NRA South West 216

Environmental Protection Internal Report

ROUTINE BIOLOGICAL MONITORING OF RIVER QUALITY 1990

July 1992 FWS/92/014

Author: Dr JAD Murray-Bligh Assistant Scientist (Freshwater Biology)

National Rivers Authority South West Region

C V M Davies Environmental Protection Manager

ROUTINE BIOLOGICAL MONITORING OF RIVER QUALITY - 1990

INTERNAL REPORT NO. FWS/92/014

SUMMARY

This report describes the routine biological river quality monitoring programme undertaken by NRA South West Region, and the results of the 1990 macro-invertebrate survey.

The monitoring programme comprised approximately 950 sites covering 4230 km of river and 27 km of canal, and was planned to be completed in two years with half the sites surveyed in any one year: 505 sites were surveyed during 1990. Twenty-two of these are key sites and are visited every year, to assess annual changes. The complete programme mirrored the routine chemical monitoring programme, but included additional sites so that all reaches which had been assigned River Quality Objectives were included.

Habitat features in 100 m stretches, centred on the macro-invertebrate sampling site, were mapped using standard symbols based on the NCC river corridor survey methods. These maps were to help interpret changes in the biota in subsequent years, and to provide data for conservation assessment. Photographs were taken at every site.

Macro-invertebrates were sampled three times in the year: in Spring, Summer and Autumn, using standard NRA sampling protocols for routine samples (3 minute kick plus 1 minute search with a pond-net, or in deep water, three to five throws of a medium Naturalists' dredge).

Site details including stream width, depth, and substrate characteristics, was recorded on each visit. This was to enable RIVPACS to be used to predict the nature of the fauna that would be expected if the site was unpolluted. Biotic indices including BMWP-score, ASPT and number of families (N-fams) were determined from the aggregated data from all three seasons' samples, and compared to those predicted by RIVPACS. For each biotic index a Ecological Quality Index (EQI) was calculated, this being the ratio observed : predicted values. Biological classifications were derived from each of these EQIs, as was the overall NRA Biological Classification based on a combination of all three EQIs. The derivation and interpretation of these new NRA biological classifications is discussed in this report.

The ecological quality of most rivers in the South West Region in 1990 was good: 88% of the river length classified (representing 2220 km of rivers) had an overall NRA Biological Classification of Class A (good quality); 8% (192 km) was moderate quality; 3% (85 km) was poor quality; and 1% (17 km) was very poor quality. In the reaches that were not of good quality, toxic influences ascribed to acidic mine drainage or china clay extraction were common, as were the influences of organic pollution from agriculture, agricultural processing industries, sewage treatment works effluents, and storm overflows. The biological classifications of sites in all catchments are discussed in this report, with an emphasis on those which were not good quality. The overall ecological quality indicated by the NRA Biological Classification is shown on catchment based maps.

The analytical quality audit for this survey demonstrated that the quality of the data was good.

i

ACKNOWLEDGEMENTS

.

This report represents most of the work undertaken by the NRA South West Region's Field Control Biologists in 1990. They undertook the initial site reconnaissances, all the sampling, and the sample processing. It also represents a substantial amount of the work undertaken by the Region's Freshwater Science Section, who planned the programme, obtained cartographical site information, proof-checked the data, and produced this report. Data was input into the database by NRA Thames Region, who also computed the results. The Institute of Freshwater Ecology undertook the quality audit, and put all samples into long-term storage.

Especial thanks are due to the biologists of NRA Thames Region who processed some 50 samples, thus enabling the processing to be completed on-time.

CONTENT	S	Page
SUMMARY		i
ACKNOWL	EDGEMENTS	ii
LIST OF	TABLES	v
LIST OF	FIGURES	v
1.	INTRODUCTION	1
1.1	Biological monitoring in the South West Region	1
1.2	Aim of the routine biological river quality monitoring programme	1
2.	METHODS	2
2.1	Site location and survey design	2
2.2	The collection of site data	2 3 7
2.3	Macro-invertebrate methods	
2.3.1	Sampling macro-invertebrates	7
2.3.2	Processing the macro-invertebrate samples, in the laboratory	9
2.3.3	Sample storage	11
2.3.4	Analytical quality audit	11
2.3.5	Macro-invertebrate data analysis	11
2.3.6	The NRA biological classifications of ecological	
	quality based on macro-invertebrates	12
2.3.7	EQIs and biological classifications based on less than	
• • •	three seasons' data	15
2.3.8	A description of what the biological classifications	
	represent and the implications of basing them on data pooled from different seasons	16
2.3.9	Comparing NRA biological classifications with chemical	10
	classifications	17
3.	THE ECOLOGICAL QUALITY OF RIVERS IN THE SOUTH WEST	
	REGION 1990	19
3.1	Overview	19
3.1.1	Survey overview	19
3.1.2		19
3.1.3	Overview of the ecological quality of the Region's	~ *
214	watercourses	21
3.1.4	A comparison of the NWC (chemical) River Quality Classification and the NRA Biological Classification	
	of South West Region Rivers in 1990	23
3.2	The ecological quality of individual catchments	25
3.2.1	Interpreting the tables and maps	25
3.2.2	River Lim Catchment Catchment-1	28

I

I

ł

3.2.3	River Axe Catchment Catchment-2	31
3.2.4	River Sid Catchment Catchment-3	34
3.2.5	River Otter Catchment Catchment-4	37
	River Exe Catchment Catchment-5	40
3.2.7	River Teign Catchment Catchment-6	49
3.2.8	River Dart Catchment Catchment-7	52
	River Avon Catchment Catchment-8	55
3.2.10	River Erme Catchment Catchment-9	58
3.2.11	River Yealm Catchment Catchment-10	61
	River Plym Catchment Catchment-11	64
	River Tavy Catchment Catchment-12B, 12C & 12D	67
	River Tamar Catchment Catchment-12E to 12P inclusive	70
	River Lynher Catchment Catchment-12R & 12Q	79
3.2.16	River Seaton Catchment Catchment-13	8 2
3.2.17	River Looe Catchment Catchment-14	8 5
3.2.18	River Fowey Catchment Catchment-15	8 8
3.2.19	Rivers Par and Crinnis Catchments Catchments-16 & 17	91
3.2.20	St Austell and South Cornwall Stream Catchments	
	Catchment-18	94
3.2.21	River Fal Catchment Catchment-19A (part), B, C, D & E	97
3.2.22	Helford and Lizard Peninsula Catchments	
	Catchment-19A	101
3.2.23	River Cober Catchment Catchment-20	104
3.2.24	Lands End Catchments Catchment-21	107
	Hayle River Catchment Catchment-22	110
3.2.26	Red River, Portreath, Bolingey and Perranporth	
	Catchments Catchment-23	113
	River Gannel Catchment Catchment-24	116
3.2.28	Porth, Gluvian and Menalhyl Catchments Catchment-25A	119
	River Camel Catchment Catchment-25B, C & D	122
3.2.30	Valency and Crackington Streams Catchments Catchment-	
	26	125
3.2.31		128
	Hartland Streams Catchments Catchment-28	131
	River Torridge Catchment Catchment-29	134
	River Taw Catchment Catchment 30	138
3.2.35	•	- · · •
	& 3 2	142

4 REFERENCES

145

Ĩ

I

ľ

LIST OF TABLES

I

l

2.1	Discharge categories	Page 7
2.2	The biological quality classes based on EQIS	13
		13
2.3	The bands of the EQI values (based on 3 season's data) covering each biological class, as used currently for National Surveys	13
2.4	RIVPACS suitability codes	14
2.5	EQI bands defining the biological classes when derived from single and two seasons combined data	15
3.1	Summary of the quality audit results	19
3.2	Ecological quality according to NRA Biological Classification of rivers of different discharges	21
3.3	Number of sites in each NRA Biological Class compared to each NWC Chemical Class	23
3.4	Mismatches between the NRA Biological Classification and the NWC Classification	24
3.5	Season codes	27
LIST OF	FIGURES	
2.1	Standard sample data form used to record field data	4
2.2	Standard symbols used for habitat maps in the routine biological river quality surveys in 1990 and 1991	5
2.3	An example of a habitat map drawn for the 1990 routine biological river quality survey	6
2.4	Standard site registration form used to record site information	8
2.5	Standard sample data form used to record macro-	
	invertebrate sample data, and to calculate BMWP-score, ASPT and N-fams	10
3.1	Number of 'gains' in successive audited samples	20
3.2	Proportion of sites belonging to different biological classes in 1990	22
3.3	Catchments in NRA South West Region	26
3.4	Lim Catchment (1) NRA Biological Class - 1990	30
3.5	Axe Catchment (2) NRA Biological Class - 1990	33

LIST OF FIGURES cont.

LIST OF	FIGURES CONC.	Page
3.6	Sid Catchment (3) NRA Biological Class - 1990	36
3.7	Otter Catchment (4) NRA Biological Class - 1990	39
3.8	Exe Catchment: River Exe (5 in part) NRA Biological Class - 1990	44
3.9	Exe Catchment: Exe Estuary and Clyst (5A & 5B) NRA Biological Class - 1990	45
3.10	Exe Catchment: Culm and Little Dart (5C & 5D) NRA Biological Class - 1990	46
3.11	Exe Catchment: Upper Exe (5E, 5F, 5G & 5H) NRA Biological Class - 1990	47
3.12	Exe Catchment: Yeo and Creedy (5J & 5K) NRA Biological Class - 1990	48
3.13	Teign Catchment (6) NRA Biological Class - 1990	51
3.14	Dart Catchment (7) NRA Biological Class - 1990	54
3.15	Avon Catchment (8) NRA Biological Class - 1990	57
3.16	Erme Catchment (9) NRA Biological Class - 1990	60
3.17	Yealm Catchment (10) NRA Biological Class - 1990	63
3.18	Plym Catchment (11) NRA Biological Class - 1990	6 6
3.19	Tavy Catchment (12B, 12C & 12D) NRA Biological Class - 1990	69
3.20	Tamar Catchment: River Tamar (12 in part) NRA Biological Class – 1990	74
3.21	Tamar Catchment: Inny (12E & 12P) NRA Biological Class - 1990	75
3.22	Tamar Catchment: Lyd, Thrushel and Wolf (12F & 12G) NRA Biological Class - 1990	76
3.23	Tamar Catchment: Upper Tamar (12H, 12J, 12K & 12L) NRA Biological Class - 1990	77
3.24	Tamar Catchment: Ottery & Kensey (12M & 12N) NRA Biological Class - 1990	78
3.25	Lyhner Catchment (12R & 12Q) NRA Biological Class - 1990	81
3.26	Seaton Catchment (13) NRA Biological Class - 1990	84

vi

LIST OF FIGURES cont.

I

ľ

LIST OF	FIGURES CONT.	Page
3.27	Looe Catchment (14) NRA Biological Class - 1990	87
3.28	Fowey Catchment (15) NRA Biological Class - 1990	90
3.29	Par and Crinnis Catchments (16 & 17) NRA Biological Class - 1990	93
3.30	St Austell and South Cornwall Coastal Catchments (18) NRA Biological Class - 1990	96
3.31	Fal Catchment (19A in part, 19B, 19C, 19D & 19E) NRA Biological Class - 1990	100
3.32	Lizard Peninsula and Helford Catchments (19A) NRA Biological Class - 1990	103
3.33	Cober Catchment (20) NRA Biological Class - 1990	106
3.34	Lands End Catchments (21) NRA Biological Class - 1990	109
3.35	Hayle Catchment (22) NRA Biological Class - 1990	112
3.36	Red, Portreath, Bollingey and Perranporth Catchments (23) NRA Biological Class - 1990	115
3.37	Gannel Catchment (24) NRA Biological Class - 1990	118
3.38	Porth, Gluvian and Menalhyl Catchments (25A) NRA Biological Class - 1990	121
3.39	Camel Catchment (25B, 25C & 25D) NRA Biological Class - 1990	124
3.40	Valency and Crackington Catchments (26) NRA Biological Class - 1990	127
3.41	Strat and Neet Catchments (27) NRA Biological Class - 1990	130
3.42	Hartland Catchments (28) NRA Biological Class - 1990	133
3.43	Torridge Catchment (29) NRA Biological Class - 1990	137
3.44	Taw Catchment (30) NRA Biological Class - 1990	141
3.45	North Devon Coast and Lyn Catchments (31 & 32) NRA Biological Class - 1990	144

vii

1. INTRODUCTION

This report describes NRA South West Region's routine biological river quality monitoring programme, and the results of the macro-invertebrate sampling in 1990.

1.1 Biological monitoring in the South West Region

When the NRA was formed, in September 1989, there had been no comprehensive biological survey of the South West Region's rivers since the 1980 National River Quality Survey. The biological component of the 1980 National Survey covered 174 sites in the South West Region. These were sampled in 1979 and 1980. Although a routine chemical monitoring programme was being undertaken in the Region when the NRA was formed, there was no equivalent routine biological monitoring programme. In the western part of the Region a comprehensive audit survey of macro-invertebrate communities, involving species identification, was undertaken on a catchment basis between 1980 and 1988. For most of the rivers in the eastern part of the region, detailed catchment surveys were undertaken on selected catchments only.

Since 1990, a routine biological monitoring programme has been followed in NRA South West Region. This encompasses approximately 950 sites and covers more than 4230 km of river and approximately 27 km of canal. Each site is surveyed every other year. Macro-invertebrate samples are collected in each of three seasons, macrophyte and habitat data are recorded once. The invertebrate surveys form part of the NRA National Biological Survey programme.

1.2 Aim of the routine biological river quality monitoring programme

The aim of the routine biological river quality monitoring programme is to monitor the ecological quality of running waters in the South West Region. It provides information to enable more effective assessments of overall river quality to be made, and to provide information on the impact of environmental changes. The surveys undertaken in 1990 and 1991 were to provide a baseline from which to compare conditions in the future.

The routine macro-invertebrate monitoring programme, and the new methods developed by the NRA that are described in this report, may become the basis of the United Kingdom's approach to implementing the forthcoming EC Ecological Directive. This directive will require ecological quality targets to be set for watercourses, and target dates for compliance to be specified.

2. METHODS

To ensure comparability between samples, and compatibility with the National Surveys, considerable effort was made to ensure that the methodologies were clearly defined in detail.

2.1 Site location and survey design

Each site in the routine biological river quality monitoring network represents either a reach of river monitored in the routine chemical water quality monitoring programme, or a watercourse not monitored chemically but which was assigned a Water Quality Objective in the South West Water Asset Management Plan (South West Water Authority, 1989). There are approximately 940 routine biological river quality monitoring sites throughout the Region.

The biological monitoring sites were as close as possible to their corresponding chemical monitoring sites, or at the downstream end of watercourses that were not monitored chemically. The biological monitoring sites were located away from artificial influences such as bridges, livestock watering holes and canalized reaches wherever possible. Each biological site was chosen so that it was typical of the reach as a whole: if the reach was mainly deep and slow flowing, the site was located where the river was deep and slow flowing. This was a major departure from previous biological monitoring practice, where shallow riffles are chosen in preference. It reflected the fact that the programme had been designed to monitor ecological quality as opposed to solely water quality, although water quality is a major component of ecological quality. The precise location of the sampling sites could only be chosen after a field reconnaissance. An additional criterion for the choice of site location was that, wherever possible, the sites were the same as those used in the 1980 National River Quality Survey. We were fortunate in being one of the few NRA Regions that had kept the original biological records from that survey. The criteria for locating sites are described in more detail in Furse et al. (1986), and a training video (National Rivers Authority, 1990).

Recommendations were made by the Statutory Water Quality Objective Group that the programme should be completed in one year. Regional resources available to implement this programme meant that it could only be accomplished over two years. Each site was surveyed every other year, except for 22 key sites, representing the main types of streams found in the South West, that were investigated every year to provide information on annual changes and the effect of droughts. This monitoring programme continues today.

In 1990 at least one site was investigated on each of the main rivers and larger tributaries. All the sites surveyed in the 1980 National Survey were covered in 1990. The programme for 1991 covered the remaining sites: the intermediate sites on larger watercourses and smaller watercourses not covered in the chemical monitoring programme. For 1992-1993 the programme has been split on a whole catchment basis.

In 1990 501 sites on rivers and 3 sites on canals were surveyed, representing 2532 km of river and 26 km of canal. Of these, five sites were not sampled owing to inaccessibility or unsuitable habitat (these were chemically monitored reaches in lakes that form part of a watercourse).

2.2 The collection of site data

Each time that a site was visited, basic environmental data was recorded. This was to enable a prediction to be made of the fauna that the site should support, if its environmental quality (including water quality) was good. To do this the RIVPACS II (River InVertebrate Prediction and Classification System, Version II) computer model developed by the Institute of Freshwater Standardised procedures were used to maintain PACS. Stream width was measured to the nearest Ecology was used. compatibility with RIVPACS. centimetre; this was the width of the water, not the stream channel. The Average depth was measured as the mean of three readings was recorded. average of quarter, half, and three-quarter distance across the stream. Both stream width and depth were to reflect the predominant conditions at the Visual estimates of the composition of the stream bed over sampling site. The area of boulders/cobbles (>64 mm the whole sampling site were made. diameter), pebbles/gravel (2-64 mm diameter), sand, and silt/clay were recorded as percentage cover ignoring bedrock. At sites representing reaches that were not monitored chemically, conductivity was also recorded, using a This information was entered onto a standard sample data form (Figure meter. The field survey methods have been described in more detail in Furse 2.1). et al. (1986), and in a training video (National Rivers Authority, 1990).

A photographic record of the sampling sites was made in each season, to aid re-locating them, and to provide a record of the surroundings. Brief notes about each site were recorded to enable them to be re-located easily, and to fore-warn of parking and access difficulties. The move from recording 6figure National Grid References to 8-figure was also to help re-locate the sites. Finding the precise location of some of the sites surveyed in 1980 caused problems, and a few could not be located at all.

Habitat maps were drawn covering a 100 m length of river, centred on the invertebrate sampling site. The methods used were used to the Nature Conservancy Council's (NCC) river corridor survey methods, as outlined in Nature Conservancy Council, 1985. Following initial experiences with the NCC method, a number of the symbols were altered (see Figure 2.2). From 1992 standard NRA symbols will be used (see National Rivers Authority, 1982), though these too may be modified slightly. These sketch maps were to provide additional data to help interpret changes in biological samples from subsequent years. They were also to be used by the Conservation Section as fixed transects to support strategic habitat surveys. A single map is drawn each year that the site is visited. An example of one of the habitat maps drawn in 1990 is shown in Figure 2.3.

An attempt was made to record the presence of macrophyte species over the same 100 m of river as that covered by the habitat maps; however the introduction of this, in addition to the rest of the programme, proved to be impractical in 1990. The recording of macrophytes began in earnest in 1991, following further training. In 1991 macrophytes were recorded in Spring, Summer and Autumn, when invertebrate samples were taken. In 1992 they are to be recorded in Summer only, and the coverage of mosses is to be enhanced.

In addition to field environmental data, some cartographical data was required to enable RIVPACS II to be used, including 6-figure Ordnance Survey National Grid Reference (from which longitude, latitude, mean air temperature and mean air temperature range was estimated by RIVPACS II); altitude, to the nearest meter; distance from source, to the nearest 0.01 km; and an estimate

NATIONAL RIVERS AUTHORITY SOLUTH WEST (06)				
RIVER QUALITY SURVEY - 1990		SOUTH 1	VEST (06)	
BIOLOGY			SAMPLE DATA	
Thames use only Sample Reference	0690	0590	0590	
SAMPLE	SPRING	SUMMER	AUTUMIN	
Sample Date	01 1990 / دیمارید	01	01	
Sample Time				
Survey	901	902	903	
Site Reference NRAD6	بتبت			
Watercourse				
Location				
Grid Reference	Leveland .			
Width	mm	m.	m	
Average Depth Boulders/Cobbles	Children Cm	cm	CT CT	
Pebblas/Gravel	· · · · · · · · · · · · · · · · · · ·		× × × ×	
Sand	S		Land X	
Silt/Cley	x	· · · · · · · · · · · · · · · · · · ·	· · · · · ×	
Sampling Wethod	سب	<u> </u>	يت ا	
Sampler Initiels				
TAXA DETAILS (see over)				
SCORE RESULTS AND PREDICTIONS				
Scoring Families		, . <u></u>		
BHMP Score				
BHOUP ASPT	بسب السب	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Predicted BMWP	<u></u>	Le Le Le	ب ب ب	
Predicted ASPT	· · · · · · · · · · · · · · · · · · ·	ـب. ب	· · · · · · · · · · · · · · · · · · ·	
No of Predicted Taxa		<u> </u>	<u> </u>	
FE/FBA Group Method Of Prediction				
Suitable for Prediction 7	Y/N	Y/N_	T/N	
WATER CHEMISTRY		Alternatives	to Alkalinity	
Chemical Class	_	Handness	mg/1 CoCO3	
Chloride	Celcium	u u mg/l		
Alkelinity	_ mg CoCQ_/I	Conductivity	ب ب vS/cm	
COMMENTS				
L		Plana ration to:	RA Theses Region	
Sinned			HA THERE'S HED SON Sology 1990 Survey	
Signed			obney Nead	
D	3	A	bse Kilh Lana	
Date			EADING Lanka DC2 DC5	
		<i>0</i>	lents R62 OSF	

I

Figure 2.1 Standard sample data form used to record field data. This form was printed on the reverse of Figure 2.5

River Survey Habitat Types

A. WOODLAND & SCRUE C. TALL BERS & FERN

- Broad-leaved semi-nat 1 plantation Consterous semi-nat. plantation Mixed semi-natural plantation
- Scrub dense 2 scattered Carr - alder
- willow Parkland
- ٩. Recently felled wood 4

- GRASSLAND & MARSE
- I. Acidic unimproved sem-unproved Neutral unimproved semi-improved Calcareous unimproved semi-improved
- 4. Improved/reseeded Marsh/marshy grassland 8.

Biacken

1.

1

8

1.

Upland spp_rich veget Other - tall ruderal non ruderal

D. BEATELAND

- Dwarf scrub dry 1.
- wel Lichen/tryophyte 3
- Montane 4.
- Heath/grassland dry £.
 - wei

E. MIRE, FLUSE AND SPRING

- Mules bog Fen - reed sedge sweet-grass
- maxed 1 Bog flushes

JUD Nurray-Bligh NCC River Corridor Survey Draft Methodology)

- F. SWAMPONUNDATION
- 1. Swamp - single sp. dom. Tall mixed assemblage

G. OPEN WATER

- 1 Standing canal duch dyke pond, pool, cut-off lake gravel pit reservou marina 2 Running
- stream **B.** COASTLAND

L ROCE

- I. cuff 30100 **kmostone** pavement CAVE other
- 2 artificial/waste

I. MISCELLANEOUS arable

amenity grassland ephemeral/short herb hedge fence on bank fence set back wall building caravans fish farm silage clamp sewage works garden stick pile flood debris road railway - disused used other

Symbols for Habitat Maps BANK FLATURES ---earth cliff a Symbols are the same as in the NCC methodology, w rock cluff TIM artificial except those marked * FLORA FB flood bank +++ + name Saland Lives tarbards Habitats and Flow muđ Lech Les Beams 335 sand pool ட RIVER EADITATS bare . Si vegetated gravel/pebbles stack Ħ bridges 11 riffe # **** wears rapids natural cobbles locia 44 **NIN #** 35 natural boulders # 3 mlet waterfall mn ↔ Widih m pioiruding rocks 44 BANK VEGETATION (no symbol) undercut bank 36 trash dam * + name trees # fallen log/tree * Substrates (submerged) Willow - secent pollard P Margins/Exposed substrates W Willow old, not pollard BR bed tock S Standard willows h bouidera t++ mud A Alder c cobbles 355 sand pebbles Milli Scrub/shrubs P ter bare cravel 0] gravel/pebbles Reed/Sedge vegetaled \$ sand Dense open sil/mud cobbles B Sparse open peat AA boulders \sim short grass . Exposed tree roots draw tree symbols to scale of tree on map hedge* (For definitions refer to NCC River Corridor Survey Draft Methodology)

(For definitions refer to

Figure 2.2 Standard symbols used for habitat maps in the routine biological river quality surveys in 1990 and 1991

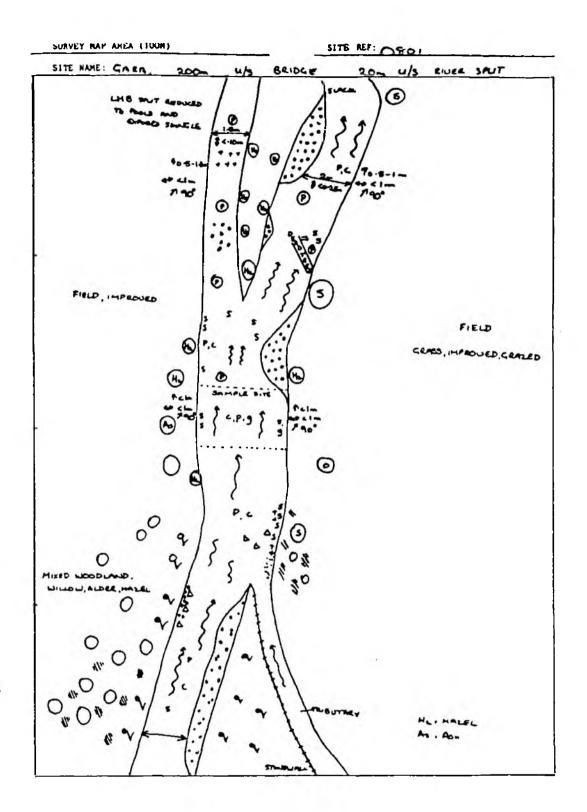


Figure 2.3 An example of a habitat map drawn for the 1990 routine biological river quality survey

of slope to the nearest 0.1 m per km. Mean annual discharge was taken from hydrometric data, and recorded as discharge categories according to Table 2.1. Details of the methods have been described in Furse et al.(1986). The data was recorded on standard site registration forms (Figure 2.4). Note that although only 6-figure grid references were required for the data analysis using RIVPACS, more precise 8-figure grid references were recorded.

Discharge Category	mean annual flow (cubic metres per second)
1	< 0.31
2	0.31 - 0.62
3	0.62 - 1.25
4	1.25 - 2.50
5	2.50 - 5.00
6	5.00 - 10.00
7	10.00 - 20.00
8	20.00 - 40.00
9	40.00 - 80.00
10	≥ 80.00

Table 2.1 Discharge categories

-

2.3

Macro-invertebrate methods

2.3.1 Sampling macro-invertebrates

Samples of macro-invertebrates were collected in each of three seasons:

Spring	March-May
Summer	June-August
Autumn	September-November.

The samples were collected using the Standard NRA methods for routine invertebrate monitoring surveys, which is compatible with RIVPACS and ensures comparability between samples. The methods were qualitative, the aim being to collect representatives of as many of the taxa present at the site as possible. All invertebrate habitats were sampled in proportion to their cover at the site. Because of the degree of standardisation, it was possible to record comparable though coarse estimates of relative abundances.

In shallow water, the samples were obtained by a three minute kick with a pond-net, followed by a one minute manual search. A standard FBA pattern long-handled pond net was used, with a flat bottomed 250 x 200 mm aperture, fitted with a 0.9 mm mesh collecting bag that was at least 270 mm deep. When kick sampling, the net was placed downstream of the sampler's feet, resting on the river bed; the sampler disturbed the substrate rigorously with the heel of their boot to dislodge the fauna to a depth of about 10 cm. The net was held close enough to the sampler for the invertebrates to flow into the net with the current, but far enough away for most of the stones and gravel to drop out before entering the net. Where there was insufficient current, the net was moved over the disturbed area to collect the invertebrates. The

NATIONAL RIVERS AUTHORITY River quality survey — 1990 Biology	SOUTH WEST (06) SITE REGISTRATION
SITE DETAILS Bite Reference NRAOS : Stotus 01 Watercourse	
Location Location Grid Reference Location Colchment O6 District 99 RQO Location	*********
Altitude (m)	
REACH DETAILS Upstress Grid Ref. Downstress Grid Ref. Length of Resch Stal Chemical point	1980 BWWP Score
COMMENTS	·····
Signed	Dete
Please return to:	
NRA Thames Region	

Figure 2.4 Standard site registration form used to record site information.

÷.

three minutes included only this active sampling. The net was emptied whenever it became too full or blocked. Habitats not sampled effectively by kicking were covered by the manual search. Animals from marginal areas including emergent vegetation and tree roots, were collected by actively searching with the pond net: animals from the surfaces of large stones were picked-off by hand or with a stiff brush. These animals were added to the rest of the sample.

Deeper waters were sampled using a medium naturalist's dredge (also known as a rectangular dredge), with a 457×200 mm aperture, fitted with a 0.9 mm mesh collecting net. The sample comprised from three to five dredges, plus a one minute search in the shallows close to the river banks. The number of dredges was not standardised, but the aim was for a sample similar in size to a 3 minute kick.

Large stones and fragments of vegetation were washed in the collecting net and discarded. Samples were placed in standard screw-topped containers or large watertight buckets for transport back to the laboratory.

The invertebrate samples were preserved in 70% alcohol (industrial methylated spirit) to which 5% glycerol was added, either in the field, or immediately on return to the laboratory at the end of the day. Later in the year, the strength of alcohol added to the samples was increased to 90%. This was because there had been inadequate preservation in some of the earlier samples, possibly due to dilution with liquids held in sediment and plant material, and because the samples were not fixed in formaldehyde.

There was a national requirement to fix the samples in formaldehyde before preservation in alcohol, because the samples were to be deposited in long-term storage. The samples from the South West Region were not fixed in formaldehyde owing to the absence of adequate laboratory facilities. This was the only major deviation from the standard NRA sample processing procedures.

2.3.2 Processing the macro-invertebrate samples, in the laboratory

The samples were stored in the laboratory prior to sorting and identification. All samples were sorted in the laboratory.

Before sorting, the samples were washed over 0.5 mm mesh sieves to remove the preservative and silt. Larger stones and fragments of vegetation were discarded. Shallow flat-bottomed white trays were used for sorting. Large samples were sorted a portion at a time.

Identification was to family, except for oligochaetes and water mites which were not identified further. Abundances were estimated using a logarithmic scale and recorded as abundance categories. The data was recorded on standard sample data sheets (Figure 2.5), where the abundance categories are defined.

Contrary to the methodology outlined in Furse et al. (1986), more than 2 hours was often spent in sorting the samples. This reflected both the richness of the fauna and flora in the South West Region, and the initial inexperience of the mostly newly appointed staff. Sample processing is now much quicker, but still frequently takes more than two hours.

TAXA LIST	Site Refe	nence NRA:
144	De Che Che	And and and
GROUP 1 TAXA (10)	GROUP 4 TAXA (6)	GROUP 6 TAXA (4)
Sphlonuridae Image: Constraint of the system HeptagenBdae Image: Constraint of the system LeptophlebBdae Image: Constraint of the system EphemeretBidae Image: Constraint of the system Potamonthidae Image: Constraint of the system Ephemeridae Image: Constraint of the system Ephemeridae Image: Constraint of the system	Nertlidae Image: Constraint of the second	Boetidae D D D Slatidae D D D Plectratidae D D D SUB-TOTAL TAXA D D D
Toenloptarygidae [] [] Leuctridae [] [] Capnilidae [] [] Periodidae [] [] Periodidae [] [] Chioroperildae [] [] Aphelochetridae [] []	Unionidae Carophildae Gammaridae (Crangonyctidae) Plotycnemidae Coenogriidae SUB-TOTAL TAXA [][]][]]	GROUP 7 TAXA (3) Vahatidae
Phryganeldos Molonnidos Berosidos Odontoceridos Coeridas Coeridas Coeridas Brochycentridos Serkostomatidos SUB-TOTAL TAXA	GROUP 5 TAXA (5) MesoveRdoe Hydrometridoe Gerridoe Nepidoe Nepidoe Notonectidoe Pieidoe Cortxidoe	Giossip honildoe
GROUP 2 TAXA (6) Aetocidoe C C C Leetidoe C C C Agridoe C C C Gomphidoe C C C	Holipfidae Hygroblidae Dytiscidae Notaridae Oyrinidae Hydrophilidae (Hydroenidae)	SUB-TOTAL TAXA (1) CROUP 9 TAXA (1) Cligochosto C C C SUB-TOTAL TAXA (1)
Cordulegostaridoe	Clambidae	
Philopotomidoe	Hydropsychidae 🗆 🖸 🗖	Other Taxa
	Tipufidoe 🗆 🗆 🗖	
GROUP 3 TAXA (7) Coenidoe	Pionarfidae D D D	
Nemouridoe 🔲 🗖 🗂	Dendroc pelidoe D D D D D D D D D D D D D D D D D D D	
Rhyacophilidae 🔲 🛄 🔲	He et Individuale A - 1-9	
Polycentropodidae 0 0 Umnephildae 0 0	B - 10-99 Abundance C - 100-999 D - 1000-9999 E - 1000+	

Figure 2.5 Standard sample data form used to record macro-invertebrate sample data, and to calculate BMWP-score, ASPT and N-fams. Total taxa = N-fams. This form was printed on the reverse of Figure 2.1

To help the quality audit (see Section 2.3.4) one or two specimens of each invertebrate family were placed in a small vial containing 70% alcohol preservative. When sorting had been completed, the sample and the vial were put into a standard 1.3 litre polythene screw-topped container to which 70% alcohol preservative had been added. The screw-topped jars were placed in standard sized plastic containers (lidded trays) for transport to IFE Wareham, for quality audit and for long-term storage.

To help clear a backlog of samples at the end of the programme, approximately 50 samples were processed by biologists in NRA Thames Region. The backlog was largely the result of additional staff and laboratory resources not being available at the start of the programme.

2.3.3 Sample storage

The invertebrate samples from this survey (and the 1991 survey which completes the biennial coverage of sites in the South West Region) were deposited in long-term storage at IFE Wareham, together with other samples from the National Surveys of River Quality throughout the United Kingdom.

2.3.4 Analytical quality audit

Prior to 1990 there was no systematic programme of quality control for biological samples in the Region. From 1990, the routine biological river quality monitoring programme is subject to an independent quality audit.

The need for quality control was recognised during the initial discussions on the NRA Routine Biological Monitoring Programmes and the 1990 National Biological Survey. Cost and time did not allow for a full quality control programme to be introduced. This would have involved independent sampling, sorting and analysis. Instead, a quality audit programme was instigated, covering sample processing, and taxonomic identification. A training video on sample collection (National Rivers Authority, 1990) was made and shown to all staff involved in sampling as a substitute for a quality audit on sample collection, which would have been impractical and too costly.

A small percentage of the samples were re-sorted and identified by the Institute of Freshwater Ecology (IFE) to audit the quality of the sample sorting and the identification of the macro-invertebrates. The methods and the results were discussed in Kinley and Ellis (1991).

2.3.5 Macro-invertebrate data analysis

The computer analysis of the biological data from the National Surveys undertaken in 1990 by the NRA, Scottish River Purification Boards (RPBs) and the Department of Economic Development (DED) in Northern Ireland was undertaken centrally by the Biological Section of NRA Thames Region. All the raw biological data was entered onto a database similar to the Thames Biologists' System in use at NRA Thames region, and now recently installed in NRA South West Region. The central data processing ensured that all the statistics and biological classifications were undertaken in the same way, using the same algorithms. It also enabled the latest version of RIVPACS to be used (RIVPACS II was not finished until early in 1991), and also enabled the NRA Biological Classification to be developed and tested. Having all the raw biological data on a single database will enable the data collected in the 1990 National Survey to be compared to the data collected in subsequent surveys. It will also enable developments in RIVPACS and the NRA Biological Classification to be applied retrospectively to the 1990 data. The database has effectively become the national biological database. The central data processing also reduced the cost of this task.

The completed data recording forms were sent to NRA Thames Region, where the data was entered onto the computer database. A print-out of the data was returned to the Region where it was checked against the original data forms for transcription errors. Following correction, biotic indices, RIVPACS predictions, Environmental Quality Indices (EQIs, see below) and the NRA Biological Classification were computed for every site in the Region. This took approximately 8 hours, and was done in batch mode overnight. The results were returned to the region in dBase and ASCII format on floppy disk, and as hard copy on paper. The raw data from South West Region was also supplied on a copy of the Thames Biologists' System database to form the basis of the Region's biological archive.

2.3.6 The NRA biological classifications of ecological quality based on macro-invertebrates

Biological quality is linked to water quality by biotic indices. The indices used by the NRA are the Biological Monitoring Working Party Score (BMWP-score), which is the sum of individual scores for each family, as listed in Figure 2.5; the Average BMWP-Score Per Taxon (ASPT); and the number of families (N-fams, only the indicator families used in the BMWP-score system and which contribute to the BMWP-score of the site are considered). These were developed for the 1980 National Survey, but have been modified slightly to take into account advances in taxonomy.

Different watercourses and different sites on the same watercourse will naturally support different macro-invertebrates in their pristine state, because of differences in their geography, climate, geology, and the habitats that they provide.

Because different sites on different watercourses naturally support different macro-invertebrate communities, the values of biotic indices derived from different sites will vary, even if their water quality is of uniformly good quality. Biotic indices cannot be used to compare the water quality at different sites directly.

To overcome this problem, the NRA biological classifications are based on the ratios of the biotic indices from three seasons' pooled samples (observed values) to the equivalent biotic indices predicted for the site if it had good ecological quality (including good water quality). These ratios are known as Ecological Quality Indices (EQIs). By removing the effects of natural differences between the invertebrate communities at different sites, the biotic indices are placed on a universally comparable scales.

The computer model RIVPACS II was used to predict the composition of the fauna (and hence the values of biotic indices) expected at any site under natural (unpolluted) conditions, based on its physical and geographical

characteristics.

EQI ASPT = <u>observed ASPT</u> ASPT predicted by RIVPACS

EQI BMWP-score = observed BMWP-score BMWP-score predicted by RIVPACS

EQI number of families = observed number of families number of families predicted by RIVPACS

The EQIs are a major advance on conventional biotic indices, because they can be used to compare the biological water quality at different sites. They were made possible by the development of RIVPACS. The national surveys undertaken by NRA, the RPBs and the DED in Northern Ireland in 1990 represent the first large-scale operational use of RIVPACS in the water industry.

Four biological quality classes are defined in terms of these EQIs (Tables 2.2 and 2.3).

-	Biological Class	Description	
	λ	Good	
	A		
	B	Moderate	
	С	Poor	
	D	Very Poor.	

Table 2.2 Descriptions of the biological quality classes based on EQIS

Table 2.3 The bands of the EQI values (based on 3 season's data) covering each biological class, as used currently for National Surveys

Biological Class	EQI ASPT range	EQI N-fams range	EQI BMWP-score range
A	>0.89	>0.79	>0.75
В	0.77-0.88	0.58-0.78	0.50-0.74
С	0.66-0.76	0.37-0.57	0.25-0.49
D	≤0.65	≤0.36	≤0.24

From Institute of Freshwater Ecology, 1991

An arithmetic error was detected in these bandings by the Region's Freshwater Science Section. For the purposes of the 1990 National Survey, the original bandings will be used, as the error affects only about 200 sites nationally. The classification may be revised subsequently. The error is described in Institute of Freshwater Ecology, 1991.

Where there is little or no difference between the observed and predicted fauna, and the biotic indices derived from them, the EQI will equal unity and it can be assumed that the water quality is good. Where the observed values of biotic indices are much less than the predicted values, it can be assumed that the environmental quality, and in particular the water quality, is deficient.

The EQI ASPT relates solely to organic pollution; it is insensitive to toxic pollution such as acidification and metalliferous discharges. (Occasionally the EQI ASPT may seem to respond to toxic pollutants because it reduces the precision of the ASPT, by reducing the number of taxa on which it is based.)

The EQI N-fams is sensitive to toxic pollution, as well as to organic pollution. The EQI N-fams will also respond to other environmental disturbances including the physical degradation of habitats by canalization.

Because of the narrower error bands associated with the EQI ASPT compared to those of the EQI N-fams or the EQI BMWP-score, there is a 5% chance of miss-classification using the EQI ASPT, but a 10% chance of miss-classification by the EQI N-fams and the EQI BMWP-score.

An overall biological classification has also been derived from the EQI bands shown in Table 2.3, known as the NRA Biological Classification (here as the overall NRA Biological Classification). It is based on one of two measures: if the class based on EQI-ASPT is lowest, that is used as the NRA Biological Class; if the class based on EQI-ASPT is not the lowest, the mode of the three classes is used as the NRA Biological Class.

RIVPACS' predictions are most reliable when the site is similar to sites in the data-set on which RIVPACS is based. RIVPACS II warns of sites for which the predictions may be unreliable. These are termed suitability codes or box numbers (Table 2.4).

Table 2.4	RIVPACS	suitability	codes
-----------	---------	-------------	-------

Suitability codes	Probability that site belongs to any of th different site groups recognised by RIVPACS	e 25
	>5%	
2	<5%	
3	<2%	
4	<1%	
5	<0.1%	
7	<1% prediction abandoned	
8	<0.1% prediction abandoned	
9	unable to predict probability prediction abandoned	

These classification procedures are suitable only for permanently flowing watercourses. Streams that become dry naturally at any time of the year, such as winterbournes, cannot be classified, because RIVPACS is unable to predict their natural fauna. This is because only permanent streams were included in the original data-set on which RIVPACS is based. If a stream becomes dry as a result of over-abstraction, or an unusually bad drought, RIVPACS can be used, because it will predict the natural fauna that should be at that site under normal conditions.

RIVPACS is unsuitable for ponds, lakes, reservoirs and canals, therefore these could not be classified.

These NRA biological classifications relate solely to the quality of the macro-invertebrate communities. Macro-invertebrate communities recover from pollution more quickly than fish populations (over months rather than years), because macro-invertebrates have shorter life-cycles, and their populations can recover by drift from unaffected regions upstream. Invertebrates (at family level and as biotic indices) are less sensitive to eutrophication than either macrophytes or algae.

2.3.7 EQIs and biological classifications based on less than 3 seasons' data

RIVPACS can be used to predict the list of invertebrates that should be obtained from a site in any single season (Spring, Summer or Autumn); in any combination of two of these seasons; or in all three seasons. Unfortunately, the predictions made by RIVPACS are less reliable the fewer the number of seasons' data on which they are based. This is largely because greater sampling variability is inherent in single samples than in multiple samples from a site. As a result the EQIs cannot be assigned to lower biological quality classes with a large degree of confidence. Because of this, the NRA biological classifications were based on the pooled data from three seasons' samples. Data from two seasons or a single season was only used where it was unavoidable.

EQI type	Biologic al class	single season's data	two seasons' pooled data	three seasons pooled data
ASPT	A	>0.84	>0.88	>0.89
	В	0.68-0.83	0.76-0.87	0.77-0.88
	С	0.52-0.67	0.64-0.75	0.66-0.76
	D	≤0.51	≤0.63	≤0.65
N-fams	А	>0.67	>0.77	>0.79
	В	0.34-0.66	0.54-0.76	0.58-0.78
	С	0.01-0.33	0.31-0.53	0.37-0.57
	D	0.00	≤0.30	≤0.36
BMWP-	А	>0.62	>0.72	0.75
score	В	0.24-0.61	0.44-0.71	0.50-0.74
	С	<0.23	0.16-0.43	0.25-0.49
	D	no band	≤0.15	≤0.24

Table 2.5 EQI bands defining the biological classes when derived from single and two seasons combined data. The standard three seasons' bandings are shown for comparison

From Institute of Freshwater Ecology, 1991

Different bands of EQI values are used to define the biological classes based on data from a single season or from two seasons combined (Table 2.5), to take account of the poorer precision of classifications in these circumstances. When these different bandings are used, the probability of a good quality site being misclassified as a poorer quality site is the same as the probability of such misclassification using three seasons' data, ie 5% for EQI ASPT, and 10% for EQI N-fams and EQI BMWP-score. These EQIs must depart further from unity than EQIs for combined three seasons data, before it can be asserted with confidence that the disparities between observed and predicted values of the biotic indices are due to genuine site stress, rather than to sampling effects. More information on these bandings is given in Institute of Freshwater Ecology (1991).

Class bands have also been derived for each individual season and each combination of pairs of seasons, to take into account faunal differences between seasons. It has not been decided yet whether the NRA will use these or the bandings in Table 2.5 for evaluating single and two season data.

2.3.8 A description of what the biological classes represent and the implications of basing them on data pooled from different seasons

The EQIs based on the combination of three seasons data (and the biological classifications derived from them) indicate the extent to which a site supports its expected range of macro-invertebrate taxa at any time during a year. They are unable to identify any variations in quality that may have occurred during the year.

The NRA biological classifications based on three seasons combined data are influenced little by intermittent pollution (except where there is insufficient time for full recovery), or by pollution that occurs at only one time of the year (in the South West slurry pollution from farm yards is mainly a problem in late Winter, and stream biotas usually recover from this to some extent during the rest of the year). This is a direct result of basing the classification on the combined data from Spring, Summer and Autumn samples. If an extreme condition is considered, where a site with good biological quality in one season is lifeless in the other two, the pooled sample would include most of the taxa that were expected at the site, except for the relatively small number that occur naturally only in the two seasons when the river was lifeless. The site is likely to be classed as being of good biological quality because only a few of the taxa expected in the year were absent, despite it being lifeless for much of the time.

The NRA biological classifications based on combined seasons data describe the chronic biological quality of rivers. They reflect the impact of chronic influences such as continuous discharges and canalization. Where there is regular or frequent intermittent pollution, these biological classifications indicate the state to which the biota recovers moderately quickly (within a year). They represent the state to which the biota will recover from small or moderate pollution incidents that have transient physical or chemical impacts. The overall NRA Biological Classification is a statement of the overall ecological resilience and health of a river, and as such is a useful measure.

The biological classifications based on combined seasons data will not detect

catastrophic pollution incidents, unless their impact covers a whole year. In the hypothetical example described above, the river may have become lifeless owing to a major pollution incident after the Spring sample was This will not be evident in the biological classifications for that taken. year; in the following year the classifications will reflect the condition that the biota has recovered to by the end of the year (actually when the last sample of the year is collected). Pollution events that cause long-term effects, and which influence subsequent years' classifications, are probably 'more important' than those which have only short-term effects. Most pollution incidents are not this severe, and are unlikely to affect the This is not a shortcoming of the classification, it is classification. merely that the classification has been designed to measure overall ecological health rather than the effect of individual pollution incidents.

Pollution incidents that do not affect the long-term state of the biota (over the year) or the combined seasons' classifications may nevertheless influence the results of single seasons, from which they can be detected and assessed. These may be missed by routine chemical monitoring, but detectable by biological monitoring because of the time lag of the biota's recovery.

2.3.9 Comparing the NRA Biological Classification with chemical classifications

The overall NRA Biological Classification is not meant to mirror the National Water Council (NWC) River Quality Classification (reported in National Rivers Authority, 1991a) or the proposed NRA General River Quality Classification (discussed in National Rivers Authority, 1991b). If both the biological and chemical classifications reflected the same environmental factors, and were fully interchangeable, either the chemical or the biological classifications (and hence surveys) would be unnecessary.

There are two major differences between the biological and chemical classifications related solely to the method of derivation:

- (1) Biological classifications based on data pooled from three seasons more closely represent best than worst conditions as they are statements of overall ecological health of the watercourse. In contrast, the chemical classifications are based on 'worst' (95 percentile) conditions so that they are compatible with discharge consent conditions. The chemical classifications are therefore influenced by a small number of samples that reflect poor conditions whereas the biological classification only responds to chronic water quality problems.
- (2) The chemical classifications relate to conditions over a three year period, whereas the biological classifications relate to conditions in one year only.

Differences between the biological and chemical classifications other than because of the method of derivation include:

(3) The biological classifications are based on a much larger and different sets of determinands: as a result, the biological classifications respond to a much wider and different set of environmental influences not solely related to water quality. Physical disturbance is the main influence on the biological classification that is not related to water quality.

- (4) Biological samples have a higher likelihood of detecting the influence of pollution incidents, especially those that occur intermittently, or outside chemical sampling hours, because biological systems take a while to recover from pollution or other incidents. Unlike chemical samples, which represent conditions in a fixed window between 09.00 hrs and 16.00 hrs Monday to Friday, biological samples will reflect conditions outside this window. Biological samples can miss pollution events, particularly if the impact is transitory, involves a small volume of pollutant, and occurs some time before a biological sample is taken.
- (5) The chemical classification is based on absolute limits, regardless of the natural state of the watercourse, whereas the biological classification is based on limits relative to what is expected at each site if conditions were good. The chemical class of some sites may never be capable of being very good.

Sampling error and other statistical errors will influence both classifications and may lead to mismatches:

- (6) The precision of both classification procedures are different. The errors associated with wrongly downgrading a site to a poorer class have been minimised in the NRA Biological classification, at the expense of increased errors in wrongly assigning a good class to a poorer quality environment.
- (7) Whereas the range of chemical conditions defining each chemical class are fixed, and the risk of misclassification because of error increases when the number of samples that it is based on is reduced, the biological conditions defining each biological class are not fixed, but differ depending on the number of samples, so that the risk of erroneously downgrading is independent of the number of samples.

The biological classes are not equivalent to the chemical classes in terms of the ranges of quality that they represent. NRA Biological Class A (representing "good ecological quality") covers a much wider band of environmental conditions than NWC-Class 1 (representing "good river quality"). Biological Class A encompasses pristine to mildly polluted waters. The bands of conditions represented by the biological classes were determined independently from those of the chemical classifications; they were based purely on the conditions that could be differentiated by the biological methods used.

It is inevitable that the chemical and biological classifications will be compared. This is possible, so long as both classifications are understood. See Section 3.1.4 for a comparison of the NWC (chemical) River Quality Classification and NRA Biological Classification in the South West Region in 1990.

3. THE ECOLOGICAL QUALITY OF RIVERS IN THE SOUTH WEST REGION 1990

3.1 Overview

3.1.1 Survey overview

Of the 502 sites on rivers that were surveyed in 1990, four were not sampled because they were inaccessible, or because they represented chemically monitored reaches that were actually lakes which formed part of a watercourse. Two sites were completely rejected by RIVPACS (suitability code 9, see Table 2.4). Two other sites were omitted from the biological classification because they become dry naturally for part of the year. This left 493 sites that were classified in 1990.

3.1.2 Quality audit results

The results of the independent quality audit have been reported in detail by Gunn et al. (1991), and discussed in Kinley & Ellis, 1991. A summary is shown in Table 3.1. BMWP-scoring families found in the sample by the auditors that were not found by NRA biologists were termed 'gains'. Taxa recorded as present by NRA biologists that were not considered to be in the sample by the auditors were termed 'losses'. There were more gains than losses, and this was typical of the audit results for other NRA Regions and RPBS. A small number of recording errors were noted by the auditors, where NRA biologists had recognised the presence of a taxon and placed an example in the vial, but failed to record its presence on the data sheets. These errors were termed 'omissions'.

Total number of samples taken	number of	mean	mean	mean
	samples checked	losses	gains	omissions
1479	63	0.48	1.83	0.01

Table 3.	1 Summar	y of '	the qua	ality a	audit	results
----------	----------	--------	---------	---------	-------	---------

The audit results for NRA South West Region were good compared to the results from other NRA Regions (see Kinsley & Ellis, 1991) and RPBs (see Scottish Office, 1992). South West Region was one of three NRA Regions whose audit results were considered suitable for defining a proposed target distribution.

Figure 3.1 shows the variations between consecutive samples that were audited. Poorer results early in the programme reflect the lack of experience and training of staff. Very quickly the results improved as staff gained competence, and this was reflected clearly in the results for individual staff.

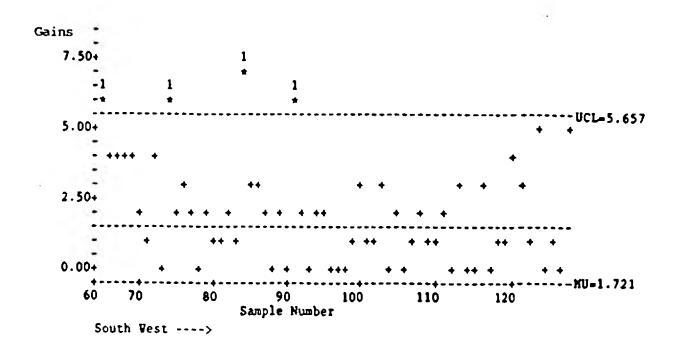


Figure 3.1 Number of 'gains' in successive audited samples. These are in roughly chronological order. Horizontal lines are proposed upper control limit (3 standard deviations from the mean, and the mean based on results from NRA Southern, South West and Yorkshire Regions). From Kinley & Ellis, 1991

3.1.3 Overview of the ecological quality of the Region's watercourses

The biological quality of streams and rivers in the South West Region, as reflected in their macro-invertebrate communities, was generally good (Figure 3.2). Approximately 88% of the river length classified in 1990 was of good biological quality according to the overall NRA Biological Classification. The high proportion of good quality waters reflected the paucity of heavy industry in the Region, and the fact that most of the larger conurbations were near the coast and their sewage (representing that of approximately 70% of the Region's population) was discharged to the sea. The invertebrate fauna of the Region was particularly rich, which is probably a reflection of the mild maritime climate. Other biological surveys in the Region indicated that taxonomic richness at the family level was not always translated to richness at the species level.

Agriculture probably had the greatest impact on water quality in the Region. Unfortunately, macro-invertebrate communities are relatively insensitive to eutrophication, which is one of the main ways in which agriculture impacts freshwaters. Eutrophication was a widespread problem in the Region. Agriculture is thought to have contributed to the blue-green algal problems in many lakes and ponds in the Region during 1989 and 1990. In 1990 more pollution incidents were recorded from farms than from any other identified source.

Both the china clay extraction industry, and the largely discontinued metal ore mining industry had major impacts on the ecological quality of many watercourses, particularly in the western part of the Region. Most of the Region's surface waters were neutral to acidic, and many were influenced by the underlying metalliferous geology.

A severe drought in 1990, following a similar drought the year before, affected many smaller streams in the Autumn, particularly in East Devon and on Dartmoor, though it did not substantially affect the NRA Biological Classifications based on pooled seasons' data.

Most of the larger rivers in the Region were of good ecological quality: a few sites were of moderate quality, and none were poor quality (see Table 3.2). Poor and Very poor quality reaches were mostly on smaller streams.

	km	of riv	ver bel	longing	g to di	fferen	t disc	harge	categ	ories	L
Class	1	2	3	4	5	6	7	8	9	10	TOTAL
A	673.9	525.7	517.9	209.0	142.9	86.6	48.3	15.8	0	0	2220.1
В	87.9	45.8	13.3	20.8	9.5	0	9.8	4.7	0	0	191.8
С	60.5	4.8	19.3	0	0	0	0	0	0	0	84.6
D	3.3	8.4	5.2	0	0	0	0	0	0	0	16.9

Table 3.2 Ecological quality according to NRA Biological Classification of rivers of different discharges.

Note 1 See Table 2.1 for definitions of the discharge categories.

Figure 3.2 Proportion of sites belonging to different ecological classes in 1990

3.1.4 A comparison of the NWC (chemical) River Quality Classification and the NRA Biological Classification of South West Region Rivers in 1990

At first sight it appears that the NWC River Quality Classification and the NRA Biological Classification of rivers in the South West Region for 1990 were contradictory: the NRA Biological Classification indicated that most rivers were of good quality, whereas the NWC Classification indicated that a much larger proportion were of fair, poor or bad quality (see Table 3.3).

Table 3.3 Number of sites in each NRA Biological Class compared to each NWC (chemical) Class

		NRA Biol	logical Class		
NWC-Class	A	В	c	D	Total
1A	56	3	1	0	60
1B	143	10	0	0	153
2	124	14	0	0	147
3	58	17	16	5	96
4	3	0	2	0	5
Total	384	44	27	6	461
	······································				

rate

Before a realistic assessment of the disparities between the NWC Chemical and NRA Biological classifications is possible, mismatches owing to differences in their derivation must be isolated. These differences are: (1) that the chemical classification relates to conditions in a three year period, whilst the biological classification relates to conditions in a single year; and (2) that the chemical classification relates to worst conditions whereas the biological classification reflects best conditions (see Section 2.3.9). Both will cause the NWC Classes to be worse than the NRA Biological Classes, but cannot be the cause of NRA Biological Classes being worse than the NWC Classes. In this section, an attempt has been made to quantify the mismatches that could have been caused by these differences in the classifications.

A mismatch owing to differences in the period over which the classification relates to was considered to have occurred when a poor chemical class was assigned to a site where the chemical samples collected in 1990 alone did not indicate such a poor chemical class. To do this, an NWC Classification based on data from 1990 only was calculated for all sites and compared to the NWC Classification based on data for the three year period from 1990 to 1988.

The chemical classifications derived from one year's data are less precise than those based on three years' data, because the number of samples on which they are based is much less. The chances of missing occasional poor quality that defines the 95 percentile conditions is greater with fewer samples, so the single year classifications will be biased in favour of better quality. The degree of bias has not been estimated. In many cases the chemical classifications derived from 1990 data alone were based on only 12 samples. It is usual not to deter ine an NWC-Class when there are less than ten samples, because the precision is considered to be too low. Two sites were not classified on the 1990 data alone, because of this.

A mismatch because the biological classification reflects only chronic poor quality, whereas the NWC classification reflects the 95 percentile worst short-term conditions was considered to have occurred when a poor chemical class was assigned but less than 30% of samples reflected the poor quality.

NRA Biological Class A, representing 'good ecological quality', covers a wider range of conditions than NWC-Classes 1A and 1B, which represent 'good [chemical] river quality'. Because of this, two evaluations were undertaken (see Table 3.4). In the first evaluation it was assumed that NRA Biological Class A equates to NWC-Classes 1A and 1B (Assumption 'a'). The biological and chemical classifications were considered to match when a site was classified as either: of good biological quality (Class A) and of good chemical quality (NWC-Class 1A or 1B); or not of good biological quality (Class B, C or D) and not of good chemical quality (NWC-Class 2, 3 or 4). In the second evaluation it was assumed that NRA Biological Class A equates to NWC-Classes 1A, 1B and 2 (Assumption 'b'). The biological and chemical classifications were considered to match when a site was classified as either: of good biological quality (Class A) and of good to fair chemical quality (NWC-Class 1A, 1B or 2); or not of good biological quality (Class B, C or D) and of poor or bad chemical quality (NWC-Class 3 or 4). In reality, NRA Biological Class A probably relates to a range of water quality conditions from NWC-Class 1A to somewhere between NWC-Classes 1B and 2.

TABLE 3.4	Mismatches	between	the	NRA	Biological	Classification	and	the	NWC
Classificat	ion								

Assumption	Matches		Biol Class worse than NWC-Class	NWC-Class worse than Biol Class	(1) Year	Reason (2) Acute	
'a'(A = 1A-1B)) 262	199	14	185	62	10	13
'b'(A = 1A-2)	363	97	37	60	27	29	4
Notes:							
Assumptio		and 1B	-	A is equivale			
	'b' •	NRA Biol		A is equivale	nt to	NWC-C1	asses 1A,
Matches	=			where chemic eed' (see text		nd bi	lological
Mismatche	S =		of sites when (see text)	re the two cla	assifi	cation	s did not
Reason				: (chemical) iological Clas			on being
Year				red in 1988 or			
Acute	=	-	(<30%) and	ty occurred i therefore did			

The NWC Classification and NRA Biological Classification were in agreement at 57% of sites, assuming biological Class A = NWC-Classes 1A-1B (assumption 'a'), and 79% of sites, assuming biological Class A = NWC Classes 1A-2 (assumption 'b'). The true extent of agreement was probably somewhere between these two values. Mismatches, where the NWC chemical Classification indicated better conditions than the NRA Biological Classification owing to differences in the period that they relate to (three years v one year), accounted for 31% of all mismatches (Assumption 'a') or 28% (Assumption 'b'). Mismatches owing to the chemical classification being based on worst conditions whereas the biological classification is based on longer-term 'best' conditions accounted for 54% (Assumption 'a') or 30% (Assumption 'b') of mismatches. These are over estimates, because some of the mismatches would have been because of real differences, or statistical error.

Although these estimates are subject to errors (real differences and sampling errors are hidden), and bias in the case of errors owing to year, a substantial proportion of the differences between the two classifications is probably explained by differences in the classification procedures. None of the mismatches where the biological classification was worse than the chemical classification would have been influenced by these differences in the classification procedures.

3.2 The ecological quality of individual catchments

The order in which the quality of each catchment is discussed in this section is that of the catchment codes, shown in Figure 3.3.

3.2.1 Interpreting the tables and maps

The overall NRA Biological Classification is shown on the maps for each catchment (Figures 3.4 -3.45). Biological classes based on EQI ASPT and EQI N-fams and the overall NRA Biological Classification are listed in the tables for each catchment, as are the EQIs and biotic indices observed from the samples. This data is pooled from all seasons samples. The data therefore indicates the ecological quality achieved during 1990, but not variations in quality that may have occurred during the year.

Sites with a RIVPACS suitability code of 1 (see Table 2.4) are distinguished from those that were less suitable (suitability codes 2-5) on the maps. The classification of sites with low RIVPACS suitability is less accurate than those with high suitability, because RIVPACS' predictions will be less accurate. It is not possible to quantify the degree of inaccuracy.

The number of samples on which the EQIs and biological classifications were based affects the EQI banding used to define the biological classes (see Section 2.3.7). The seasons in which the samples were taken are identified in the tables of results for each catchment as codes: these season codes are defined in Table 3.5.

The biological site codes are listed in the tables of results for each catchment. Chemical monitoring sites covering the same reaches as the biological sites are identified in the tables by code numbers (known as user reference numbers). Both the biological site codes and the chemical site user reference numbers are used to archive the raw data, and it is helpful if these can be quoted when requesting further data for the sites.

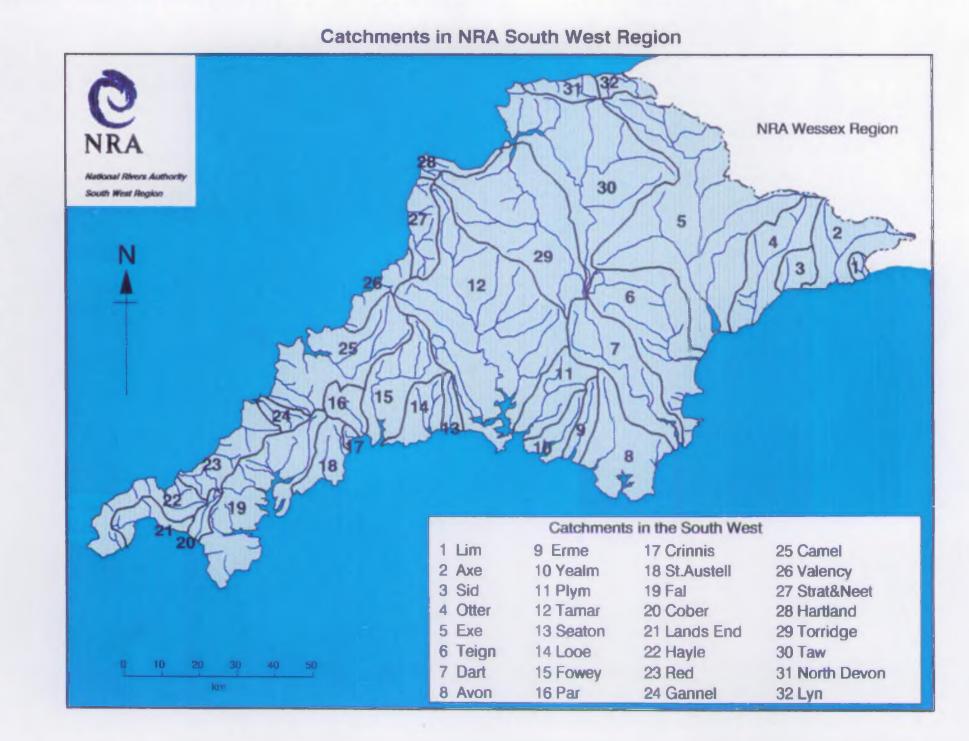


Figure 3.3

Catchments in NRA South West Region

Although not part of the Public Register, the biological data collected in routine surveys is treated as if it were, in accordance with NRA policy.

Table 3.5	Season	codes
-----------	--------	-------

Code	Season(s)
1	Spring only
2	Summer only
3	Autumn only
4	Spring and Summer only
5	Spring and Autumn only
6	Summer and Autumn only
7	Spring, Summer and Autumn

Where EQI ASPT is poor, but EQI N-fams suggests good quality, organic pollution (such as from sewage effluent or farm waste) is the most likely cause of poor ecological quality. Organic pollution is also most probably the cause of poor ecological quality where both EQI ASPT and EQI N-fams is low, though some form of toxic pollution could also be responsible. Where EQI N-fams is poor, but EQI ASPT is good, toxic pollution (such as from acidic metalliferous discharges or industrial effluents) or habitat degradation (such as canalization) are the most likely causes of poor ecological quality.

There is a 5% chance of the classifications based on EQI ASPT being erroneous. There is a 10% chance of the classifications based on EQI N-fams being wrong. The chances of misclassification are greater when the EQI is near the band limits of the classes. Where there is a high risk of misclassification based on either EQI ASPT or EQI N-fams, the general NRA Biological Classification may indicate a different class. If both the class based on a single EQI and the general NRA Biological Classification are the same, there is a lower risk of the EQI based on a single class being erroneous.

3.2.2 River Lim Catchment Catchment-1

.

The single biological monitoring site sampled in 1990 on the River Lim indicated that the river was of good biological quality.

ł

BIDLOCICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS

RIVER LIM CAPITMENT (Catchment 1)

Site Na on Map		Biological Site Name	NGR	Site Code	Chemical Site	No. of Samples	Seasons	N-fans	ASPT	EQI N-Caus	iqi Aspt	BOLT OT N-farme	ass Aspt	NRA Bio Class
1 2	Lin Harconbe Stream	25m u/s br Mill Green 5m u/s br prior to STW	SY 3400 9253 SY 3330 9333	0101 0102	R01A002	3	7	30	5.8	0.90	0.93	A	A	A

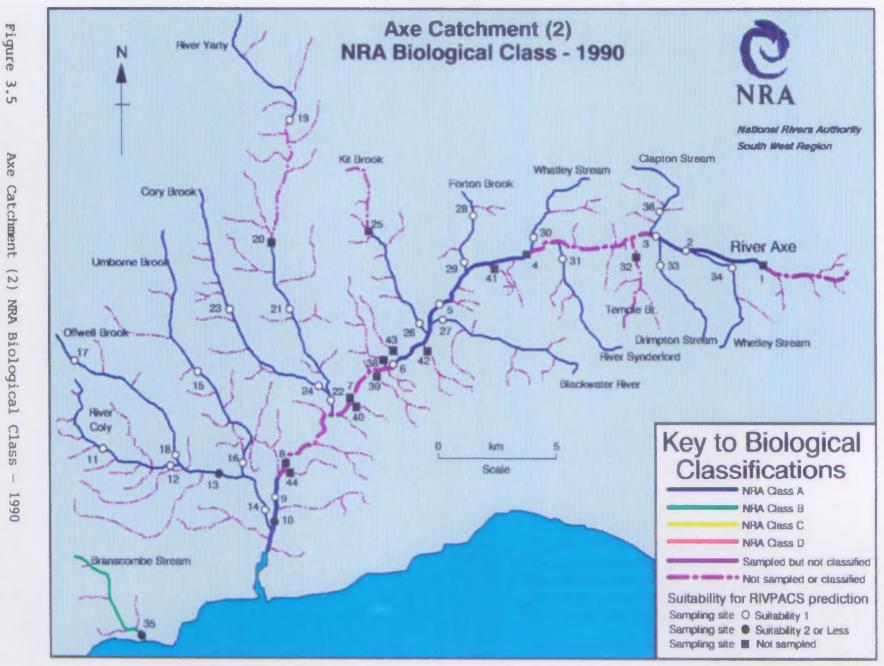
3.2.3 River Axe Catchment Catchment-2

Despite being classed as having of good ecological quality, the River Axe and many of its tributaries including the River Yarty suffered from eutrophication. Although this was not evident from the biotic indices based on the macro-invertebrate communities, it was evident from the fish and algal There was a permanent bloom of benthic diatoms at Whitford communities. Bridge throughout the year, and large stands of Cladophora and Ranunculus were present in the lower reaches of the Axe during the Summer and Autumn. The lower reach of Umbourne Brook was of only moderate quality in terms of its EQI N-fams (though not its overall NRA Biological Classification) which suggested a possible toxic influence, though no potential sources were The lower identified other than a Sewage Treatment Works (STW) effluent. reach of the Branscombe Stream was classed as being of only moderate ecological quality owing to only moderate EQI-N fams. This was ascribed to the effects of dredging at the monitoring site. This routine monitoring site has since been replaced by another away from the area that is dredged, so that the ecological quality of the lower Branscombe Stream is represented better.

HICLOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INTEX TO MAPS RIVER AXE CATCIMENT (Catchment 2)

Site No.

É


arne un	/•		
an Map	Wetercourse	Biological Site Name	NGR
1	Axe	20m d/s A3066 br Mosterton	ST 4568 0525
2	AKe	30a d/s Seeborough Bridge	ST 4295 0570
3	Axe	Cathill Fam Weycroft	ST 4035 0603
4	Axa	60m u/s Forde Bridge	ST 3626 0534
5	Axe	Zin u/s br Broom	ST 3263 0248
6	Axa	75m u/s A358 br Waycroft	ST 3075 0002
7	Axe	125m u/s Bow Bridge	SY 2902 9833
8	Ane	300m u/s Whitford Bridge	SY 2645 9555
9	Axe	100m d/s footbr Numford Dairy	SY 2611 9463
10	Ave	50m u/s Axe Bridge	SY 2593 9265
11	Coly	20a u/s Woodbridge	SY 1885 9533
12	Coly	75m u/s Brinkley Bridge	SY 2125 9514
B	Coly	150m u/s ford (10m u/s footbr) Heathayne	SY 2342 9437
14	Coly	60m u/s bridge Colyford	SY 2535 9268
15	Unbourne Brook	25m u/s Triffords Farm br	SY 2232 9946
16	Unbourne Brook	75m u∕s Coly confluence	SY 2485 9430
17	Offwall Brook	100m d/s Offwell footbridge	SY 1930 9874
18	Offwell Brook	25m u/s br Road Pitt Faum	SY 2148 9534
19	Yarty	100m u/s Newhervern Bridge	ST 2587 1103
20	Yarty	15 u/s Longbridge	ST 2562 0551
21	Yarty	100m u/s Beckford br	ST 2650 0158
22	Yarty	100m u/s A35 br Gaumons Hill	SY 2813 9812
23	Corry Brook	40m u/s rd br Rose Faum	ST 2421 0244
24	Corry Brook	100m u/s rd br Old Corryton	SY 2684 9908
25	Kit Brook	10m u/s br Narfords	ST 2958 0628
ፚ	Kit Brook	25m u/s road bridge Axe Farm	ST 3194 0167
27	Blackwater River	50m u/s br Bucklevall	st 3301 0217
28	Fortan Brook	50m u/s E3162 rd br	ST 3403 0709
29	Fortan Brock	100m d/s Tatworth STW	ST 3375 0463
30	Whatley Stream	30m d/s railway bridge Anmarham	ST 3648 0556
31	Synderford	20a u/s footbridge Beere Farm	ST 3776 0573
32	Temple Brook	20m u/s Osthill br	ST 4072 0587 ST 4165 0542
33 34	Drinpton Stream	20m u/s Nethenhay Ford 25m u/s road bridge Robewll Farm	ST 4469 0493
35	Whotley Stream		SY 2068 8820
36	Branscopha Stream Clapton Stream	25m u/s pylons Branscombe Mouth 50m u/s rd br u/s Clapton	ST 4162 0718
30 38	Chapplecroft Brook	60m u/s Axe contil	ST 3045 0000
39	Mill Brook	20m u/s Ave confi	SY 2965 9921
40	Old Park Brook	50m u/s Axe confl	57 2909 9798
41	Havood Streen	40m u/s Axe confl	ST 3462 0498
42	Stampry Streen	50m u/s Ave confi	ST 3202 0100
43	Smillridge Stream	25m u/s rail br prior to Awa	ST 3088 0037
44	Bulmoor Stream	100m u/s Whitford Bridge	SY 2633 9533
		•	

Site	Chemical	No. of				EQT	EQI		LASS	NRA Bio
Code	Site	Samples Sea	sons	N-fams	ASPT	N-Cams	ASPT	N-Camp	ASPT	CLASS
0232	R020001	-	-	36	6.0	1.09	1.02	A	A	λ
0212	F02C002	3	ר ד	зю 40		1.09	1.02	Å	Å	Â.
0213	R020003	3	1	40	6.1	1.20	1.05	~	~	~
0233	H020004	•	-	41		1 30	1.00	λ	A	A
0214	H020005	3 3	7	41	6.0	1.20	1.00	λ λ	Å	Å
0215	R02CD06	3	7	48	6.4	1.44	1.00	~	~	~
0234	F020007									
0230	R02B001		-	**	E 0	1.00	0.97			
0202	R02B002	3	7	37	5.9	1.09		A	A N	A N
0203	R02B002	3	7	42	5.8	1.19	1.01	A	A .	A
0208	F02B003	3	7	31	6.0	0.93	0.95	A	A	A
0209	R028004	3	2	32	6.0	0.95	0.95	Å	A	A
0210	R028005	-	7	31	6.0	0.98	0.98	<u>х</u>	A	A
0211	F028006		7	37	6.3	1.08	1.01	A	A	A
0205	R028007		7	33	6.7	0.98	1.06	Å	A .	A
0204	8028008	3	7	27	6.3	0.78	1.02	8	A .	A
0206	R02B009	3	7	35	6.5	1.09	1.01	A	A A	A A
0207	R02B010	3	7	31	5.8	0.91	0.92	A	Â	Ň
0225	R020003	3	7	34	6.4	0.99	1.01	A	~	^
0243	R020004		-	74	<i>.</i>	0.00	0.99		•	A
0227	R02D005		7	34	6.3	0.98		X	A A	À
0226	F02D006	3	7	41	6.1	1.27	1.01	X		
0228	F02D001	3	7	34	6.4	1.01	1.01	A .	A .	A
0229	R020002	3	7	38	6.0	1.09	0.95	A	A	A
0241	R020012	-	-	~		. ~	1.00		•	•
0223	R020013		7	36	6.4	1.05	1.03	A N	A N	х х
0222	R020008	•	7	38	6.3	1.09	1.01	A .	A .	
0220	H02C010		7	33	5.9	0.99	0.99	A	λ	λ
0221	R020011	3	7	35	5.8	1.04	1.01	A	A	A
0219	R02015	3	7	36	6.1	1.09	1.07	X	A .	X
0218	R020014	3	7	37	6.3	1.08	1.04	λ	A	λ
0242	R020018	_	_					-		
0217	R020009		7	33	6.0	0.99	1.01	λ	A	A .
0224	R02CD16		7	36	6.1	1.08	1.04	X	X	X
0201	R02N001		7	23	6.1	0.69	1.03	B A	A A	8 A
0216	R020017	3	7	35	6.0	1.07	1.05	~	~	~
0237										
0236										
0235										

.

.

- 0239 0238

33

RDALLENMAPS/NOD.2 (CATCH2.DRW)

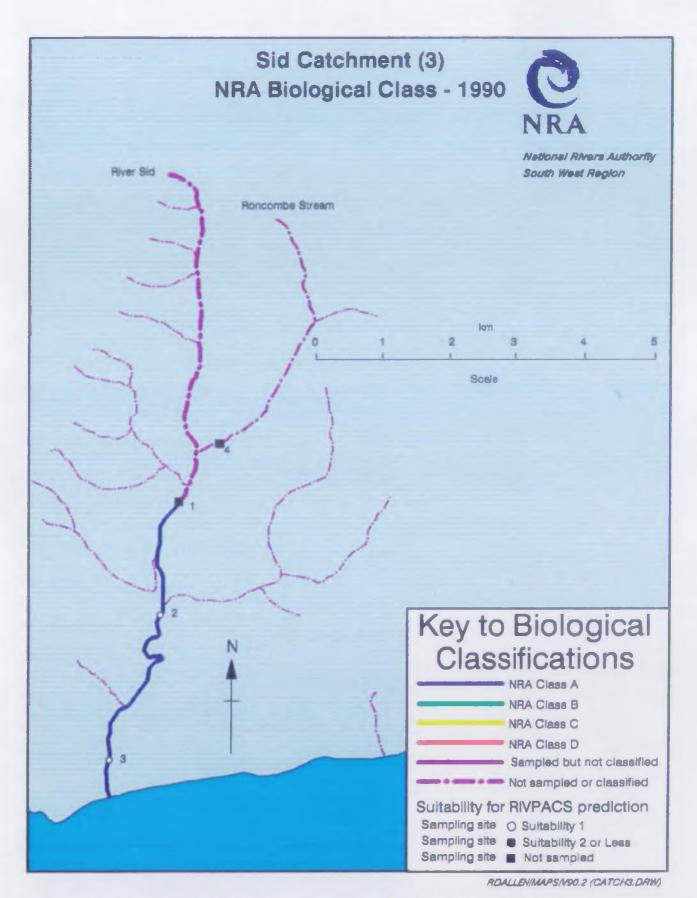


Figure 3.6 Sid Catchment (3) NRA Biological Class - 1990

3.2.4 River Sid Catchment Catchment-3

.

I

The overall NRA Biological Class of the lower and middle reaches of the River Sid indicated good biological quality.

.

	D OTOMENT (Catch	of river quality 1990 and index to maps ment 3)		 Site
on Map	Watercourse	Biological Site Name	NCR	Code
	<i>a</i> , ,	The set of the set of the set	SY 1402 9168	0303
1	Sid	75m u/s Stoney br Sidbury	••••••••	
2	Sid	20m u/s A3052 br Sidford	SY 1375 8995	0301
3	Sid	25m u/s footbr Sidmouth 300m u/s chem	SY 1280 8812	0302
4	Roncombe Stream	15m u/s br Cotford	SY 1425 9222	0304

ω 5

I

Chemical	No. of				EQI	EQT	ឈ្លា	LASS	NRA Bio
Site	Samples	Seasons	N-Cane	ASPT	N-Cams	ASPT	N-Eaus	ASPT	Class
R03A001									
9034002	3	7	34	6.3	1.00	1.01	A	A	A
F03A003	3	7	27	6.1	0.79	0.99	A	A	λ
R03A013									

•

3.2.5 River Otter Catchment Catchment-4

Two of the lower to middle reaches on the River Otter were of only moderate ecological quality owing to moderate quality EQI ASPTS. This was ascribed to organic enrichment, most probably from farming activities, though abstraction may have been a contributory influence.

4

.

HILLICGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS RIVER OTTER CATCIMENT (Catchment 4) Site No.

on Map	Watercourse	Biological Site Name	NGR
1	Otter	50m u/s br Hoemore Farm	ST 2212 1040
2	Otter	45m u/s footbr Rawridge	ST 1983 0627
3	Otter	200m u/s Ford Bridge	ST 1850 0310
4	Otter	70m u/s Clapperlane br	ST 1638 0123
6	Otter	50m d/s bridge Weston	ST 1422 0006
7	Otter	150m u/s br Fenny Bridges	ST 1145 9870
8	Otter	50m u/s br Ottery St Mary	SY 0937 9607
9	Otter	200m u/s br Tipton St. John	SY 0895 9196
10	Otter	50m u/s footbr Dotton Mill	SY 0873 8853
11	Otter	25m d/s Otterton br	SY 0790 8524
B	Budleigh Brook	20m u/s br Yettington	SY 0527 8570
14	Colaton Raleigh Stm	15m u/s br Pophanas	sy 0718 8767
15	Metcomba Stream	20a u/s br Metcoabe	SY 0797 9197
16	Fluxton Streen	40m u/s br Fluxton	SX 0863 9283
17	West Hill Stream	25m u/s br Salston Barton	SY 0883 9455
18	Tale	50m u/s bridge Dames Mill	ST 0755 0335
19	Tale	Zim d/s br Taleford	SY 0895 9689
20	Vine Water	Zim d/s Peniton signpost Feniton	SY 1108 9914
21	Gittisham Stream	10m d/s top of field d/s Pomereroy	SY 1343 9913
23	Wolf	30a u/s rd br Winniford	ST 1432 0060
24	Gissage	20m Otter confluence	ST 1528 0117
25	Oute Ralaigh Stream	50a u/s fama Ford Longwood	ST 1630 0175
27	Wick Streem	100m u/s fm br Mill House Nursery	ST 1685 0293
29	Odle Brook	10n u/s track Sourthan Farm	ST 1925 0640
Z9	Faironk Stream	30m u/s br Upottery	ST 1994 0778

Site	Chemical	No. of				EQL	EIQT		LASS	NRA Bio
Code	Site	Samples	Seasons	N-Caus	ASPT	N-faus	ASPT	N-Caus	ASPT	Class
			-	~						
0401	R042001	3	7	37	6.6	1.13	1.03	A	×	A
0412	R048042	•	-					-	•	
0402	R04E035	3	7	31	6.6	0.90	1.04	A	X	A
0413	R04H002	-	_					_	_	
0403	R04B003	3	7	33	5.8	0.98	0.93	X	Х	A
0414	F04B019		_					_	_	_
0404	R04B004	3	7	33	5.4	0.99	0.86	A	B	B
0405	R04B005	3	7	29	5.5	0.87	0.88	X	8	8
0415	R048006									
0406	R04B007	3	7	29	6.0	0.87	0.98	X	λ	A
0425	FD4E034									
0424	R04B032									
0423	FD4B028									
0422	R04B0Z7									
0421	R04B026									
0410	R04B008	3	7	33	5.9	0.96	0.94	A	A .	A
0411	R04E009	3	7	29	5.7	0.82	0.90	A	A .	A
0420	R04E025									
0419	R04E024									
0409	R04B011	3	7	34	5.9	0.98	0.95	X	λ	λ
0408	R04B023	3	7	39	5.9	1.11	0.95	A	λ	A
0418	R04E022									
0407	R042010	3	7	36	6.6	1.04	1.03	A	A	A
0417	R04H021									
0416	8048020									

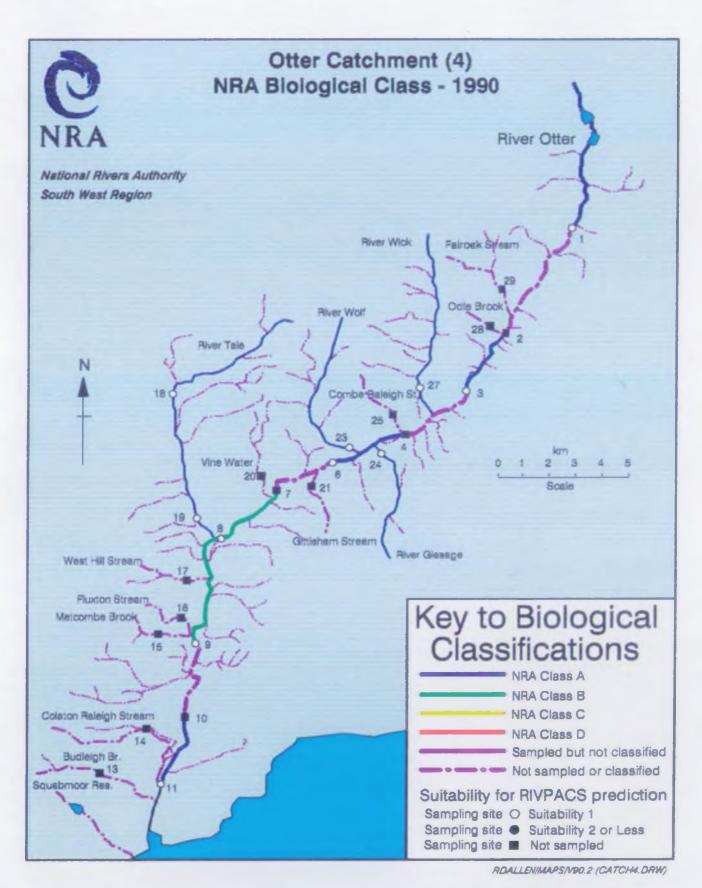


Figure 3.7 Otter Catchment (4) NRA Biological Class - 1990

3.2.6 River Exe Catchment Catchment-5

The River Exe itself was of good ecological quality, except in its lowest reach monitored at Trews Weir, which was of only moderate quality on the basis of both EQI ASPT and EQI N-fams. The biologists reported difficulties sampling at this site, which could have contributed to the poor classification of this reach. The moderate quality of the upper reach of the River Kenn was ascribed to organic enrichment, mostly from farming activities. This was confirmed by a detailed investigation by the Region's Freshwater Investigations Team (see National Rivers Authority South West Region, 1991a). Most of the sites on the River Clyst, and the lowest reach of its tributary the Cranny Brook, were of moderate quality owing to organic enrichment, most probably caused by farming activities. The poor quality of the most upstream reach of the Cranny Brook was also likely to have been the result of farming activities, though an industrial discharge has also been suggested as the cause. Moderate quality in the River Culm at Higher Upton owing to organic enrichment was ascribed to effluent from a paper mill at Higher Kings Mill, as well as to farming. The lower reach of Alphin Brook, which runs through an industrial estate, is canalised and was subject to dredging; it was of moderate ecological quality owing to its EQI ASPT, implying that organic enrichment also affected the fauna. The moderate quality of the Northbrook was ascribed to urbanisation and storm-water overflow; the biological data indicated that the contamination was largely organic. The lower and middle reaches of Spratford Stream were of moderate quality owing organic enrichment, most probably because of farming, sewage works effluent, and in the lowest reach because of effluent from a meat processing factory.

HIOLOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INTEX TO MAPS RIVER EXE CARCIMENT (Catchment 5)

Site No.

:	Site No	•		
	an Map	Watercourse	Biological Site Name	NCR
		Due	10 uto for her Oracet Peres Preferred	SS 8573 3806
	1	Exe	10m u/s fm br Court Farm Exford	SS 9150 3387
	2	Exe	75m d/s rope bridge Below Winsford	
	3	Exe	25m u/s br Warmore	55 9347 2601
	4	Exe	150m u/s Exebridge	SS 9310 2448
	5	Due	150m u/s Halfpenny Bridge	SS 9510 2045
	6	Exe	250m d/s Bolham Intake Lythecourt	SS 9475 1513
	7	Exe	300m u/s Tiverton New Bridge Kennedy	SS 9484 1330
	8	Exe	175a d/s to of field Collipriest	SS 9520 1170
	9	Eco	150m d/s STW Ashley	SS 9528 1003
	10	Exe	Zim u/s footbridge Bickleich Castle	SS 9368 0690
	п	Exe	100m d/s br Thorverton	SS 9353 0155
	12	Exe	90m u/s Stafford Bridge	SX 9223 9621
	13	Exce	50m u/s Envick Br	SX 9103 9360
	14	Đ.e	Flood Relief by fish pass Trews Whir	SX 9242 9163
	15	Kenn	A38br Kennford 50m u/s footbr Brenton Fm	SX 9117 8663
	16	Kenn	20a u/s A)79 br u/s Kenton	SX 9527 8463
	17	Easter Canal	30m u/s A38 br Countees Wear	SX 9395 8940
	_			ST 0363 0158
	18	Clyst	30m u/s bridge Clyst Hydon	
	19	Clyst	15m u/s br Clyst St Lawrence	ST 0273 0005
	20	dyst	50m u/s rd br Ashciyst Farm	SY 0115 9830
	21	Clyst	20m u/s A38 br Broadclyst	SX 9843 9760
	22	Clyst	100m u/s Withy Bridge	SX 9748 9580
	23	Clyst	150m u/s rd br Clyst Honiton	SX 9860 9357
	24	Clyst	50m u/s field br Clyst St Mary	SX 9728 9165
	25	Grindle Brook	40a d/s weir Winslade Park	SX 9770 9019
	26	Aylesbeare Stress	175a u/s br Dysonds Faim	SX 9883 9260
	27	Pin Brook	15m u/s br. Mosshayne	SX 9812 9435
	28	Polly Brook	200a d/s A376 br Extan	SX 9836 8627
	29	Cramy Brook	50m u/s field br Baunshayes	sy 0382 9710
	30	Cranny Brook	72 u/s bridge Crannaford Crossing	SY 0135 9600
	31	Cranny Brook	100n u/s rd br Wishford Fam	SX 9919 9527
	32	Ford Stream	20a u/s A30 br	SY 0091 9526
	33	Alphin Brook	10m u/s Dymand's Bridge	SX 8671 9288
	34	Alphin Brook	30a d/s footbr Alphington u/s A379 rd br	SX 9130 9040
	35	Alphin Brook	150m u/s Countess Wear br	ST 9387 8948
	36	Northbrook	150m u/s rd br Northbrook Park	SK 9403 9080
	37	Creedy	75m u/s Ashridge Bridge	SS 8182 0619
	38	Shutteen Brook	prior to Creedy Barton House	SX 8817 9817
	39	Creedy	75m d/s footbridge Lords Meedow	SS 8485 0070
	40	Creedy	150n u/s field br Westacott Ortlages	SX 8545 9997
	41	Creedy	150m u/s br Newton St Cyres	SX 8798 9850
	42	Creedy	100m d/s bridge Oskford Farm	SX 9010 9673
	43	Jackmor Brook	Langford 120m d/s footbr	SK 8983 9772
	44	Shobtooke Lake	35m d/s black pipe Creedy Barton	SX 8670 9963
	45	Yeo [Creedy] [=Hitts	Rinneford 100m u/s ford	SX 7596 9676
	46	Yeo (Creedy)		SX 8051 9849
	47	Yeo (Creedy)	300m u/s br Downes Mill	SX 8525 9910
	48	Culvery River	50m u/s bridge Uton	SX 8342 9855

							EUI	801 O	ACC	NRA Bio
Site	Chemical	No. of		× 4	Martin	HQI N-Cams	ASPT	N-fans	ASPT	Class
Code	Site	Samples	Seasons	N-Caras	TTEA	N-Lans	POPI	(A-TQUO	AXI	
0591	R05c001									
0547	R050002	3	7	35	6.8	1.05	1.07	λ	A	A
0592	R050003	2					1			
0535	R05E001	3	7	30	6.8	0.95	1.08	λ	λ	A
0585	R05E002	•								
0536	R05ED03	3	7	29	6.8	0.93	1.09	A	λ	λ
0537	R05£004	3	7	34	6.5	1.10	1.05	A	A	A
0586	R05E005									
0538	R05E006	3	7	35	6.0	1.11	0.97	A	A	X
0539	R050015	3	7	36	6.3	1.13	1.01	A	×	Å
0530	R05D001	3	7	27	6.3	0.83	1.02	A	×	A
0582	R05D002		_					-		
0531	R05D003	3	7	42	6.0	1.20	1.02	A .	A	А В
0532	R05D004	3	7	24	4.8	0.70	0.84	6 6	8 8	8
0502	R054001	3	7	24	5.1	0.71	0.84 1.06	A N	λ	Å
0503	R05A002	3	ר ד	34	6.4 5.1	0.98 0.87	0.91	Ā	Ä	Å
0501	R05A006 R05E001	3	, 1	28 22	4.4	0.70	0.79	6	8	8
0508		3		14	7.7	0.10	0.15	Ū	-	
0567 0509	R058002 R058003	3	7	32	S.5	0.96	0.93	λ	λ	λ
0510	R058004	3	7	<u></u>	4.8	0.80	0.87	Å	8	8
0510	R058005	3	7	31	4.9	0.86	0.86	X	Ð	8
0512	R058006	3	7	'n	5.1	0.91	0.86	A	Ð	8
0568	ROSECCO	د	•	72						
0506	R05A028	3	7	37	5.5	1.10	0.94	λ	A	A
0569	R05B013					Ye				
0570	R058012									
0566	R054029									
0513	R05E009	3	7	18	4.1	0.54	0.71	С	c	c
0514	R05E010	3	7	29	5.2	0.85	0,90	A	A	A
0515	R05E011	3	7	28	5.1	0.81	0.68	A	8	B
0571	R05E014									
0565 0504	R05A003 R05A004	3	7	36	5.9	1.07	1.00	A	A	٨
0505	ROSNOOS	3	7	30	4.7	0.90	0.82	Ä	B	В
0500	R05A026	ŝ	, 7	22	4.6	0.66	0.80	В	B	В
0557	R05J001	1	1	23	6.0	0.88	0.94	A	A	A
0598	805,1021									
0558	R05,002	3	7	39	6.1	1.11	0.97	λ	A	A
0594	R05J003									
0595	805,0013		_						•	
0569	R05J004	3	7	42	6.3	1.24	1.01	A	X	X
0596	F05J018									
0597 0562	R05J017 R05K003	2	4	24	6.2	0.79	0.97	A	A	٨
0562	R05k003	3	7	36	6.4	1.12	1.02	A	Ä	Ä
05100	R05K005	-	-	20						
0564	R05K011	3	7	36	5.9	1.04	0.94	A	A	A

BIOLOGICAL CLASSIFICATION	OF RIVER QUALITY 1990 AND INDEX TO MAPS
RIVER EXE CRICHMENT (Catc	hment 5) continued
Site No.	
on Map Watercourse	Biological Site Name

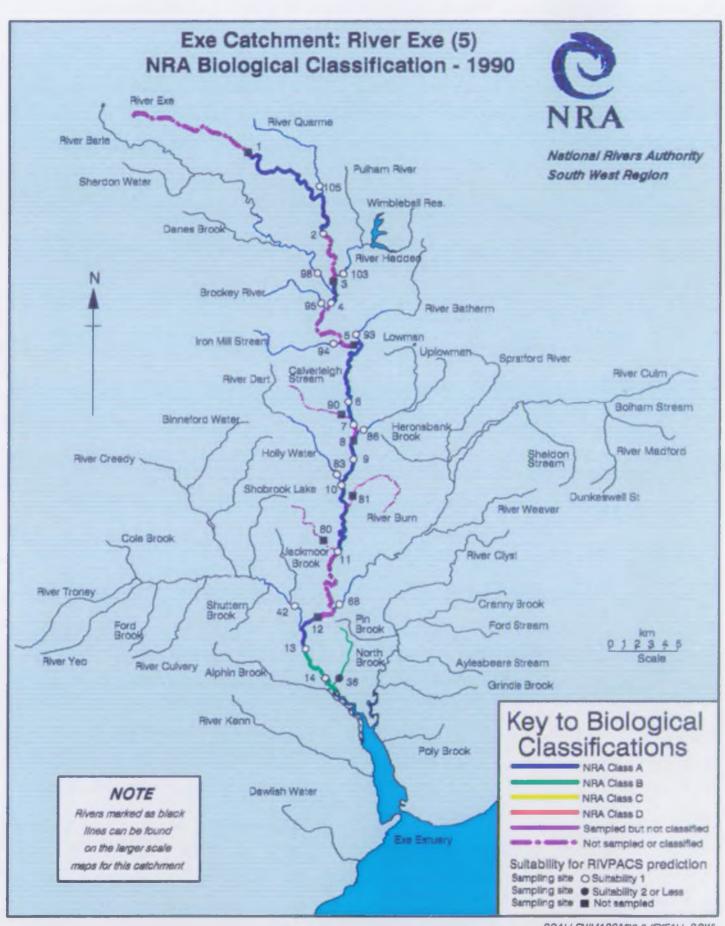
ito No).		
n Map	Watercourse	Biological Site Name	NCR
49	Ford Brook	10m u/s br Ford Faun	SX 7938 9769
50	Troney	40m u/s br Easterbrook	SX 7228 9703
51	Traney	50m u/s Yeoford Bridge	SK 7830 9900
52	Cole Brook	75m u/s br Colebrooke	SX 7779 9960
53	Holly Water	50m u/s Heath Bridge	SS 8445 0451
54	Birneford Water	100m u/s confl Ashridge Farm	SS 8198 0618
55	Horwell Stream	55m u/s br Colebrooke	SS 7715 0043
56	Culm	50m u/s br Rosemary Lane	ST 1605 1408
ទា	Qijm	20m u/s br Henyock	ST 1388 1391
58	Culm	100m d/s rd br Culmstock	ST 1000 1375
59	هلين	10m u/s footbr Uffculme	ST 0713 1279
60	Culm	90m d/s Skinner's Pana br	ST 0418 1014
61	Qılm	225m u/s Higher Upton br	ST 0270 0677
ស	பிக	Zin u/s br Westcott	ST 0135 0427
64	Culm	25m d/s wair u/s mill	SS 9800 0102
66	Culm	350m d/s br d/s Silverton Mill	SS 9745 0138
ฤ	Culm	75m d/s Columbjahn br	SX 9575 9970
68	Culm	250m d/s Stoke Canon Bridge	SX 9363 9745
69	Warver	40m u/s B3181 br	ST 0137 0392
70	Spratford Stress	30m u/s Leonard Moor Bridge	ST 0449 1410
71	Spratford Stream	50m u/s B3391 br Tiverton Junction	ST 0320 1160
72	Spratford Stream	50m d/s Five Bridges	ST 0265 0953
73	Heron's Bank Brook	10m u/s br Heron's Bank	ST 0242 0885
74	Sheldon Stream	20m u/s Shute Faum Bridge	ST 1239 0901
75	Madford Stream	prior to Dunkesvall confl under pylons	ST 1522 0836
76	Medford Stream	Dunkeswell Abbey 30m u/s river split	ST 1442 1015
Π	Hadford Stream	25m u/s Culm Bridge Hemyock	ST 1435 1352
78	Dunkerswall Stream	prior to Madford confl	ST 1490 0827
79	Bolham River	100m u/s Five Bridges	ST 1506 1247
60	Thorverton Stream	25m u/s br app Thorverton Church	SS 9251 0220
81	Burn	50m u/s foothr Burn Mill Farm	SS 9467 0557
82	Dart (Exe)	50m u/s A373 br BracLoy	SS 8958 1250
83	Dart (Exe)	75m u/s Dart Bridge Bickleigh	SS 9354 0766
84	Lowan	60m u/s wood Huntsham Wood	ST 0085 1836
85	Lowen	40m u/s Chieflowmen Bridge	ST 0080 1567
86	Lowish	Z5m d/s AJ73 Bridge Tiverton	SS 9577 1256
87	Uploween Streem	75m d/s gate to field Wichayes	SS 9990 1447
90	Calverleigh Streem	100n u/s Skinesbridge	SS 9445 1397
91	Batheon	5m u/s rd br Pansconbe	ST 0043 2678
92	Batheus	75m u/s Pheesant Pa A361 br Shillingford	SS 9608 2378
93	Batheca	500m u/s rd br Bowbiethill under pylons	SS 9530 21.26
94	Iron Mill Stream	40m d/s Iron Mill Bridge Stuckeridge	SS 9177 2082
		• • • • • • • • • • • • • • • • • • • •	

Site	Chemical	No. of				EDI	BUT	EQI C	LASS	NRA BLO
Code	Site	Samples S	ieasong	N-Cases	ASPT	N-fame	ASPT	N-Eatts	ASPT	Class
05104	R05K010									
05101	F05k008									
0563	F05K002	3	7	30	6.2	0.86	0.99	Α.	A	A
05103	R05k009									
0560	R05,7015	3	7	34	6.3	0.97	0.99	A	A	A
0599	R05J016									
05102										
0516	R050002	3	7	37	6.3	1.11	0.98	A	A	A
0572	R05C003									
0517	R05CD04	3	7	33	6.0	0.98	0.95	A	A	A
0573	R05c005									
0518	R05c006	3	7	32	6.4	0.95	1.01	λ	A	A
0519	R05C007	3	7	28	5.1	0.82	0.83	A	B	В
0574	R050008									
0575	R05c009									
0577	R05C011									
0520	R05c012									
0521	R05C013	3	7	34	5.5	0.96	0.89	A	A	A
0580	H05C026									
0522	R05c015	3	7	36	5.5	1.04	0.94	A	A	Α
0523	R05c016	3	7	28	5.2	0.84	0.87	A	8	B
0524	R05c017	3	7	23	4.7	0.69	0.81	B	8	В
0581	R05c027									
0525	R05c014	3	7	32	6.9	0.97	1.08	λ	A	A
0578	R05c041									
0527	R05C028	3	7	32	7.0	0.95	1.09	A	A	A
0526	R05c019	3	7	35	6.9	1.02	1.07	A	A	A
0579	R05c042									
0528	R05c018	3	7	39	6.6	1.16	1.03	A	A	A
0584	R050009									
0583	R050008									
0533	R050006	3	7	34	6.6	1.03	1.02	A	A	A
0534	R050007	3	7	35	6.4	1.01	1.01	A	A	A
0587	ROSE009									
0543	R05E010	3	7	37	6.8	1.09	1.08	A	A	A
0544	R05E011	3	7	29	5.7	0.84	0.91	A	A	A
0589	R05E021									
0568	FI05E020									
0590	R05F001									
0545	R05F002	3	7	32	6.1	0.95	0.97	A	A	A
0546	R05F003	3	7	34	6.5	1.01	1.03	Ä	Ä	Å
0542	R05E008	3	7	38	6.8	1.15	1.07	λ.	A	A
										••

a a company of the second s

. . . .

BROLOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS RIVER EXE CRICHMENT (Catchment 5) continued Site No. on Map Watercourse Biological Site Name


95	Brockey River	50m u/s Brocksbridge Obttage bridge	SS 9238 2455
96	Barle	100m u/s Simonsbath Bridge	SS 7695 3915
97	Barle	150m u/s ford Tarr Steps	SS 8667 3223
98	Barle	100m d/s Pixton Hill	SS 9243 2631
99	Dane's Brook	30m u/s Hawkridge Bridge	SS 8575 3012
100	Shardon Water	Zim u/s bridge Ferny Ball	SS 8025 3540
101	Haddao	20m u/s bridge Cuckolds Carbs	ST 0014 3077
102	Withiel Brook	50m u/s field br u/s Wimbleball	\$\$ 9805 3266
103	Haddao	50m u/s bridge Pixycopse	SS 9377 2658
104	Pulhan	25m u/s bridge prior to Haddeo	SS 9573 3000
105	Quarte	50m d/s footbridge Witheridge Farm	SS 9202 3500
106	Dawlish Water	20m d/s footbridge car park Dawlish	SK 9565 7673
107	Dawlish Water	30m u/s footbr Brook House	SX 9548 7679

NR

A Bio
lass
A
A
A
A
λ
λ
A
λ
λ
λ
A

.....

•

RDALLEN/MAPS/190.2 (EXEALL DRW)

Figure 3.8 Exe Catchment: River Exe (5 in part) NRA Biological Class-1990

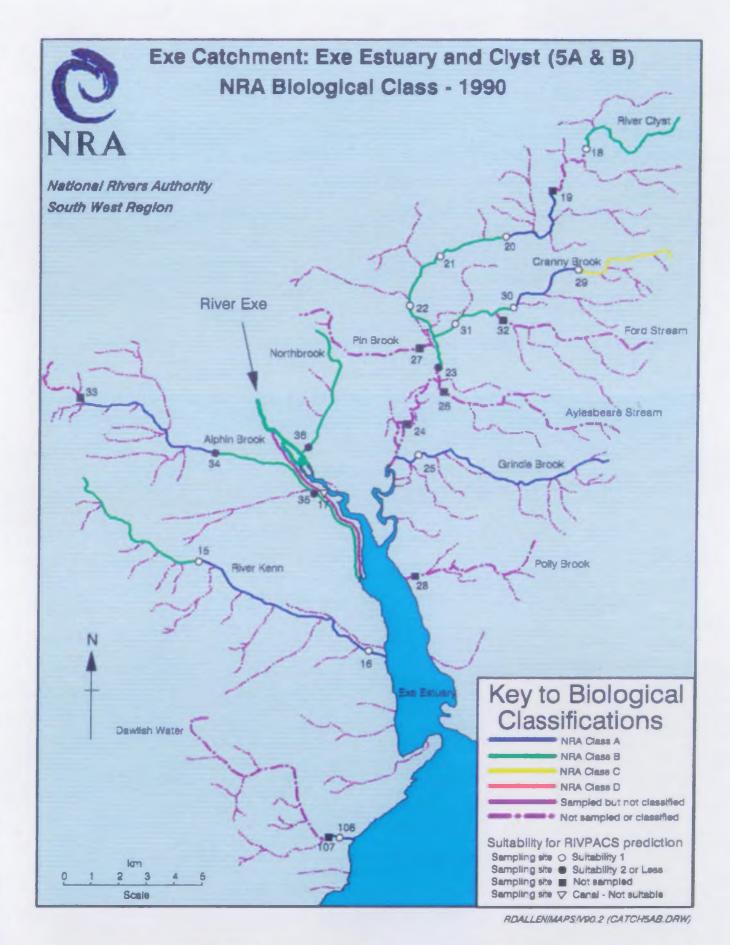
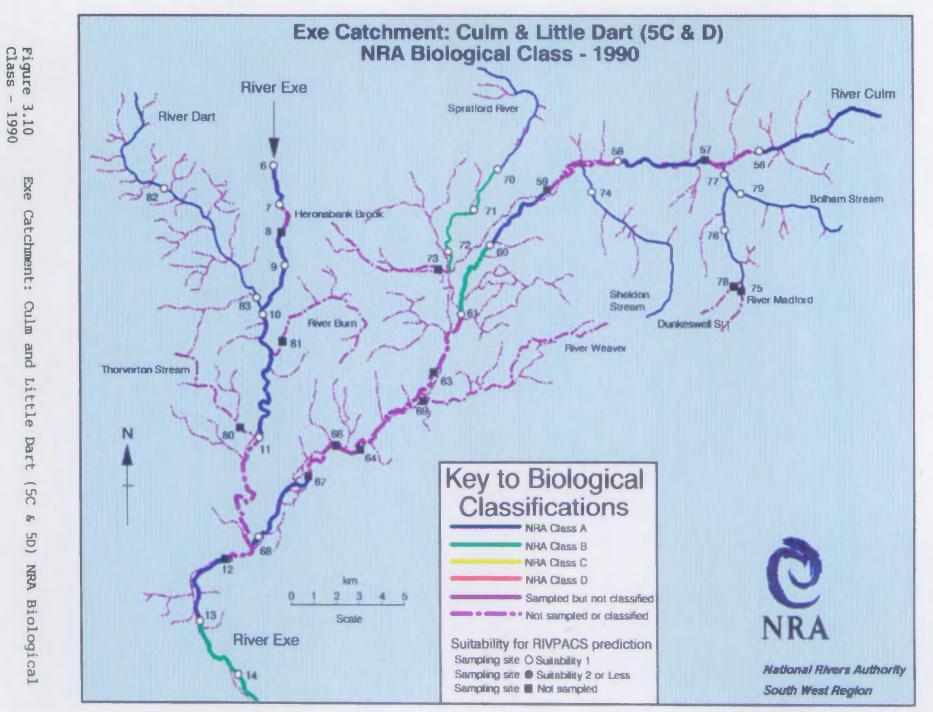
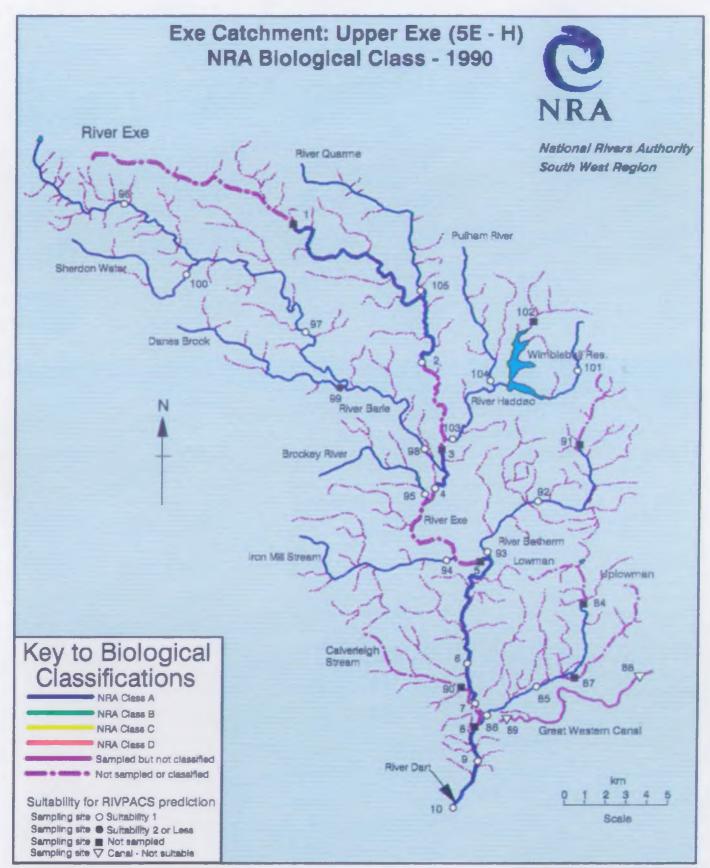
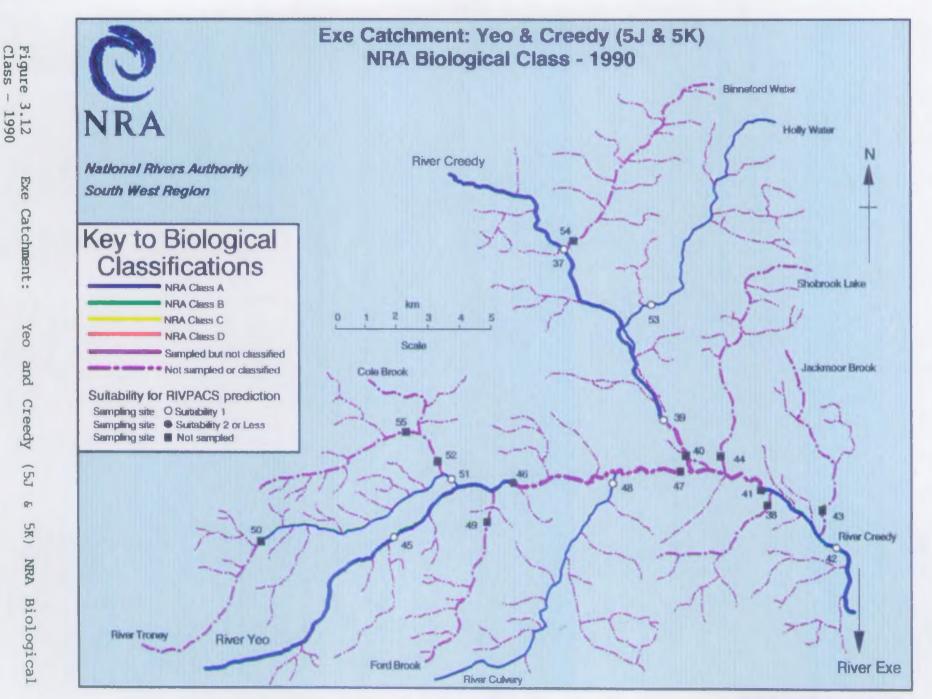




Figure 3.9 Exe Catchment: Exe Estuary and Clyst (5A & 5B) NRA Biological Class - 1990



RDALLENMAPS/N90.2 (CATCHSCD.DRW)

RDALLEN/MAPSN90.2 (CATSEFGH.DRW)

Figure 3.11 Exe Catchment: Upper Exe (5E, 5F, 5G & 5H) NRA Biological Class - 1990

RDALLENIMAPS/N90.2 (CATCHSJK.DRW)

3.2.7 River Teign Catchment Catchment-6

Apart from the Aller Brook, the whole catchment was of good overall ecological quality. Aller Brook was of poor quality because of organic and inorganic pollution: its upper reach was affected by seepage from a reclaimed waste disposal site and by pollution from a vegetable processing factory (both these sources are to be confirmed by Pollution Control), and its middle reach by a effluent from Kingskerswell Sewage Treatment Works which was subsequently decommissioned, in 1991. Aller Brook was surveyed by Freshwater Investigation Team in 1992, and a report is in preparation.

RECLOSECAL CLASSIFICATION OF REVER CUALITY 1990 AND INDEX TO MAPS RIVER TEICN (701) MENT (Catchment 6)

Site No.

NGR Watercourse Biological Site Name on Mp SX 8796 8032 Halden Stream 160m u/s footbr Hams Barton 1 SX 6828 8760 South Teign River 75m u/s Leich Bridge 2 100m u/s Gidleigh Park Hotel Bridge SX 6772 8783 3 North Teign SX 6940 8798 4 50m d/s Rushford Br u/s Chargford Teign SK 7812 8979 30m d/s Clifford Bridge 5 Taign 50 m d/s rd br d/s Bridfordmills Weir SK 8343 8720 6 Teign SX 8425 8422 7 120m u/s Spara Bridge Teign 225m u/s Crocombe Bridge opp Knowle House (IHB) SK 8470 8135 8 Teion SX 8580 7814 400m d/s Chudleich Bridge 9 Taign 100m u/s New Bridge SX 8480 7630 10 Teion SX 8573 7358 300m u/s Teignbridge 11 Teign SX 8948 6630 12 u/s Edminswell Pumping Stn opp Rougement Av Aller Brook 5m d/s hedge bank Manor Drive playing fields SX 8798 6740 13 Aller Brook 30m d/s footbridge Aller Orchard SX 8763 6883 14 Aller Brook 15m u/s fence Plynco Superstore Permin SX 8708 7050 15 Aller Brook 10m u/s br Bagator Mill SK 7696 7556 16 Lemon 250m d/s Sig confl 30m d/s minor trib SK 7805 7352 17 Lenon SX 8508 7095 20m d/s footbr Bradley Park 200m u/s op 18 Lenon Zim d/s rd br 10m u/s footbr Perry Farm SX 8360 7289 19 Blatchford Stream Zim d/s rd br Blatchford SX 8560 7301 20 Blatchford Stream 25m u/s rd br Langford Bridge 21 Compton Pool Stream 22 Unbrooke Stream 15m d/s discharge Higher Sandygate Upbrooke Stream approx 55m u/s footbr prior to Teign confl 23 25 Crockernwall Stream 35m d/s rd br 15m u/s rd br New Cross Kingsteighton 26 Sandygate Stream 27 Liverton Brook 75m u/s Ventiford Bridge 75m d/s Blackaller Bridge 78 Bovey 30n u/s Drakeford Bridge

50m d/s road bridge Little Bovey

u/s arm of meander Twiryeo Farm

75m u/s bridge Casaley Court

65m u/s Teign conf 15m u/s br

50m d/s bridge Tottiford House

40m d/s B3193 br prior to Teign

20m u/s footbr u/s barytes mine

10m d/s br Clifford Bridge Park

115m u/s Fingle Bridge 30m u/s sign

30m d/s B3193 rd br proir to R Teign

100m u/s Newbridge

90m u/s bridge Knowle

10m u/s Hyner Bridge

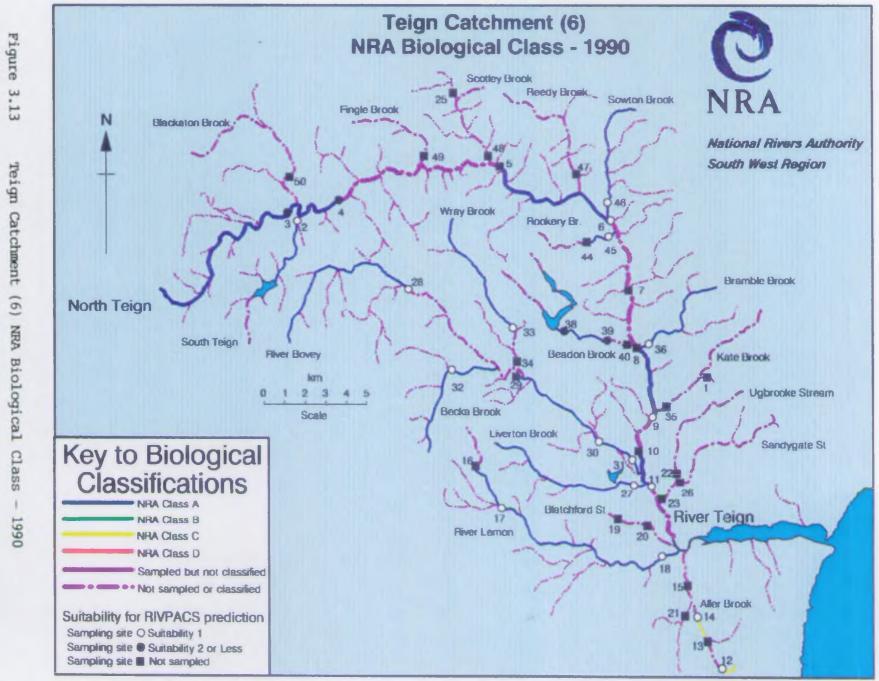
150m u/s Souton Bridge

10m d/s Reedy Bridge

70m u/s rd br

45m u/s rd br to Gappha

S ò


> 29 Bovey 30 Bovey 31 Bovey 32 Backa Brook 33 Wray Brook 34 Wray Brook 35 Kate Brook 36 Branble Brook Beadon Brook 38 30 Beadon Brook 40 **Bearlon Brook** 44 **Rookery Brook** 45 **Rockery Brock** 46 Souton Brook 47 Reedy Brook 48 Scotley Brook 49 Fingle Brook

> > Blackaton Brook

50

SX 6783 8901

Site	Chemical	No. of				ECT	ECT		LASS	NRA BLO
Code	Site	Samples	Seasons	N-fame	ASPT	N-fans	ASPT	N-Eams	ASPT	Class
0636										
0615	R06C001	3	7	32	7.1	1.41	1.11	A	A	A
0616	R06C002	3	7	28	7.0	1.25	1.10	A	A	A
0607	R06C003	3	7	32	6.8	1.48	1.06	A	λ	A
0631	R06C004									
0608	R06C005	3	7	33	6.5	1.01	1.03	A	A	A
0632	RD6CD37									
0633	R06C006									
0609	R06C007	3	7	34	6.2	1.02	0.98	A	A	A
0634	RD6c008									
0603	RD68001	3	7	36	6.3	1.06	1.02	A	A	A
0601	R06A001	3	7	15	4.1	0.54	0.76	С	С	С
0623	R06A002									
0602	R06A003	2	5	15	4.2	0.50	0.75	С	С	С
0624	R06A004									
0627	R068003									
0622	RD6B004	3	7	30	7.1	0.94	1.11	A	A	A
0606	R068005	3	7	36	6.9	1.05	1.11	A	A	A
0628	R068006									
0629	R068007									
0625										
0626	RDGB012									
0604	R068013									
0640										
0630	FD6B010									
0605	R068050	3	7	33	6.1	0.95	0.99	X	A	A
0617	R060001	3	7	40	6.8	1.18	1.07	A	A	A
0644	RD6D002		-							
0618	R060003	3	7	31	6.5	0.94	1.04	λ	A	A
0619	ROGEDO4	3	7	31	6.5	0.92	1.04	A	A	A
0621	R060012	3	77	33	7.0	1.35	1.09	A	A A	A A
0620	RD6D008 RD6D011	3	/	34	0.7	1.01	1.05	~	~	~
0635	RD6C055									
0610	R06C011	3	7	38	6.7	1.11	1.08	A	A	λ
0611	R06C009	3	7	25	6.0	0.82	0.93	A	A	λ
0612	R06C010	3	7	24	6.6	0.79	1.04	A	A	A
0637	RD6CD40	2	,	61	0.0	0.15	7104		~	~
0638	RD6CD13									
0613	R06C014	3	7	25	7.1	0.79	1.13	A	A	A
0614	R06C015	2	5	29	6.1	0.92	0.97	A	A	A
0639	R06C054	-								
0642	R060057									
0643	R06C053									
0641	R06c052									

RDALLENMAPS/190.2 (CATCHB.DRW)

3.2.8 River Dart Catchment Catchment-7

The whole catchment was of good ecological quality, except for the lower reaches of the River Dart. At Buckfastleigh, the EQI N-fams indicated only moderate quality, though this was not supported by the overall NRA Biological Classification. The site was downstream from a disused metal plating works, which may explain the toxic impact that was apparent there. Poorer than expected taxonomic richness (as reflected in EQI N-fams) was also evident at the next site downstream, at Riverford Bridge, and this was reflected in its overall NRA Biological Classification of moderate ecological quality. The site was downstream from Buckfastleigh STW which discharges pesticides from a wool mill. The biologists reported difficulty sampling at this site, and this may have contributed to the poor taxonomic richness that was recorded there. The most downstream site on the River Dart, at Totnes Weir, was also of moderate quality, but here both the EQI ASPT and EQI N-fams were affected. This reach suffered from eutrophication, which caused algal blooms during the late Summer. This site was deep and was sampled by dredge, which gives more variable samples than the pond-net, which may have affected the results. Moreover, the site had a low RIVPACS suitability (suitability code 4, see Table 2.4), so the classification is of low reliability.

BIOLOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INTEX TO MAPS RIVER DART CATUMENT (Catchment 7) Site No.

OTLO IN			
an Map	Watercourse	Biological Site Name	NER
1	East Dert River	30m u/s rd br Postbridge	SX 6477 7895
2	East Dart River	75m u/s clapper bridge d/s Badgers Holt	SK 6720 7326
3	West Dart River	30m u/s road bridge Two Bridges	SK 6080 7505
4	West Dart River	50m u/s Huncaby Bridge	SX 6590 7293
5	Ruddyclowe Water	15m u/s bridge Ruddycleave Obtrage	SX 7245 7308
6	Dart	20m u/s New Bridge	SK 7113 7087
7	Dart	30m u/s wood opp Blackmoor Farm	SX 7383 6807
9	Dart	10m d/s Dart Bridge Buckfastleigh	SK 7449 6670
11	Dart	500m u/s Riverford Bridge	SX 7682 6398
12	Dart	25m u/s Totnes Wair	SX 8000 6133
в	Hadiciane River	15m u/s road bridge Harbourneford	SX 7175 6235
14	Harbourno River	25a u/s Leigh Bridge	SK 7710 5670
15	Harbourne River	40m d/s road bridge Baenleigh	SX 7978 5660
16	Wesh	50m u/s weir Tuckenhay	SX 8171 5593
17	Hens	20m d/s rd br Portbridge Cross	SX 7892 6599
18	Hens	20m d/s bridge u/s Tally-ho	SX 8162 6378
19	An Brook	15m u/s Collacombe Bridge	SX 8105 6750
20	An Brook	100m u/s Pishacre Bridge	SX 8195 6452
21	Bichall Brook	10a u/s rd br Tigley	SK 7572 6087
22	Bidwell Brook	150m u/s Dartington Lodge	SX 7980 6152
23	Consic River	30m u/s Beardown Page	SK 6031 7530
24	Mardle	40m u/s rail br Buckfastleigh	SX 7462 6613
25	Daam Buzh	35m u/s B3380 bridge	SX 7324 6511
26	Ashbum Yeo	30m u/s Dart Bridge	SX 7457 6685
Z7	Holy Brook	40a u/s rd br Northwood Buckfast	SX 7400 6767
28	East Webburn River	50a d/s Cockingford Bridge	SK 7165 7505
29	Webbuth	75m u/s Buckland Bridge	SX 7166 7200
30	West Webburn River	20m u/s Pensworthy Bridge	SX 7010 7390
31	Venford Brook	25m d/s railings d/s WIW	51 6870 7139
32	Walla Brook	300m u/s Babney 40m d/s split	SK 6730 7545
в	9-incombe	100m d/s bridge prior to West Dart	SX 6466 7323
34	Cherry Brook	50m u/s Lower Cherrybrook Bridge	54 6311 7485
35	Blackbrook	15m u/s bridge Tor Royal	SX 6015 7383

5

.

÷.										
Site	Chemical	No. of				FUT	EDI	801 O	LASS	NRA Bio
Code	Site	Samples	Seasons	N-Carro	ASPT	N-fams	ASPT	N-fame	ASPT	Class
0716	P078001	3	7	30	6.9	1.37	1.08	A	A	A
0717	F078002	3	7	ð	6.8	1.01	1.06	A	A	A
0719	R078003	3	7	22	6.4	1.02	1.01	A	A	A
0720	R078004	3	7	26	6.7	1.05	1.04	A	A	A
0729										
0707	R078005	3	7	25	7.0	0.94	1.09	А	A	A
0726	R078007									
0708	R078008	3	7	24	6.5	0.77	1.04	8	X	A
0709	R078009	3	7	20	4.9	0.62	0.78	8	Ø	8
0710	R078010	3	7	23	4.9	0.64	0.81	B	B	8
0701	F07A001	3	7	36	6.9	1.08	1.09	X	A	λ
0724	R07A002									
0702	R07A003	3	7	36	6.5	1.10	1.03	A	A	A
0703	H07A004	1	1	27	6.4	1.09	1.00	A	A	A
0725	F078011									
0704	F078012	3	7	38	6.0	1.12	1.02	X	λ	A
0705	R07B016	3	7	29	6.5	0.88	1.09	λ	λ	λ
0706	R078017	3	7	35	6.2	1.04	1.07	A	A	A
0727	R07H018		_					_		
0711	R078019	3	7	29	5.6	0.86	0.95	X	X	λ
0733	R078057		_					_		
0712	R078014	3	7	28	6.1	0.81	0.95	X	A	A
0728	R078052	_	_					-		
0713	F078050	3	7	35	6.2	1.03	0.98	A	A	A
0714	R078020	3	7	37	7.0	1.11	1.10	λ	λ	A
0731	F07B036	-	-					-	•	•
0715	R07B015	3	7	34	7.0	1.55	1.10	A	A	A
0730	r07b037									
0732										
0718	R078051	3	7	27	6.9	1.27	1.07	Å	A	X
0721	R07B021	3	7	34	6.7	1.54	1.05	Ň	A	A .
0722	R07E032	3	7	29	6.7	1.34	1.04	A	Å	A
0723	R07E049	3	7	32	6.5	1.27	1.02	X	A	A

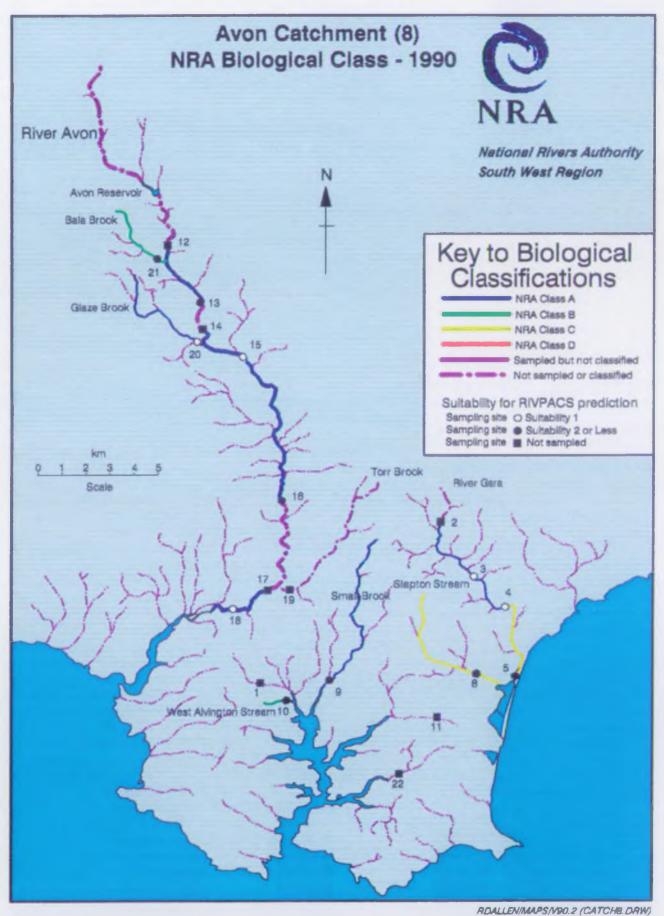


Figure 3.14 Dart Catchment (7) NRA Biological Class - 1990

3.2.9 River Avon Catchment Catchment-8

The lower reach of The Gara was of poor ecological quality overall, reflected in its poor quality EQI ASPT and only moderate quality EQI N-fams, which is usually indicative of organic pollution. In this case, the habitat probably had a greater influence on the classification than water quality. The monitoring site at Slapton Bridge was between two lakes fed by The Gara, and was in a reed swamp. The water flow was very slow, and the site was almost lentic. The site had a low RIVPACS suitability (suitability code of 4, see Table 2.4) and consequently the predictions made by RIVPACS, and the classifications based on them, were not particularly reliable. The site was also difficult to sample, which may have contributed to the poor result. Slapton Stream was also of poor overall quality, reflected in the poor EQI Nfams and moderate EQI ASPT, which suggests organic pollution. Sampling difficulties may have contributed to the poor classification, but the site had low RIVPACS suitability (suitability code 4, see Table 2.4), so the classification would have been imprecise. The River Avon was of good quality, except for its tributary Bala Brook which was of moderate quality. Bala Brook's fauna was affected by discharges from a Water Treatment Works: this was confirmed by a special investigation in 1990 (National Rivers Authority South West Region, 1990).

REGLOCION, CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS RIVER AVON CATCHMENT (Catchment 8) Site no. on Map Watercourse Biological Site Name


•		
Watercourse	Biological Site Name	NR
Churchstow Stream	25m u/s rei br Redford	SK 7228 4434
The Gara	15m u/s rd br Woodford	SK 7978 5097
The Gara	200m u/s br 20m u/s split Forder	SX 8105 4906
The Gara	60m u/s br Higher North Mill	SX 8245 4764
The Gara	15m u/s Slapton Bridge	SX 8282 4440
Slapton Streem	Iron Bridge	SX 8205 4413
Small Brook	100m u/s road bridge Bowcombe	SX 7511 4448
Wast Alvington Str	200m u/s bridge Ticket Wood	SX 7323 4364
Chillington Stream	15m d/s rd br Chillington	SX 7925 4265
Avan	30m u/s Shipley Bridge	SX 6809 6292
Avan	50m u/s Lydia Bridge	SX 6953 6070
Avan	5m u/s discharge 50m u/s A38 b	SX 6977 5923
Avan	50m u/s bridge Horsebrook	SX 71.22 5847
Avon	150m d/s Gara Bridge	SX 7290 5332
Avan	40m d/s br Loddiswell	SX 7268 4825
Awan	150m u/s Hatch Bridge 500m d/s New Bridge	SX 7157 4722
Torr Brook	10m d/s rd br The Old Mill	SX 7335 4832
Glaze Brock	opposite mill Righer Turtley	SX 6963 5893
Bala Brook	100m u/s bridge Zeel	SK 6781 6249
South Rool Stream	5n u/s crossing point South Pool	St 7773 4025
	Churchstow Stream The Gara The Gara The Gara The Gara Slapton Stream Small Brook West Alvington Str Chillington Stream Avon Avon Avon Avon Avon Avon Avon Torr Brook Bala Brook	Churchstow StreamZim u/s rd br RedfordThe Gara15m u/s rd br WoodfordThe Gara200m u/s br 20m u/s split ForderThe Gara60m u/s br Higher North MillThe Gara15m u/s Slapton BridgeSlapton StreamIron BridgeShall Brook100m u/s bridge Ticket WoodOhillington Stream15m d/s rd br ChillingtonAvon30m u/s bridge BridgeAvon50m u/s bridge BridgeAvon150m u/s bridge BridgeBala Brook100m u/s bridge Zeal

56

J.

Site	Chemical	No. of				EQT	HQI.	EQT C	LASS	NRA Bio
Code	Site	Samples	Seasons	N-fans	ASPT	N-Cans	ASPT	N-Caus	ASPT	Class
0818										
0814	R08A002									
0801	R08A003	3	7	38	6.6	1.13	1.04	A	λ	A
0802	R08A004	3	7	33	6.6	1.01	1.03	A	λ	A
0803	R08A006	3	7	28	4.4	0.78	0.71	B	С	С
0805	R08A012	3	7	18	4.7	0.53	0.82	с	B	С
0806	R08A01.3	3	7	31	5.9	0.89	0.97	A	A	λ
0807	R08A014	3	7	23	5.7	0.76	0.97	B	A	B
0817										
0819	R08B007									
8080	P08B001	3	7	Z7	6.9	0.86	1.06	A	λ	A
0820	R08B008									
0809	F08E002	3	7	29	6.9	0.89	1.08	A	λ	A
0810	R08B003	3	7	39	6.4	1.30	1.01	X	λ	A
0821	F088004									
0811	R088005	3	7	36	6.4	1.09	1.02	X	A	A
0822	R08B015									
0812	F088009	3	7	37	6.5	1.13	1.02	A	λ	A
0813	R08B011	3	7	16	5.6	0.74	Q.58	B	B	B
0816										

....

HUMLENNING STORUZ (UNITONO. DITIN)

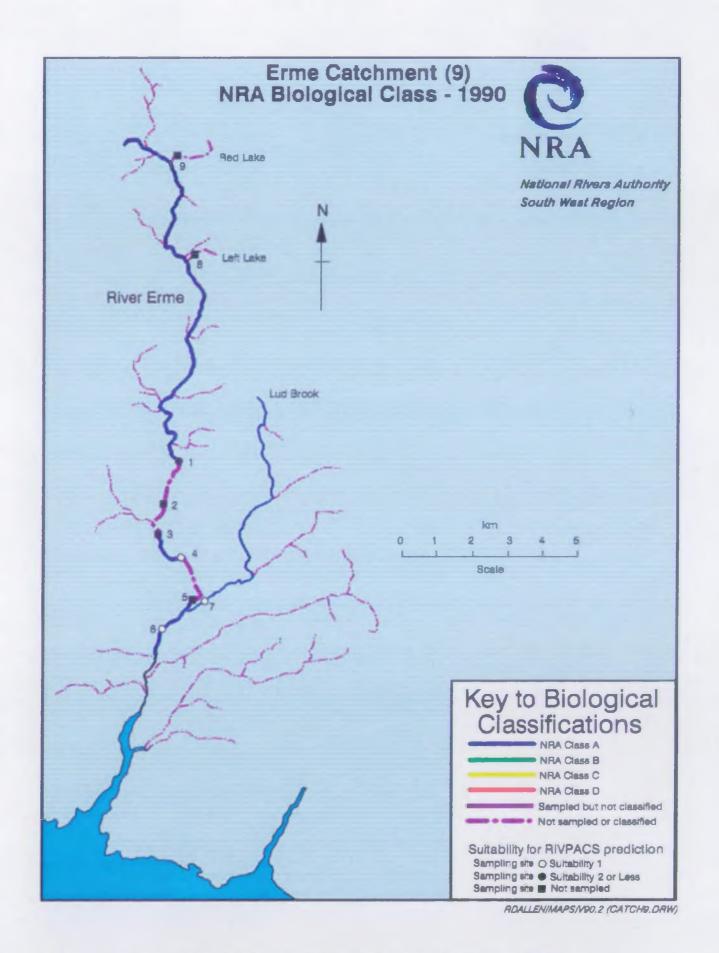
Figure 3.15 Avon Catchment (8) NRA Biological Class - 1990

3.2.10 River Erme Catchment Catchment-9

All the sites surveyed on the River Erme were of good ecological quality. In 1990, the middle reaches of the River Erme were affected by pollution incidents from a paper mill, storm overflows and a sewage treatment works, though these did not influence the biological classifications based on the combined seasons' data.

BIOLOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS RIVER EME CATCHMENT (Catchment 9) Site no. on Map Watercourse Biological Site Name

GT (105 E713
SK 6385 5713
SX 6331 5578
SX 6334 5525
SX 6403 5449
SK 6409 5304
SX 6335 5225
SX 641.3 5308
SK 6402 6330
SX 6358 6612


NER

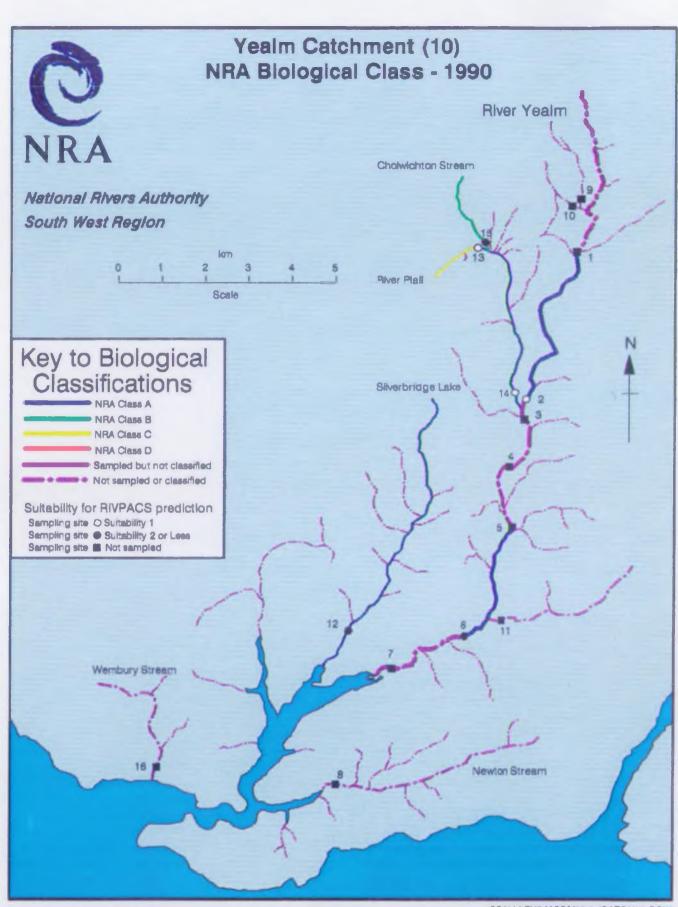
Site	Chemical	No. of				HQI	HQI.	BOT C	LASS	NRA Bio
Code	Site	Samples	Seasons	N-Came	aspt	N-Cases	ASPT	N-Camp	ASPT	Class
0901	R09B001	3	7	26	7.0	0.86	1.10	A	A	A
0905	R098012									
0906	R098002									
0902	R09B010	3	7	32	6.0	0.98	0.95	A	A	A
0907	R098011									
0903	R09B003	3	7	38	6.0	1.13	0.95	A	A	A
0904	R09B017	3	7	38	6.1	1.11	0.97	A	A	A
0908										
0909										

4

.

.

Figure 3.16 Erme Catchment (9) NRA Biological Class - 1990


3.2.11 River Yealm Catchment Catchment-10

The River Yealm was of good ecological quality, except for two reaches on its tributary, the River Piall. The upper reach of the River Piall was of poor ecological quality (reflected in both EQI ASPT and EQI N-fams), and its tributary Cholwichtown Stream was of moderate biological quality (owing to poor taxonomic richness reflected in its EQI N-fams). Both streams were in an area heavily influenced by china clay workings. A 70% cover of ochre was recorded on the river bed at the site on the River Piall, which is consistent with mining impact.

HICLOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS RIVER YEALM CATCHMENT (Catchment 10) Site No. on Map Watercourse Biological Site Name

7109 14			
n Map	Watercourse	Biological Site Name	NGR
1	Yeelm	Hale Cross	SX 6144 6090
2	Yealm	Fardel Mill Farm Bridge	SX 6032 5761
3	Yealm	u/s Fardel Moor Weir d/s lake	SX 6022 5700
4	Yealm	Lee Mill Bridge	SX 6001 5560
5	Yealm	Popple's Bridge	SX 5983 5434
6	Yealm	Yeala Bridge	SX 5898 51.94
7	Yealm	Puslinch Bridge	SK 5706 5099
8	Newton Stream	Bridgend	SX 5559 4821
9	Broadall Lake	Dandles Wood Bridge	SX 6138 6184
10	Ford Brook	Dendles Green	SX 6137 6180
u	Long Brook	Yealsbridge	SX 5941 5213
12	Silverbridge Lake	Brixton	SX 5620 5204
13	Piall	Quick Bridge	SX 5897 6082
14	Piall	Mark's Bridge	SX 5998 5770
25	Cholwichtown	prior to river Piall	SX 5921 6087
16	Wantury Stream	Washury	SX 5188 4880

	1									
Site	Chemical	No. off		_		EQI	EQI	EQT C		NRA Rio
Code	Site	Samples	Seasons	N-fans	ASPT	N-Carns	ASPT	N-Came	aspt	Class
1008	R108022									
1001	R109002	3	7	39	6.6	1.18	1.03	A	λ	Å
1009	R108024									
1 01 0	R108003									
1011	R108021									
1002	R108004	3	7	37	6.5	1.23	1.06	λ	A	λ
101.2	R108005									
1017	R108015									
1014										
1013										
1016										
1003	F10B018	3	7	43	6.3	1.33	1.06	A	λ	A
1004	R10B007	3	7	μ	4.4	0.37	0.70	с	С	С
1005	R10B008	3	7	34	6.7	1.00	1.07	X	A	A
1006	R108006	3	7	21	5.8	0.76	0.92	B	A	B
1007	R104001									

RDALLLEN/MAPS/NO0.2 (CATCH10.DRW)

Figure 3.17 Yealm Catchment (10) NRA Biological Class - 1990

3.2.12 River Plym Catchment Catchment-11

The reaches surveyed in the Plym catchment during 1990 were of good ecological quality, except for the Tory Brook. Although the EQI ASPTs indicated moderate quality, the main biological impacts were on species richness: the EQI N-fams of the uppermost reach on Tory Brook indicated poor quality, whilst the EQI N-fams of the lower reach monitored at Plympton indicated very poor quality (though the overall NRA Biological Classification at this site was poor Ecological Quality). China clay workings were the main influence on this stream, and the toxic impacts on the macro-invertebrate communities were consistent with this being the cause of the poor ecological quality. i

BIOLOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS RIVER PLAN CARCHENT (Catchment 11) Site No.

on Map	Watercourse	Biological Site Name	NER
1	Plym	u/s Blackabrook	SK 5647 6445
2	Plym	d/s Blackabrook	SX 5639 6448
3	Plym	Cadover Bridge	SK 5550 6462
4	Plyma	Shaugh Bridge (Wooden)	SK 5336 6369
5	Plym	Rickleigh	SK 5270 6181
6	Plym	Plym Bridge	SX 5196 5860
7	Tory Brook	Tolchmoor Bridge	SX 5792 6192
8	Tory Brook	Coleland Bridge	SK 5660 6088
9	Tory Brook	Portworthy Bridge	SK 5558 6016
10	Tory Brook	Station Road Plympton	SX 5431 5692
u	Tory Brook	Marsh Mills Bridge	SK 5281 5658
12	Maervy	Weir u/s Burrator Reservoir	SX 5675 6927
14	Maervy	d/s Burrator Reservoir	SX 5515 6790
15	Maevy	Gratton Ford Bridge	SX 5297 6705
16	Meervy	Hoo Maavy	SX 5265 6563
17	Blackabrook	confluence with River Plym	SX 5648 6441

65

1										
1										
Site	Chemical	No. of				EQI	BQI	छ्या व	ASS	NRA Bio
Code	Site	Samples	Seasons	N-Case	ASPT	N-Came	ASPT	N-Éans	ASPT	Class
1110	R119001									
1111	R118001									
1103	RLLB003	3	7	27	6.7	1.17	1.04	٨	λ	A
1112	RL1E004		•	2,	0.1	1.11		~		~
1113	RLIB018									
1104	R11B006	3	7	37	6.7	1.06	1.07	λ	λ	A
1101	RLLADO1	3	7	13	5.5	0.43	0.88	c	B	c
1107	R11A002	•	•					-	-	_
1108	RLLA003									
1102	R11A004	3	7	u	5.2	0.32	0.83	D	8	с
1109	R11A005	-	-	-				_		
1114	R11B008									
1105	R11B009	3	7	28	6.5	1.29	1.03	X	A	λ
1115	R118010									
1106	R11B011	3	7	37	6.6	1.14	1.04	λ	A	A
1116	R118007									

÷

RDALLEN/MAPS/N90.2 (CATCH11.DRW)

Figure 3.18

Plym Catchment (11) NRA Biological Class - 1990

3.2.13 River Tavy Catchment Catchment-12B, 12C & 12D

· . . *

The River Tavy and its tributaries were of good ecological quality.

24.3

÷

.

BIOLOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS RIVER 1747 CATCHMENT (Catchment 12B, 12C & 12D) Site No.

an Map	Watercourse	Biological Site Name	NGR
1	Tavy	Rill Brickys	SX 5329 8049
2	They	Harford Bridge	SK 5056 7678
3	Tavy	Kelly School	SK 4913 7498
4	Tavy	West Bridge	5X 4774 7383
7	Tavy	Weshford	SX 4699 7106
8	Tavy	Denham Bridge	ST 4769 6800
9	Davy	mid Lopwell Dam	SX 4773 6513
10	Tamerton Poliot Stre	Tamerton Foliot	SK 4722 6093
12	Milton Brook	point d/s Milton Coombe	SK 4829 6479
13	Walldoom	Marrivale Bridge	SK 5510 7512
14	Walidham	Ward Bridge	SX 5422 7202
15	Walldham	Badford Bridge	SX 5044 7035
16	Walldham	Grenofen Bridge	SX 4890 7101
17	Ludum	Rushford Bridge	SX 4495 7633
18	Tomerton Poliot Stre	Tamerton Foliot (d/s trib)	SX 4687 6090
19	Amicontos Brook	22n u/s confluence Dartmoor	SK 5717 8337
20	Luebuch	Shillamill (prior to R. Tavy)	SX 4668 7191
21	Montown Brook	Mt. House School	SX 4930 7460
22	Wallabrook	prior to River Tavy	SX 4921 7548
23	Bugn	prior to River Tavy	SX 4980 7618
24	Colly Brook	Peter Tavy	SX 5146 7765
25	Cholwell Brook	Brook Tavy	SX 5081 7861

Site	Chemical	No. of				HOL	EQI		LASS	NEA Bio	
Code	Site	Samples	Seasons	N-Care	ASPT	N-faus	ASPT	N-Came	ASPT	Class	
1203	RL20001	3	7	28	6.8	1.12	1.06	A	λ	A	
1280	R120002										
1281	R120015										
1204	R120003	3	7	27	6.4	0.85	1.02	A	λ	λ	
1282	RL20005										
1205	RL20006	3	7	28	6.4	0.88	1.02	X	X	A	
1283	RL20007										
1201	R12B004	3	7	27	5.7	0.79	0.91	A	λ	A	
1202	R128001	3	7	36	6.6	1.10	1.02	λ	λ	λ	
1212	R120001	2	4	24	7.0	1.19	1.10	A	λ	A	
1286	RL20002										
1287	R120003										
1213	R120004	2	4	31	6.5	1.05	1.03	A	A	A	
1284	R120009										
1279	RL2B005										
1285											
1206	FL20010	3	7	40	6.8	1.14	1.07	λ	A	A	
1207	R120021	3	7	33	6.7	0.98	1.06	A	A	λ	
1208	R120011	3	7	33	6.4	1.02	1.00	A	A	λ .	
1209	R120008	3	7	39	6.9	1.16	1.08	۰. ۸	λ	λ	
1210	R120022	3	7	33	6.8	1.05	1.06	Å	A	λ	
1211	R120019	3	7	z	6.5	0.92	1.02	A	A	λ	

.

Figure 3.19 Tavy Catchment (12B, 12C & 12D) NRA Biological Class - 1990

3.2.14 River Tamar Catchment Catchment-12E to 12P inclusive

With the exception of a few smaller tributaries, all the watercourses in the Tamar catchment were of good ecological quality. Latchley Brook was of poor quality because of poor taxonomic richness, indicating toxic impacts. Runoff from quarrying, and the acidic metalliferous geology of the catchment were advocated as the underlying cause of this. The lower reach of the Luckett was of moderate quality owing to poor taxonomic richness, probably a result of discharges from a number of abandoned mines. The upper reach of the Small Brook was of moderate quality owing to poor taxonomic richness: land run-off, catchment geology, and metal residues from pig slurry were suggested as the causes of this.

RIOLOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS RIVER TAMAR CATCHMENT (Catchment 12E to 12P inclusive) Site No.

n Hep Vetercourse Biological Site Name NE 1 Denar Bases Bridge SS 2009 145 4 Tenar d's Loer Tanar Lake SS 255 107 5 Denar Dedoes Ricks SS 255 107 6 Denar Dedoes Ricks SS 255 107 7 Denar Dedoes Ricks SS 230 050 7 Denar Dedoes Ricks SS 230 050 7 Denar Dedoes Ricks SS 230 050 8 Denar Dedoes Ricks SS 2748 020 9 Denar Dedoes Ricks SS 2748 020 9 Denar Dedoes Ricks SS 230 9756 10 Denar Dedots Ricks SS 230 9776 11 Denar Defort Bricks SS 230 9778 12 Denar Defort Bricks SS 230 9766 13 Denar Devtor Bricks SS 230 9766 14 Tenar Netherbricks SS 4001 7482 15 Denar Geryonen Bricks SS 332 721 16 Denar Geryonen Bricks SS 337 730 17 Denard Oldmill SS 3367 749 18 Tenar Oldmill SS 3367 736 21	Site No).		
1 Inter Construction 52 205 1070 5 Temar Cachaer Tamur Lake 52 205 1070 6 Temar Cachaer Tamur Lake 52 205 1070 7 Dater Temar Moretan Hill 52 205 1070 7 Dater Temar Moretan Hill 52 205 1070 7 Dater Temar Moretan Bridge 52 205 1070 9 Temar Conforce Bridge 52 207 0991 10 Temar Temar Bridge 53 117 9739 11 Temar Conforce with River Deer 53 118 9736 12 Temar Dater Bridge 53 4381 8830 13 Temar Dater Bridge 53 4381 8830 14 Temar Dater Bridge 53 4363 8025 15 Temar Carpose Bridge 53 4307 8662 16 Temar Garnor Bridge 53 432 7201 16 Temar Carpose Bridge 53 432 7221 17 Temar Horsteinde 53 4001 7482 18 Temar Carpostrons Bridge 53 432 7221 16 Temar Garonen Wood <th>on Map</th> <th>Watercourse</th> <th>Biological Site Name</th> <th>NGR</th>	on Map	Watercourse	Biological Site Name	NGR
1 Inter Construction 52 205 1070 5 Temar Cachaer Tamur Lake 52 205 1070 6 Temar Cachaer Tamur Lake 52 205 1070 7 Dater Temar Moretan Hill 52 205 1070 7 Dater Temar Moretan Hill 52 205 1070 7 Dater Temar Moretan Bridge 52 205 1070 9 Temar Conforce Bridge 52 207 0991 10 Temar Temar Bridge 53 117 9739 11 Temar Conforce with River Deer 53 118 9736 12 Temar Dater Bridge 53 4381 8830 13 Temar Dater Bridge 53 4381 8830 14 Temar Dater Bridge 53 4363 8025 15 Temar Carpose Bridge 53 4307 8662 16 Temar Garnor Bridge 53 432 7201 16 Temar Carpose Bridge 53 432 7221 17 Temar Horsteinde 53 4001 7482 18 Temar Carpostrons Bridge 53 432 7221 16 Temar Garonen Wood <th></th> <th></th> <th></th> <th></th>				
5 Themp: Darbarer Bridge SS 257 0894 6 Tamar Morekan Hill SS 2833 0850 7 Danar Tamarskarna Bridge SS 2848 0250 9 Tamar Bridgenule SS 2748 0250 9 Tamar Damar Consolidation SS 129 9735 11 Tamar Damar Boyton Bridge SS 1309 9765 12 Tamar Brothan Bridge SS 1309 9766 13 Tamar Danton Bridge SS 1309 9766 14 Tamar Danton Bridge SS 1307 9662 15 Tamar Polson Bridge SS 4001 7482 16 Tamar Gavystone Bridge SS 4001 7482 17 Tamar Ournislake Bridge SS 4001 7482 18 Tamar Gavystone Bridge SS 4037 0266 19 Electhand Bridge SS 4037 7486 St 4037 7200 10 Portechon Streem	-			
6 Tomut Horeton Hill SS 2833 0850 7 Caster Datacstores Brickye SS 2832 0559 8 Taster Brickgerule SS 2748 0290 9 Datast Cowford Brickye SS 277 2943 10 Datast Datast Cowford Brickye SS 1179 9739 11 Datast Datast Datast SS 2833 0850 12 Datast Datast Datast SS 2833 0850 13 Datast Datast Datast SS 2833 0850 14 Datast Datast Datast SS 2833 0850 15 Datast Datast Datast SS 2833 0850 16 Datast Datast Datast SS 2833 0850 16 Datast Datast Datast SS 2837 0864 17 Datast Datast Castestrickye SS 4001 7482 18 Tatast Outstable Brickye SS 4032 7221 SS 2837 720 19 Patrichon Strean Drito River Tatast SS 3887 7549 SS 2057 7386 21 Luckett Untektt Br	•			
7 Theor. Theor. SZ 232 0559 8 Theor. Bridgerule SZ 248 0230 9 Theor. Crowford Bridge SZ 2748 0230 9 Theor. Crowford Bridge SZ 3179 9739 10 Theor. Theor. SZ 3179 9739 11 Theor. Bayton, Bridge SX 3199 9736 12 Theor. Bayton, Bridge SX 3438 830 13 Demor. Durot. Bridge SX 3438 830 14 Tamer. Nathenbridge SX 3438 830 15 Tamer. Polson Bridge SX 6368 025 16 Tamer. Horsebridge SX 4332 7221 17 Ener. Polson Bridge SX 4332 7221 18 Tamer. Garnislake Bridge SX 4332 7221 19 Barchdon Streem Gernoven Wood SX 4138 741 21 Luchay Brook Latchley SX 4000 7868 22 Luchayt SX 4090 7868 SX 3827 757 23 Luchayt Luchayt SX 3987 7386 24 Luchayt Luchayt <	-			
8 Theor Brichgrule SS 2748 0290 9 Theor Crowford Brichge SC 2872 9943 10 Theor Theor SC 2872 9943 10 Theor SC 2872 9943 SC 2872 9943 11 Theor SC 2872 9943 SC 2872 9943 11 Theor Baser Confluence with River Deer SC 3179 9726 12 Theor Boyton Brichge SC 3443 8830 14 Theor Potton Brichge SC 3683 8025 15 Theor Constructure Brichge SC 3683 8025 16 Theor Greystone Brichge SC 4032 7221 17 Theor Greystone Brichge SC 4032 7221 18 Theor Greystone Brichge SC 4032 7221 19 Elarchchon Streen prior to River Theor SC 4032 7221 19 Elarchchon Streen prior to River Theor SC 4007 7366 21 Luckett Luckett Brichge SC 3882 757 23 Luckett Luckett Brichge SC 3882 757 24 Damerel Streen proid to River Theor SC 3882 757	-	Tomar		
9 Theorem Convolution of the second s	7	Tanar	Taparstone Bridge	
10TamertTamerton BridgeSX 3179 973911Tamerd/s confluence with River DeerSX 3190 972612TamerBoyton BridgeSX 3288 923013DemarDouton BridgeSX 3443 883014TamerNetherbridgeSX 3443 883015TamerPolson BridgeSX 3566 649216TamerGroystone BridgeSX 3566 649217TamerHorsebridgeSX 4001 748218TamerOnnislake BridgeSX 4325 729020Portontoon Streamprior to River TamarSX 4937 738621LuchertOldmillSX 3697 738622LuchertOldmillSX 3697 738623LuchertUdmillSX 3697 738624Danrel Streamprior to River TawarSX 1534 670425DrwyUS Davidstow CreamerySX 1534 670426DrnyTreadrow BridgeSX 2000 736827DrwySt Clether BridgeSX 2000 736828DrmySt Clether BridgeSX 2000 736829DrmyVS Davidstow CreamerySX 1534 670429DrmyTreadrow BridgeSX 2000 736820DrmyTreadrow BridgeSX 2000 736821DuckertNo BridgesSX 2007 736922DrmySt Clether BridgeSX 2000 736823DrmyTreadrow BridgeSX 2000 736824DrmyTreadrow BridgeSX 2000 736825DrmyTreadrow B	6	Tantar	Bridgerule	
11CharacterCharacterizationStateStateStateState12DenarBoyton BridgeSt3288923013DenarDruston BridgeSt3443883014TenerNethethridgeSt3443883015DenarResystome BridgeSt3663802516DenarGreystome BridgeSt3663802517TanarHorsebridgeSt3327722019Blatchdoen Streamprior to River TamarSt4327729020Portontoon StreamGremoven WoodSt4138744121LuchettOuthillSt3687736822LuchettOuthillSt3687736823LuchettLuchett BridgeSt3887736724Denoval Streamprior to River TawarSt388725DryLyb Buvidstow CreaserySt1534674926DryTweinrow BridgeSt1534674927InvyStCletter BridgeSt2052841928DryTweinrow BridgeSt1534674929DryTweinrow BridgeSt2052841920DryTweinrow BridgeSt2052841921DryStBridgeSt2052841922DryStStCletter BridgeSt2052 <th>9</th> <th>THEFT</th> <th>Crowford Bridge</th> <th></th>	9	THEFT	Crowford Bridge	
12DuranBytten BridgeSK 1288 923013DuranDuraten BridgeSK 3443 883014TarerNatherbridgeSK 3443 883015DuranPolson BridgeSK 3566 892516DararGrøystone BridgeSK 3566 892517DararHorsekridgeSK 4001 748218TarerGrøystone BridgeSK 4332 722119Blachdon StreamGrøn to River TaxarSK 4357 720020Portentown StreamGrønown WoodSK 4138 744121Letchløy BrookLatchløySK 4090 736622LuckettOldmillSK 3987 738623LuckettDickett BridgeSK 3882 786724Darovel Streamprior to River TaxySK 3888 754925DrayHybertow BridgeSK 2052 441926DrayTweinrow BridgeSK 2052 441927DrayHybertow BridgeSK 2052 441928DrayTweinrow BridgeSK 2052 441929DrayTweinrow BridgeSK 2000 786921LuckettBridgeSK 2000 786922DrayTweinrow BridgeSK 2000 786923DrayTweinrow BridgeSK 2000 786924DrayTweinrow BridgeSK 2000 786925DrayTweinrow BridgeSK 2000 786926DrayTweinrow BridgeSK 3000 786927DrayBealsmill BridgeSK 2000 828828Perpert WaterTralyn Bridge <th>10</th> <th>Tempt</th> <th>Tamerton Bridge</th> <th></th>	10	Tempt	Tamerton Bridge	
13DamuDuration BridgeSX 3443 883014TarmerNathenbridgeSX 3497 866215DamerPolson BridgeSX 3668 802516DamarGrøystone BridgeSX 3688 802517TarmerHorsbeiridgeSX 4001 746218TarmerQurnislake BridgeSX 4332 722119Elstrikthon Streamprior to River TamarSX 4325 729020Portontokn StreamGenoven WoodSX 4138 744121Latchlay BrookLatchlaySX 4090 736822LuckettOldmillSX 3697 738623LuckettUldmillSX 3697 738624Damvel Streamprior to River TawarSX 3888 754925DrnyUrs Buridstone CreamerySX 1534 870426DrnyTreedurinow BridgeSX 2000 736827InfyGisblett's MillSX 2000 818028DrnyToe BridgeSX 2000 818029DrnyToe BridgeSX 2000 788930DrnyTreetalland bridgeSX 2000 788931DrnyTreetalland bridgeSX 2000 788931DrnyTreetalland bridgeSX 2000 828834Perpart WeberThalyn BridgeSX 2008 8278	11	Tamar	d/s confluence with River Deer	
14TerminNetherbaridgeSX 3497 866215TerminPolson BridgeSX 3656 849216TerminGreystone BridgeSX 3688 802517TerminHorsebridgeSX 4001 746218TerminHorsebridgeSX 4032 722119Blanthdon Streamprior to River TerminSX 4025 729020Portoritoren StreamGrenowen WoodSX 4138 744121Latchlay BrookLatchlaySX 4090 736822LuckettOldmillSX 3987 738623LuckettDickett BridgeSX 3988 754924LuckettBridgeSX 1398 754925DaryLy's Davidstow CreamerySX 1534 670426DaryLy's Davidstow CreamerySX 1078 867427InnySt Clether BridgeSX 2002 786928DryVis Bavidstow CreamerySX 2022 641929DryTreadmark BridgeSX 2000 786929DryTreadmark BridgeSX 2000 786920DryTreesalland bridgeSX 2000 786921DryTreesalland bridgeSX 2000 786922DryBelastill BridgeSX 2000 786923DryTreesalland bridgeSX 2000 786924DryTreesalland bridgeSX 2000 828825DryBelastill BridgeSX 2000 828826DryBridgesSX 2000 828827Jodey BrookLandlaka BridgeSX 2000 828828Perport Water </th <th>12</th> <th>Damar</th> <th>Boyton Bridge</th> <th></th>	12	Damar	Boyton Bridge	
15DamerPolson BridgeSX 3566 649216DamarGrøystone BridgeSX 3683 602517TamarHorsebridgeSX 4000 746218TamarQurnislake BridgeSX 4332 722119Blachdoon Streamprior to River TamarSX 4325 720020Portontoon Streamprior to River TamarSX 4325 720021Latchlay BrookLatchlaySX 4090 736822LackettOldmillSX 3982 744121Latchlay BrookLatchlaySX 3982 757923LuckettOldmillSX 3982 757924Damerel Streamprior to River TawySX 3982 754925DrnyU/S Davidstow CreamerySX 1504 870426DrnyTreadmow BridgeSX 1006 841927DrnySt Clether BridgeSX 2000 738828DrnySt Clether BridgeSX 2000 738929DrnyTreadmow BridgeSX 2000 738930DrnyTreesiland bridgeSX 2000 738931DrnyTreesiland bridgeSX 2000 738932DrnyTreesiland bridgeSX 2000 828834Perport WaterTralyn BridgeSX 2000 828834Perport WaterAltarnan BridgeSX 2000 828834Perport WaterAltarnan BridgeSX 228 812535Perport WaterAltarna BridgeSX 2389 77839LydAb8 rode bridge LydfordSX 2389 78839Loday BrookLandash BridgeSX 3	в	Denne, r	Drixton Bridge	SX 3443 8830
16 Tamer Greystore Bridge SX 3683 8025 17 Tamer Horsebridge SX 4001 7482 18 Tamer Garnislake Bridge SX 4132 7221 19 Barchdon Stream prior to River Tamer SX 4132 7220 20 Portortom Stream prior to River Tamer SX 4132 7221 19 Barchdon Stream prior to River Tamer SX 4090 7368 20 Portortom Stream Gremoven Wood SX 1438 7441 21 Latchlay Brook Latchlays SX 4090 7368 22 Luckett Oldmill SX 3697 7386 23 Luckett Luckett Bridge SX 3882 7367 24 pamerel Stream prior to River TaNy SX 3988 7549 25 Inv Uvb Davidstow Commery SX 1548 6704 26 Drny Treadrow Bridge SX 1001 6647 27 Invy St Clether Bridge SX 2002 8180 30 Invy Ginblett's Nill SX 2000 7989 31 Drny Trealum bridge SX 2000 8283 32 Drny Belsmill Bridge SX 2000	14	Tarre I	Netherbridge	
17TamarHorsebridgeSt 4001 748218TamarCunnislake BridgeSt 4132 72119Harchdon Streamprior to River TamarSt 4132 72120Portentown StreamGrenowen WoodSt 4135 729021IntelligeSt 6000 736822LuckettOldmillSt 3697 738623LuckettOldmillSt 3697 738624Damerel Streamprior to River TawarSt 3882 75724Damerel Streamprior to River TawaSt 3882 75725DrvyU's Bavidstow CreamencySt 1534 870426DrnyTreadrow BridgeSt 1534 870427DrvyU's Bavidstow CreamencySt 1534 870428DrnyTreadrow BridgeSt 2052 841929DrnyTreadrow BridgeSt 2000 788929DrnyToo BridgesSt 2000 788920DrnyTreatalend bridgeSt 2000 82830DrnyTreatalend bridgeSt 2000 82831DrnyBealsmill BridgeSt 2000 82832Perpark WeberTrelyn BridgeSt 2228 812533Perpark WeberThe BridgeSt 2055 816534Lowley BrookLandlake BridgeSt 3471 797039Lowley BrookLandlake BridgeSt 3471 797039Lowley BrookLandlake BridgeSt 3471 797034Lawley BrookLandley BridgeSt 3286 823737Lowley BrookLandley BridgeSt 3286 8237 <t< th=""><th>15</th><th>Tamar</th><th>Polson Bridge</th><th>SX 3556 8492</th></t<>	15	Tamar	Polson Bridge	SX 3556 8492
18TamerGarnisslake BridgeSK 4332 72119Blarchdown Streamprior to River TamarSK 4332 723020Portontown StreamGrenoven WoodSK 4138 744121Letchlay BrookLatchlaySK 4090 736822Letchlay BrookLatchlaySK 4090 736823LetchtOldmillSK 382 736724Dawrel Streamprior to River TawySK 3968 754925DrwLyb Broicktow CreamerySK 1534 870426DrsyTreadmow BridgeSK 1704 864727DrsySt Clether BridgeSK 2052 841928DrsyTreadmow BridgeSK 2000 798929DrsyTreadmow BridgeSK 3000 798929DrsyTrekalland bridgeSK 3000 798930DrsyTrekalland bridgeSK 3000 798931DrsyTrekalland bridgeSK 3000 798931DrsyTrekalland bridgeSK 3227 771032DrsyBealsmill BridgeSK 3228 812535Perport WeberTrelyn BridgesSK 2268 813536Lowlay BrookLandke BridgeSK 3269 787839LydA386 roed bridge LydfordSK 5211 844640LydGreenlanes BridgeSK 4443 832134LewConbebow StreamSc 4266 833344LewConbebow StreamSc 4268 833344LewConbebow StreamSc 4268 833345LewConbebow StreamSc 4268 8334	16	Tangr	Grøystone Bridge	SX 3683 8025
19Barchdon Streamprior to River TawarSK 4325 729020Portontoten StreamGrenoven WoodSK 4138 744121Letchlay BrookLatchlaySK 4090 736822LuckettOldmillSK 3697 736623LuckettLuckett BridgeSK 3882 736724Damerel Streamprior to River TavySK 3983 754925DrvyV's Davidstow CreamerySK 1374 870426DrvyTreadrow BridgeSK 1046 864727DrvySt Clether BridgeSK 2052 841928DrvyGinblett's MillSK 2410 834229DrvyGinblett's MillSK 2000 796920DrvyTrekalland bridgeSK 300 796931DrvyTrekalland bridgeSK 300 796931DrvyTrekalland bridgeSK 300 796933Perpert WaterTralyn BridgeSK 2000 828834Perpert WaterAltarnin BridgeSK 2000 828834Perpert WaterTwo BridgesSK 2228 812535Perpert WaterTwo BridgesSK 2228 812536Looday BrookLancha BridgeSK 3471 797038Looday BrookLancha BridgeSK 3221 838839LydAlterna BridgeSK 3221 838834Larlas BridgeSK 3221 838835Looday BrookLancha BridgeSK 3221 838839LydSc 2226 8125SK 3221 838839Loday BrookLancha BridgeSK 3221 8388 <t< th=""><th>17</th><th>Land I</th><th>Horsebridge</th><th>SX 4001 7482</th></t<>	17	Land I	Horsebridge	SX 4001 7482
Descriptionperiod for the fieldperiod for the field20Period Kon StreamGreenoven WoodSX 4138 744121Latchlay BrookLatchlaySX 4090 736822LuckettOldmillSX 3827 738623LuckettLuckett BridgeSX 3882 736724Denovel Streamprior to River TavySX 3883 754925DrnyU/S Davidstow CreamerySX 1534 870426DrnyTrederice BridgeSX 1046 664727DrnySt Clether BridgeSX 2052 841928DrnyGinblett's MillSX 2410 834229DrnyTrederice BridgeSX 2000 88830DrnyTrederice BridgeSX 3000 736931DrnyTrederice BridgeSX 3000 736933Perport VeterTrelyn BridgeSX 2000 828834Perport VeterAltarnan BridgeSX 3000 736935Renport VeterNe BridgesSX 2000 828834Perport VeterNe BridgesSX 3288 823735Renport VeterNe BridgeSX 3288 823736Lowley BrookLandas BridgeSX 3288 823737Lowley BrookLandas BridgeSX 3288 823738Lowley BrookLowleybridgeSX 3288 823739LydA386 roed bridge LydfordSX 521 844640LydGreenlanes BridgeSX 3288 823738Lowley BrookLowleybridgeSX 3288 823739LydGreenlanes BridgeSX 32	18	Tanta	Gurnislake Bridge	SX 4332 7221
21Litchilly BrockLatchillySX 4090 736822LuckettOldmillSX 3697 738623LuckettLuckett BridgeSX 3682 736724Damerel Streamprior to River TaNySX 3988 754925DrnyLy's Davidstow CreamerySX 1704 864726DrnyTradurnow BridgeSX 1704 864727DrnySt Clether BridgeSX 2052 841928DrnyKo Bablett's MillSX 2052 841929DrnyTradurnow BridgesSX 2000 736930DrnyTradatingesSX 3000 736931DrnyTradatingesSX 3000 736931DrnyTradatingesSX 3000 736931DrnyTradatingesSX 3000 736931DrnyBelsmill BridgeSX 3000 736933Perport VetorTradagesSX 2000 828834Perport VetorAltarun BridgeSX 2000 828835Ferport VetorNo BridgesSX 3268 823736Lowley BrookLandlake BridgeSX 3569 787839LydAltarun BridgeSX 3569 787839LydAltarun BridgeSX 3569 787839LydAltarun BridgeSX 3569 787839LydLandlake BridgeSX 3569 787839LydGreenlanes BridgeSX 4433 632141LydSydentas BridgeSX 4443 632142LydLifton BridgeSX 4258 833342LydLifton BridgeSX 4258	19	Blanchdown Screem	prior to River Tapar	SK 4325 7290
22 Licksett Oldeill St 3697 7386 23 Licksett Lucksett Encloye St 3882 7367 24 Demotel Stream prior to River Tavy St 3882 7367 25 Dray U's Davidstow Creamery St 3882 7367 26 Dray U's Davidstow Creamery St 3368 7549 25 Dray U's Davidstow Creamery St 1534 6704 26 Dray Treadmow Bridge St 1704 8647 27 Dray Ginblett's Mill St 2002 8419 28 Dray Ginblett's Mill St 2100 7869 30 Dray Trekelland bridge St 2000 7869 31 Dray Beelsmill Bridge St 3000 7869 31 Dray Beelsmill Bridge St 3000 7869 32 Dray Beelsmill Bridge St 3000 7869 33 Perport Water Theyn Bridge St 2000 8288 34 Perport Water Alarun Bridge St 2000 8288 35 Perport Water No Bridge St 3268 237 <th>20</th> <th>Portonico-n Stream</th> <th>Gzenoven Wood</th> <th>SX 4138 7441</th>	20	Portonico-n Stream	Gzenoven Wood	SX 4138 7441
21LuckettLuckett BridgeSK 3882 736724Demerel Streamprior to River TakySK 3882 736725DrnyU's Davidstow CreamerySK 1534 870426DrnyTrendrnow BridgeSK 1704 864727DrnySt Clether BridgeSK 2052 841928DrnyGinblett's MillSK 2410 834229DrnyGinblett's MillSK 2410 834229DrnyTrekelland bridgeSK 3000 796930DrnyTrekelland bridgeSK 3000 796931DrnyBelsaill BridgeSK 3267 770432DrnyBelsaill BridgeSK 3200 828834Perpark VeterTrekaland BridgeSK 2000 828834Perpark VeterAltarun BridgeSK 2269 816536Lowlay BrookLandlake BridgeSK 3268 823737Lowlay BrookLandlake BridgeSK 3269 817839LydA386 road bridge LydfordSK 521 844640LydGreenlanes BridgeSK 4438 632141LydSydenhas BridgeSK 4438 632142LydLifton BridgeSK 4438 633144LawComboow BridgeSK 4654 879345Lewprior to River LydSK 4266 839346Ontebow Streamaccess rd culvart nr quarrySK 4854 87946Ontebow Streamaccess rd culvart nr quarrySK 4854 87946Ontebow Streamaccess rd culvart nr quarrySK 4854 87946Ontebow Stream </th <th>21</th> <th>Latchley Brook</th> <th>Latchley</th> <th>SX 4090 7368</th>	21	Latchley Brook	Latchley	SX 4090 7368
24 Denore I Stream prior to River TaNy SK 3988 7549 24 Denore I Stream prior to River TaNy SK 1388 7549 25 Drey UPS Devidstow Creamery SK 1534 8704 26 Drey Trewinnow Bridge SK 2052 6419 28 Drey Ginblett's Mill SK 2052 6419 28 Drey Ginblett's Mill SK 2052 6419 28 Drey Ginblett's Mill SK 2010 8342 29 Drey Teo Bridges SK 2700 8180 30 Drey Trekenland bridge SK 3000 7989 31 Drey Teoland bridge SK 3207 7710 32 Drey Bealsmill Bridge SK 2000 8288 34 Perport Water Trelyn Bridge SK 2000 8288 34 Perport Water Two Bridges SK 2000 8288 34 Perport Water No Bridges SK 2000 8288 34 Perport Water Two Bridge SK 2000 8288 35 Perport Water To Bridges SK 2000 8288	22	Luckett	Oldmi 11	SX 3697 7386
24pmørel Streamprior to River TavySK 3988 754925DrvU/S Davidstow CreamerySK 1534 870426DrnyTrendrnow BridgeSK 1704 864727DrwSt Clether BridgeSK 2052 841928DrnyGinblett's MillSK 2410 834229DrnyTvo BridgesSK 2700 818030DrnyTvekalland bridgeSK 3000 786931DrnyTrekalland bridgeSK 3000 786933Perpert MaterTrelyn BridgeSK 3000 786934Perpert WaterTrelyn BridgeSK 2000 828834Perpert WaterTrelyn BridgeSK 2000 828834Perpert WaterThe BridgeSK 2000 828835Perpert WaterThe BridgeSK 2000 828836Lowlay BrookLarcha BridgeSK 3268 82737Lowlay BrookLarcha BridgeSK 3269 787838Lowlay BrookLowlaybridgeSK 4431 632139LydSydenhan BridgeSK 4291 838841LydSydenhan BridgeSK 4291 83842LydLifton BridgeSK 4291 83843LawOutbebow BridgeSK 4268 839344LawOutbebow BridgeSK 4268 839344	23	Indett.	Luckett Bridge	SK 3882 7367
Z5ImvU/s Davidstow CreamerySX 1534 870426DmyTrawinnow BridgeSX 1704 864727ImvSt Clether BridgeSX 2052 841928DmyGinblett's MillSX 2410 834229DmyTwo BridgesSX 2700 818030ImvTrekalland bridgeSX 3000 786931DmyTrekalland bridgeSX 3000 786932ImvTrekalland bridgeSX 3000 786933Perpent WaterTrelyn BridgeSX 3567 770433Perpent WaterTrelyn BridgeSX 2288 812535Perpent WaterThe BridgeSX 2286 823736Lowlay BrookLarchae BridgeSX 3269 787837Lowlay BrookLarchae BridgeSX 3277 8839LydA386 road bridgeSX 5211 844640LydGreenlanes BridgeSX 4291 838841LydSydenhae BridgeSX 4291 838842LydLifton BridgeSX 4291 838843LawOutbebow BridgeSX 4291 838844LawOutbebow BridgeSX 4291 838844LawOutbebow BridgeSX 4296 839344LawOutbebow BridgeSX 4268 839344LawOutbebow BridgeSX 4268 839345LawOutbebow BridgeSX 4268 839346Orthebow Streamaccess rd culvart nr quarrySX 483 898847ThrushalRivermed BridgeSX 4909 912748ThrushalR		Dentere) Stream	prior to River Test	SX 3988 7549
26 Dray Treadmond Bridge SX 1704 8647 27 Dray St Clether Bridge SX 2052 6419 28 Dray Ginblett's Mill SX 2010 8342 29 Dray Too Bridges SX 2700 8180 30 Dray Trekelland bridge SX 3000 7989 31 Dray Trekelland bridge SX 3000 7989 31 Dray Bealsmill Bridge SX 3217 7710 32 Dray Bealsmill Bridge SX 2200 8288 34 Perport Water Trelyn Bridge SX 2000 8288 34 Perport Water Altarnan Bridge SX 2000 8288 34 Perport Water Too Bridges SX 2000 8288 34 Perport Water Two Bridge SX 2000 8288 35 Perport Water Two Bridges SX 2000 8288 36 Lowlay Brook Larclake Bridge SX 3771 7970 37 Lowlay Brook Larclake Bridge SX 37778 39 Lyd A386 road bridge Lydford SX 589 7878 <t< th=""><th></th><th></th><th>• •</th><th>SX 1534 8704</th></t<>			• •	SX 1534 8704
Triv St Clether Bridge St 2052 8419 28 Dray Gizblett's Mill St 2052 8419 28 Dray Two Bridges St 210 8342 29 Dray Two Bridges St 2700 8180 30 Dray Trekalland bridge St 2000 7269 31 Dray Trekalland bridge St 3000 7269 31 Dray Trencarrel Bridge St 3217 7710 32 Dray Bealsmill Bridge St 3267 7704 33 Perport Water Thelyn Bridge St 2000 8283 34 Perport Water Two Bridge St 2000 8283 35 Perport Water Two Bridge St 2000 8283 36 Lowlay Brook Larchas Bridge St 3268 8237 37 Lowlay Brook Larchas Bridge St 3471 7970 38 Lowlay Brook Lowlaybridge St 3589 7878 39 Lpd A386 road bridge Lpdford St 5211 8446 40 Lpd Syderhas Bridge St 4231 8388 42 <t< th=""><th></th><th>•</th><th>• • • • • • • • • • • • • • • • • • • •</th><th></th></t<>		•	• • • • • • • • • • • • • • • • • • • •	
28 Driy Ginthlett's Mill SX 2410 8342 29 Dray Two Bridges SX 2700 8180 30 Dray Two Bridges SX 2000 7989 31 Dray Trekalland bridge SX 3000 7989 31 Dray Trekalland bridge SX 3000 7989 31 Dray Trekalland bridge SX 3217 7710 32 Dray Bealsmill Bridge SX 3267 7704 33 Perport Water Altarun Bridge SX 2000 8288 34 Perport Water Altarun Bridge SX 2000 8288 35 Perport Water Altarun Bridge SX 2008 8288 36 Lowlay Brook Landlake Bridge SX 3471 7970 37 Lowlay Brook Landlake Bridge SX 3471 7970 38 Lowlay Brook Landlake Bridge SX 3471 8970 39 Lpd A386 road bridge Lpdford SX 5211 8446 40 Lpd Greenlanes Bridge SX 4231 8388 42 Lpd Lifton Bridge SX 4238 8393 <t< th=""><th>-</th><th>-</th><th></th><th>SX 2052 8419</th></t<>	-	-		SX 2052 8419
29 Dray Two Bridges SX 2700 8180 30 Dray Trekelland bridge SX 3000 7989 31 Dray Trekelland bridge SX 3000 7989 31 Dray Bealsmill Bridge SX 3217 7710 32 Dray Bealsmill Bridge SX 3217 7704 33 Perport Water Trelyn Bridge SX 2000 8288 34 Perport Water Altarnun Bridge SX 2200 8288 34 Perport Water Altarnun Bridge SX 228 8125 35 Perport Water Two Bridges SX 2695 8165 36 Lowlay Brook Landlake Bridge SX 3286 6237 37 Lowlay Brook Landlake Bridge SX 3589 7878 39 Lyd A386 road bridge Lydford SX 5211 8446 40 Lyd Greenlanes Bridge SX 4291 8388 42 Lyd Lifton Bridge SX 4291 8388 42 Lyd Lifton Bridge SX 4268 8393 44 Lew Cotbebow Bridge SX 4268 8393			· · · · · · · · · · · · · · · · · · ·	SX 2410 8342
30ImvTrekalland bridgeSX 3000 798931DrnyTrencarrel BridgeSX 3217 771032DrnyBealsmill BridgeSX 3217 770433Perpert VatorTrelyn BridgeSX 3587 770434Perpert VatorTrelyn BridgeSX 2000 828834Perpert VatorAltarnan BridgeSX 2228 812535Perpert VatorAltarnan BridgeSX 2268 812536Lowlay BrookLandlaka BridgeSX 3268 823737Lowlay BrookLandlaka BridgeSX 3589 787838Lowlay BrookLowlaybridgeSX 3589 787839LydA386 road bridge LydfordSX 5211 844640LydGreenlanes BridgeSX 4231 838841LydSyderhan BridgeSX 4238 837143Quither Brookprior to River LydSX 4268 839344LewConbebow BridgeSX 4483 889847ThrushalRivermend BridgeSX 4838 899847ThrushalRivermend BridgeSX 4837	29			SK 2700 8180
31DrnyTrencarrel BridgeSX 3217 771032DrnyBealsmill BridgeSX 1567 770433Perpart VeterTralyn BridgeSX 2000 828834Perpart VeterAltarnan BridgeSX 2228 812535Perpart VeterAltarnan BridgeSX 2268 812536Lowlay BrookLandlake BridgeSX 3288 823737Lowlay BrookLandlake BridgeSX 3288 823738Lowlay BrookLandlake BridgeSX 3589 787839LydA386 road bridge LydfordSX 5211 844640LydGreenlanes BridgeSX 4291 838841LydSydenhan BridgeSX 3893 847743Quither Brookprior to River LydSX 4268 839344LewCathebow BridgeSX 4863 889847ThrushalRivermend BridgeSX 4883 889847ThrushalRivermend BridgeSX 4838 8898	30	DmV	Trekalland bridge	SX 3000 7989
33Perpart VetorTrelyn BridgeSX 2000 828834Perpart VetorAltamun BridgeSX 2228 812535Perpart VetorAltamun BridgeSX 2228 812536Lowley BrookLandlake BridgeSX 3288 823737Lowley BrookLandlake BridgeSX 3288 823738Lowley BrookLandlake BridgeSX 3471 797038Lowley BrookLandleybridgeSX 3569 787839LydA386 roed bridge LydfordSX 5569 787839LydGreenlanes BridgeSX 4443 832141LydSydenhan BridgeSX 4291 838842LydLifton BridgeSX 4291 838842LydLifton BridgeSX 4291 838843Quither Brookprior to River LydSX 4268 839344LewOnthebow BridgeSX 4268 839345Lewprior to River LydSX 4268 839346Ombebow Streamaccess rd culvart nr quarrySX 4883 889847ThrushalRivermend BridgeSX 4909 912748ThrushelWrishill BridgeSX 454 8987	31	•	Trencarrel Bridge	SX 3217 7710
34PerperitWaterAltarran BridgeSK 2228812535PerperitWaterTwo BridgesSK 2695816536Lowlay BrookLandlake BridgeSK 3268823737Lowlay BrookLandlake BridgeSK 3268823738Lowlay BrookLandlake BridgeSK 3569787839LydA386road bridge LydfordSK 5211844640LydGreenlanes BridgeSK 4443832141LydSyderhes BridgeSK 4291838842LydLifton BridgeSK 4291838842LydLifton BridgeSK 4268839344LewOnthebow BridgeSK 4268839344LewDothebow BridgeSK 4268839346Onthebow Streamaccess rd culvert nr quarrySK 4833809847ThrushelRivenmed BridgeSK 4909912748ThrushelWrishill BridgeSK 454897	32	Imy	Beelsmill Bridge	SX 3587 7704
35Perpetit WaterTwo BrickyesSX 2695 816536Lowlay BrookLanchas BrickyesSX 3288 823737Lowlay BrookLanchas BrickyeSX 3471 797038Lowlay BrookLowleybrickyeSX 3569 787839LydA386 road brickyeSX 5211 844640LydGreenlanes BrickyeSX 4443 832141LydSydenhaa BrickyeSX 4291 838842LydLifton BrickyeSX 3893 847743Quither Brookprior to River LydSX 4268 839344LewOnbebow BrickyeSX 4268 839345Lewprior to River LydSX 4268 839346Ombebow Streamaccess rd culvert nr quarrySX 4883 889847ThrushelRivermed BrickyeSX 4990 912748ThrushelWrishill BrickyeSX 4548 8997	33	Perpartit Verber	Tralyn Bridge	SX 2000 8288
36Lowlay BrookLanclake BrickpeSt. 3286 823737Lowlay BrookLanclake BrickpeSt. 3471 797038Lowlay BrookLanclake BrickpeSt. 3589 787839LydA386 road brickpe LydfordSt. 5589 787839LydA386 road brickpe LydfordSt. 5211 844640LydGreenlanes BrickpeSt. 4433 832141LydSydenhan BrickpeSt. 4291 838842LydLifton BrickpeSt. 4291 838843Quither Brookprior to River LydSt. 4268 839344LewOntbebow BrickpeSt. 4268 839345Lewprior to River LydSt. 4268 839346Ontbebow Streamaccess rd culvert nr quarrySt. 4883 889847ThrushelRivermed BrickpeSt. 4990 912748ThrushelWrischill BrickpeSt. 4554 8987	34	Perport Water	Altamin Bridge	SK 2228 81.25
37Lordsy BrookLandas BridgeST 3471 797038Lodsy BrookLodsybridgeSK 3589 787839LydA386 road bridge LydfordST 5211 844640LydGreenlanes BridgeSK 4433 632141LydSydenhaa BridgeST 4291 838842LydLifton BridgeST 4291 838842LydLifton BridgeST 4291 838843Quither Brookprior to River LydST 4268 839344LewConbebow BridgeST 4268 839345Lewprior to River LydST 4268 839346Ombebow Streamaccess rd culvart nr quarryST 4883 889847ThrushalRivermed BridgeST 4990 912748ThrushelWrishill BridgeST 4548 8987	35	Perport Water	Two Bridges	SX 2695 8165
38Loday BrookLodaybridgeSK 3589 787839LydA386 road bridge LydfordSK 3589 787839LydGreenlanes BridgeSK 4443 632140LydGreenlanes BridgeSK 4443 632141LydSydenhaa BridgeSK 4291 838842LydLifton BridgeSK 3893 847743Quither Brookprior to River LydSK 4268 839344LewCombebow BridgeSK 4268 839345Lewprior to River LydSK 4268 839346Combebow Streamaccess rd culvert nr quarrySK 4883 889847ThrushalRivermend BridgeSK 4990 912748ThrushelWrishill BridgeSK 454 8987	36	Lowley Brook	Landlaka Bridge	SK 3288 8237
39LydA386 road bridge LydfordSX 5211 844640LydGreenlanes BridgeSX 4443 632141LydSydenhan BridgeSX 4291 638842LydLifton BridgeSX 3893 847743Quither Brookprior to River LydSX 4268 839344LewOutbebow BridgeSX 4268 839345Lewprior to River LydSX 4268 839346Ourbebow Streamaccess rd culvert nr quarrySX 4883 889847ThrushalRivermed BridgeSX 4909 912748ThrushelWrishill BridgeSX 454 8387	37	Lowley Brook	Lendas Briche	
40LetGreenlanes BridgeSX 4443 832141LydSydenhan BridgeSX 4291 838842LydLifton BridgeSX 3893 847743Quither Brookprior to River LydSX 4268 839344LewCombebow BridgeSX 4268 839345Lewprior to River LydSX 4268 839346Combebow Streamaccess rd culvert nr quarrySX 4883 889847ThrushelRivermend BridgeSX 4909 912748ThrushelWrischill BridgeSX 454 8987	38	Louday Brook	Louleybridge	
41LydSydenhaa BridgeSX 4291 838842LydLifton BridgeSX 3893 847743Quither Brookprior to River LydSX 4268 839344LewConbebow BridgeSX 4854 879945Lewprior to River LydSX 4268 839346Combebow Streamaccess rd culvert nr quarrySX 4883 889847ThrushalRivermend BridgeSX 4909 912748ThrushelWrischill BridgeSX 4554 8987	39	Lyd	A386 road bridge Lydford	
42LydLifton BridgeSX 3893 847743Quither Brookprior to River LydSX 4268 839344LewConbebow BridgeSX 4854 879945Lewprior to River LydSX 4268 839346Combebow Streamaccess rd culvert nr quarrySX 4883 889847ThrushalRivermend BridgeSX 4909 912748ThrushelWrischill BridgeSX 4554 8987		Lyd	2	
43Quither Brookprior to River LydSX 4268 839344LowCambebow BridgeSX 4268 879945Lewprior to River LydSX 4268 839346Cambebow Streamaccess rd culvert nr quarrySX 4883 889847ThrushalRivermead BridgeSX 490 912748ThrushelWrischill BridgeSX 454 8987		Lyd		
44LewContraction by ContractionsSX 4854 879945Lewprior to River LydSX 4268 839346Outbebow Streamaccess rd culvert nr quarrySX 4883 889847ThrushelRivermead BridgeSX 4990 912748ThrushelWrischill BridgeSX 454 8987	42	-		
45Lewprior to River LydSX 4268 839346Ourbehow Streamaccess rd culvert nr quarrySX 4883 889847ThrushelRivermead BridgeSX 4990 912748ThrushelWrizhill BridgeSX 4654 8987		-		
46 Ourbebow Stream access rd culvert nr quarry SX 4883 8898 47 Thrushel Rivenmead Bridge SX 4990 9127 48 Thrushel Wrizhill Bridge SX 4654 8987	• -			
47ThrushelRivermead BridgeSX 4990 912748ThrushelWrizhill BridgeSX 4654 8987				
48 Thrushel Wrizhill Bridge SX 4654 8987			· · · · ·	
	• •		•	
49 Inrushel Scowcord Bridge (Townleigh) SX 4280 8738				
	49	Turnaner	STOMFOLD RELOOD (LOWLIGETON)	JA 4200 0730

11

	1									
	ł									
	E.									
Site	Chemical Site	No. of	Contractor	N-fame	ACTOR	BQI N-fams	BQI ASPT	EQIC N-Éaras	ass Aspt	NRA BLO Class
Codia	2116	Samples	3669015	14-1000	aspt	IT-LOUD	ANI	[4-T0400	ANE L	0,000
12111	F121001									
12112	R121009	_	_							
1247	R121006	3	7	40	6.1	1.12	0.96	A	X	λ
12113 1248	R121016 R121002	3	7	39	6.2	1.06	0.97	٨	λ	A
1240	R121015	د	,	39	0.2	1.00	4.97	ň	^	n
12115	RL21003									
1249	R121004	3	7	38	5.9	1.07	0.94	٨	٨	A
<u>1211</u> 6	R121013									
12104	R12J001									
12105	R12J002	-	-					-	-	
1239 12106	RL23003 RL23004	3	7	40	6.4	1.18	1.03	A	X	λ
12100	RU25004	3	7	38	6.7	1.11	1.06	٨	A	λ
1215	R12E002	3	7	43	6.6	1.36	1.08	Ň	Ä	Ä
1288	R120003									
1293	R1.2E004									
1216	RL20015	3	7	37	6.8	1.09	1.08	λ	A	λ
1217	P1.2E028	3	7	15	5.7	0.46	0.92	с	λ	с
1292	R120016	,	7	-	6.9	0.ស	1.08	8	٨	B
1220 1218	RL22007 RL22014	3	7	21 36	6.7	1.06	1.05	Ň	Â	Å
12127	R12P001	-	•	~	0			••		
121.28	R12P002									
1263	R12F003	3	7	38	6.6	1,08	1.04	A		A
12129	R12P012									
12130	R12P004									
12131 1264	R1.2F005 R1.2F01_3	3	7	42	6.4	1.29	1.01	A	A	٨
12132	R12F006		•	-	••••					
1265	F12P010	3	7	37	6.6	1.22	1.06	A	A	A
12133	R12P007	_	_						_	_
1266	RL2P008	3	7	38	6.8	1.14	1.06	X	A	A
1290 1291	R122005 R122017									
1219	R12E006	3	7	36	6.5	1.01	1.03	A	A	λ
1221	R12F012	3	7	21	6.5	0.98	1.03	A	A	A
1222	RL2F001	3	7	34	6.8	0.98	1.07	A	A	λ
1294	R12F011 R12F002	•	7	r	6 •	1 00	1 00	•		
1223 1224	RL2F012 RL2F013	3	7	32 34	6.8 6.4	1.02 1.00	1.09 1.01	х Х	X X	A A
1226	R12F003	2	6	35	6.8	1.16	1.09	A	Â	Ä
1225	RL2F004	3	7	35	6.8	1.00	1.07	Ä	A	λ
1227	R12F010	3	7	34	6.7	0.99	1.05	٨	A	A
<u>122</u> 8 1297	R120001 R120002	3	7	34	6.8	0.95	1.07	A	X	λ
1229	RL2002 RL20003	3	7	40	6.6	1.13	1.03	λ	A	A
		-	-							-

÷ 1.,

HICLOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MADS RIVER TAMAR CATCIMENT (Catchment 12E to 12P inclusive) continued Site No.

2109 10	•		
on Map	Watercourse	Biological Site Name	NCR
50	Thrushal	Tinhay Bridge	SK 4171 8672
51	Breazle Water	prior to River Thrushel	SX 4480 8924
52	Statton Brook	Bratton Clovelly	SX 4677 9202
53	Wolf	Week's Mill Bridge	SX 4464 9425
54	Wolf	Restan Bridge	SX 4141 8890
55	Wblf	prior to River Thrushel	SX 4035 8638
56	Broadwood Brook	Kellacott Bridge	SX 4065 8800
57	Kenesoy	Badgall Bridge	SX 2312 8696
58	Kensey	Bacharlick Bridge	57 2675 8642
59	Kencey	Truscott Bridge	SX 2984 8498
60	Kensey	Newport	SX 3262 8512
61	Kencey	St Leonards Bridge	SX 3523 8485
62	Tregenre Stream	Red Down Bridge	SK 2672 8629
63	Carey	Halwill Bridge — Quoditch	SX 4207 9851
64	Carey	Achmill Bridge	SX 3937 9537
65	Carey	Panson	SK 3715 9258
ഒ	Carey	Boldford Bridge	SX 3645 8824
68	Carey	Heale Bridge	SX 3589 8617
69	Henford Water	Henford	SK 3736 9479
70	Ottery	Ottenhem Mill	SK 1742 9087
71	Ottery	Trengune Bridge	SK 1885 9329
72	Ottery	Conworthy Water Bridge	SK 2220 9170
73	Ottery	Hallescott Bridge	SK 2844 8782
74	Ottery	Yeolubridge	SK 3178 8737
75	Ottery	Ram Mill Bridge	SX 3456 8686
76	Bolesbridge Water	200m d/s Navarino Bridge	SX 2895 8818
77	Cauchorthy Water	Cauchorthy Bridge	SK 2469 9267
78	Cauchorthy Water	prior to River Ottery	SX 2672 8890
79	Canworthy Water	prior to River Ottery	SX 2238 9144
80	Tala Water	Bridgetown	SK 3410 8913
81	Lano Lake	Lana Bridge	SK 3412 9592
82	Claw	Claw Bridge	SS 3742 0068
83	Claw 	Claston Bridge	SX 3536 9933
84	Claw -	Tetcott Bridge	SK 3279 9696
85	Deet	Rydon Bridge	55 3354 0413
86	Deer	Winscott Bridge	55 3385 0144
87	Deer	Deer Bridge	SX 3192 9734
88	Colesmill Stream	100m d/s Holsworthy SIW	SS 3387 0316
89	Derrill Water	Dux Bridge	SS 2957 0279

Site	Chemical	No. of				HQL	EQI	EQT C		NRA BLO	
Code	Site	Samples	Seasons	N-Cans	ASPT	N-Cana	ASPT	N-Caus	ASPT	Class	
1230	R120004	3	7	39	6.3	1.10	0.99	A	A		
1232	R120010	3	7	37	6.6	1.07	1.04	Ä	X	Ä	
1231	R120009	3	ż	32	6.4	0.95	1.00	λ.	Å	A	
1233	R120005	3	7	32	6.8	0.98	1.07	λ	A	A	
1299	R120006	•		-							
1234	R120007	3	7	41	6.7	1.15	1.06	A	A	A	
1235	RL20012	3	7	32	6.7	0.90	1.06	A	A	A	
1260	R12N003	3	7	36	6.8	1.14	1.07	A	X	A	
12124	R12N001										
1261	R12N004	3	7	36	6.5	1.04	1.01	A	A	A	
12125	R12N005										
1262	R12N002	3	7	33	6.5	0.94	1.02	A	A	X	
1,21,26	R12N006										
12101	R12H006							_		_	
1236	R124001	3	7	39	6.4	1.12	1.01	λ	A	X	
12102	R12H007										
12103	RL2H008	-	_							•	
1237	R12HD02	3	7	39	6.3	1.10	0.99	A .	X	, N	
1238	R12H005	3	7	35	6.7	0.98	1.06	A	λ	A	
12118 12119	RL2M004										
1255	R12M005	3	7	38	6.4	1.08	1.01	A	A	A	
1255	R12M001 R12M002	3	7	39	6.6	1.13	1.04	Â	Â	Â	
1236	R124002	2	'		0.0	1.13	1.01	n		~	
1257	R1240007	3	7	40	6.3	1.16	1.00	λ	A	x	
1258	R12M012	3	7	31	6.4	0.85	1.00	Ä	Ä	Ä	
12122	R12M010	-	•		•••						
1259	R12M011	3	7	38	6.5	1.04	1.02	λ	λ	٨	
12123	R12H008	-	•								
1240	R12J006	3	7	36	6.5	1.01	1.02	A	A		
1241	R12J005	3	7	30	6.3	0.86	0.99	A	A	A	
12107	RL2N016										
12108	R12K001										
1242	R1,2K002	3	7	39	6.3	1.07	1.00	A	A	A	
1244	R12N003	3	7	39	6.4	1.08	1.01	A	A	٨	
1245	R12X004	3	7	39	6.3	1.08	1.00	Ä	Ā	Ä	
12109	R12K005	-	-								
1246	R12k007	3	7	30	5.9	0.84	0.94	٨	A	λ	
1251	R121012	3	7	31	6.1	0.87	0.96	Ň	X	A	
		-	•								

•

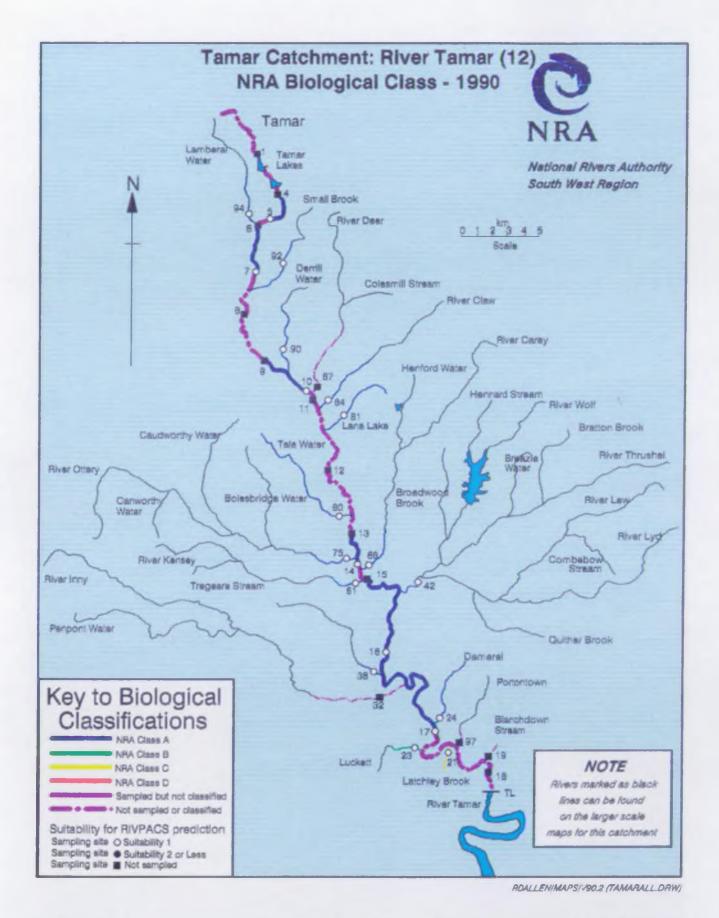
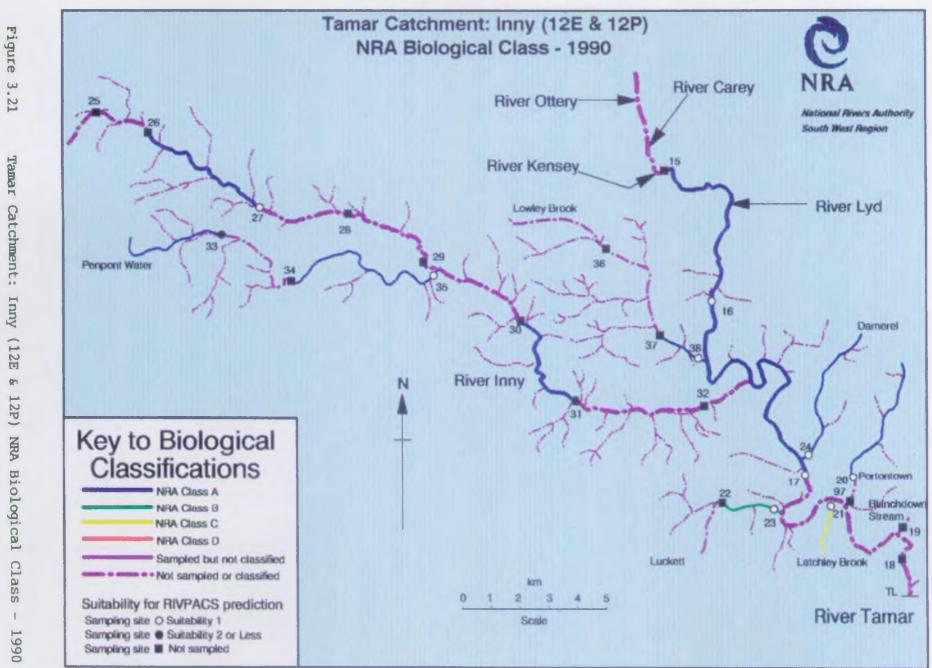
HIDLOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INTEX TO MAPS RIVER TAMAR CATCHMENT (Catchment 12E to 12P inclusive) continued Site No.

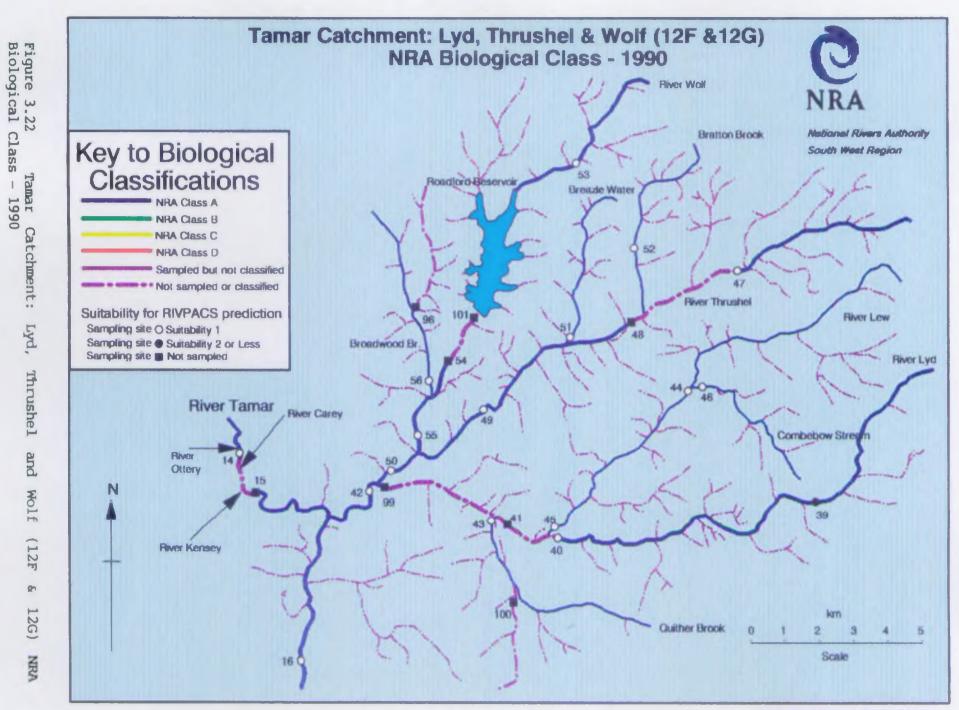
on Map	Watercourse	Biological Site Name	NER
90	Derrill Water	Dualstone Bridge	SS 3013 0063
91	Small Brook	Hendon Bridge	SS 3101 0730
92	Small Brook	Youldan Bridge	SS 2997 0530
93	Lamberal Water	Forda	55 2774 1116
94	Lanberal Water	Moreton Found Bridge	SS 2757 0894
95	Hollacombe Stream	Hayne Page	SS 3728 0255
96	Buddle Brook	Buddle Bridge	SK 4022 8989
97	Portantown Stream	prior to River Tamer wair	SX 4143 7374
96	Dunstaple Brook	u/s Coles Mill confluence	\$\$ 3452 0352
99	Lyd	prior to River Thrushel	SX 3922 8497
100	Chillaton Stream	Chillaton Bridge	SX 4325 8184
101	Wolf	Roadford New Bridge	SX 4188 8979

Site	Chemical	No. of				EQI	EQI	HELL C		NRA Bio	
Code	Site	Samples	Seesons	N-Caus	ASPT	N-Caus	ASPT	N-Caus	aspt	Class	
1252	RL2L005	3	7	33	6.3	0.90	1.00	A	A	A	
1253	R171011	3	7	26	5.8	0.71	0.93	B	A	В	
1254	F12L008	3	7	32	6.3	0.68	0.99	A	A	A	
<u>1711</u> 7	R121010										
1250	R12L007	3	7	35	6.1	0.96	0.97	λ	A	A	
1243		3	7	31	5.9	0.91	0.93	A	A	A	
12100											
1289	F12E034										
12110											
1295	R12F016										
1296											
1298	F120084										

4

•

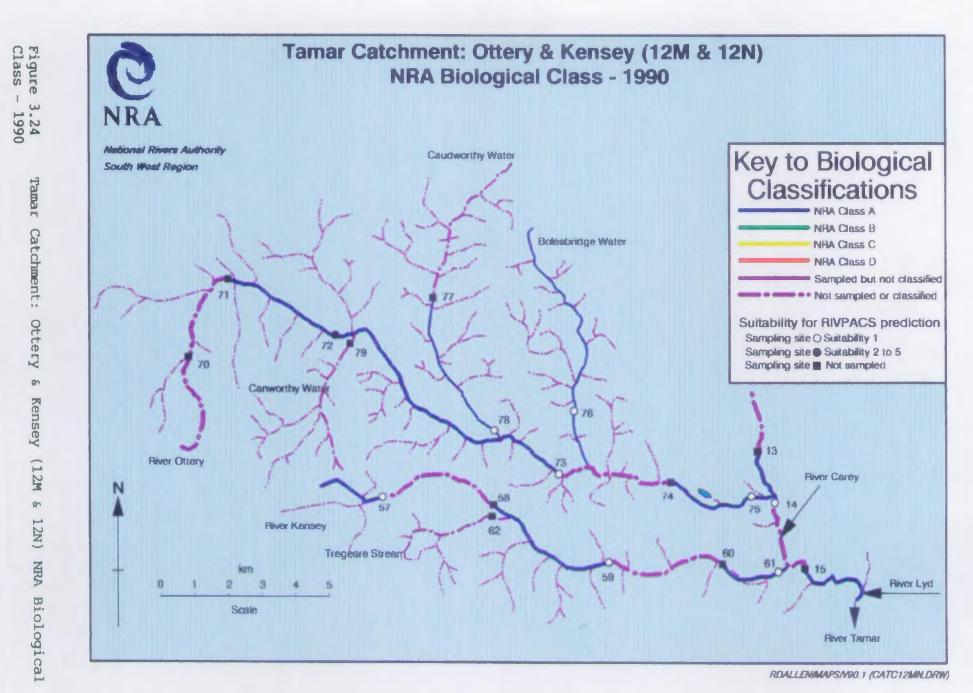




Figure 3.20 Tamar Catchment: River Tamar (12 in part) NRA Biological Class - 1990


RDALLENMAPS/M90.2 (CATC12PE.DRW)

75

Tamar Catchment: Inny (12E **R**h 12P) NRA Biological Class 1



RDALLENMAPS/NO.2 (CATC12FG.DRW)

RDALLEN/MAPS/190.2 (CA12HJKL. DRW)

Figure 3.23 Tamar Catchment: Upper Tamar (12H, 12J, 12K & 12L) NRA Biological Class - 1990

3.2.15 River Lynher Catchment Catchment-12R & 12Q

The sites on the River Lynher were classed as being of good ecological quality, except for that on the Marke Valley Stream which was of poor quality owing to poor taxonomic richness (the EQI N-fams was poor). The stream bed at the monitoring site was completely covered by ochre. Metalliferous drainage from abandoned ore mines were considered to have been the cause of the poor ecological quality.

.

.

HIDLOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS RIVER LINHER CATCHMENT (Catchment 12R \pm 120) Site No.

	•			
on Map	Watercourse	Biological Site Name	NER	
1	Lynher	Trebartha Road Bridge	SX 2629 77	82
2	Lynher	Berricubridge	SX 2732 75	65
3	Lynher	Starabridge	SX 2895 73	85
4	Lynher	Bicton Mill Bridge	SX 3215 70	07
5	Lynher	Newbridge	SX 3473 68	09
6	Lynher	u/s Clapper Bridge	SK 3513 65	27
7	Lynher	Pillaton	SK 3659 63	18
8	Lynher	Notter Bridge	SX 3848 60	99
9	Daen's Brook	Bridge	SX 3824 62	35
10	Kally Stream	Haye	SX 3467 70	08
п	Kelly Stream	Caddepit	SX 3400 68	88
12	Marke Valley Stream	Upton Cross	SX 2862 71	92
B	Withey Brook	u/s Bastreet Intake	SX 2436 76	36
14	Withey Brook	prior to River Lynher	SX 2610 77	20
15	Rehyford Water	Trewortha Marsh	SX 2322 76	03
16	Tiddy	u/s Pensilva STW	SX 2900 68	90
17	Tiddy	Butterdan Mill	SX 2952 66	Z
18	Tidly	Tilland Mill Bridge	SX 3285 61	88
19	Tiddy	Tideford Bridge	SX 3451 59	64
20	Trecome Stream	Tilland Bridge	SX 3320 62	200

Site	e Chemical No. of					EQI	BQI	EQT O	HOI CLASS		
Code	Site	Samples	Seesons	N-Caus	ASPT	N-fans	ASPT	N-Éans	ASPT	Class	
			_						_		
1267	R120001	3	7	38	6.9	1.14	1.09	X	λ	λ	
12134	F120002										
1268	R120003	3	7	37	6.8	1.12	1.07	A	A	X	
12135	RL2004										
1269	R120005	3	7	31	6.5	0.93	1.01	X	A	A	
12136	R120025										
12137	R120006										
1270	R120007	3	7	30	6.9	0.93	1.12	A	A	A	
1273	R120029	3	7	36	6.6	1.04	1.07	A	A	A	
12139	R120026										
1274	R120009	3	7	33	6.5	1.00	1.01	λ	A	A	
1275	R120027	3	7	ш	5.6	0.51	0.89	с	λ	c	
1271	R120010	3	7	30	6.8	1.37	1.07	X	λ	A	
1272	R120008	3	7	29	6.8	1.11	1.07	A	λ	А	
12138	-										
12140	R12R001										
1276	R12R002	3	7	39	6.8	1.15	1.09	λ	A	A	
12141	R12R003	-									
1277	R12R004	3	7	34	6.7	0.96	1.07	λ	A	A	
1,278	R12R006	3	7	39	6.8	1.15	1.08	A	A	λ	

.

•

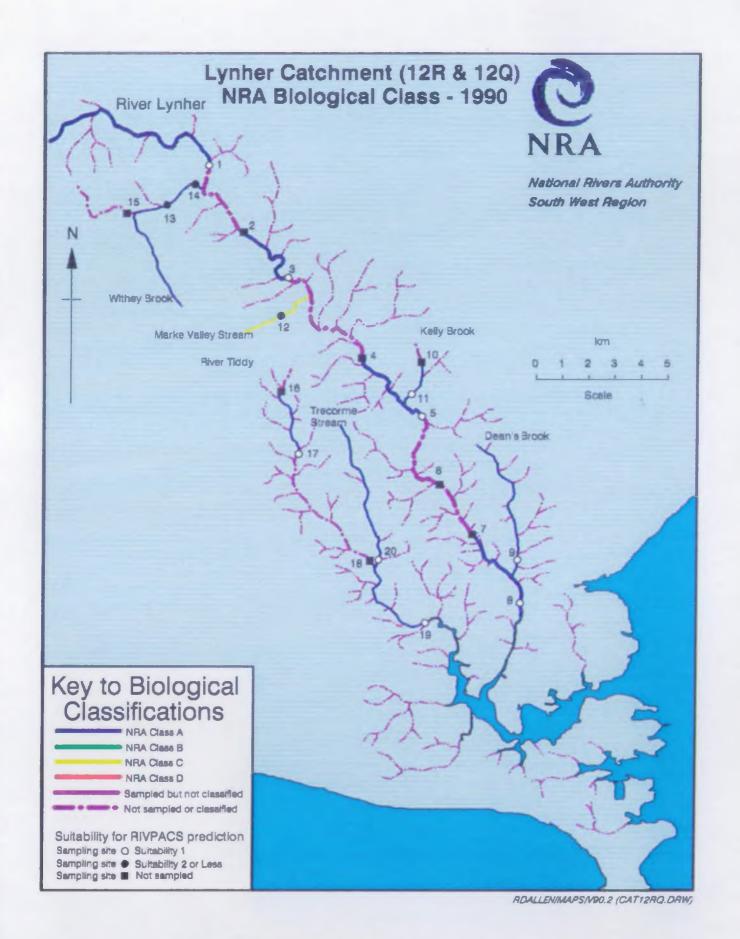


Figure 3.25 Lyhner Catchment (12R & 12Q) NRA Biological Class - 1990

3.2.16 River Seaton Catchment Catchment-13

The sites surveyed in the middle reaches of the River Seaton were of poor ecological quality solely because of poor EQI N-fams, which is indicative of toxic pollution. This was most probably caused by drainage from disused mines, urbanisation and road run-off. Poor habitat probably contributed to the poor ecological quality; the river bed at the site at Hendra was of flat cobbles which is inhospitable to invertebrates; the site at Hessenford had been channelised.

BIOLOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS RIVER SEATON CAULIMENT (Catchment 13) Site No. on Map Watercourse Biological Site Name

	<i>.</i>		
n Map	Watercourse	Biological Site Name	NGR
1	Senton	Crow's Nest	SX 2640 6938
2	Seaton	Hendra Bridge	SX 2650 6565
3	Seaton	Poseland	SX 2754 6323
4	Seaton	Courtney's Mill Bridge	SX 2878 6164
5	Seaton	Hessenford	SX 3071 5740
6	Seaton	Sector Beach	SX 3033 5450
7	Merheniot trib.	at factory	SX 2844 6207
8	Tremar Stream	Rosecraddoc	SX 2646 6758

83

ŧ

Site	Chenical	No.of				EDI	ECI	BUI CLASS		NRA Bio	
Code	Site	Samples	Seasons	N-Éaus	ASPT	N-faus	aspt	N-Cans	ASPT	Class	
1304	R134001										
1301	R13A002	3	7	28	6.6	0.84	1.04	A	A	A	
1302	R1.3A006	3	7	14	6.4	0.43	1.01	С	A	С	
1305	RI.34003										
1303	RL3A004	3	7	IJ	6.5	0.38	1.03	с	A	С	
1306	RL3A005										
1308	R13A009										
1307	R1.3A008										

.

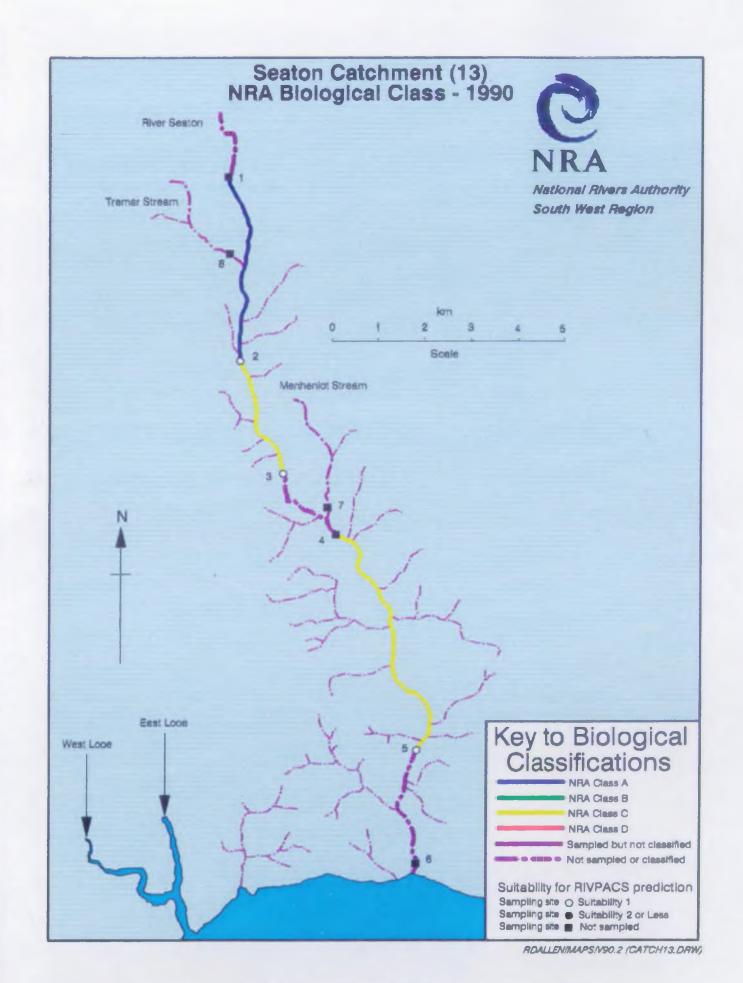
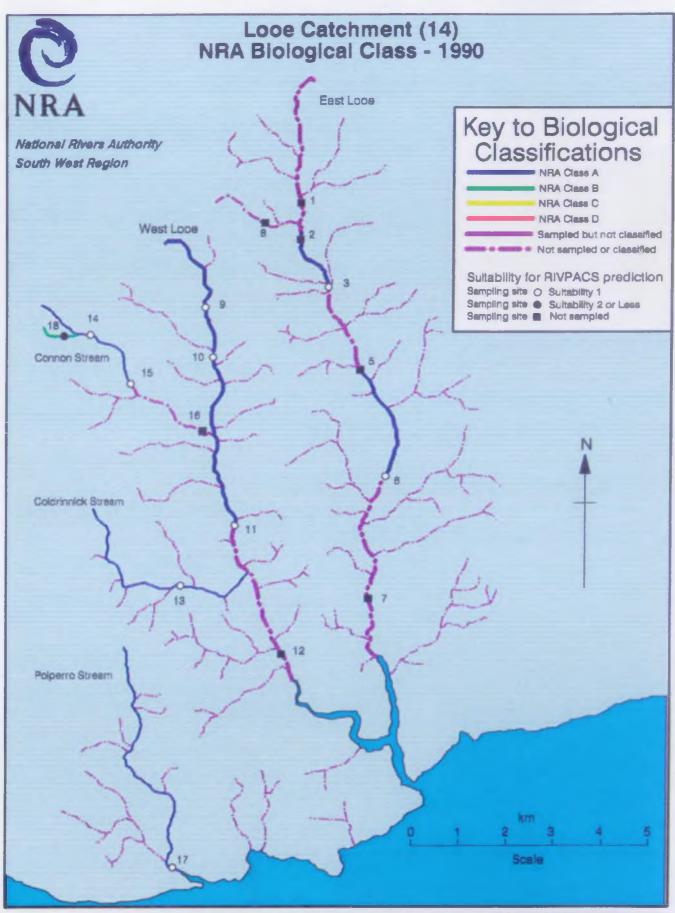


Figure 3.26 Seaton Catchment (13) NRA Biological Class - 1990

3.2.17 River Looe Catchment Catchment-14

The River Looe was of good ecological quality, except for Connon Tip Stream, a very small tributary of Connon Stream. This was of moderate ecological quality owing to its less than expected taxonomic richness. A 100% cover of ochre was recorded on the stream bed. According to the Region's pollution inspectors, the stream was contaminated by leachate from an old waste disposal site; the existing tip no longer discharges directly to this stream.


HIGLOGICAL CLASSIFICATION OF HIVER QUALITY 1990 AND INDEX TO MAPS HIVER LOCE CATOMENT (Catchment 14) Site ND.

Watercourse	Biological Site Name	NJR
East Looe River	Venton Veor Bidge	SX 2325 6574
East Looe River	Looe Mills	SX 2328 6465
East Loos River	Lamellion Mill	SX 2507 6109
East Loos River	Trussel Bridge	SK 2455 6205
East Looe River	Landloos Bridge	SK 2499 5956
East Loos River	Railway Halt Sandplace	SX 2480 5719
Dobwalls Streem	Tuelmenna Bridge	SK 2329 6574
West Looe River	Bosent Bridge	SK 2127 6353
West Looe River	Scawn Mill Bridge	SX 2160 6216
West Loos River	Churchbridge	SK 2189 5865
West Loce River	Souden's Bridge	SX 2300 5562
Coldrinnick Street	Tregarrick Mill Bridge	SX 2060 5711
Cornon Stream	d/s tip site	SX 1909 6245
Cornon Strees	Trevillis Wood	SX 1958 6185
Cornon Streem		
Polperro River	Polperro	SX 2073 5098
Cornon Tip Stream	Tip discharge	SX 1891 6241
	East Looe River East Looe River East Looe River East Looe River East Looe River East Looe River Daballs Streen West Looe River West Looe River West Looe River Coldrinnick Streen Connon Streen Connon Streen Rolperro River	East Loop River Venton Veor Bidge East Loop River Loop Mills East Loop River Lamellion Mill East Loop River Trussel Bridge East Loop River Railway Helt Sandplace Doballs Streen Tuelmanna Bridge West Loop River Bosent Bridge West Loop River Bosent Bridge West Loop River Scan Mill Bridge Coldrinnick Streen Tregarrick Mill Bridge Coldrinnick Streen Tregarrick Mill Bridge Comon Streen Trevillis Wood Comon Streen River Sould Streen Trevillis Wood

Site	Chemical	No. of				HQI	EQI	EQT C	LASS	NRA BLO
Code	Site	Samples	Seasons	N-fans	ASPT	N-Eams	ASPT	N-Caus	ASPT	Class
1411	R14B005									
1412	R140001									
1402	R14B002	3	7	31	6.3	0.90	1.00	A	X	λ
1413	R14B003									
1403	R14B006	3	7	29	6.0	0.82	0.97	A	A	λ
1414	R14E004									
1415	R14E007									
1404	R14C010	3	7	29	6.3	0.85	1.01	A	A	λ
1405	R140001	3	7	33	6.8	0.96	1.09	A	λ	A
1406	R140002	3	7	38	6.9	1.14	1.09	A	λ	A
1416	R140003									
1407	R140011	3	7	38	6.6	1.12	1.05	X	λ	λ
1408	R140005	3	7	28	6.6	0.82	1.06	A	A	A
1409	R140006	3	7	34	6.9	1.00	1.09	Ä	X	A
1417	R140008									
1401	R14A001	3	7	30	6.6	0.91	1.03	A	A	A
1410		3	7	24	6.0	0.73	0.96	В	X	B

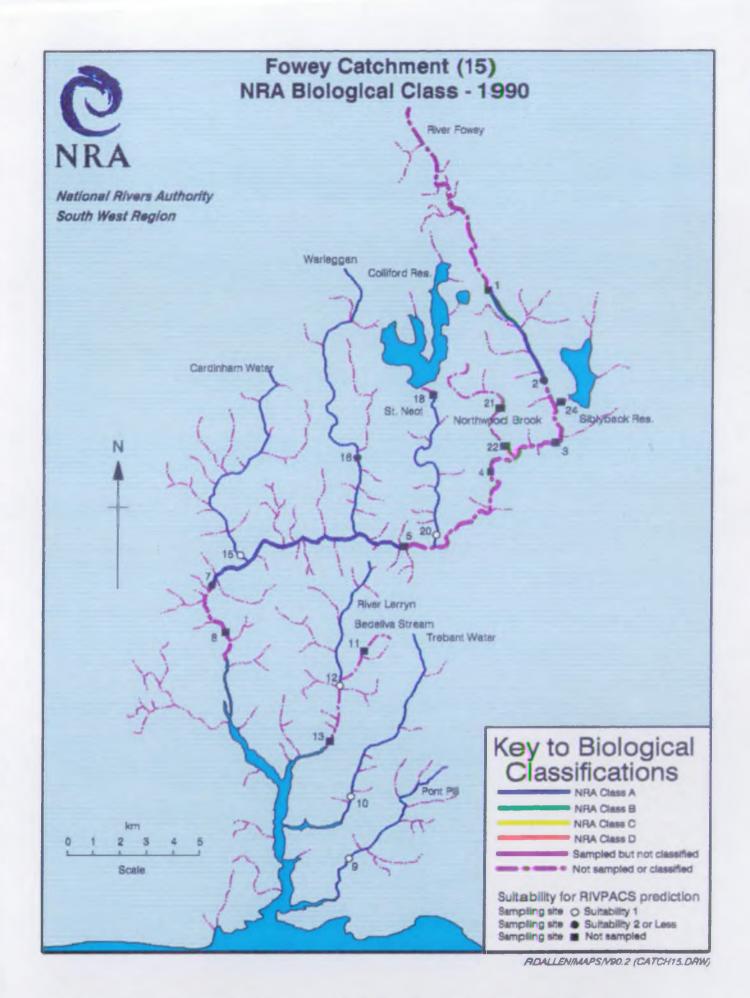
. بيبة بين ألت الله بي من بين ال

·••

RDALLEN/MAPS/V90.2 (CATCH14.DRW)

Figure 3.27 Looe Catchment (14) NRA Biological Class - 1990

3.2.18 River Fowey Catchment Catchment-15


.

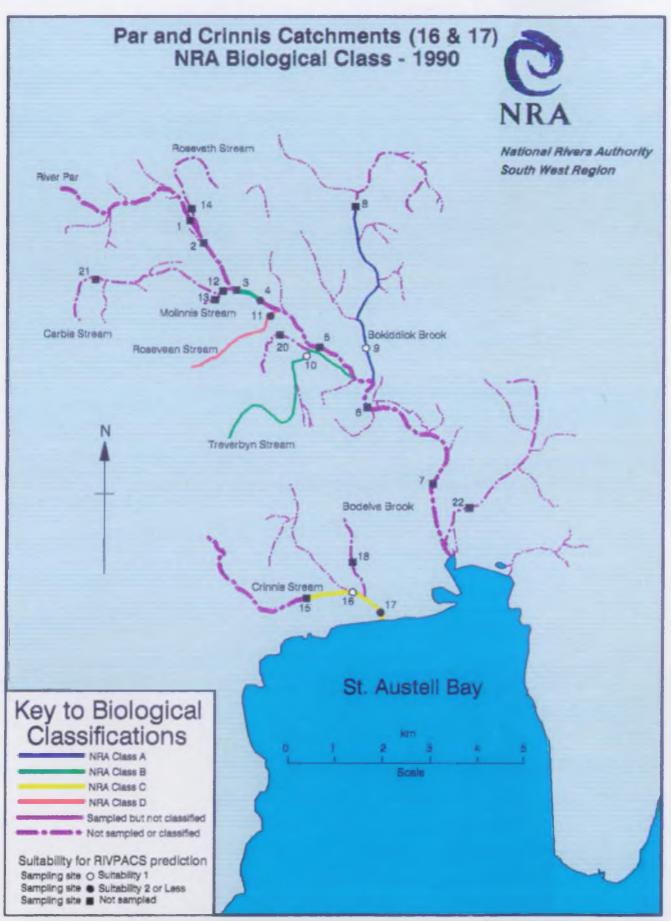
The Fowey catchment was of good ecological quality.

BIDLOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS RIVER FOREY CRICHMENT (Catchment 15) Site No.

-		
Watercourse	Biological Site Name	NER
FONBY	Harro-bridge	SX 2066 7440
FONEY	Lamelgate	SX 2230 7080
FOMEY	Draynes Bridge	SX 2281 6898
Гомеу	Treverbyn Bridge	SX 2065 6754
FONBY	Bodithiel Bridge	SX 1766 6488
FOMBY	Respryn Bridge	SX 0998 6360
FOMBY	Restornel	SX 1076 6132
Pont Pill	Trethake Mill - u/s Port	SX 1561 5315
Trehant Water	East Trencreek u/s Perpoll	SX 1510 5551
Badallva Stream	Bacomoc	SX 1550 6036
Lerryn River	Couch's Mill	SX 1485 5919
Lerryn River	Lerryn	SX 1432 5734
Cardinhan Water	Glyrrmill	SX 1110 6444
Warleggan River	Penters Bridge	SX 1583 6810
St Neot River	Colliford Bridge	SX 1810 7071
St Naot River	Two Waters Poot	SK 1842 6799
Northwood Brook	Wortha	SX 2063 6968
Northwood Brook	Trenant Bridge	5% 2096 6928
Siblyback Stream	Trekaivesteps	SK 2279 6991
	Foway Strann Neter St Naot River St Naot River Northwood Brook Northwood Brook	Powey Harrowbridge Powey Lamelgate Powey Draynes Bridge Powey Draynes Bridge Powey Bodithiel Bridge Powey Bodithiel Bridge Powey Bodithiel Bridge Powey Respryn Bridge Powey Respryn Bridge Powey Restormel Port Pill Tretheke Mill - u/s Ront Trebent Water Bast Trencreek u/s Pergoll Badallva Stream Boornoc Lertyn River Couch's Mill Lertyn River Lertyn Cardinhan Water Glynrmill Warleggin River Penters Bridge St Naot River Two Waters Poot Northwood Brook Wortha Northwood Brook Trenent Bridge

Site	Chemical	No. of				BO	U DI	egi a	ASS	NRA BLO
Code	Site	Samples	Seasons	N-Cams	Aspt	N-fans	ASPT	N-fame	ASPT	Class
1512	R158001									
1504	R158024	3	7	36	6.8	1.20	1.07	A	A	A
1513	FL5B002									
1514	R158003									
1515	R158004									
1505	RL58025	3	7	32	6.9	1.02	1.09	A	A	A
1516	R156006									
1501	R158032	3	7	27	6.0	0.79	0.96	A	X	A
1502	R158031	3	7	40	6.6	1.15	1.06	A	X	X
1511	R158030									
1503	R158029	3	7	37	7.0	1.09	1.11	X	A	A
1510	R15A004									
1506	R158021	3	7	36	6.9	1.10	1.06	A	A	A
1507	RL5E009	3	7	32	7.3	0.98	1.14	A	A	A
1517	R158014									
1508	R158008	3	7	35	6.9	1.10	1.09	A	A	A
1518	R158016									
1509	R15B011									
1519	R158010									

Figure 3.28 Fowey Catchment (15) NRA Biological Class - 1990


3.2.19 Rivers Par and Crinnis Catchments Catchments-16 & 17

Apart from Bokiddick Brook, none of the sites surveyed in these catchments were of good quality. With the exception of Treverbyn Stream, the EQI N-fams indicated poorest quality. China-clay extraction was purported to have caused the poor ecological quality in all these streams. Ochre was recorded at both sites on the Crinnis River and on Rosevean Stream, where a cover of 100 % was recorded. Rosevean Stream was one of the few watercourses in the South West Region that was of very poor ecological quality according to the overall NRA Biological Classification.

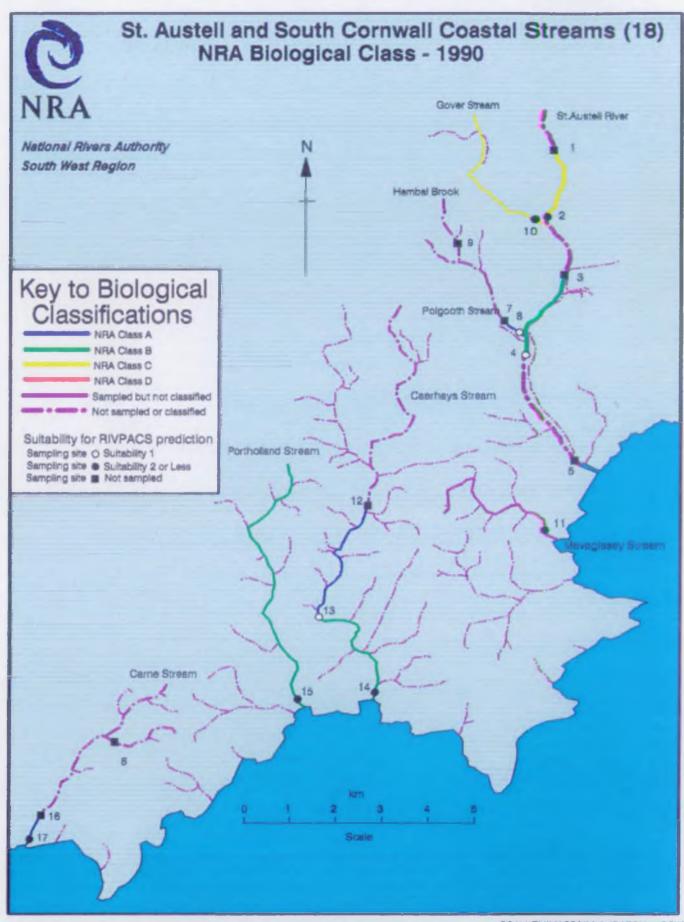
BEDIOGECAL CLASSIFICATION OF REVER QUALITY 1990 AND INTEX TO MAPS RIVERS FAR & CRIMIS CATCHENIS (Catchments 16 & 17) Site No.

on Map	Watercourse	Biological Site Name	NOR
1	Par River	Criggan Moor	SX 0215 6076
2	Par River	A 391 Bridge	SX 0229 6069
3	Par River	Higher Menadew	SK 0296 5930
4	Par River	Lavreen Bridge	SX 0315 5927
5	Par River	Insulyan Bridge	5x 0481 5604
6	Par River	Treffrey Bridge	SK 0567 5737
7	Par River	St Blazey Bridge	SX 0703 5518
8	Bokiddick Brook	Lowertown Farm	SK 0538 6099
9	Bokiddick Brook	Imulyan	SX 0555 5804
10	Treverbyn Stream	200m u/s Par River confluence	SX 0433 5794
บ	Roseveen Stream	prior to Par River	SX 0312 5858
12	Carbis Stream	prior to Par River	SX 0265 5934
B	Molinnis Stream	Molinnis	SK 0246 5927
14	Resource Stream	Rosevath	SX 0206 6100
15	Crimis River	Cuddra Road Bridge (A 390)	SX 0454 5291
16	Crimis River	Caryon Bay road bridge	SX 0543 5275
17	Crimis River	Crimis Beach (adit portal)	SX 0611 5230
18	Bodalva Brook	Bodelva	SX 0548 5323
20	Rescorla Brook	Lestoon Page	SX 0353 5835
21	Carbis Streen	d/s Wheal Prosper mica dam	SX 0001 5955
22	Tyvardeath Stream	d/s Elmsleigh Pond	SX 0768 5431

Site	Chemical	No. of		_		EDI	HUI	HOT O		NRA Bio	
Code	Site	Samples	Seasons	N-Caros	ASPT	N-Cams	ASPT	N-Caros	ASPT	Class	
1606	R16A007										
1607	R16A001										
1608	R16A006										
1601	R16A002	3	7	ద	5.9	0.75	0.93	8	A	8	
1609	R16A003										
1602	R164004										
1610	R16A005										
1612	R16A014										
1603	R16A009	Э	ר ר	27	6.4	0.81	1.00	A	λ	A	
1605	R164013	3	7	31	5.4	0.90	0.86	A	В	B	
1604	R164012	3	7	9	5.2	0.27	0.84	D	В	D	
1614	R16A011										
1615	R16A016										
1616	R16A008										
1703	R17A002										
1701	F17A003	3 3	ד ד	14	4.9	0.40	0.79	С	8	с	
1702	R17A004	3	7	12	5.7	0.36	0.90	D	A	С	
1704	R17A007										
1617											
1613	R16A018										
1611	R16A017										

ADALLEN/MAPS.NO0.2 (CATC1817.DRW)

Figure 3.29 Par and Crinnis Catchments (16 & 17) NRA Biological Class-1990


3.2.20 St Austell and South Cornwall Stream Catchments Catchment-18

The St Austell River and its tributary Gover Stream were affected by china clay works. The upper and middle reach of the St Austell River and Gover Stream were of poor ecological quality owing to poor taxonomic richness, consistent with toxic effects and smothering by fine suspended particles of china clay. The most downstream reach on Caerhays Stream, which was of moderate ecological quality overall and poor quality in terms of taxonomic richness, was affected by canalization and possibly also by saline intrusion. Portholland Stream was of moderate ecological quality because of a moderate class EQI N-fams: no causes were ascribed to this. Gover Stream was sampled in 1990, but the site had such a low RIVPACS suitability that it was rejected by the programme, and therefore could not be classified.

HIDLOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS ST. AUSTELL & SOUTH CORNWALL STREAMS CATCIMENTS (Catchment 18) Site No.

on Map	Watercourse	Biological Site Name	NGR
1	St Austell River	Lansalson Bridge	SX 0088 5478
2	St Austell River	u/s Gover Stream	SX 0124 5355
3	St Austell River	u/s St Austell STW	SX 0122 5116
4	St Austell River	Molingey Graging Station	SX 0074 4955
5	St Austell River	Pentevan Bridge	SX 0170 4730
6	Trangrouse Stream	Trelagossick	SW 9231 4127
7	Polgooth Stream	Polgooth Bridge	SX 0034 4994
8	Polgooth Stream	prior to St Austell River	SX 0068 4985
9	Harbal Brock	u/s Bridge	SW 9893 5205
10	Gover Stream	prior to St Austell River	SX 0068 5274
ш	Meungissey Streem	car park Mevagissey	SW 0130 4500
12	Caetheys Streem	Polmessick Bridge	SW 9719 4558
13	Caeschary's Stream	Tubbs Mill	SW 9610 4334
14	Caentheys Streem	Caerbays Baach Bridge	SW 9749 4140
15	Portholland Stream	Portholland	SW 9568 4180
រេទ	Carne Streem	Melinsey Mill	SW 9055 3925
17	Carne Stream	Pendover Beach	SW 8944 3825

	. C									
Site	Chemical	No. of				BUT	EQI	FOT C	LASS	NEA BLO
Code	Site		Seasons	N-fams	ASPT	N-Cans	ASPT	N-Cams	ASPT	Class
1810	F18A003		_					_	_	_
1801	F18N004	3	7	12	5.3	0.38	0.83	С	8	С
1811	R18A006									
1802	R18A007	3	7	25	5.6	0.74	0.89	B	A	B
1812	R18A008									
1817										
1813	R18A014									
1804	R18A010	3	7	30	6.0	0.87	0.96	λ	A	٨
1818	R18A016									
1803	R184005	3	7	บ	5.0	0.42	0.79	c	8	С
1805	R18A009	-		_	•					
1814	R18A001									
1806	R184015	3	7	33	6.5	0.96	1.03	A	λ	A
1807	R18A002	3	7	17	6.2	0.51	0.98	c	Ä	8
	R184017	3	, 7	24	6.3	0.70	1.02	6	Ā	8
1808		2	'	44	0.3	0.70	1.02		~	
1816	R18A011	-	-	**	6.3	0.03	1 03	•	•	
1809	R18A012	3	7	32	6.3	0.93	1.03	λ	λ	A

RDALLEN/MAPS/N90.2 (CATCH18.DRW)

Figure 3.30 St Austell and South Cornwall Coastal Catchments (18) NRA Biological Class - 1990

3.2.21 River Fal Catchment Catchment-19A (part), B, C, D & E

All the sites surveyed on the River Fal were of only moderate ecological quality, whilst two tributaries sampled in its upper reaches, Bodella Brook and Gwindra Stream, were of poor quality. This was probably the result of the china clay extraction in the area. Bodella Brook was also influenced by SIW's effluent. Unlike the upper reaches, the lower reaches of the River Fal were of moderate quality, not only because of EQI N-fams but also EQI ASPT, which suggests that organic enrichment also affected this reach. Calenick Stream was of only moderate ecological quality according to its overall NRA Biological Classification because of poor taxonomic richness, which is indicative of toxic pollution. This is consistent with the effects of mining activity that is known to affect the watercourse. All the sites on the River Carnon and its tributaries were of poor ecological quality according to their overall NRA Biological Classification. Toxic effects were implicated as EQI N-fams was degraded more than EQI ASPT; in Baldhu Stream and Hick's Mill Stream EQI N-fams was classed as very poor. These results are consistent with the severe effects of metalliferous mine waters that were known to discharge into these streams. The Perranwell Stream and the most upstream reach of the Kennal were of good overall ecological quality, but of only moderate quality in terms of taxonomic richness, the reasons for which were unknown.

HICLOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS RIVER FAL CATUMENT (Catchment 19A (part), B, C, D & E) Site No.

on Map	Watercourse	Biological Site Name	NGR
1	Fal	Treases Bridge	SW 9663 6009
2	Fal	Gaverigan Bridge	SW 9373 5881
3	Pal	Retew Bridge	SW 9262 5700
4	Fal	Kemick Bridge	SW 9321 5462
5	Guindra Streem	Combe u/s confi	SM 9512 5175
6	Pal	Terras Bridge	SW 9345 5335
7	Fal	Grampound Bridge	SW 9334 4845
8	Fal	Tregoney Gauging Station	SW 9215 4486
9	Penkavil Straam	nousey anyny caran.	SW 8706 4198
9 10	Trevithen Stream	Mellingpose	SW 8952 4440
10	Gwindra Streem	Nanpean Bridge	SW 9641 5585
12	Gwindra Stream	Goonabath	SN 9555 5491
			SW 9503 5299
13	Guindra Stream	Guintra Bridge	SW 9409 5088
14	Gandra Stream	Treway Bridge	SW 9404 5768
15	Bodella Brook	Carsella	÷ · · · · · · · ·
16	Percuil River	Lanhouse	SW 8605 3790
17	Percuil River	Trothes Mill	SW 8620 3648
18	Tresillian River	Trendeal	SW 8866 5282
19	Tresillian River	Ladock Water Aupping Station	SW 8927 5114
20	Tresillian River	Tresowgar Bridge	SW 8853 4812
21	Tresillian River	Tresillian Raping Station	SW 8709 4706
22	Tresillian River	d/s Ladock STW	SW 8704 4691
23	Trevella Stram	Frogmore Bridge	SW 8585 4849
24	Trevalla Stream	Tregurra Bridge	SW 8476 4684
25	Kestle Stream	Candor Ford	SW 8738 4902
26	Brighton Stream	New Mills	SW 9010 5239
27	Allen	Idless Bridge	SW 8220 4704
28	Allen	Moresk Laundry	SW 8268 4505
29	Zelah Brook	Gearnick Mill	SN 8161 4929
30	Kaniyin	New Mill	SW 8077 4585
31	Keniyin	Bosvigo Bridge	SW 8155 4527
33	Calenick Stream	ндв	SW 7841 4380
34	Calenick Stream	Calenick Bridge	54 8200 4320
35	Carnon River	Chacevater Viaduct	SM 7443 4521
36	Carnon River	d/s Chaceweter STW	SW 7530 4331
37	Camon River	Twelveheads	SW 7615 4206
38	Camon River	d/s County and Wallington adits	SW 7695 4150
39	Cainon River	Rissoe Bridge	SH 7748 4128 SH 7909 3942
40	Carnon River	Devoran Bridge	
41	Perranwall Stream	Perranell	SM 7759 3939
42	Balchu Stream	Bissoe Bridge	SW 7760 4149
43	Hick's Mill Stream	Hick's Mill	SH 7676 4113 SH 7595 4225
44	St Day Stream	Twelve Heads prior to R Carmon	SW 8132 4829
45	Minnis Stream	Trevellan menulus Briden	SW 8132 4629 SW 7295 3605
46 47	Kernal Kernal	Tregolls Bridge	SH 7562 3795
47 48	Kernal	Ponsanooth Gauging Station Sticken Bridge	SW 7735 3819
40 49	Stithians Stream	Seauraugh Moor	SW 7343 3747
47	SULULIAIS SULUDIA	June 1991 1 1 1 1	

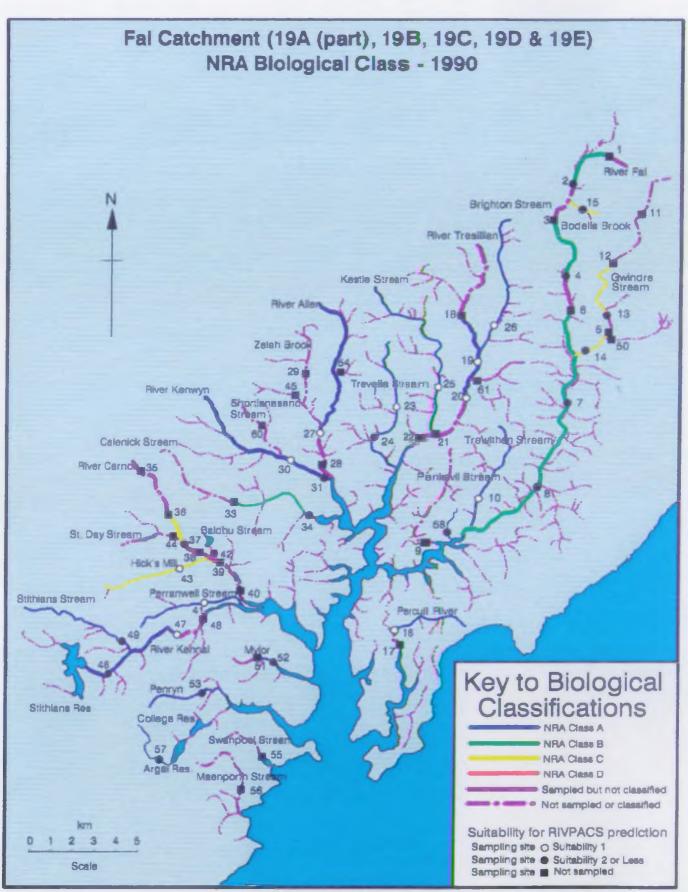
86

÷

Site	Chemical	No. of				EOI	EQT	EQT CL	ASS	NRA BLO
Code	Site	Samples	Gaacamo	N-Caus	ASPT	N-£ans	ASPT	N-fams	ASPT	Class
Cucie -	31.05	anter a			<i></i>	LA-FORID		11 2000		
1958	R190001									
1921	R190002	3	7	23	5.7	0.68	0.90	B	A	B
1959	R190003									
1922	R190011	3	7	23	5.9	0.70	0.93	B	λ	8
1963		-		_				_		
1960	R190004									
1923	R19C005	3	7	24	5.1	0.69	0.81	8	8	B
1924	R190006	3	7	24	5.1	0.66	0.82	8	8	8
1981	R198004									
1928	R19C016	3	7	31	6.5	0.90	1.04	A	A	λ
1961	R190014									
1962	R190017									
1925	R190008	3	7	17	4.9	0.51	0.76	с	с	с
1926	R190009	3	7	19	5.2	0.57	0.82	с	8	с
1927	R190018	3	7	17	5.1	0.51	0.82	с	8	c
1901	R19N034	3	7	39	6.6	1.14	1.06	A	λ	A
1947	R194013	-			• • •					
1964	R190033									
1930	R190001	3	7	33	6.7	0.95	1.07	A	λ	A
1931	R190002	3	7	34	6.6	0.98	1.05	Å	λ	A
1966	R19D032	2		••	0.0	•120	4.45	•		
1965	R190034									
1933	R19D009	3	7	32	6.9	0.95	1.10	λ	A	λ
1934	F19D014	3	7	29	6.4	0.86	1.01	Ä	Ä	λ.
1932	R19D008	3	7	35	6.7	1.02	1.07	λ	A	λ
1939	R190005	3	7	35	6.8	1.04	1.08	Α.	A	λ
1935	R190018	3	7	41	6.6	1.17	1.04	A	A	Ā
1968	R190004									
1972	R190030									
1936	R190016	3	7	32	6.0	0.93	0.95	A	A	λ
1937	R190007	3	7	35	6.0	1.03	0.96	A	A	λ
1971	R190025									
1938	R190006	3	7	20	6.1	0.58	0.98	B	A	8
1974	R19E016									
1975	R19E008	_	_					_		_
1940	R19E001	3	7	17	5.0	0.50	0.80	с	B	с
1976	R19E015									
1977	R195003									
1978 1943	R19ED04 R19ED20	3	7	~	6.1	0.75	1.00	•		•
1941	R196021	3	<i>'</i>	26 2	6.3 5.5	0.06	0.88	B D	A B	A D
1942	R190019	3	, ,	12	4.6	0.36	0.73	D	č	c
1980	R190022	2	'	14	4.0	0.30	Q.75	D	C.	C
1970										
1944	R19E005	3	7	25	6.3	0.76	0.99	в	λ	λ
1945	R19E006	3	7	33	6.6	1.00	1.04	Ň	A	A
1979	R19E007				-					
1946	R195023	3	7	27	6.5	0.83	1.02	λ	A	A

HULCHCAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS RIVER FAL CATCHMENT (Catchment 19A (part), B, C, D \leftarrow E) continued Site no.

an Map	Watercourse	Riological Site Name	NCR
50	Cocribe Stream		
51	Mylor Stream	Enys	SW 7899 3649
52	Mylor Stream	Mylor Bridge	SW 8034 3615
53	Penryn River	Trenough	SH 7732 3506
54	Trippin Stream	Trevorgan	SW 8313 4989
55	9-empool Staven	u/s Swarpool	SW 8004 3166
56	Memporth Stream	Tregecha Bridge	SW 7881 3029
57	Argal Stream	Helland Mill	SW 7538 3199
58	Lanortan	Lanorran Wood	SW 8806 4228
60	Shortlandeend Stream	Reseworthy	SW 8000 4709
61	Trevorgens Stroom	Quintow	SW 8881 4851


66

.....

Site	Chemical	No. of				EQI	EQT	EQI O	LASS	NRA BLO
Code	Site	Samples	Seasons	N-Cases	ASPT	N-fams	ASPT	N-Care	ASPT	Class
1982	R19C021									
1948	R19A035									
1902	R19N014	3	7	30	6.3	0.87	1.01	A	A	A
1903	R19A037	2	6	26	6.0	0.90	0.97	*	A	A
1969										
1949	R194009									
1950	F19A008									
1904		3	7	30	6.1	0.90	0.96	A	٨	A
1929		3	7	32	6.5	0.97	1.03	A	A	٨
1973		-								
1967										

•

1.

RDALLEN/MAPS/NOD.2 (CATCH19.DRW)

Figure 3.31 Fal Catchment (19A in part, 19B, 19C, 19D & 19E) NRA Biological Class - 1990

3.2.22 Helford and Lizard Peninsula Catchments Catchment-19A

Most of the watercourses in this area were of good ecological quality. The Cury River and the Gunwalloe Stream were of poor overall ecological quality owing to both EQI ASPT and poor (Cury) or moderate (Gunwalloe) EQI N-fams. Both sites were subject to dredging, and eutrophication was reported in both streams. Oil and tar were reported at the biological monitoring site on Cury River.

HICLOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS LIZARD PENINSULA STREAMS & HELFORD CATCHMENTS (Catchment 19A) Site no.

	•		
an Map	Watercourse	Biological Site Name	NCR
1	Helford River	Mellangoose	Sin 6826 2576
2	Helford River	u/s Gweek Mill	SW 7020 2647
3	Porth Navas Streem	Trenarth Bridge	SW 7577 2830
4	Trevince Stream	Porth Navas Bridge	SW 7520 2776
5	Tolvan Cross Stream	Kestle Dee	SW 7077 2751
6	Lestraines River	Polwheveral Bridge	SH 7377 2900
7	Carvedras Stream	prior to Lestraines River	SW 7365 2913
8	Gweek River	Mether-uny Mill Bridge	SW 7042 2918
9	Gweek River	Gweek Bridge	SW 7061 2717
10	Roseveer River	Rosevear	SW 7036 2563
บ	Trelowarren Stream	Trelowarren Mill	SW 7177 2478
12	Menaccan River	Polkanoggo	SW 7557 2210
13	Menaccan River	Manaccan Road Bridge	SW 7638 2461
14	Porthallow Stream	Porthallow	SW 7970 2316
15	St Kevenne Stream	Porthoustock Bridge	SW 8047 21.82
16	Poltesco River	Poltesco Bridge	SW 7236 1574
17	church Cove Stream	Church Cove	SW 7120 1268
18	Million Stream	Million Cove	SW 6685 1788
19	Cury River	u/s Polchu Baach	SW 6675 2003
20	Gravallos Stream	Winnianton Face	SW 6610 2076
21	Roseveer River	Ponson Tuel Ford	SW 7033 2551
22	Kynamos Stream	Kynance Cove	SW 6840 1340
23	Gueek River	Danetto Bridge	SW 7062 2682

102

Site	Chemical	No. of				BOI	HQI	ECI C	LASS	NRA Bio
Code	Site	Samples	Seasons	N-Case	ASPT	N-Case	ASPT	N-Came	ASPT	Class
1										
1909	R19A029	3	7	27	5.6	0.79	0.90	A	A	A
1910	R19A005	3	7	30	6.2	0.86	1.00	A	A	λ
1905	R19A001	3	7	31	6.5	0.92	1.03	A	A	λ
19 54	R19A002									
1952										
1906	R19A003	3	7	35	6.9	1.05	1.09	A	λ	A
1915	R194027	3	7	27	6.9	0.80	1.09	A	A	A
1907	R194028	3	7	29	7.0	0.88	1.11	X	A	A
1908	R194004	3	7	38	6.6	1.16	1.04	X	A	A
1911	R19A006	3	7	27	6.3	0.80	1.00	A	A	λ
19 16	R19A030	3	7	36	6.5	1.05	1.04	A	A	A
1912	R19A031	3	7	34	6.7	1.02	1.06	A	A	A
1913	R19A021	3	7	34	6.3	0.99	1.00	A	A	A
1917	R19A032	3	7	28	5.8	0.81	0.94	A	A	A
1914	R19A017	3	7	32	5.8	0.94	0.94	A	A	A
1918	R19A016	3	7	35	6.1	1.07	0.95	A	A	λ
1956	R19A018									
1955	R19A012									
1919	R194011	3	7	16	4.1	0.44	0.72	с	С	С
1920	R19A040	3	7	14	4.4	0.39	0.77	с	B	С
1953	R19A043									
4057										

1957 1951

.

51 R19A042

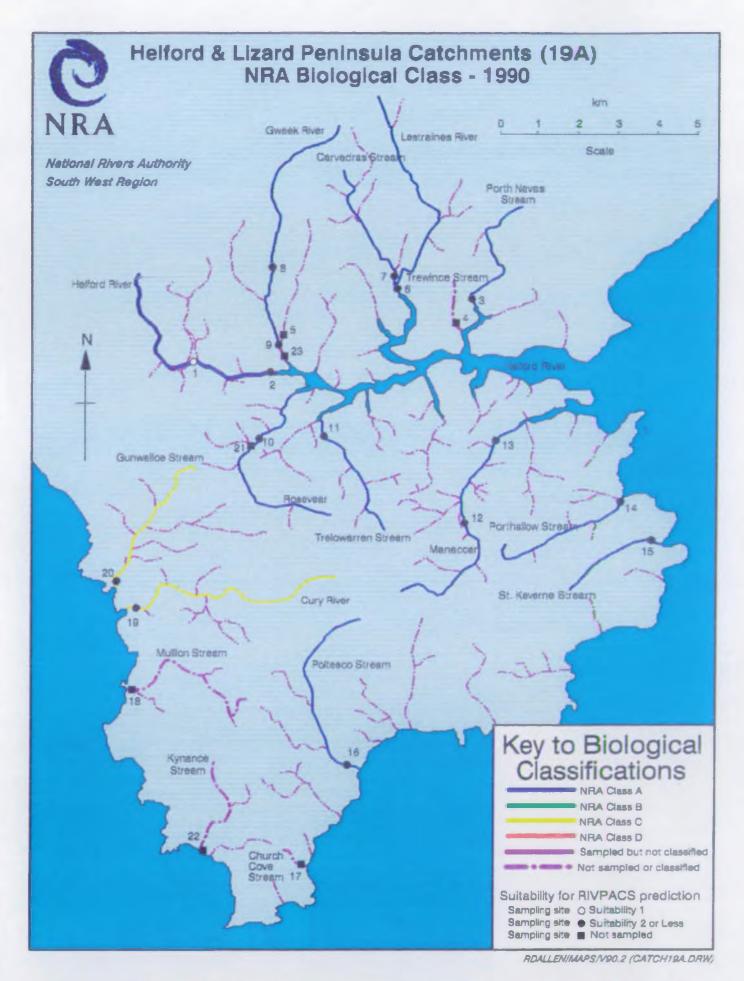


Figure 3.32 Helford and Lizard Peninsula Catchments (19A) NRA Biological Class - 1990

3.2.23 River Cober Catchment Catchment-20

The most downstream reach of the River Cober was classed as being of poor ecological quality owing to both its EQI ASPT and EQI N-fams. The monitoring site for this reach was downstream from Loe Pool, a lake which suffered severe blooms of blue-greens in 1990 owing to eutrophication, and exacerbated by the weather. Lacustrine influences would have affected the fauna here, and there would have been some saline influences also: the site had low RIVPACS suitability (suitability code 4, see Table 2.4). Bodilly Stream was classed as of moderate quality on the basis of its EQI N-fams, but this was not reflected in its overall Biological Classification which was good quality. No causes have been attributed, though the site had a low RIVPACS suitability (suitability code 5).

HIDLOGICAL, CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS RIVER COBER CATCHMENT (Catchment 20)

Site no.

an Map	Watercourse	Biological Site Name	NER
1	Cober	Trenser Bridge	SW 6828 3144
2	Obber	Coverack Bridge	SW 6688 3012
3	Orber	Lowertown Bridge	SW 6594 2910
4	Cuber	Helston Park	SW 6553 2730
5	Cober	d/s Helston STW	SW 6524 2679
6	Los Pool	Loe Pool at Bar outfall	SM 6430 2428
7	Bodilly Stream	Bodilly Mill	SW 6700 3185
8	Madlyn Stream	Lower Polkellis	SW 6937 3263
9	Tolcame Streen	Tolcame	SW 6876 3470
10	Releath Stream	Vellanewson	SW 6625 3270

Site	Chemical	No. of				EQ1	EQI	EQT O	LASS	NRA Bio
Code	Site	Samples	Seasons	N-Cans	ASPT	N-Cane	TTEA	N-Came	ASPT	Class
2001	R20A001	3	7	26	6.8	0.80	1.07	A	A	A
2005	R20A008									
2002	R204003	3	7	33	6.9	1.02	1.09	A	A	A
2006	R20A009									
2007	R20A004									
2003	R20A005	3	7	20	4.7	0.55	0.74	С	с	с
2004	R20A002	3	7	25	6.4	0.76	1.02	В	A	A
2009	R20A006									
2008										
2010										

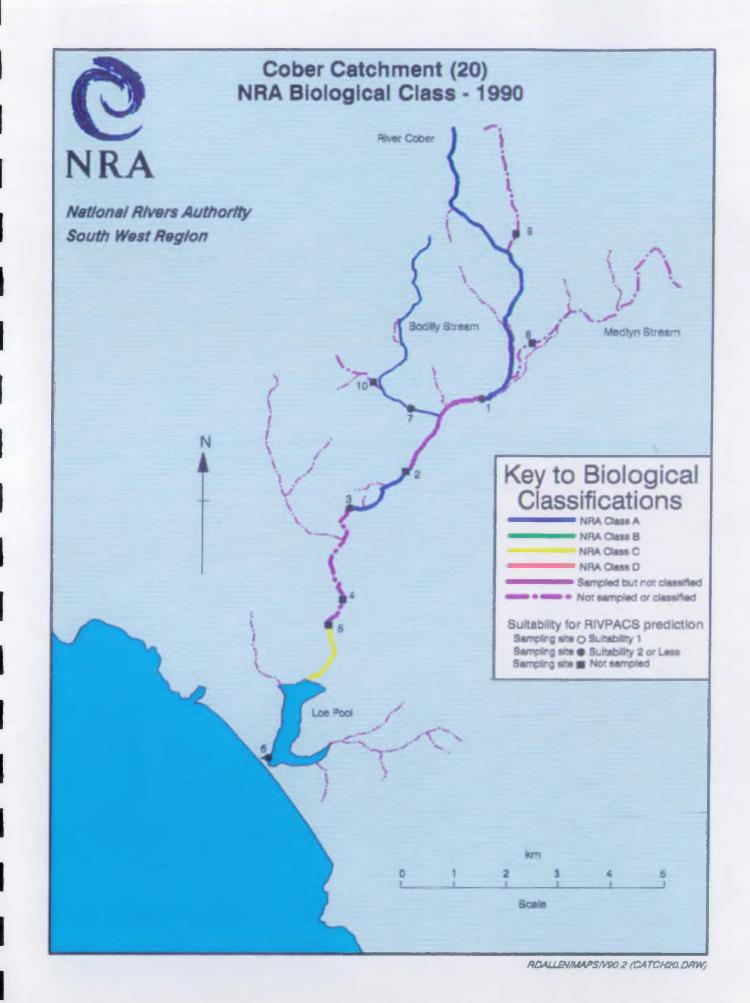
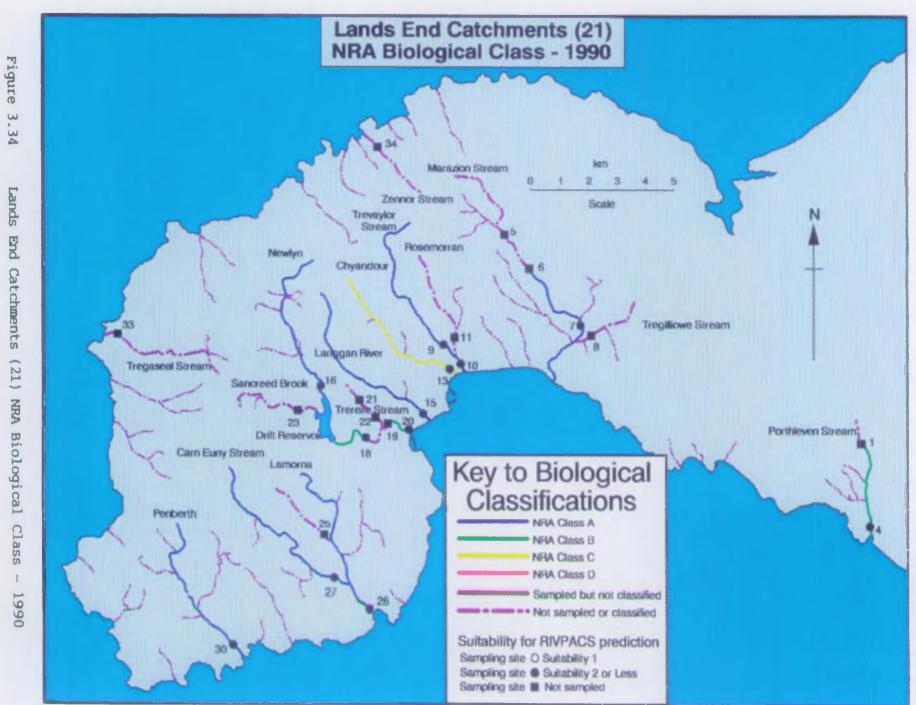


Figure 3.33 Cober Catchment (20) NRA Biological Class - 1990


3.2.24 Lands End Catchments Catchment-21

The lower reach of Porthleven Stream was of only moderate quality owing to both EQI ASPT and EQI N-fams. The monitoring site was slow-flowing and silty, and the stream is known to be affected by mining. Chyandour Brook was classed as being of poor ecological quality, largely on the basis of its EQI ASPT, implicating organic pollution. This was thought to be from urban contamination at the sampling site; the reach was also subject to channelisation. The two lower reaches of the Newlyn River that were sampled in 1990 were of only moderate ecological quality. Pesticide contamination has been identified in this catchment. The lower of the two sites, at Newlyn Bridge, may also have been influenced by an industrial estate. All the sites in these catchment had low RIVPACS suitability: most were small maritime streams, which is likely to have affected the accuracy of their classification.

BIOLOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS LANDS END STREAMS CATCIMENTS (Catchment 21 & part of 22) Site no.

Site no) .		
an Map	Watercourse	Biological Site Name	NCR
1	Porthleven Stream	Penbro	SN 6284 2826
4	Porthleven Stream	upstreem from harbour	SM 6275 2595
5	Marazion River	Nancledra	SW 4944 3610
6	Marazion River		
7	Marazion River	Truthwall Mill Bridge	SH 5247 3257
8	Tregillowe Stream	Gwallon	SW 5258 3213
9	Trevaylor Stream	Trythogga	SW 4764 3183
10	Rosemorran Stream	A30 Bridge at Chyandour	SW 4812 3113
ш	Rosenorran Streen	Kenegie Cottage	SW 4788 3222
13	Chyandour Brook	A30 Bridge at Chyandour	SW 4782 3104
15	Lariggan River	Wherry Town Bridge	SN 4608 2995
16	Newlyn River	Skimel Bridge	SW 4332 3020
18	Newlyn River	Buryas Bridge	S₩ 4460 2910
19	Newlyn River	Stable Holba	SW 4542 2930
20	Newlyn River	Newlyn Bridge	SW 4609 2914
21	Tereife Stream	Dennis Place	SW 4457 3008
22	Tereife stream	prior to Newlyn River	Sw 4519 2932
23	Sancreed Brook	Little Sellan Bridge	SW 4231 2981
25	Fictlers Brook	Bojewens	SW 4321 2661
26	Lesoma Strees	Lanoina	SW 4500 2416
27	Cam Eury Stream	Treacolfe	SW 4390 2520
30	Penberth Streen	Perberth Bridge	SW 4008 2295
33	Tregeseal Stream	prior to see	SW 3590 3235
34	Zennor Streets	Zennor	SH 4540 3846

	i.									
Site	Chemical	No. off				EQT	HQI	HOT O		NRA Bio
Code	Site	Samples	Seasons	N-Caus	ASPT	N-Cans	ASPT	N-Came	ASPT	Class
2112	R21A013									
2101	R21A010	3	7	24	5.4	0.70	0.87	B	B	8
2113	R21A028									
<u>2121</u>	R21A001									
210 2	R21A002	3	7	29	6.2	0.82	0.98	A	A	X
2114	R21A026									
2103	R21A022	3	7	32	6.3	0.97	0.98	λ	A	A
2104	R21A008	3	7	31	6.5	0.90	1.05	A	A	λ
2115	R21A021									
2105	R21A006	3	7	23	4.9	0.70	0.76	В	С	с
2106	R21A007	3	7	29	6.0	0.87	0.95	A	A	X
2107	R21A003	3	7	27	6.3	0.84	0.99	A	A	A
2111	R21A004	3	7	24	5.5	0.74	0.86	В	В	B
2116	R21A027									_
2108	R21A005	3	7	24	5.8	0.73	0.90	В	A	B
2117	R21A019									
2118	R21A020									
21.20	R21A017									
2119										
21.09	R21A011	3	7	30	6.3	0.92	0.99	A	A	λ
2110	R2LA015	3	7	27	6.4	0.83	1.01	A	λ	A
2201	R22A009	3	7	32	5.9	0.97	0.93	A	A	X
2208	R22A007									
2209	F22A008									

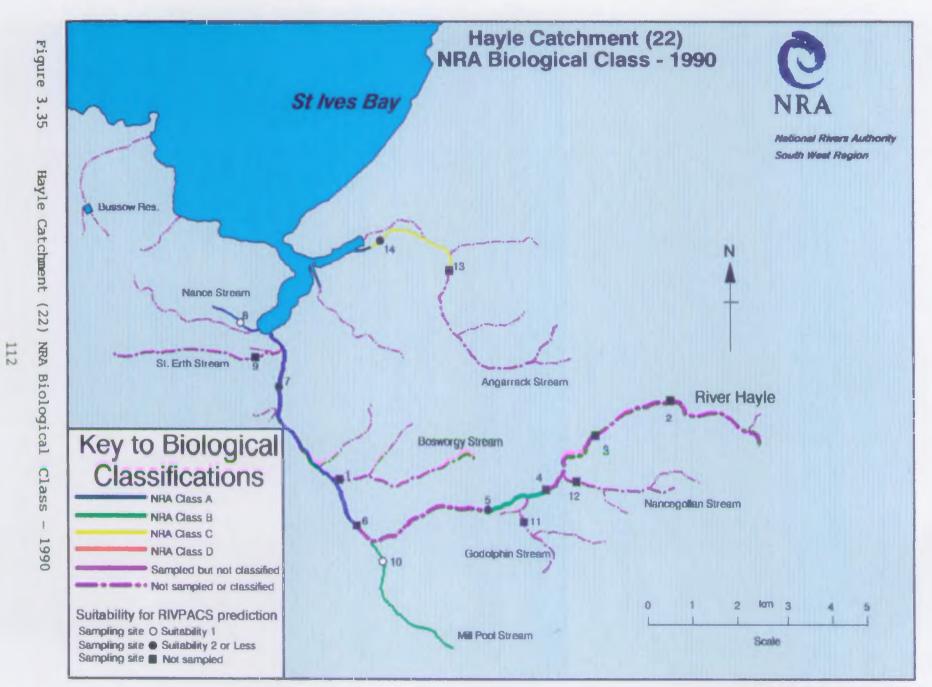
RDALLENMAPSMO 2 (CATCH21.DRW)

109

Lands

S 34

3.2.25 Hayle River Catchment Catchment-22


The River Hale at Godolphin Bridge was of only moderate quality owing to poor taxonomic richness. No causes were ascribed to this, though the effects of mining have been suggested. Millpool Stream was also of only moderate ecological quality, also owing to its EQI N-fams: the site was subject to dredging and channelisation which would have affected its taxonomic richness; mine drainage is also thought to affect this watercourse. The lower reach of the Angarrack Stream was of poor ecological quality owing solely to its taxonomic richness: this is consistent with the effects of urbanisation and channelisation which affected the stream in the vicinity of the monitoring site.

HIDLOCICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS HAVLE RIVER CATCHMENT (Catchment 22)

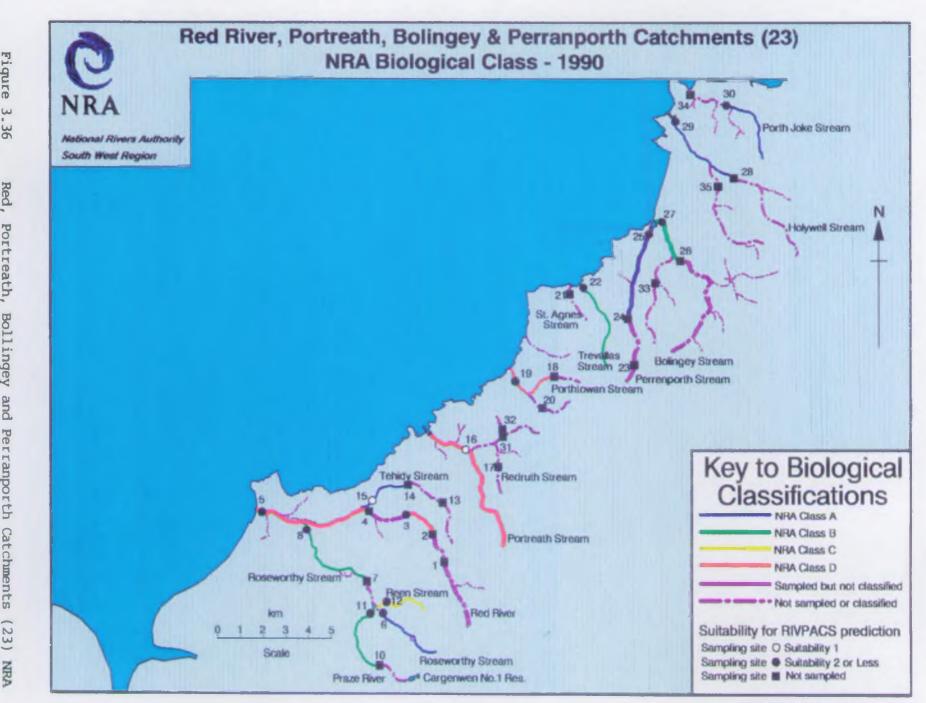
Site no. Biological Site Name NOR on Map Watercourse SW 5610 3299 Tranack 1 Bosworgy Stream SH 6375 3467 2 Hayle B 3303 bridge Crowan SH 6205 3382 Drym Faim 3 Havle SW 6115 3277 4 Hayle Binner Bridge SW 5969 3246 5 Hayle Godolphin Bridge SW 5664 3193 6 Hayle Relubbus SW 5493 3507 St Erth Gauging Station 7 Hayle SW 5407 3647 8 Nance Streem Lelant SW 5435-3558 9 Treloveth St Erth Stream SW 5715 3138 10 Millpool Streem Millpool SW 6043 3208 ш Guedna Godolphin Stream SW 6145 3306 12 Nanceqollan Stream Trensheal SW 5885 3734 IJ Nanpusker Angarrack Stream SW 5699 3834 14 Angarrack Stream Phillack - Copperhouse

Site Code	Chemical Site	No.of Samples	Seasons	N-Cours	ASPT	EQI N-Eans	eqi Aspt	equi ci N-faces	ass Aspt	NRA Bio Class
2214										
2210	R22E014									
2211	R228015									
2212	R22E001									
2204	R22E002	3	7	21	6.1	0.60	0.97	B	X	B
2213	R228003									
2205	R22H004	3	7	29	6.0	0.81	0.95	A	A	λ
2203	R22N005	3	7	28	5.6	0.82	0.90	A	λ	λ
2217	R22B018									
2206	R22H013	3	7	25	6.2	0.72	0.99	В	A	B
2215	R22B017									
2216	R22B016									
2207	R22N014									
2202	R22A001	3	7	15	5.2	0.44	0.92	c	A	с

.

RDALLENMAPS/V90.2 (CATCH22.DRW)

3.2.26 Red River, Portreath, Bolingey and Perranporth Catchments Catchment-23


1

This catchment included streams with some of the worst ecological qualities in the South West Region. At both sites on the Red River the overall NRA Biological Classification was very poor. In the upper reach monitored at Rosegroggan Bridge this was the result of mine drainage and storm-water overflows, and in the most downstream reach sampled from Gwithian Towans it was the result of both mining and organic pollution (at this site the very poor ecological quality was due to both EQI N-fams and EQI ASPT). Although it attained an overall NRA Biological Class of good ecological quality, Roseworthy Stream was classed as only of moderate quality on the basis of its EQI N-fams. The site was dredged in Spring 1990. The lower reach of the Praze River was of only moderate overall ecological quality owing to its EQI ASPT, which implicated organic pollution. Reen Stream was of poor overall ecological quality, largely because of poor taxonomic richness which may have been the result of channelisation, though mining influences were implicated in this reach's failure to meet its chemical River Quality Objective. Both the Portreath River and Porthtowan Stream were of very poor ecological quality according to their overall NRA Biological Classifications, largely due to very poor taxonomic richness, though both were also classed as of poor quality by their EQI ASPTs. Both watercourses are known to be affected by metalliferous drainage from disused mines. Trevellas Stream was of only moderate ecological quality owing to historic metal ore mining, the toxic influence of this on the macro-invertebrate fauna being evident in its moderate quality EQI N-fams. Bolingey Stream was of moderate ecological quality, and was subject to a number of influences including the effects of historic mining activity, dredging, and run-off.

HEOLOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MANS RED RIVER, FORHERINH, BOLINEY & PERMAPORIAL CATCHMENIS (Catchment 23) Site No.

on Map	Watercourse	Biological Site Name	NR
1	Red River	u/s Brea Tin Works	SN 6692 3917
2	Red River	u/s South Crofty Mine	SM 6615 4088
3	Red River	Rosecroggan Bridge	SW 6498 4197
4	Red River	Kieve Bridge	SM 6292 4228
5	Red River	Guithian Towans	SM 5680 4200
6	Roseworthy Streem	Rotetoe Bridge	SN 6404 3765
7	Roseworthy Stream	Perponds	9W 6304 3907
8	Roseworthy Stream	Nancamellin	SW 6064 4097
10	Praze River	Praze an Beeble	SW 6409 3558
ш	Praze River	Barripper	SW 6334-3815
12	Reen Stream	Ransgate	SW 6420 3845
บ	Tehicly Stream	Tolvadion Bridge	SW 6633 4220
14	Tehidy Stream	Old Marrose	SM 6513 4327
15	Tehidy Stream	Coantre	SW 6298 4238
16	Portreath Stream	Bridge	SM 6708 4495
17	Rednith Stream	North Country Bridge	SW 6899 4379
18	Porthtowen Streem	Barns Vale	SW 7141 4795
19	Porthtowan Stream	Porthtowan Bridge	SW 6954 4740
20	Menagissey Stream	Menagissey Bridge	SW 7082 4638
21	St Agnes Stream	prior to culvert St Agnes	SW 7212 5128
22	Trevellas Stream	u/s Trevalance Cove	SW 7284 5166
23	Perranporth Stream	Silvervell	SM 7471 4770
24	Perrarporth Stream	Hithian	SW 7468 5055
25	Perramporth Stream	Pleasure Gardens Perramporth	SW 7555 5396
26	Bolingey Stream	Pertanwell	SW 7691 5287
27	Bolingey Streem	Ponsmere Bridge	SW 7604 5432
28	Holywell Streem	Trelasio	SM 7894 5679
29	Holywell Streem	Holywell Bay Bridge	SN 7680 5868
30	Porth Joke Streem	Trevolah	SH 7900 5967
n	Ourbrose Streng	Pigallie Cambrose	SM 6870 4528
32 33	Mewla Streen	Pigallie Mawla Permartha	SM 6873 4529 SM 7583 5226
34	Permertha Streem Porth Joka Streem	prior to beach	SW 7728 6039
35	Treamble Stream	Trinklet	SW 7842 5606
	TOORTA STOOL	TETENTO	JA 1012 J000

	ł										
Site	Chercial	No. of				EUI	EQI	EDI O	LASS	NRA Bio	
Code	Site		Seasons	N -Cau s	ASPT	N-fans	ASPT	N-Cares	ASPT	Class	
2314	R23A001										
2315	R234002								_	_	
2301	R23A003	3	7	1	5.0	0.03	0.79	D	B	D	
2316	R23A005	_	_	_				_		-	
2302	R234006	3	7	5	3.4	0.16	0.55	D	Ď	D	
2303	R23A038	3	7	28	6.8	0.84	1.08	λ	A	A	
2317	R23A008										
2304	R23A009	3	7	27	6.1	0.75	0.98	B	A	В	
2318	R23A045										
2305	R23A037	3	7	30	5.5	0.88	0.87	X	8	B	
2307	R23A007	2	4	12	5.3	0.41	0.83	С	В	С	
2320	R23A042										
2319	R234041										
2306	R23A017	3	7	28	6.0	0.81	0.95	λ	λ	A	
2308	R23A015	3	7	8	4.5	0.24	0.70	D	с	D	
2330	R23A014										
2331	R23A043										
2309	R23A013	3	7	11	4.5	0.33	0.72	D	С	D	
2323	R23A052										
2332	P234016										
2310	R23A051	2	6	18	6.1	0.63	0.97	8	λ	Ð	
2325	RZ3A046										
2326	R234047							_	-		
2312	R23A012	3	7	31	6.5	0.66	1.04	A	A	X	
2324	R23A048		_								
2311	R23A011	3	7	23	5.1	0.64	0.82	8	8	8	
2328	R23A049									_	
2313	R23A010	3	7	32	5.9	0.92	0.99	A	A	X	
2333	RZ3A103										
2321											
2322											
2327											
2334	R23A061										

RDALLENMAPS/N90.2 (CATCH23.DRW)

Figure 3.36 Biological 36 Class Red, Portreath, - 1990 Bollingey and Perranporth Catchments (23)

3.2.27 River Gannel Catchment Catchment-24

The River Gannel was of good ecological quality. Treloggan Stream was of only moderate ecological quality owing to its EQI N-fams. There has been concern about its water quality for some time, and a number of pollution incidents have been reported on it. Although measures have been taken to improve its water quality, including the removal of potentially polluting discharges, water quality problems persist.

HUDIGGICAL CLASSIFICATION OF HIVER QUALITY 1990 AND INDEX TO MAPS RIVER GANNEL CRUIMENT (Catchment 24) Site no.

on Map	Watercourse	Biological Site Name	NGR
1	Gannel	Perrose	SW 8846 5826
2	Garnel	Kestle Mill Bridge	SW 8510 5925
3	Garmel	Gwills Gauging Station	SW 8301 5929
4	Gamel	Trevenper	SW 8194 5983
5	Newlyn East Streem	Rosecliston	SW 8171 5877
6	Berry Stream	Benny Mill Bridge	SW 8421 5739
7	Berry Stream	Treverry Mill	SW 8373 5800
8	East Wheal Rose Str	East Wheal Rose Bridge	Sw 8346 5523
9	East Wheel Rose Str	Metha Bridge	SW 8387 5632
10	East Wheal Rose Str	Berny Bridge	SW 8377 5712
u	Treloggen Stream	A3075 roundabout	SW 8196 6007

Site Code	Chemical Site	No. of	Seasons	N-Came	TTEA	EQI N-Cans	EJI ASPT	egi c N-fans	lass Aspt	NRA Bio Class
uus		- angelos								
2410	R24A008									
2402	R24A005	3	7	39	6.6	1.14	1.04	λ	A	A
2403	R24A006	3	7	34	6.6	0.97	1.04	λ	A	A
2411	R24A009									
2405	R244012	3	7	33	6.7	0.98	1.06	×	A	A
2406	R244004	3	7	33	6.4	0.97	1.00	A	A	A
2407	R24A010	3	7	37	6.4	1.06	1.02	X	A	A
2412	R24A001									
2413	R24A003									
2408	R244011	3	7	30	6.4	0.67	1.01	A	A	X
2404		3	7	19	5.0	0.74	0.98	B	A	B

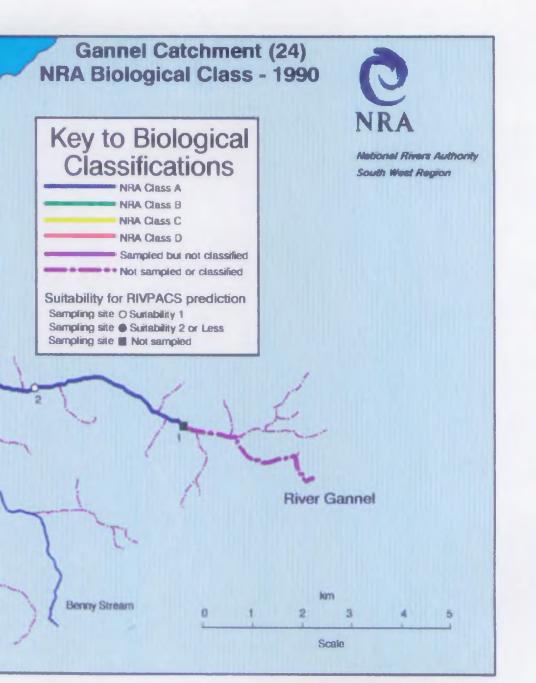
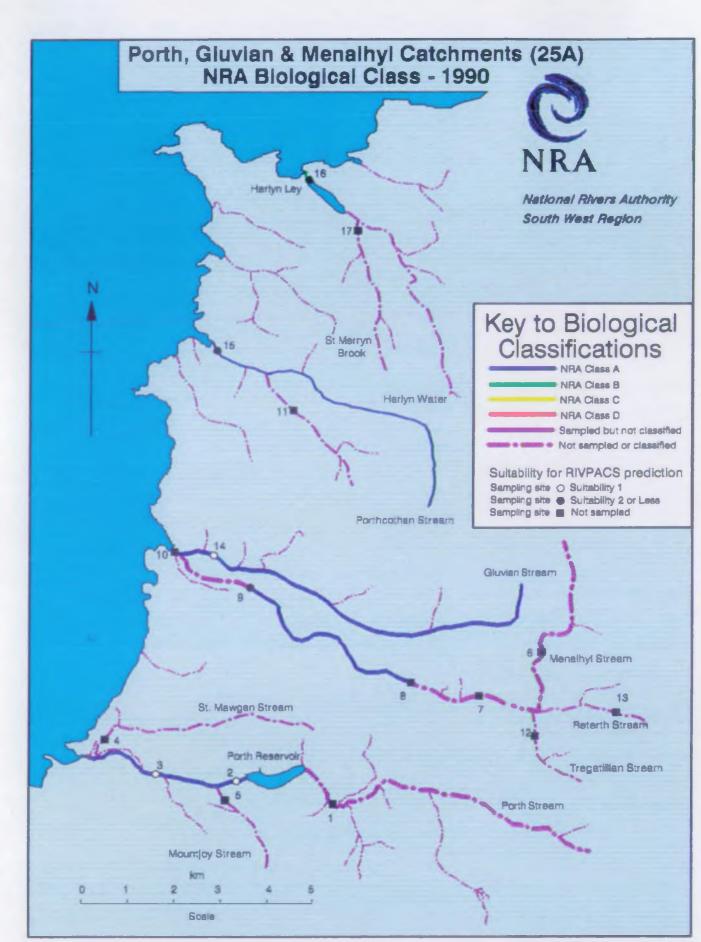



Figure 3.37 Gannel Catchment (24) NRA Biological Class - 1990

RDALLENMAPS/NDO.2 (CATCH24.DRW)

3.2.28 Porth, Gluvian, Menalhyl Catchments Catchment-25A

The watercourses in this catchment were of good ecological quality, except for the most downstream reach on Harlyn Water. This was of moderate quality owing to both its EQI ASPT and EQI N-fams, suggesting that organic enrichment was a problem. The reach was considered to have been affected by the drought, and by effluent from septic tanks. However, the biological monitoring site was in a reed-bed where the water was barely flowing and naturally rich in organic detritus: the site had a low RIVPACS suitability (suitability code 4, see Table 2.4), which would have reduced the accuracy of the classification. A new monitoring site is to be considered upstream from the lake on Harlyn Water.


HEOLOGICAL CLASSIFICATION OF REVER QUALITY 1990 AND INDEX TO MAPS FORTH GLUVIAN & MENNIHIL CRITCHMENTS (Catchment ZSA)

Site no.

Site no).			Site
an Map	Watercourse	Biological Site Name	NER	Code
1	Porth Stream	Tregoose Ford Bridge	SN 8825 6162	2525
2	Porth Stream	Malancoose	SW 8621 6212	2501
3	Porth Stream	Rialton Bridge	SW 8478 6231	2502
4	St Mawgan Streem	Whipsiderry	SW 8373 6338	2526
5	Munitjoy Stream	Trewassick Bridge	SW 8606 6179	2536
6	Manalhyl	Tregamere	SW 9266 6461	2521
7	Menalhyl	St. Columb Major Bridge	SW 9145 6398	2528
8	Menalbyl	d/s St. Columb STW	SW 9046 6412	252 9
9	Menalhyl	St Mewgern Bridge	SW 8730 6592	2503
10	Menalhyl	Mawgan Porth Bridge	SW 8492 6715	2530
ш	Penrose Streen	Penrose	SW 8748 7061	2533
12	Tregatillian Stream	Tregatillian	SM 9269 6323	2531
13	Reterth Stream	Reterth	SW 9434 6356	2532
14	Gluivan Stream	Gluivan	SN 8629 6693	2504
15	Porthcothan Stream	Porthcothan Road Bridge	SW 8597 7206	2505
16	Harlyn Water	Harlyn Bridge	<i>SH</i> 8802 7532	2506
17	St. Merryn Brook	Treveglos	SW 8885 7431	2534

Chemical	No. of				ECT	EQI	EDI O	LASS	NRA BLO
Site	Samples	Seesons	N-Caus	ASPT	N-Came	ASPT	N-Camp	ASPT	Class
R254004		_	•.				-		•
R25A009	3	7	31	6.0	0.89	0.95	A	A	A
R25A005	3	7	36	6.2	1.01	0.98	X	A	A
R25A01.3									
R25A015									
R25A014									
R25A001									
R254011									
R254002	3	7	31	6.5	0.91	1.02	٨	A	A
R25A003									
R25A016									
R25A017									
R25A018	3	7	36	6.6	1.03	1.03	A	X	A
R25A008	3	7	33	6.1	0.92	0.97	A	λ	A
R25A007	3	7	22	5.0	0.63	0.68	Ð	Ð	В

_ _ _ _ _ _

RDALLEN/MAPS/V90.2 (CATCH25A.DRW)

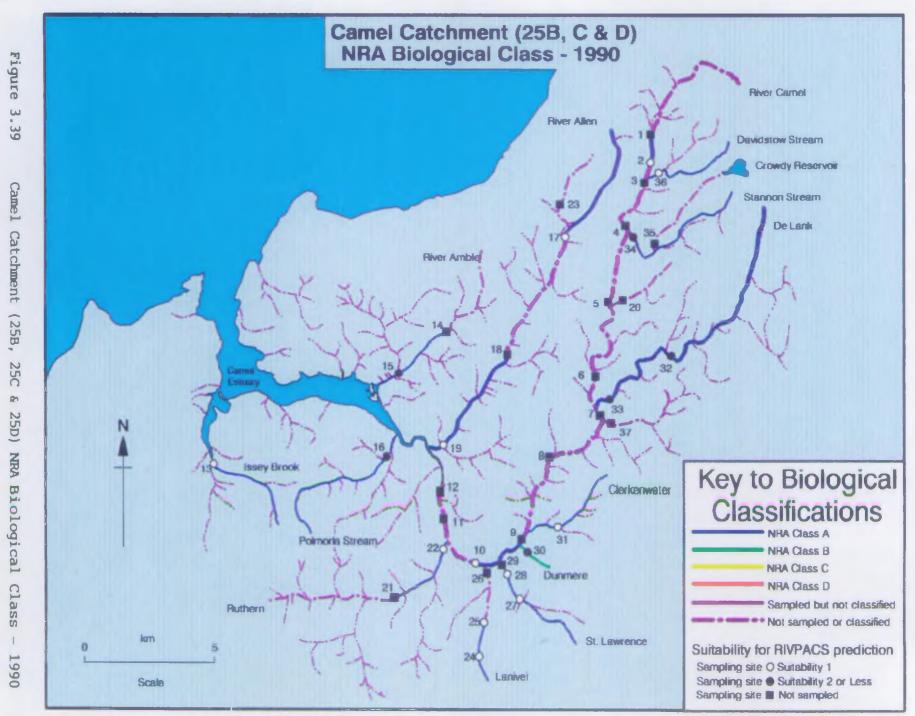
Figure 3.38 Porth, Gluvian and Menalhyl Catchments (25A) NRA Biological Class - 1990

3.2.29 River Camel Catchment Catchment-25B, C & D

All the reaches monitored in the River Camel catchment were of good ecological quality, with the exception of Dunmere Stream, which was of moderate ecological quality. This was because of organic pollution (both EQI N-fams and EQI ASPT were affected) from an urban area upstream from the site.

HIDLOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS RIVER CAMEL CATCHMENT (Catchment 258, C & D)

Site No.


SILENC			
an Map	Watercourse	Biological Site Name	NIR
1	Canel	Slauhterbridge	SK 1089 8559
2	Carrel	Camelford Bridge	SK 1067 8343
3	Camel	Pencarrow	SX 1043 8278
4	Camel	Trecame Bridge	SX 0968 8057
5	Carrel	Gam Bridge	SX 0890 7790
6	Camel	Wanford	SX 0849 7519
7	Carrel	Tresarret Bridge	SX 0882 7317
8	Carrel	Hellandbridge	SX 0650 7150
9	Camel	Dummere Bridge	SX 0484 6780
10	Canal	Nenstallon Bridge	SX 0354 6741
11	Canel	Grogley	SX 0144 6860
12	Canel	Polbrock	SX 0145 6940
13	Issey Brook	Mellingey	SW 9212 7171
14	Andole	St. Kew Ford	SX 0211 7678
15	Anble	Chapel Auble Bridge	SW 9968 7535
16	Polmorla Stream	Polmorla	SW 9835 7159
17	Allen	Rhightsmill Bridge	SX 0715 8067
10	Allen	Kellygreen Bridge	SX 0455 7591
19	Allen	Sladesbridge	SX 0106 7145
20	Shallow Water	Jordan	SK 0912 7790
21	Rutheon	Withiel Bridge	SW 9971 6590
22	Ruthern	Grogley Downs Bridge	SK 0157 6777
23	Dalabole Stream	Newhall Graen	SX 0701 8221
24	Lanivet Stream	Lanivet	SX 0358 6456
25	Lanivet Streem	Hoopers Bridge	SX 0388 6546
26	Lanivet Stream	Nenstallon	SK 0355 6730
27	St. Lawrence Stream	A389 Bridge	SK 0525 6586
28	St. Lawrence Stream	u/s St. Lawrence SIW	SX 0456 6690
29	St Lawrence Stream	prior to River Canel	SK 0432 6732
30	Dundere Stream	Dimere	SK 0475 6779
31	Clerkenseter	Clerkenseter	SX 0688 6877
32	de Lank River	Bradford Bridge	SX 1140 7593
33	de Lank River	Keybridge	SX 0890 7390
34	Starnon Streem	Trecame	SX 0978 8053
35	Crowdy Stream	Newhall	SX 1110 8016
36	Devidetor Stream	Tregoodeall	SX 1089 8327
37	Blisand Stream	Lavethan Mills	SK 0905 7301

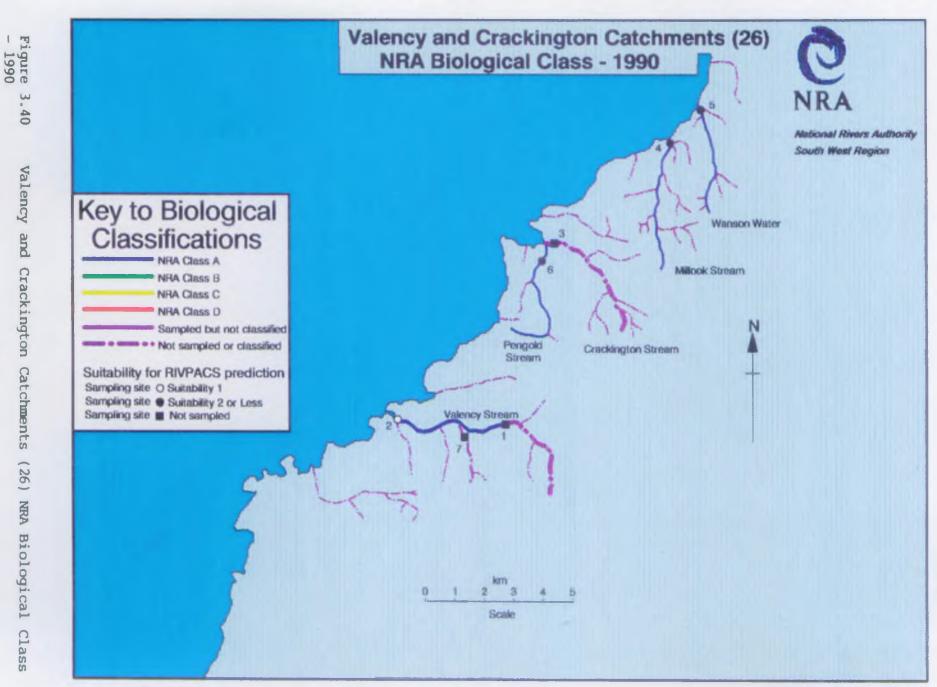
Site	Chemical	No.of				BQI	301	EQT O		NRA BLO
Code	Site	Samples S	ieasons	N-Cana	ASPT	N-Cans	ASPT	N-faus	ASPT	Class
2537	R258021									
2510	R25B001	3	7	34	6.4	1.04	1.00	A	λ	A
2538	R258022									
2539	R25B002									
2540	R25B003									
2541	R258023									
2542	R258004									
2543	R25B005									
2544	R258006									
2511	R25B007	3	7	34	6.4	1.00	1.00	A	A	Α
2545	R258008									
2546	R256029									
2507	R25A024	3	7	34	6.3	0.99	1.00	٨	A	٨
2535	R25A010									
2508	R25A006	3	7	32	6.0	0.89	0.99	A	A	λ
2509	R258053	3	7	37	6.4	1.03	1.04	A	A	A
2523	R250001	3	7	41	6.9	1.23	1.08	A	A	A
2553	R25D002									
2524	R250003	3	7	38	6.6	1.06	1.03	A	A	A
2551										
2547	R25B027									
2512	R258028	3	7	39	6.8	1.10	1.07	٨	A	A
2554	R250009									
2513	R25B014	3	7	29	5.9	0.89	0.92	A	λ	A
2514	R258015	3	7	30	5.9	0.91	0.93	A	A .	A
2548	R25B016									
2515	R25B017	3	7	34	6.5	0.97	1.03	A	λ	A
2516	R258040	3	7	31	5.9	0.68	0.94	Α	A	A
2549	R25B038									
2517	R25B026	3	7	21	5.5	0.60	0.87	B	Ð	B
2518	R25B018	3	7	35	6.8	1.06	1.07	A	A	A
2521	R250001	3	7	45	6.8	1.57	1.05	A	A	λ
2522	R250002	3	7	30	7.0	0.96	1.10	A	X	A
2519	R258025	3	7	34	6.9	1.13	1.08	A	A	A
2552			_							
2520	R25B024	3	7	39	6.8	1.20	1.07	A	X	A
2550										

.

4.

1

RDALLENMAPSNOD.2 (CATCH25B.DRW)


3.2.30 Valency and Crackington Streams Catchments Catchment-26 All the streams in these catchments were of good ecological quality.

HIDLOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS VALENCY & CRACKINITION SIRENAS CONCEMENTS (Catchment 26) Site no. on Map Wetercourse Biological Site Name

virte inc	·.		
n Map	Watercourse	Biological Site Name	NGR
1	Valency	Anderton Ford	SX 1377 9128
2	Valency	Boscastle Bridge	SX 0988 9128
3	Crackington Stream	Crackington Haven Bridge East	SX 1432 9677
4	Millook Stream	Millook	SS 1849 0000
5	Wanson Water	Wanson	SS 1962 0099
6	Pencold Stream	Crackington Haven Bridge West	SX 1432 9647
7	Lesnewth Stream	Halamiling	SX 1244 9070

Site	Chencial	No. of				501	EQI	EQT C	LASS	NRA BLO
Code	Site	Samples	Seasons	N-Came	ASPT	N-£ams	ASPT	N-Came	ASPT	Class
2605	R26A006									
2601	R26A003	3	7	30	6.8	0.90	1.07	A	A	A
2607	R26A001									
2603	R26A004	3	7	37	6.6	1.10	1.03	A	A	X
2604	R26A005	3	7	31	6.1	0.90	0.95	A	A	A
2602	R26N002	3	7	36	6.8	1.07	1.06	A	A	A
2606										

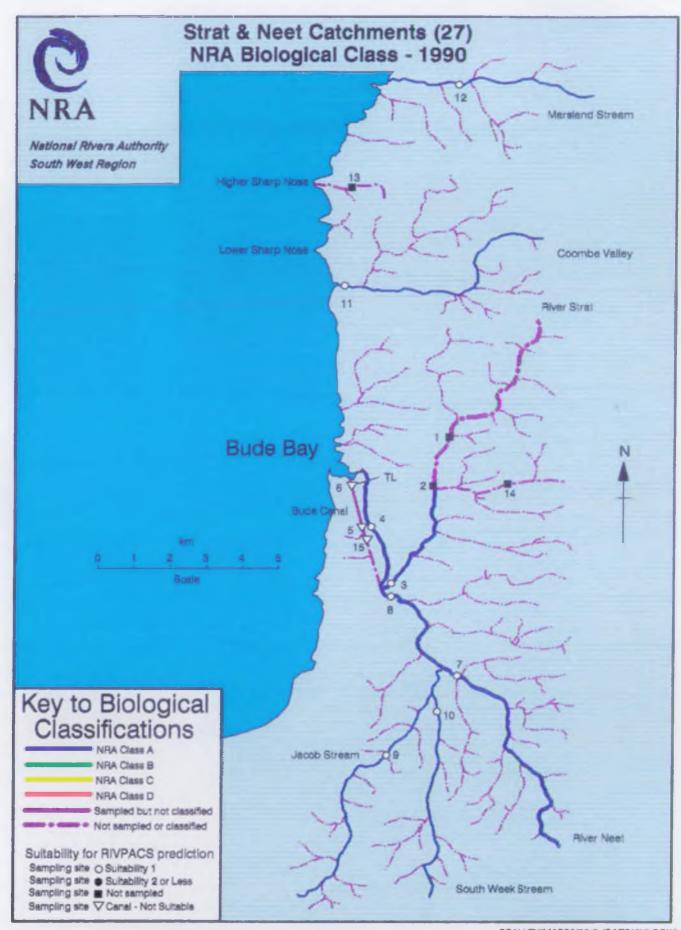
•

RDALLENMAPS/N90.2 (CATCH28.DRW)

3.2.31 Rivers Strat and Neet Catchments Catchment-27

All the streams surveyed in these catchments were of good biological quality. The invertebrate fauna in the Bude Canal at Falcon's Bridge was probably not of good quality, though it could not be classified because it was a canal, not a stream.

.


HIDDELCAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS RIVERS SIRAT & NET CATOMENIS (Catchment 27) Site no.

Site m			
on Map	Watercourse	Biological Site Name	NGR
•			
1	Strat	Bush	SS 2329 0769
2	Strat	Stratton	SS 2291 0645
3	Strat	Hele Bridge	SS 2182 0377
4	Strat	Podd's Bridge	SS 2124 0477
5	Bude Canal	Rodd's Bridge	SS 2111 0479
6	Bude Canal	Falcon Bridge	SS 2074 0607
7	Neet	Langford Bridge	SS 2353 0086
8	Neet	Hele Bridge	SS 2183 0330
9	Jacob Streem	Newmill Bridge	SX 2153 9873
10	South Week Stream	Kitsham	SS 2315 0027
n	Combevalley Streem	Durdquol Cottage	SS 2025 1165
12	Marsland Stream	Googeham Mill	SS 2324 1725
в	Ticha	Ticha Bridge	SS 2060 1482
14	Grinscott Stream	Cross Lanes	SS 2472 0640
15	Bude Canal	200m u/s Rodd's Bridge	SS 2112 0461

.

Site	Chemical No. of				EQI	EQI	EQT CLASS		NRA Bio	
Code	Site	Samples	Seasons	N-Cams	ASPT	N-Eape	ASPT	N-faus	ASPT	Class
2710	R27A015									
2711	R27A001									
2702	R27A002	3	7	38	6.0	1.04	0.95	A	A	A
2703	R27A003	3	7	36	5.7	0.99	0.91	A	A	A
2712	R27A009									
2704	R27A010	3	7	17	4.5	0.50	0.75	c	¢	с
2705	R27A007	3	7	38	6.4	1.06	1.01	A	A	A
2706	R27A008	3	7	36	6.4	0.98	1.02	A	A	A
2707	R27N006	3	7	38	6.5	1.07	1.02	A	A	A
2701	R27A005	3	7	32	6.2	0.89	0.98	А	A	A
2708	R27A011	3	7	37	6.4	1.10	1.01	λ	A	A
z709	RZ7N016	3	7	34	6.7	1.04	1.05	A	A	A
2715										
2714										

2/14 2713

RDALLEN/MAPS/V90.2 (CATCH27.DRW)

Figure 3.41

Strat and Neet Catchments (27) NRA Biological Class - 1990

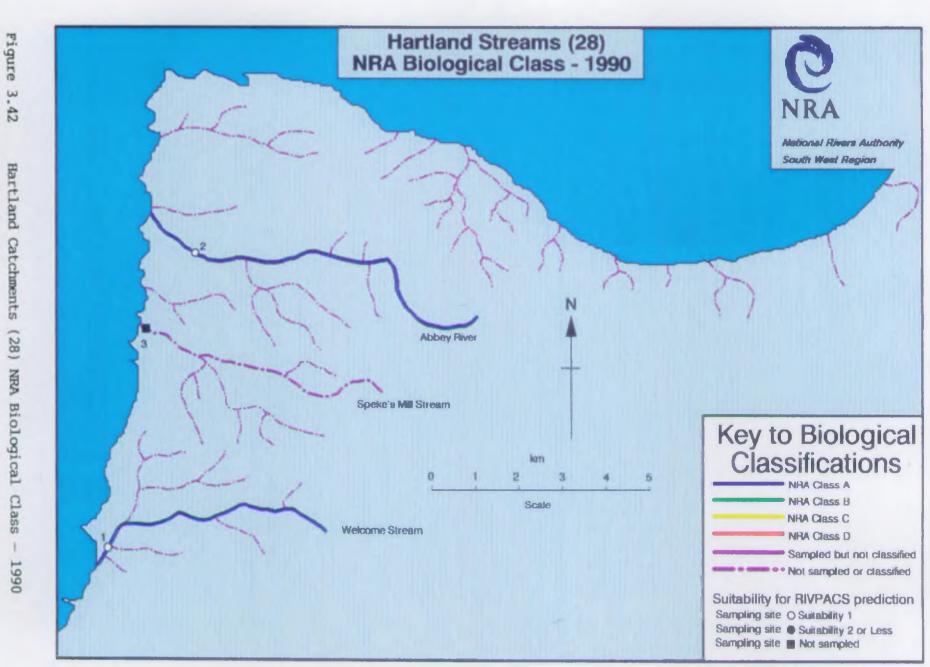
3.2.32 Hartland Streams Catchments Catchment-28

۲

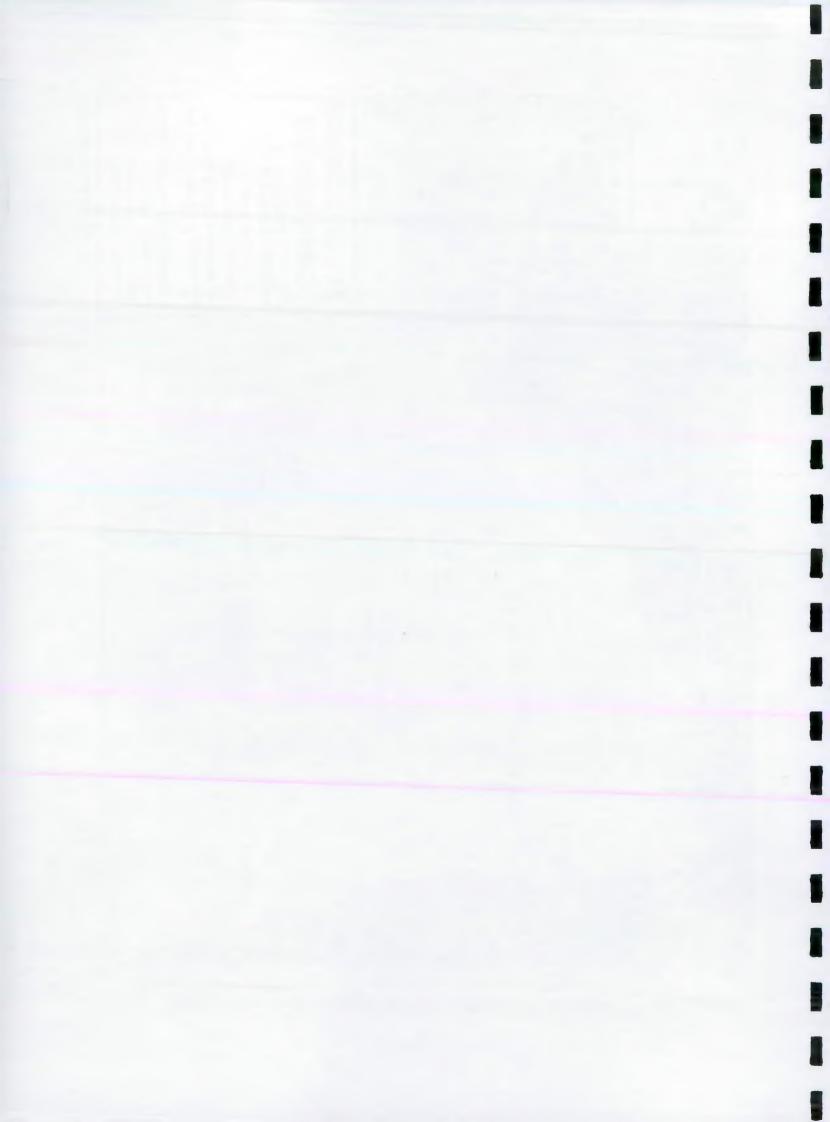
ł

ľ

Both the Welcombe Stream and Abbey River were of good ecological quality.


HEDIOGICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS HARTLAND SUBERNS (ATCHMENIS (Catchment 28) Site no. on Map Watercourse Biological Site Name

1	Walconbe Stream	30m d/s foothr The Hermitage	SS 2160 1830
2	Abbey River	Hartland Abbey 50m u/s br	SS 2383 2488
3	Lyme Brook	15m u/s waterfall	SS 2258 2353


NGR

Site	Chemical	No. of				BÜI	EQI	Eqt. CLASS		NRA Bio
Code	Site	Samples	Seasons	N-Cans	ASPT	N-Cans	ASPT	N-Came	ASPT	Class
2801	R28A005	3	7	34	6.8	1.04	1.06	λ	A	A
2802	R28A003	3	7	36	6.6	1.10	1.03	A	A	A
2803										

.

RDALLENMAPS/N90.2 (CATCH28.DRW)

3.2.33 River Torridge Catchment Catchment-29

Most of the waters in the Torridge catchment were of good ecological Common Lake was of only moderate quality because of organic quality. enrichment from an abattoir. The most upstream reach of Mere Stream, although of good quality according to the overall NRA Biological Classification, was of only moderate quality according to its EQI N-fams. This stream was affected by ball clay mining. The West Okement at Okehampton was of only moderate ecological quality, and both were affected by acidic metalliferous discharges. The moderate quality of this reach of the West Okement was the result of poor taxonomic richness, which is consistent with the toxic effects of acidic and metal-rich waters. The stream bed was covered by ochre and fine sediment. Brightly Stream was of good ecological quality according to the overall NRA Biological Classification, EQI ASPT and EQI N-fams: this was surprising as it was known to be suffering from acidic metal pollution in 1990, particularly in its upper reaches (National Rivers Authority South West Region, 1991b).

	GRADGE CARCHENT (C		
iteno n Map	Watercourse	Biological Site Name	NCR
1	Torridge	30m u/s rd br Fordmill Farm	SS 3246 17
2	Torridge	225m u/s br 30m d/s quarty Putford	SS 3638 16
3	Torridge	200m u/s Woodford Bridge	SS 3978 L2
4	Torridge	20m u/s br Gidbott	SS 4220 09
5	Torridge	50m d/s Cohem Br u/s Kingsley Mill	SS 4610 06
6	Torridge	50m d/s Rockhay Bridge	SS 5060-06
7	Torridge	250m u/s Hele Bridge	SS 5385 06
8	Torridge	125m d/s New Bridge	SS 5489 11
9	Torridge	50m u/s Beaford Bridge	SS 5428 14
10	Torrida	10m u/s track end Undercleeve	SS 5178 16
Ц	Torridae	300m d/s Town Mills Torrington	SS 4987 18
12	Torridae	100m d/s Rothern Bridge	SS 4780 19
13	Torridae	100m u/s Been Bridge	SS 4731 20
14	Torridge	50m d/s bridge Sheeplesh	SS 4865 05
15	Dolton Stream	25m d/s track br u/s Torridge confl	SS 5531-11
16	Yeo (Rideford)	30s u/s Tuckingmill Bridge	SS 4015 22
17	Yeo [Bideford]	25m u/s Hoopers Bridge	SS 4273 23
18	Yeo [Bideford]	opposite Dige Mill House	SS 4491 22
19	Duntz	30m u/s Henbury ed be	SS 4293 17
20	Duntz	50m u/s Yeo confluence (Orleigh)	SS 4395 22
21	Lydaland Water	50m u/s Tythecott Mill Bridge	SS 4190 18
23	Huntshaw Weter	30m u/s br Weare Gifford	SS 4794 21
24	Common Lake	10m u/s Tantons Plain	SS 4940 19
25	Langtree Lake	30m u/s br Servis Farm	SS 4774 19
26	Wooleigh Brook	25m d/s B3220 road br	SS 5219 17
27	Mere	50a u/s Coleford Bridge	SS 5017 13
28	Мета	300m u/s A386 br 50m u/s pylons	SS 5238 11
29	Мете	150m u/s fm br Greetwood	SS 5480 12
30	Little Mare River	25m u/s track br Wooladon Moor	SS 5336 08
	Little Mere River	20m u/s Burymoor Bridge	\$\$ 5257 11
32	East Okement River		SX 6048 94
33 35	East Okenent River West Okenent River	300m u/s A30 rd br at car park	SX 5898 95 SX 5641 91
••	West Okement River	100m u/s Red a -Ven d/s Maldon Dem 30m u/s footbr d/s Red a-Ven	SX 5640 92
	Wast Chement River	30m u/s Meldan Viaduct	SX 5649 92
	West Okement River	30m u/s Meldon Quarry br	SX 5664 93
-	Wast Okenend River	Given any transmission of the car park	SX 5850 94
	Okenent.	100m d/s Knowle Bridge	SX 5930 96
	Closent.	75m d/s Brightley Bridge	SK 5987 97
41	Closent.	South Domaford	SS 5999 00
	Closenant.	15m u/s A3072 br Jacobstowe	SS 5920 010
43	Cleanerst.	25m d/s Woothall Bridge	SS 5845 034
44	Ckenent	100m u/s Iddesleigh Bridge	SS 5690 055
45	Hole Brook	50m u/s Monkokehampton	\$\$ 5836 054
46	Beckanoor Brook	75m u/s Terris Bridge	SS 5818 032
47	Brightley Stream	25m u/s rd br Brightley Mill	SX 5970 97
48	Jacohstowe Stream	20m u/s Okement.confl	\$\$ 5913 016

Site	Chemical	No. of			НЦĪ	HOL	EDI C	-	NRA Bio
Code	Site	Samples Seaso	ज्ञाङ N-टिक्स्ट	ASPT	N-Caus	ASPT	N-Caris	ASPT	Class
2915	R290001	37	36	6.7	1.07	1.05	A	A	A
2944	R29C032								
2916	R29CD02	37	37	6.5	1.11	1.02	A	A	A
2945	R29CD33								
2917	R29C003	37	37	6.5	1.09	1.02	X	A	A
2918	R290004	3 7	32	6.4	0.96	1.02	A	A	A
2919	R290005	3 7	35	6.6	1.06	1.05	A	A	A
2907	R298001	3 7	32	6.6	0.92	1.04	A	A	Å
2937	R29B002	5,	22		U IJE			••	
2938	R298038								
2939	R298030								
		37	33	6.1	1.02	0.96	A	A	A
2908	R298004	3 7	CC.	0.4	1.02	0.50	~	~	~
2940	R298034								
2946	R298035								
2942							-	•	
2901	R294002	3 7	34	6.5	1.03	1.02	A	A	A
2902	R29A015	37	36	6.6	1.08	1.03	A	A	A
2903	R29A003								
2904	R29A004	37	34	6.7	1.05	1.06	A	A	A
2905	R29A005	37	38	6.4	1.11	1.01	A	A	A
2906	R29A006	37	33	6.5	1.00	1.02	A	A	A
2943	R29A026								
2910	R298039	37	24	5.4	0.72	0.85	8	8	8
2936	R29A016								
2909	R298037	37	39	6.5	1.11	1.02	A	A	A
2911	R298007	37	27	6.3	0.77	0.99	Ð	A	A
2912	R29E008	37	35	6.2	0.97	0.98	A	A	A
2913	R298009	37	34	6.5	0.94	1.02	A	A	A
2941	R298005								
2914	R298006	37	32	6.6	0.89	1.05	A	A	A
2968	R29D031								
2931	R290001	37	29	6.7	1.30	1.06	A	A	A
2969	R290827								
2970	R290809								
2971	P29D032								
2972	R29D030								
2932	R290002	37	23	6.4	0.73	1.00	B	A	B
2964	R29D026								
2925	R29D003	37	24	6.7	1.13	1.05	A	A	A
2926	R290004	37	n	6.5	0.96	1.01	A	A	A
2965	R29D008								
2927	R290005	37	31	6.6	0.94	1.03	A	A	A
2966	R290006								
2933	R290007	37	35	6.2	0.96	0.98	A	λ	A
2928	R290052	2 4	26	6.1	0.83	0.97	A	A	A
2930	R290025	37	19	5.7	0.89	0.89	A	A	A
2967									
2934	R290028	37	26	6.8	1.22	1.06	A	A	A

RECLOSICAL CLASSIFICATION OF REVER QUALITY 1990 AND INCEX TO MANS REVER TORRELCE CONCHMENT (Catchment 29) continued Site no.

2109 100	-		
an Map	Watercourse	Biological Site Name	NR
50	LØW	50m u/s Hole Stock Bridge	55 4885 0005
51	Low	Bloomaford 3rd field from rd	SS 5090 0070
52	Lew	15m u/s br Great Rutleigh	SS 5140 0079
53	Law	200m u/s Hatherleigh Bridge	55 5398 0400
54	Lev	130m u/s Lawer Bridge	\$\$ 5318 0515
58	Pulsorthy Brook	30m u/s hedge Furzehill	55 5258 0415
56	MadLand Brook	10m u/s br Waterhouse	SS 5481 0131
57	Hooksoor Brook	15m u/s br Narracott	SS 5310 0070
58	Wagallord Water	75a d/s Wagaford Bridge	SS 4890 0168
60	Yoo [Bideford]	75a u/s br Foxdown	SS 3809 2217
61	North Lew Streem	North Lew 55m u/s br	SX 5075 9910
62	Stoney Streen	30m u/s ford Coombe	SX 5044 9700
ഒ	Messal Brook	125m u/s br Wastover	SS 4786 0654
64	Whiteleich Water	40m u/s br Dipper Mill	SS 4385 0638
65	Waldon	50m u/s br Berrichn Oottage	\$5 3182 1412
66	Waldon	200m u/s Sutcombe Bridge	SS 3465 1100
ត	Waldon	10m u/s Welden Bridge	SS 3682 1042
68	Waldan	200m u/s br Berry Paum	SS 3910 0988
69	Waldon	250m u/s Henscott Bridge	SS 4137 0812
70	Cooldarry Stream	125m u/s br Bason Cross	SS 4118 0795
71	Dipple Water	150m u/s Dipple Bridge	SS 3492 1787
72	Cranford Water	d/s rubbish and earth tip	SS 3407 2005
74	Clifford Water	15m u/s br Biteford	SS 3020 1896
75	Seckington Water	75m u/s br Gorvin	SS 2977 2006

Site	Chencial	No. of				ध्या	EQI	egt c		NRA Bio
Code	Site	Samples	Seasons	N-Case	ASPT	N-Ease	aspt	N-Cans	ASPT	Class
2923	R29C006	3	7	38	6.4	1.10	1.01	А	A	A
2950	R290025	,	,		0.1	1.10				••
2951	R290007									
2924	R290008	3	7	30	6.8	0.86	1.06	A	A	A
2952	R290009	-								
2953	R290021									
2954	R29C022									
2955	R290023									
2956	R29C024									
2929	R29A001									
2957	R29C026									
2958	R290029									
2960	R29CD38									
2961	R29C039									
2947	R290010									
2921	R29C030	3	7	38	6.4	1.12	1.01	A	A	A
2948	R290011									
2949	R29C042									
2922	R29C012	3	7	34	6.4	1.01	1.01	A	A	A
2959	R290043									_
2920	R29C013	3	7	36	6.3	1.05	0.99	X	A	×
2935	R29C044									
2962	R29C040									
2963	R290041									

.

RDALLEN/MAPS/190.2 (CATCH29.DRW)

Figure 3.43

Torridge Catchment (29) NRA Biological Class - 1990

3.2.34 River Taw Catchment Catchment-30

All the watercourses sampled in the Taw catchment were of good ecological quality.

1.1

HIGLGEICAL CLASSIFICATION OF RIVER QUALITY 1990 AND INDEX TO MAPS RIVER TAW CAULIMENT (Catchment 30) Site no.

NR on Map Watercourse Biological Site Name SX 6417 9393 1 Taw 300m u/s A30 br Sticklepeth SX 6550 9951 2 50m u/s East Rowden Bridge Taw 3 Taw 50m u/s br Yeo Farm \$\$ 6511 0292 Bondleigh 10m u/s bridge 4 Taw SS 6578 0451 5 Taw 100m u/s Taw bridge SS 6727 0649 25m u/s Park Mill Bridge SS 6963 0860 6 Taw 7 Taw 200m d/s br Chenson SS 7000 0953 SS 6621 1353 8 30m u/s Kersham Bridge The 9 Тан 350m u/s Newnham Bridge SS 6599 1701 Taw 150m u/s rd br Kingford SS 6253 1926 10 SS 6075 Z345 11 Taw 250m u/s rd br Unberleich SS 5830 2592 12 Таы Chapelton 200m u/s footbridge SS 5700 2825 B Taw 75m u/s New Bridge opp vicarage 75m u/s br SS 4887 3720 14 Caen Knowl Water 20m u/s Wrafton Bridge SS 4903 3560 15 SS 5503 3427 16 Bradiford Water Zm d/s Bradiford Bridge SS 6035 4087 17 Yeo (Barnstaple) 100m u/s Brocktam Bridge 50m u/s Riversmeed Bridge SS 5958 3570 18 Yeo (Barnstaple) SS 6545 0090 19 Sprires Lake 15m u/s track br u/s Taston Dairy SS 6320 3773 20 Rye Stream 10m u/s footbr Bratton Fleming SS 6120 3658 Zm u/s Lothore Cross Bridge 21 Re Stream \$\$ 5915 3104 22 Venn 100m u/s rd br Landkev 23 Vern 100m u/s Venn Bridge SS 5853 3075 24 Lanchan Lake 15m u/s B3227 rd br Langridgeford SS 5717 2235 SS 5795 2608 ZS Lancham Lake 100m u/s Langham Bridge 26 Hawkridge Brook 75m u/s Hawkridge Bridge SS 5950 2537 27 Mole 50m d/s North Molton Bridge SS 7440 2980 28 Mole 50m u/s br Park House drive SS 7204 2653 29 Mole 5m u/s crossing point d/s fence SS 7274 2460 30 Mole 50m u/s New Bridge SS 7250 2257 40m u/s Mole br Meethe Barton 31 Mole SS 6771 2294 32 Mole 75m u/s Head Barton 55 6667 1833 33 10a d/s rd br Challacombe SS 6930 4104 Brate 34 150m u/s Leeham Ford Bridge SS 6785 4007 Bray 35 Bray 75 su/s rd br Brayford SS 6880 3478 36 SS 6910 3043 Beary 125m u/s Brayley Bridge 37 40m u/s Bray Bridge 55 6757 2562 Bray 38 Brav 50m u/s Meethe Barton Bridge SS 6757 2303 39 Nachrid Water 150n u/s rd br Clapworthy SS 6765 2408 40 Holewater Stream 100m u/s Linkleyham Bridge \$\$ 6967 3265 41 Little Silver Streem 30m u/s Ocham Bridge SS 7423 2058 SS 7232 2204 42 Little Silver Stream 100m u/s Alswear rd br 43 Crocked Oak 15m d/s br Ashmill SS 7833 2338 44 Crocked Oak 75m d/s Yeo Barton Bridge SS 7573 2307 55 8222 2634 45 Yeo (Molland) 125m u/s Bottreaux Mill Bridge 46 Yeo [Molland] 20m d/s rd br Mornacott Moors SS 7663 2634 47 Yeo (Holland) 25m u/s Bish Mill Bridge SS 7403 2535

139

48

Sheepwash Stream

20m u/s bridge

SS 7902 2666

Site	Chemical	No. of				EQI	EQI	HOT C	LASS	NRA Bio
Code	Site	Samples	Seasons	N-Caus	ASPT	N-Carro	ASPT	N-fams	ASPT	Class
		• •								
3012	R300001	3	7	27	6.9	1.23	1.07	A	A	A
3013	R300002	3	7	34	6.7	1.03	1.05	A	A	A
3048	R300003									
3049	R30C004									
3050	R300005									
3014	R300006	3	7	30	6.6	0.87	1.05	A	A	A
3041	R30B001									
3042	R308002									
3005	R309003	3	7	38	6.6	1.15	1.06	A	A	A
3043	R308004									
3044	R308015									
3006	R308014	3	7	34	6.1	1.04	0.98	A	A	٨
3007	R30B005	3	7	38	6.2	1.06	1.01	A	A	A
3001	R304002	3	7	33	6.0	1.00	0.95	A	A	A
3002	R30A006	3	7	35	5.9	0.99	0.97	A	A	A
3003	R304001	3	7	37	6.4	1.06	1.01	A	A	A
3033	R30H001	3	7	33	6.6	1.01	1.04	A	A	A
3034	R30H006	3	7	36	6.8	1.10	1.07	Å	A	A
3051	R30C009									
3072	R30HD09	_	-	~						
3035	R301004	3	7	36	6.9	1.10	1.08	X	A	A
3037	R30A003	-	_	~		1.07	1.03	•		•
3004	R30A004	3	7	35	6.5	1.03	1.02	A	A	A
3045	R30E016	-	_				• • • •	_		
3008	R308006	3	7	34	6.1	0.95	0.96	X	A	A
3011	R308012	3	7	34 35	6.1 6.4	0.95 1.07	0.97 1.01	A A	A A	A A
3022 3058	R30F001 R30F002	3	7	32	0.4	1.07	1.01	^	~	~
3056	R30F002									
3023	R30F004	3	7	30	6.4	0.92	1.01	A	A	A
3060	R30F005	•	,	~	0.1	0.32				
3024	R30F006	3	7	32	6.5	0.97	1.03	A	A	A
3065	R303001	•	·							
3030	R30G011	3	7	34	6.8	1.05	1.07	A	A	A
3066	R300002									
3036	R300003	3	7	31	6.3	0.95	0.99	A	A	A
3067	R303012									
3031	R303004	3	7	33	6.7	1.00	1.06	A	A	λ
3069	R303013									
3032	R300005	3	7	33	7.0	1.02	1.09	A	A	A
3061	R30F010		-					-	-	
3025	R30F011	3	7	36	6.4	1.07	1.01	A	A	A
3062	R30F023	3	7	70	6.5	1.13	1.01	λ	λ	A
3026 3027	R30F007 R30F008	3	י ר	38 37	6.9	1.11	1.07	Å	Â	Â
3063	R30F024	2	,	37	0.3	1.14	1.07	~	~	~
3028	R30F009	3	7	30	6.7	0.89	1.06	λ	λ	λ
3064	R30F022	-	-						-	-
	-									

RICLOGI	CAL CLASSIFICATION OF	RIVER QUALITY 1990 AND INDEX TO MAPS	
RIVER 1	7W CRITIMENT (Catching	nt 30) continued	
Site No			
on Map	Whitercourse	Biological Site Name	NER
49	•	25m d/s Barham Bridge	SS 7463 3355
50	Mully Brook	300m u/s Hansford Bridge	SS 6575 1560
51	Hollocarbe Water	20m u/s bridge Woodroberts	SS 6278 1077
52	Hollocombe Water	100a u/s Bridge Reeve Bridge	SS 6608 L340
53	Little Dart River	30m u/s New Bridge	SS 7968 1492
54	Little Dart River	30m u/s Stone Mill Bridge	SS 7199 1307
55	Little Cart River	200m u/s Dart Bridge	SS 6705 1375
56	Huntacott Water	60m u/s Chumleigh road bridge	SS 6957 1387
57	Sturconte River	Bradford Tracy	SS 8127 1624
58	Yeo [Lapford]	Zun u/n Row Bridge	SS 7174 0170
59	Yeo (Lapford)	60m Ws br Down St Mary vineyard	SS 7311 0448
60	Yeo (Lapford)	Zim 1/3 Bury Barton Bridge	SS 7373 0728
61	Yeo (Lapford)	30m d/s Nymet Bridge	SS 7142 0929
62	Dalch	75m u/s Mill Barton Bridge	SS 8143 1243
63	Dalch	10s d/s Cann's Mill Bridge	SS 7859 1053
64	Dalch	125m 1/s Calves Bridge	SS 7502 0877
65	Khighty Brook	400m u/s Yeo confl	SS 7385 0647
66	Labdon Stream	50m u/s Taw confluence	SS 6788 1283
ត	Croyde Stream	An u/s footbr u/s Brookfield House garden	SS 4488 3925
68	Forda	15m u/s rd br Croyde	SS 4443 3918
69	Woolacombe Stream	10m u/s bridge	SS 4577 4357
70	Clifton Brook	30m u/s br The Old Rectory	SS 6032 4105
71	Chalifhan Stream	10m d/s br Chelfham Mill School	SS 6089 3565
72	Pilleigh Stroam	50m u/s rd br	SS 6735 2790
73	Heleeford Striven	50m u/s rd br	SS 6133 3551
74	Kentisbury Brook	15m d/s hecheline Patchole Farm	SS 6120 4220
-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Site	Chemical	No. of				EQI	EQT	ஹா ப	LASS	NRA Bio
Code	Site	Samples	Seasons	N-fams	ASPT	N-Cans	ASPT	N-Carro	ASPT	Class
3029	R303010*	3	7	29	7.0	0.88	1.09	A	٨	A
3009	R308007	3	7	40	6.5	1.13	1.02	A	Α	λ
3046	R30B008									
3010	R30E009	3	7	33	6.6	0.94	1.04	A	A	λ
3019	R30E001	3	7	39	6.5	1.14	1.02	A	A	A
3056	R30E002									
3020	R30E003	3	7	34	6.7	1.01	1.05	A	A	A
3021	R30E005	3	7	37	6.4	1.11	1.01	A	A	λ
3057	R30ED06									
3015	R300004	3	7	37	5.9	1.02	0.92	A	A	A
3052	R30C012									
3016	R30C005	3	7	39	6.4	1.12	1.01	A	A	A
3053	R300006									
3017	R30D001	3	7	30	6.0	0.89	0.94	A	A	λ
3054	R30C011									
3018	R30D003	3	7	35	6.2	1.00	0.98	A	λ	A
3055	R30C013									
3047										
3038										
3039	R30A028									
3040	R30A005									

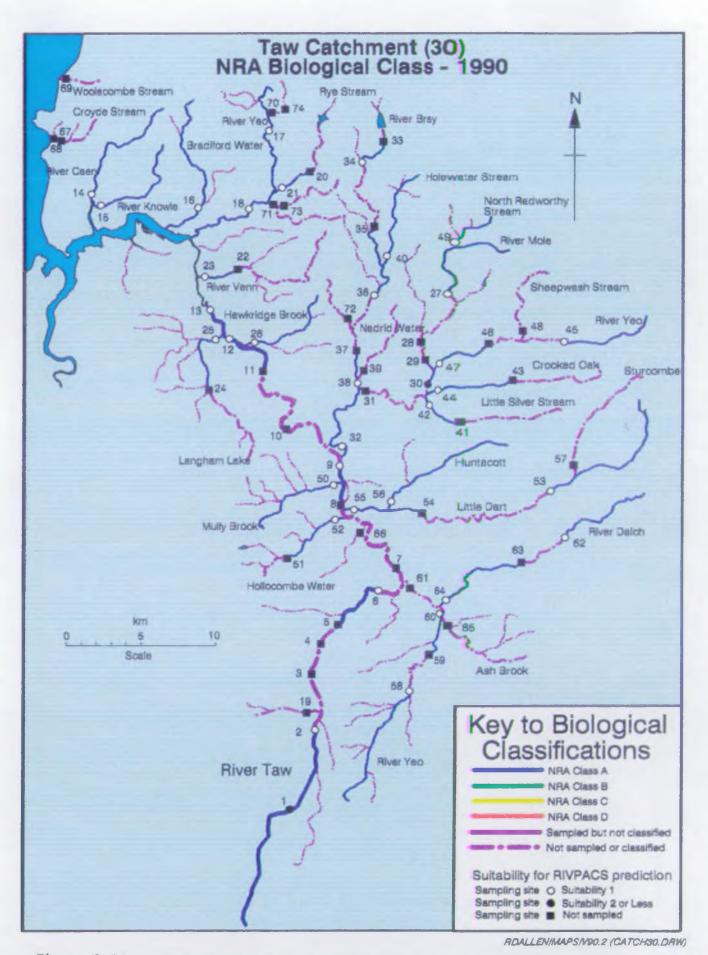
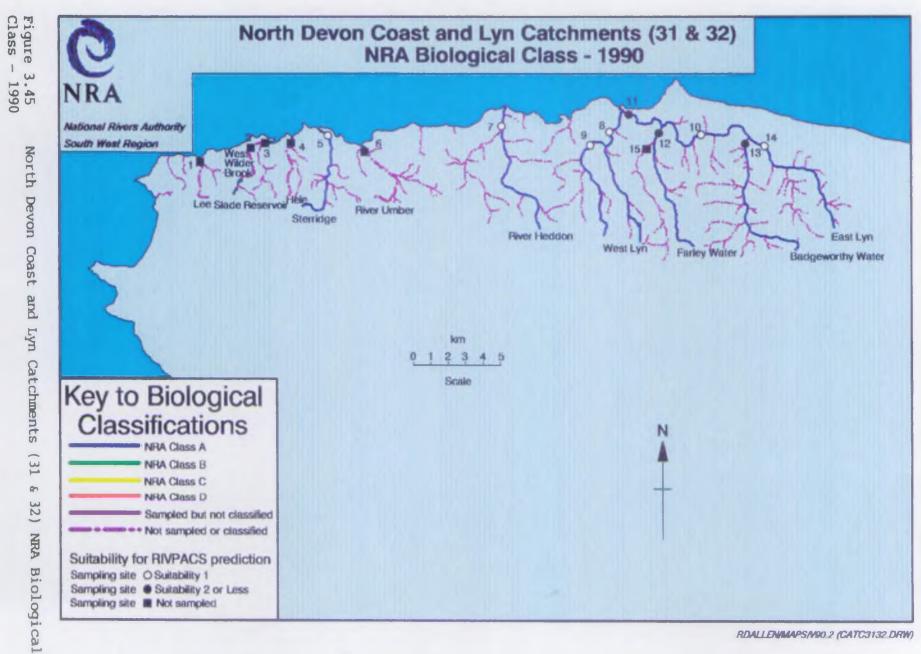


Figure 3.44 Taw Catchment (30) NRA Biological Class - 1990

3.2.35 North Devon Coastal and Lyn Catchments Catchments 31 & 32


.

All the streams in these catchments were classed as being of good ecological quality in 1990.

HIDLOGICH. CLASSIFICATION OF HIVER QUALITY 1990 AND INEX TO MAPS NORTH LEVON CONSTAL AND LYN CATCHMENES (Catchments 31 & 32) Site no.

on Map	Watercourse	Biological Site Name	NOR
1	Lee Streem	immediately d/s fence Lee Bay Hotel	SS 4798 4650
2	West Wilder	u/s Langleigh Country House Hotel opp fir tree	SS 5115 4692
3	East Wilder	inmediately u/s of island the Vicarage	SS 5162 4700
4	Hele Stream	24m d/s bridge Hele Mill	SS 5352 4758
5	Sterridge	Old Savanill Inn 50a u/srd br	SS 5585 4743
6	Under	22m d/s bridge	SS 5798 4692
7	Hecton	Hunters Inn 150a u/s br	SS 6546 4817
8	West Lyn	Sunny Lyn Caravan Park	SS 7185 4843
9	Barbrook	100m d/s pumping stn Dean	ss 7085 4782
10	East Lyn River	opposite Hall Farm u/s Leeford	SS 7725 4825
11	East Lyn River	Lynnouth Oskleigh u/s footbridge	SS 7258 4933
12	Farley Water	100m d/s Hillsford Bridge	SS 7412 4785
B	Backyworthy Water	200m d/s Badgworthy House	SS 7930 4728
14	East Lyn (Care Water	150m u/s Care Bridge	SS 8030 4743
15	Hoaroak	15m u/s bridge	SS 7402 4772

Site Code	Chemical Site	No. of	Seasons	N-Caue	aspt	EQI N-fams	HQI ASPT	egit () N-fams	lass Aspt	NRA Bio Class
CLOB	3108	Soutraces	JODIN 1 0			(-Lunit)				
3103	R31A001									
3107	R31A002									
3104	R31A002									
3105	R31A003									
3101	R31N004	3	7	29	6.1	0.88	0.97	A	A	A
3106	R31A005									
3102	R31A006	3	7	28	7.0	0.86	1.09	A	A	λ
3201	R32A003	3	7	29	7.0	0.90	1.10	A	A	A
3202	R32A006	3	7	31	7.3	0.96	1.14	A	A	A
3206	R32A001	3	7	30	6.6	0.93	1.03	A	λ	A
3203	R32A002	3	7	30	6.8	0.92	1.06	A	A	A
3207	R32A004	3	7	30	7.1	0.93	1.11	A	λ	A
3204	R32A005	3	7	33	6.5	1.02	1.02	A	A	A
3205		3	7	33	6.8	1.03	1.06	A	λ	λ
3208										

RDALLENMAPS/MOD 2 (CATC3132 DRW)

REFERENCES

4

Furse, M.T., Wright, J.F., Armitage, P.D. and Moss, D. (1986) A practical manual for the classification and prediction of macro-invertebrate communities in running water in Great Britain. Preliminary version. Wareham: Freshwater Biological Association.

Gunn, R.J.M., Wright, J.F., Blackburn, J.H., and Furse, M.T. (1991) Quality audit of biological samples for the 1990 River Quality Survey NRA South West Region. Wareham: Institute of Freshwater Ecology. In: JAD Murray-Bligh (1992) Quality audit of biological samples for the 1990 River Quality Survey NRA South West Region by RJM Gunn, JF Wright, JH Blackburn, and MT Furse. Internal Report FWS/92/016; NRA South West Region.

Institute of Freshwater Ecology (1991) Testing and further development of RIVPACS. NRA R&D Project 243 Interim Report. (IFE Report Ref: RL/T04053R5/3); NRA R&D Report 243/1/.

Kinley, R.D., and Ellis, J.C. (1991) The application of statistical quality control methods to macroinvertebrate sampling. Medmenham: Water Research Centre.

Nature Conservancy Council (1985, undated) Surveys of wildlife on river corridors. Draft methodology. Peterborough: Nature Conservancy Council.

National Rivers Authority (1990) RIVPACS field sampling. Video recording. Birmingham: Spectrum Communications.

National Rivers Authority (1991a) The quality of rivers, canals and estuaries in England and Wales. Report of the 1990 survey. National Rivers Authority Water Quality Series No. 4.

National Rivers Authority (1991b) Proposals for Statutory Water Quality Objectives. National Rivers Authority Water Quality Series No. 5.

National Rivers Authority (1982) Guidelines for river corridor surveys in the NRA. Draft #3. Bristol: National Rivers Authority.

National Rivers Authority South West Region (1990) Biological impact assessment of Avon Water Treatment Works discharge into Bala Brook 13 June 1990. Exeter: National Rivers Authority.

National Rivers Authority South West Region (1991a) An assessment of river water quality in the river Kenn. Report FWI/91/018. Exeter: National Rivers Authority.

National Rivers Authority South West Region (1991b) Biological investigation of the Brightley Stream catchment to assess the control of acidic and metalliferous flushes during August and December 1990. Internal Report FWI/91/012. Exeter: National Rivers Authority.

Scottish Office (1992) Water Quality Survey of Scotland 1990. Edinburgh: HMSO.

South West Water Authority (1989) South West Water Asset Management Plan, Environmental Protection, Current Objectives and Standards. Report CO 1907M/1/EV 8748. Medmenham: WRc Environment.

1

ľ

I