Number	pH Lower	 pH Upper 	 Temperature }	DO (%)		Total Ammonia	 Un-ionised Ammonia		Total Copper	Total Zinc
I												
OTTER	HOEMORE PARM	R04B001			 					-		
OTTER	RAWRIDGE	R04B042	-	-	i – i	-	i 33 i	-	i -	i - i	-	-
OTTER	MONKTON	R048035		-	i – i	-	12	-	i –	i – i	-	-
OTTER	CLAPPERLANE BRIDGE	R048002		-	i - i	1	47	-	i -	i – i	-	-
OTTER	COTTARSON FARM	R04B014		-	i - i	-	i - i	-	i –	i – i	- 1	-
OTTER	WESTON	R04B003		-	i - i	-	i 26 i	-	- i	-	-	
OTTER	FENNY BRIDGES	R04B019		-	i - i	-	115	-	i -	-	-	- 11-14
OTTER	B3176 BRIDGE OTTERY ST MARY	R048004		-	i – i	-	j 101 j	-	-		-	1.4.1
OTTER	TIPTON ST JOHN	R04B005		-	i - i	-	i - i	-	i -	-	-	-
OTTER	DOTTON MILL	R04B006	-	-	i - i	-	-	-	-	-	-	-
OTTER	OTTERION	R04B007	-	-	-	-	-	-	-	-	-	-
KNOWLE BROOK	SQUABMOOR RESERVOIR				8	-			-	-		
TALE	DANES MILL			-			2					
TALE	TALEFORD	R04B009	-	-	-	-	6	-	-	-	-	-
WOLF	WINNIFORD FARM			-	-		-		-		-	
GISSAGE	PRIOR TO RIVER OTTER	R04B023				18	172					
WICK STREAM	MILL HOUSE NURSERY			-								-

Appendix 8.10