ENVIRONMENTAL PROTECTION

NOVEMBER 1991 WQP/91/007 B L MILFORD

National Rivers Authority South West Region

GORDON H BIELBY BSc Regional General Manager

C V M Davies Environmental Protection Manager

ACKNOWLEDGEMENTS

The Water Quality Planner acknowledges the substantial contributions made by the following staff:

- R. Broome Co-ordinator and Editor
- A. Burrows Production of Maps and editorial support
- P. Grigorey Production of Maps and editorial support
- B. Steele Production of Forepage
- C. McCarthy Administration and report compilation

Special thanks are extended to A. Burghes of Moonsoft, Exeter for computer support and the production of statistical schedules.

The following NRA sections also made valuable contributions:

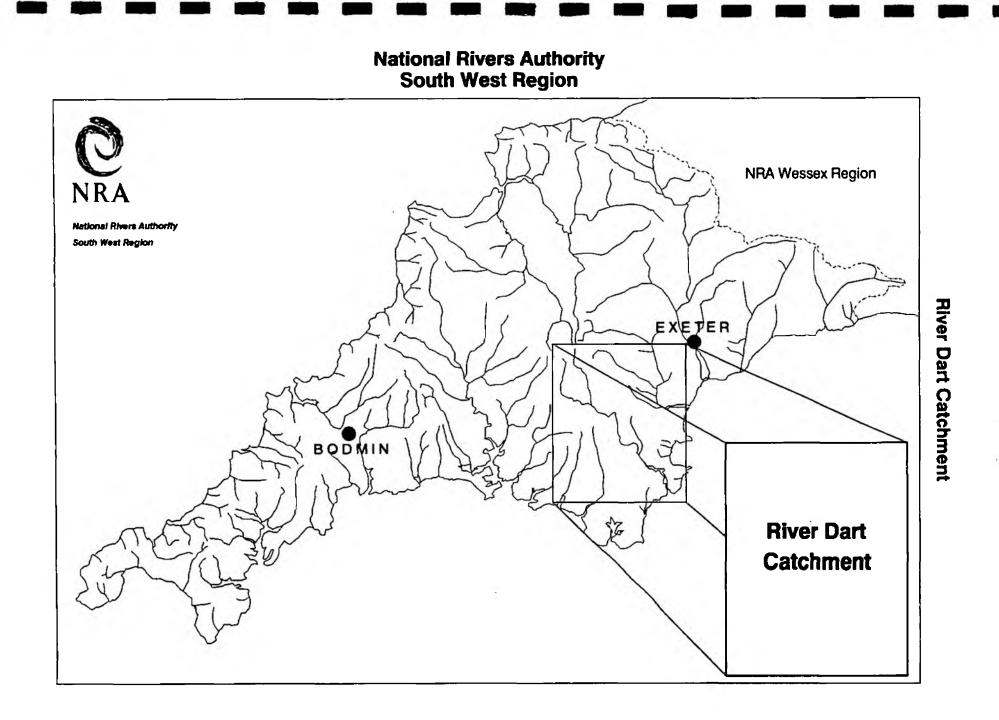
Pollution Control Field Control and Wardens Water Resources

Thanks also to R. Hamilton and J. Murray-Bligh for their contributions.

Suggestions for improvements that could be incorporated in the production of the next Classification report would be welcomed.

Further enquiries regarding the content of these reports should be addressed to:

Freshwater Scientist, National Rivers Authority, Manley House, Kestrel Way, EXETER, Devon EX2 7LQ


RIVER WATER QUALITY IN THE RIVER DART CATCHNENT

LIST OF CONTENTS

			Page N
1	Introdu	uction	1
2	River I	Dart Catchment	1
3	Nationa	al Water Council's River Classification System	3
4	1990 R	iver Water Quality Survey	4
5	1990 R	iver Water Quality Classification	4
6	Non-co	mpliance with Quality Objectives	5
7	Causes	of Non-compliance	5
8	Glossa	ry of Terms	6
9	Refere	nces	6
10	Append	ices:	
	10.1	River Quality Objectives including Monitoring points	
	10.2	Basic Determinand Analytical Suite	
	10.3	National Water Council (NWC) River Classification System	
	10.4	NWC Criteria for Non-Metallic Determinands - Regional Variation	
	10.4.1	NWC Criteria for Metallic Determinands - Regional Variation	
	10.5	1990 River Water Quality Classification - tabular format	
	10.6	1990 River Water Quality Classification - map format	
	10.7	Calculated Determinand Statistics used for Quality Assessment	
	10.8	Compliant/Non-Compliant River Reaches	
	10.9	Number of Samples Results exceeding quality standards	
	10.10	Percentage Exceedance of Determinand Statistics from Quality Standard	
	10.11	Identification of Possible Causes of Non-Compliance with River Quality Objectives	

.

Page No.

5.4

1. INTRODUCTION

Monitoring to assess the quality of river waters is undertaken in thirtytwo catchments within the region. As part of this monitoring programme samples are collected routinely from selected monitoring points at a predetermined frequency per year, usually twelve spaced at monthly intervals. Each monitoring point provides data for the water quality of a river reach (in kilometres) upstream of the monitoring point.

River lengths have been re-measured and variations exist over those recorded previously.

Each water sample collected from each monitoring point is analysed for a range of chemical and physical constituents or properties known as determinands. The analytical results for each sample are entered into a computer database called the Water Quality Archive.

Selected data are accessed from the Archive so that the quality of each river reach can be determined based on a River Classification System developed by the National Water Council (NWC), (9.1).

This report presents the river water quality classification for 1990 for monitored river reaches in the River Dart catchment.

2. RIVER DART CATCHMENT

The River Dart flows over a distance of 47.2 km from its source to the tidal limit, (Appendix 10.1). Water quality was monitored at ten locations on the main river; five of these sites were sampled at approximately monthly intervals. The site at Totnes Weir, which is a National Water Quality monitoring point, was sampled fortnightly. Four sites were sampled on twenty occasions during 1990 because of no recent water quality data.

Throughout the Dart catchment eight secondary tributaries of the River Dart and one secondary tributary of the River Hems were monitored. In addition Venford Reservoir (2.5 km) was monitored at one location at approximately monthly intervals.

The River Hems flows over a distance of 10.8 km from its source to the tidal limit, (Appendix 10.1) and was monitored at two locations. The site at Portbridge was sampled at approximately monthly intervals and the site at Littlehempston was sampled on twenty occasions during 1990 because of no recent water quality data.

The Bidwell Brook flows over a distance of 8.9 km from its source to the tidal limit, (Appendix 10.1) and was monitored at two sites. The site at Dartington Lodge was sampled at approximately monthly intervals. The site at Tigley was sampled on twenty occasions during 1990 because of no recent water quality data.

The River Harbourne flows over a distance of 19.5 km from its source to the tidal limit, (Appendix 10.1) and was monitored at three locations. Two sites were sampled at approximately monthly intervals and the site at Leigh Bridge was sampled on twenty occasions during 1990 because of no recent water quality data.

The River Wash flows over a distance of 7.2 km from its source to the tidal limit, (Appendix 10.1) and was monitored at one location at approximately monthly intervals.

2.1 SECONDARY TRIBUTARIES

The River Ashburn and Black Brook flow over a distance of 10 km and 7.9 km respectively from their source to the confluence with the River Dart, (Appendix 10.1) and were both monitored at one location on twenty occasions during 1990 because of no recent water quality data.

The River Mardle and the East Dart River flow over a distance of 10.1 km and 17.9 km respectively from their source to the confluence with the River Dart, (Appendix 10.1) and were both monitored at two locations. One site on each watercourse was sampled at approximately monthly intervals and one site was sampled on twenty occasions during 1990 because of no recent water quality data.

Holly Brook (6.6 km), River Swincombe (6.6 km) and Cherry Brook (8km), were all monitored at approximately monthly intervals at one location between their source and confluence with the River Dart, (Appendix 10.1). Monitoring points are all located in the lower reaches of these streams.

The East Webburn River flows over a distance of 10.8 km from its source to the confluence with the River Dart, (Appendix 10.1) and was monitored at two locations at approximately monthly intervals.

The Am Brook flows over a distance of 6.7 km from its source to the confluence with the River Hems, (Appendix 10.1) and was monitored at two locations at approximately monthly intervals.

2.2 TERTIARY TRIBUTARIES

Dean Burn flows over a distance of 9.7 km from its source to the confluence with the River Mardle, (Appendix 10.1) and was sampled at one site on twenty occasions during 1990 because of no recent water quality data.

Walla Brook flows over a distance of 7.3 km from its source to the confluence with the East Dart River, (Appendix 10.1) and was sampled at one location on twenty occasions during 1990 because of no recent water quality data.

The West Webburn River flows over a distance of 10.2 km from its source to the confluence with the East Webburn River, (Appendix 10.1) and was monitored at one location at approximately monthly intervals.

Each sample was analysed for a minimum number of determinands (Appendix 10.2) plus additional determinands based on local knowledge of the catchment. In addition, at selected sites, certain metal analyses were carried out.

The analytical results from all of these samples have been entered into the Water Quality Archive and can be accessed through the Water Act Register, (9.2).

3. NATIONAL WATER COUNCIL'S RIVER CLASSIFICATION SYSTEM

3.1 River Quality Objectives

In 1978 river quality objectives (RQOs) were assigned to all river lengths that were part of the routine monitoring network and to those additional watercourses, which were not part of the routine network, but which received discharges of effluents.

For the majority of watercourses long term objectives were identified based on existing and assumed adequate quality for the long term protection of the watercourse. In a few instances short term objectives were identified but no timetable for the achievement of the associated long term objective was set.

The RQOs currently in use in the River Dart catchment are identified in Appendix 10.1.

3.2 River Quality Classification

River water quality is classified using the National Water Council's (NWC) River Classification System (see Appendix 10.3), which identifies river water quality as being one of five quality classes as shown in Table 1 below:

Table 1 - National Water Council - River Classification System

<u>Class</u>	Description
1A	Good quality
1B	Lesser good quality
2	Fair quality
3	Poor quality
4	Bad quality

Using the NWC system, the classification of river water quality is based on the values of certain determinands as arithmetic means or as 95 percentiles (5 percentiles are used for pH and dissolved oxygen) as indicated in Appendices 10.4.1 and 10.4.2.

The quality classification system incorporates some of the European Inland Fisheries Advisory Commission (EIFAC) criteria (Appendix 10.3) recommended for use by the NWC system.

4. 1990 RIVER WATER QUALITY SURVEY

The 1990 regional classification of river water quality also includes the requirements of the Department of the Environment quinquennial national river quality survey. The objectives for the Department of the Environment 1990 River Quality Survey are given below:

- To carry out a National Classification Survey based on procedures used in the 1985 National Classification Survey, including all regional differences.
- 2) To classify all rivers and canals included in the 1985 National Classification Survey.
- 3) To compare the 1990 Classification with those obtained in 1985.

In addition, those watercourses, which were not part of the 1985 Survey and have been monitored since that date, are included in the 1990 regional classification of river water quality.

5. 1990 RIVER WATER QUALITY CLASSIFICATION

Analytical data collected from monitoring during 1988, 1989 and 1990 were processed through a computerised river water quality classification programme. This resulted in a quality class being assigned to each monitored river reach as indicated in Appendix 10.5.

The quality class for 1990 can be compared against the appropriate River Quality Objective and previous annual quality classes (1985-1989) also based on three years combined data, for each river reach in Appendix 10.5.

The river water classification system used to classify each river length is identical to the system used in 1985 for the Department of the Environment's 1985 River Quality Survey. The determinand classification criteria used to determine the annual quality classes in 1985, subsequent years and for 1990 are indicated in Appendices 10.4 and 10.4.1.

Improvements to this classification system could have been made, particularly in the use of a different suspended solids standard for Class

2 waters. As the National Rivers Authority will be proposing new classification systems to the Secretary of State in the near future, it was decided to classify river lengths in 1990 with the classification used for the 1985-1989 classification period.

The adoption of the revised criteria for suspended solids in Class 2 waters would not have affected the classification of river reaches.

The river quality classes for 1990 of monitored river reaches in the catchment are shown in map form in Appendix 10.6.

The calculated determinand statistics for pH, temperature, dissolved oxygen, biochemical oxygen demand (BOD), total ammonia, un-ionised ammonia, suspended solids, copper and zinc from which the quality class was determined for each river reach, are indicated in Appendix 10.7.

6. NON-COMPLIANCE WITH QUALITY OBJECTIVES

Those monitored river reaches within the catchment, which do not comply with their assigned (RQO), are shown in map form in Appendix 10.8.

Appendix 10.9 indicates the number of samples analysed for each determinand over the period 1988 to 1990 and the number of sample results per determinand, which exceed the determinand quality standard.

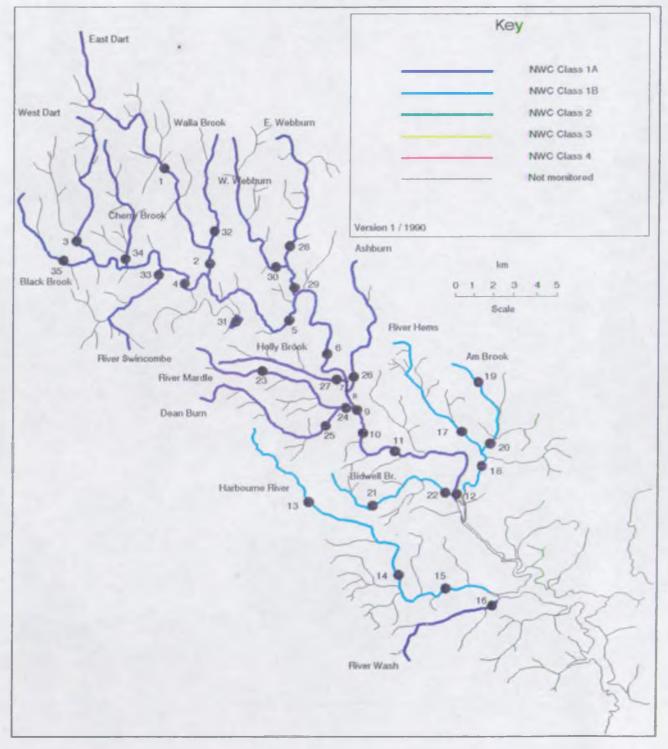
For those non-compliant river reaches in the catchment, the extent of exceedance of the calculated determinand statistic with relevant quality standard (represented as a percentage), is indicated in Appendix 10.10.

7. CAUSES OF NON-COMPLIANCE

For those river reaches, which did not comply with their assigned RQOs, the cause of non-compliance (where possible to identify) is indicated in Appendix 10.11.

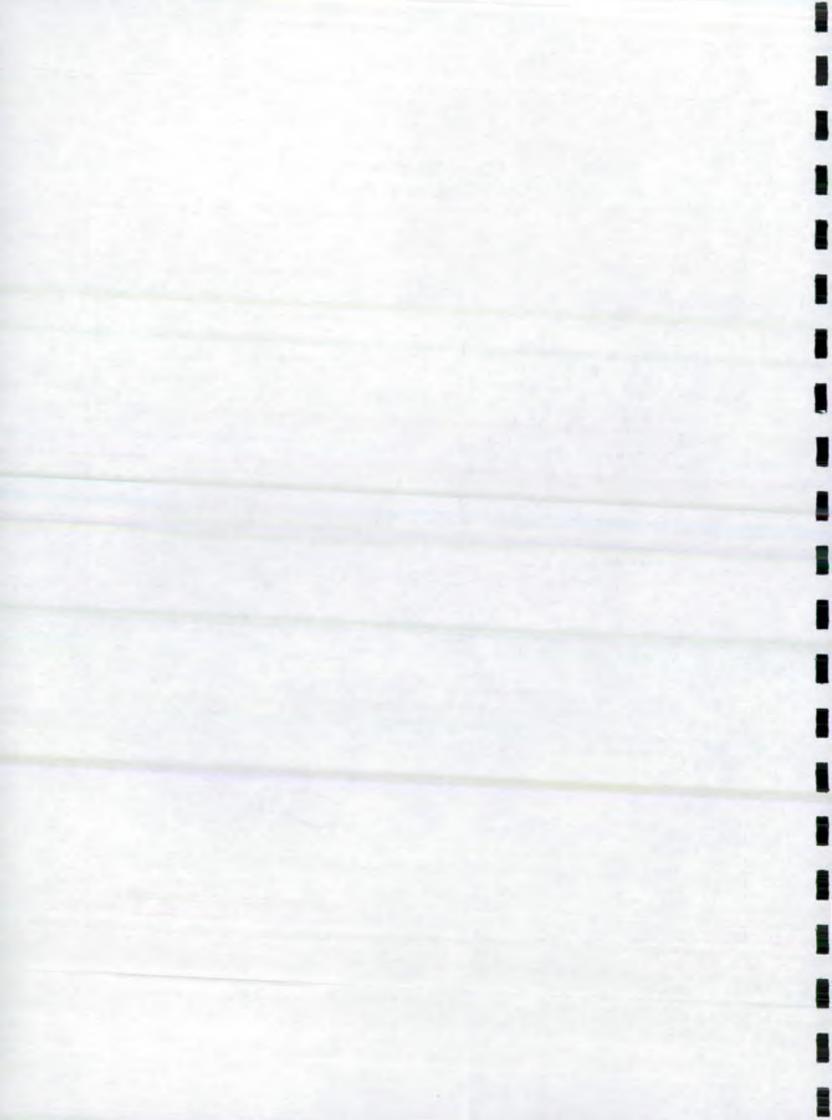
8. GLOSSARY OF TERMS

A segment of water, upstream from sampling point RIVER REACH to the next sampling point. RIVER LENGTH River distance in kilometres. RIVER QUALITY OBJECTIVE That NWC class, which protects the most sensitive use of the water. 95 percentiles Maximum limits, which must be met for at least 95% of the time. 5 percentiles Minimum limits, which must be met for at least 95% of the time. BIOLOGICAL OXYGEN DEMAND A standard test measuring the microbial uptake of (5 day carbonaceous ATU) oxygen - an estimate of organic pollution. A scale of acid to alkali. рH Fraction of ammonia poisonous to fish, NH³. UN-IONISED AMMONIA Solids removed by filtration or centrifuge under SUSPENDED SOLIDS specific conditions. Reference number allocated to a sampling point. USER REFERENCE NUMBER Segment of water, which is not monitored and INFERRED STRETCH whose water quality classification is assigned from the monitored reach upstream.


9. REFERENCES

Reference

- 9.1 National Water Council (1977). River Water Quality: The Next Stage. Review of Discharge Consent Conditions. London.
- 9.2 Water Act 1989 Section 117


. ...

9.3 Alabaster J. S. and Lloyd R. Water Quality Criteria for Freshwater Fish, 2nd edition, 1982. Butterworths.

I

Dart Catchment River Quality Objectives

BASIC DETERMINAND ANALYTICAL SUITE FOR ALL CLASSIFIED RIVER SITES

pH as pH Units Conductivity at 20 C as uS/cm Water temperature (Cel) Oxygen dissolved % saturation Oxygen dissolved as mq/1 O Biochemical oxygen demand (5 day total ATU) as mg/1 O Total organic carbon as mg/1 C Nitrogen ammoniacal as mg/l N Ammonia un-ionised as mq/1 N Nitrate as mg/l N Nitrite as mg/l N Suspended solids at 105 C as mq/1Total hardness as mg/l CaCO3 Chloride as mg/1 Cl Orthophosphate (total) as mg/1 P Silicate reactive dissolved as mg/l SiO2 Sulphate (dissolved) as mg/l SO4 Sodium (total) as mg/l Na Potassium (total) as mg/1 K Magnesium (total) as mg/1 Mg Calcium (total) as mg/l Ca Alkalinity as pH 4.5 as mg/l CaCO3

APPENDIX 10.3

NWC RIVER QU	ALITY C	LASSIFICATION SYSTEM				
River Class		Quality criteria		Remarks	Curren	nt potential uses
		Class limiting criteria (95 percent	tile)			
1A Good Quality	(i) (ii) (iii) (iv) (v)	Dissolved oxygen saturation greater than 80% Biochemical oxygen demand not greater than 3 mg/l Ammonia not greater than 0.4 mg/l Where the water is abstracted for drinking water, it complies with requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii)	Average BOD probably not greater than 1.5 mg/l Visible evidence of pollution should be absent	(i) (ii) (iii)	Water of high quality suitable for potable supply abstractions and for all abstractions Game or other high class fisheries High amenity value
18 Good Quality	(i) (ii) (iii) (iv) (v)	DO greater than 60% saturation BOD not greater than 5 mg/i Ammonia not greater than 0.9 mg/i Where water is abstracted for drinking water, it complies with the requirements for A2* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii) (iii) (iv)	Average BOD probably not greater than 2 mg/l Average annonia probably not greater than 0.5 mg/l Visible evidence of pollution should be absent Waters of high quality which cannot be placed in Class 1A because of the high proportion of high quality effluent presen or because of the effect of physical factors such as canalisation, low gradient or eutrophication Class 1A and Class 1B together are essentially the Class 1 of River Pollution Survey (RPS)		Water of less high quality than Class 1A but usable for substantially the same purposes
2 Fair Quality	(i) (ii) (iii) (iv)	DO greater than 40% saturation BOD not greater than 9 mg/l Where water is abstracted for drinking water it complies with the requirements for A3* water Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)	(i) (ii) (iii)	Average BOD probably not greater than 5 mg/l Similar to Class 2 of RPS Water not showing physical signs of pollution other than humic colouration and a little foaming below weirs	(i) (ii) (iii)	Waters suitable for potable supply after advanced treatment Supporting reasonably good coarse fisheries Noderate amenity value

.

.

				-
Poor lity	(i) (ii) (iii)	DO greater than 10% saturation Not likely to be anaerobic BOD not greater than 17 mg/l. This may not apply if there is a high degree of re-aeration	Similar to Class 3 of RPS	Waters which are polluted to an extent that fish are absent only sporadically present. May be used for low grade industrial abstraction purposes. Considerable potential for further use if cleaned up
4 Bad Conlity		Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times	Similar to Class 4 of RPS	Waters which are grossly polluted and are likely to cause nuisance
]		DO greater than 10% saturation		Insignificant watercourses and ditches not usable, where the objective is simply to prevent nuisance developing
Les (a	decay	, rivers usually in Class 1, 2, and 3 may	ought, freeze-up), or when dominated by have BODs and dissolved oxygen levels,	or ammonia content outside the

stated levels for those Classes. When this occurs the cause should be stated along with analytical results.
 (b) The BOD determinations refer to 5 day carbonaceous BOD (ATU). Amaonia figures are expressed as NH4. **

(c) In most instances the chemical classification given above will be suitable. However, the basis of the classification is restricted to a finite number of chemical determinands and there may be a few cases where the presence of a chemical substance other than those used in the classification markedly reduces the quality of the water. In such cases, the quality classification of the water should be down-graded on the basis of biota actually present, and the reasons stated.
 (d) EIFAC (European Inland Fisheries Advisory Commission) limits should be expressed as 95 percentile limits.

EEC category A2 and A3 requirements are those specified in the EEC Council directive of 16 June 1975 concerning the Quality of Surface Water intended for Abstraction of Drinking Water in the Member State.

Ammonia Conversion Factors

(mg NHe/1 to mg N/1)

Class 1A	0.4 mg	NH4/1 =	0.31	mg N/1
Class 1B	0.9 mg	NHe/1 =	0.70	mg N/}
	0.5 mg	$NH_{\ell}/1 =$	0.39	mg N/1

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR NON-METALLIC DETERMINANDS

River Quality Criteria

Class

- 1A Dissolved oxygen % saturation greater than 80% BOD (ATU) not greater than 3 mg/1 0 Total ammonia not greater than 0.31 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
- 1B Dissolved oxygen % saturation greater than 60% BOD (ATU) not greater than 5 mg/l 0 Total ammonia not greater than 0.70 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
 - Dissolved oxygen & saturation greater than 40% BOD (ATU) not greater than 9 mg/1 0 Total ammonia not greater than 1.56 mg/1 N Non-ionised ammonia not greater than 0.021 mg/1 N Temperature not greater than 28 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1
 - 3 Dissolved oxygen % saturation greater than 10% BOD (ATU) not greater than 17 mg/l O
 - 4 Dissolved oxygen % saturation not greater than 10% BOD (ATU) greater than 17 mg/l 0

STATISTICS USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION

Statistic 5 percentile 95 percentile 95 percentile 95 percentile 5 percentile 95 percentile 95 percentile arithmetic mean

Determinand

Dissolved oxygen BOD (ATU) Total ammonia Non-ionised ammonia Temperature pH

Suspended solids

T

:

i

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR METALLIC DETERMINANDS

.

SOLUBLE COPPER

Total Hardness (mean) mg/l CaCO3	Statistic	Soluble Copper* ug/l Cu Class 1 Class 2
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

* Total copper is used for classification until sufficient data on soluble copper can be obtained.

TOTAL ZINC

Total Hardness (mean) mg/l CaCO3	Statistic	Total Zinc ug/l Zn Class 1 Class 2 Class 3
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	<pre>< = 30 < = 300 > 300 < = 200 < = 700 > 700 < = 300 < = 1000 > 1000 < = 500 < = 2000 > 2000</pre>

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION CATCHMENT : DART (07)

	River	Reach upstream of	User	•
Position	l i i i i i i i i i i i i i i i i i i i	1	Reference	•
Number			Sumber	Reference
				!
	EAST DART RIVER	POSTBRIDGE		SX 6478 789
	EAST DART RIVER	CLAPPER BRIDGE DARTMEET	R07B002	SX 6720 732
l	EAST DART RIVER	DART CONFLUENCE (INFERRED STRETCH)		1
3	WEST DART RIVER	TWO BRIDGES		SX 6080 74
- (WEST DART RIVER	HUCCABY		SX 6588 72
	DART	NEW BRIDGE	•	SX 7116 70
6	DART	QUEEN OF THE DART		SX 7342 69
	DART	BUCKPAST ABBEY		 SX 7430 67
	DART	BELOW BUCKFAST PLATING (DART BRIDGE)		SX 745 66
	DART	AUSTIN'S BRIDGE		SX 7500 66
	DART	BELOW BUCKFASTLEIGH STW		SX 7536 65
	DART	RIVERPORD BRIDGE		SX 7720 63
	DART	TOTNES WEIR		SX 8010 61
13	HARBOURNE RIVER	HARBOURNEPORD		SX 7175 62
14	HARBOURNE RIVER	LEIGH BRIDGE	R07A002	SX 7710 56
15 j	HARBOURNE RIVER	BEENLEIGH	R07A003	SX 7973 56
Ī	HARBOURNE RIVER	NORMAL TIDAL LIMIT (INPERRED STRETCH)	1	1 A
	WASH	TUCKENHAY	R07A004	5X 8176 55
I	WASH	NORMAL TIDAL LIMIT (INPERRED STRETCH)		1
17	REMS	PORTERIDGE	R07B011	SX 7889 65
18	HEMS	LITTLEHEMPSTON	R07B012	SX 8115 62
19	AN BROOK	COLLACOMBE BRIDGE	•	SX 8107 67
20	AM BROOK	PISHACRE BRIDGE	R07B017	SX 8190 64
1	AM BROOK	HENS CONFLUENCE (INFERRED STRETCH)		1
21	BIDWELL BROOK	TIGLEY	•	SX 7573 60
	BIDWELL BROOK	DARTINGTON LODGE	R078019	SX 7990 61
	BIDWELL BROOK	DART CONFLUENCE (INFERRED STRETCH)		1
	MARDLE	CONBE	• •	SX 7030 68
24	MARDLE	(railway bridge buckpastleigh I	R07B014	5 x 7472 66
1	DEAN BURN	B3380 BRIDGE	R078052	5X 7328 65
	DEAN BURN	MARDLE CONFLUENCE (INFERRED STRETCH)		I
			- R078050	SX 7456 66
i	ASHBURN	DART BRIDGE	1 10010000	
<u></u> [ASHBURN ASHBURN	(DART BRIDGE DART CONFLUENCE (INFERRED STRETCH)		1
26		• • • •	i i _ii	

Reach	Distance		85			68	89	90
Length	from	Quality	NWC	INHC	NWC	INC	RWC	NWC
(km)		Objective	Class	Class	Class	Class	Class	Class
	(km) =	1			ļ			
	l '	1	1	1				
	1	1	1	1)	1	}	
	l	1						
10.2	10.2	11	17	19	LA	<u> 17</u>	•	3
7.6	17.8	1A	17	19	14) 1A	1B	2
0.1	17.9	17	14	18	17	1 18	18	2
							-2	-3-
7.9	7.9	1.	18	2	1A 1A	1 1A	2	
8.4	16.3	1. 1.	1A 1A	1 2 1 1 A		1A 1A	1 18	
9.0	25.3	I 1A				1		1 1 1
6.9	32.2 34.9	I LA	1A 1A	1A 1A	1	ו אגן ו אגן	1	1 1 1
2.7	39.9 35.6	I 1A	1	1 1A	1	1 <u>1</u>	1	
1.0	35.6 36.6	14		1	<u>1</u>		1A 1A	
0.8	37.4	1 A	1	18	19		1	
3.5	37.9 40.9	1A					1	3
3.5 6.3	40.9	1.4	1	2	18	18	19	18
0.3	9/.4			•			10	
4.4	4.4	18		14	14	14	1.	2
9.7	4.4	19	10	1	1 1 A	18	2	18
3.8	1 17.9	18	1		1	18	2	3 1
3.0	1 19.5		1		1	18	2	31
1.0	1 13.3	10	- 14			AD		
7.0	7.0	1.	14	1.	1.	18	18	18
0.2	7.2	1.	14	14	1.	18	18	1B
	i i							
4.9	4.9	18	18	18	3	3	3	3
5.9	10.8	18	18	1B	3	3	3	3
	I	l						
2.2	2.2	1.8	2	3	3		3	3
3.7	5.9	1B	2	1B	2	2	3	3
0.8	6.7	18	2	10	2	4	3	
3.5	3.5	18		3			2	
5.2	3.5 8.7 ;	18 18	2	3	3	2	2	3
0.2	8.9	18	2	i 3	3	2	2	3
			i			i	-	i i
4.5	4.5	1.		LA	14	LA	1.	3
5.6	10.1	1 1 1	14	14	14	1.1.	1 14	1.4
	I	I	l			Ii		
8.2	8.2	1.	17		I <u> </u>	1	1	2
1.5	9.7	1.6	IA	P	l	t		2
	<u> </u>	!i		!'	!	!		<u> </u>
9.8	9.8	1.7	18					18
0.2	10.0	18	18					18
6.5	6.5	LA	-18	2	-14			-10
0.1	6.6	1A		2	14	1 1 B	18	18
				-	i	·		
	·	·		·		· '		

Appendix 10.5

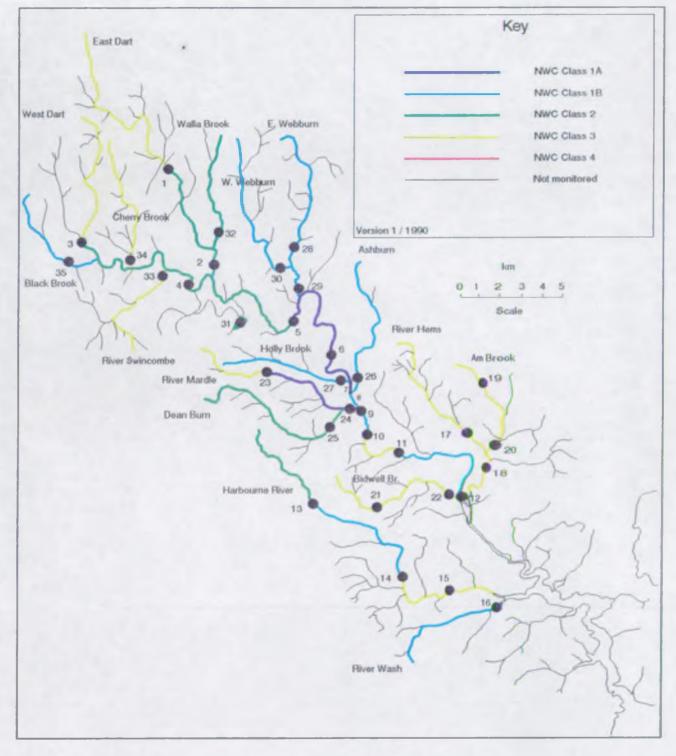
•

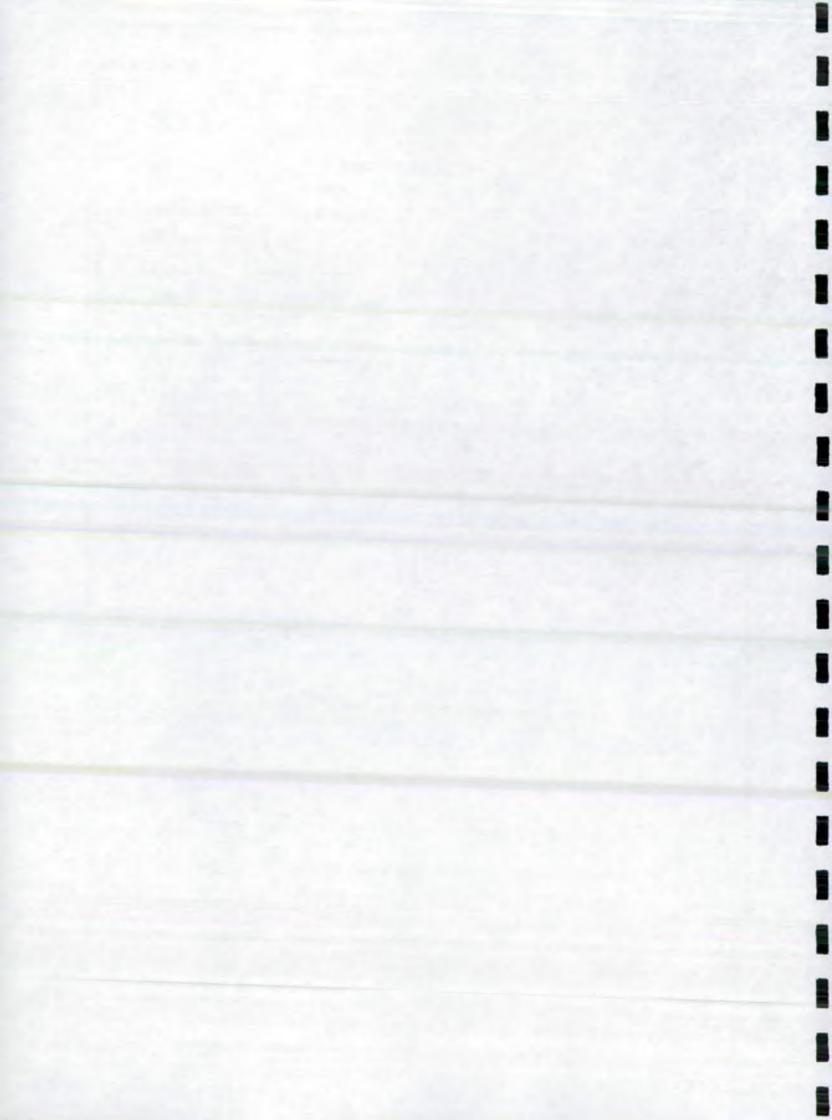
NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION CATCHMENT : DART (07)

.

River	Reach upstream of	User	National
!			
l		Number 	Reference
1 1 1			i I
EAST WEBBURN RIVER	COCKINGFORD	R07B036	SX 7168 7508
WEBBURN	BUCKLAND BRIDGE	R07B015	SX 7189 7196
WEST WEBBURN RIVER	PONSWORTHY BRIDGE	R078037	SX 7011 7390
WEST WEBBURN RIVER	WEBBURN CONFLUENCE (INFERRED STRETCH)		
VENFORD BROOK	INFLOW, VENFORD RES. (UNMON. STRETCH)	•¦	í
VENFORD BROOK	VENPORD RESERVOIR	R07B048	SX 6858 7105
VENFORD BROOK	DART CONFLUENCE (UNHONITORRED STRETCH)		
WALLA BROOK	BABENY	R07B051	SX 6730 7516
WALLA BROOK	(EAST DART CONFLUENCE (INFERRED STRETCH)	1 '	
SWINCOMBE	PRIOR TO WEST DART RIVER	R078021	SX 6475 7370
CHERRY BROOK	LOWER CHERRYBROOK BRIDGE	R078032	SX 6311 7484
CHERRY BROOK	WEST DART CONFLUENCE (INFERRED STRETCH)		ł
BLACKBROOK	TOR ROYAL	R07B049	SX 6017 738
BLACKBROOK	WEST DART CONFL. (INFERRED STRETCH)		4
	EAST WEBBURN RIVER MEBBURN WEST WEBBURN RIVER WEST WEBBURN RIVER VENPORD BROOK VENPORD BROOK VENPORD BROOK VENPORD BROOK MALLA BROOK MALLA BROOK SWINCOMBE CHERRY BROOK CHERRY BROOK	EAST WEBBURN RIVER WEBBURN RIVER WEST WEBBURN RIVER WEST WEBBURN RIVER WEST WEBBURN RIVER WEBBURN CONFLUENCE (INFERRED STRETCH) VENFORD BROOK VENFORD BROOK VENFORD BROOK VENFORD BROOK UNALLA BROOK NALLA BROOK NALLA BROOK BABENY HALLA BROOK CHERRY BROOK CHERRY BROOK CHERRY BROOK BLACKBROOK BLACKBROOK CHERRY BROOK TOR ROYAL	EAST WEBBURN RIVER COCKINGFORD R07B036 WEBBURN BUCKLAND BRIDGE R07B036 WEST WEBBURN RIVER PONSWORTHY BRIDGE R07B037 VENTORD BROOK INFLOW, VENPORD RES. (URMON. STRETCH) R07B048 VENFORD BROOK UENFORD RESERVOIR R07B048 VENFORD BROOK DART CONFLUENCE (URMONITORRED STRETCH) R07B051 MALLA BROOK BABENY R07B051 MALLA BROOK EAST DART CONFLUENCE (INFERRED STRETCH) R07B051 SWINCOMBE PRIOR TO WEST DART RIVER R07B032 CHERRY BROOK LOWER CHERRYBROOK BRIDGE R07B032 CHERRY BROOK WEST DART CONFLUENCE (INFERRED STRETCH) R07B049

Reach	Distance	River	85	86	87	88	89	90
Length	from	Quality	INVC	NHC	NWC	RWC	NWC	
(km)	source	Objective	Class	Class	Class	Class	Class	Class
	(km)		i i	1		1	i	
	ŀ		Í	İ	Í	İ	Í	Í
	i	İ	i	i	i	İ	ĺ	İ I
	i	İ	i	i	Ì	i i		
6.9	6.9	1.	i ——		1	1	18	18
3.9	j 10.8	j 1 a	і <u>1</u> .	1.	i la	i 18	2	18
	i	i —-	i	i	i –			i i
8.7	8.7	14	i		1 IA	14	18	1B
1.5	10.2	İ 1A	İ	j 1.	1 14	1 1 A	1 B	1 B
	Ì	i	ì	ì	i	i	Ì	i
0.9	0.9	1.	i	i —	i	i —	i	i —
0.6	1.5	j 1 A	ĺ	Ì	Í.	1	i i	2
1.0	2.5	j 1A -	1	1	(Í	1	1
	İ	Ì	Ì	i i		j	Í	1
6.8	6.8	1.		i		i —		2
0.5	7.3	j 1A	j IA	i	İ 👘	İ	Ì	į 2 -
	i	i	İ	İ	i	i	İ	Ì
6.6	6.6	1	<u>1</u>	i 3		18	18	i J
	i	i	i —	i -	i	ì	i	i
6.7	6.7	14	1B	1 2	IA	AI I	AI I	i 3
1.3	1 8.0	Í 1A	j 18	i 2	1 1A	i 1A	i 1A	i 3
	1	i	i	i -	i —	i —	1	i
6.0	6.0	AL 1	18	i—	i——	i	i ———	<u>1</u> 8
1.9	7.9	1.4	18	i	i	i	i	18
		1	i	i	i	i	i	i —
<u> </u>	'	'	'	'	'	'——		·

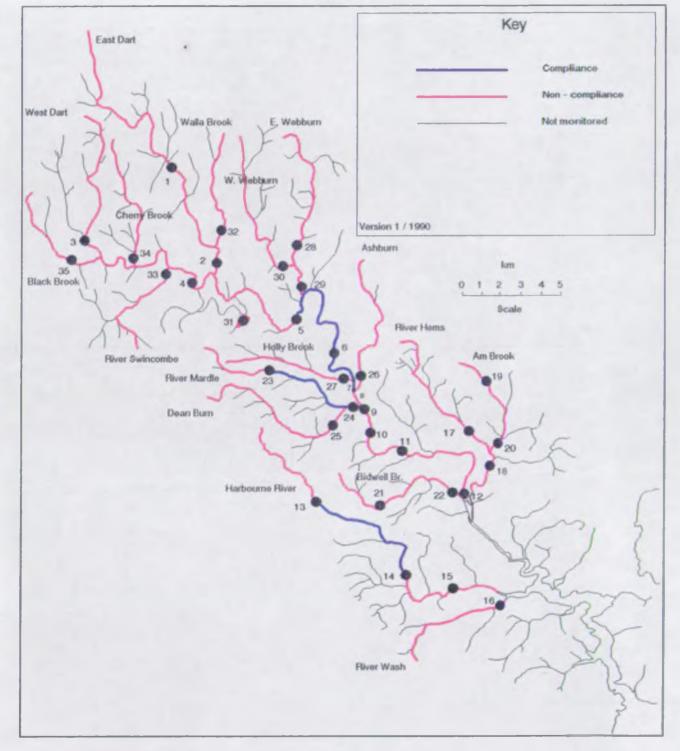

.


Appendix 10.5

i

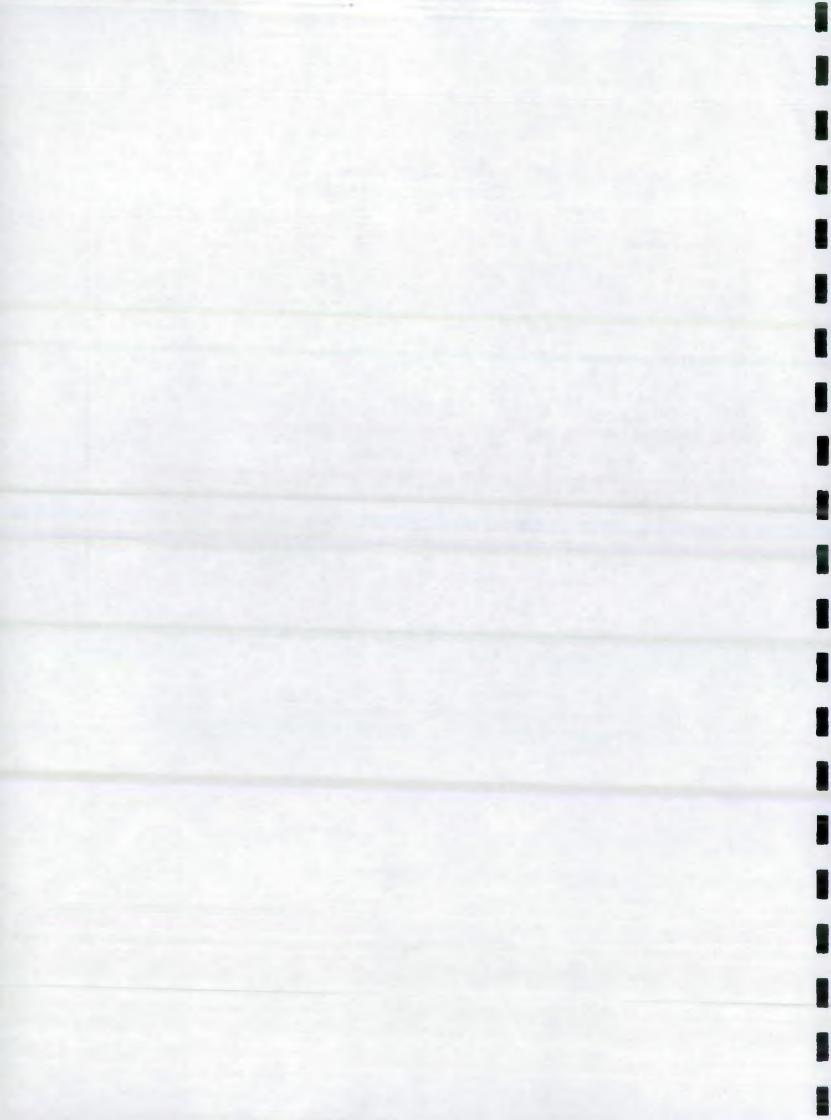
.

Dart Catchment Water Quality - 1990



NUTIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WRIER QUALITY CLASSIFICATION CALCULATED DEDENMINAND STRUISTICS USED FOR QUALITY ASSESSMENT CATCHMENT : DART (07)

River	Reach upstreem of	User Ref.	90 NNC	1		Calcul/	ated Date	arinir sa	d Statis	tics us I	ed for Q	ality .	Assessmen	nt.		1				1			
		Number 		1			oper 95kile	•	perature 3 95kile		(%) Skile		(ATU) 95kile	•	Amuria : 95kile		-		olids Mean	1	Capper 95kile		l Zinc 95kil
EAST DART RIVER		1	 3	 	4.7	 	6.8	 1A	15.9	 2	52.9	 1A	2.2	 	0.059	 1A	0.010	 	1 4	 	- E A		0.0
EAST DART RIVER	CLAPPER SKIDGE DARIMEET	R078002		1	5.2	л Л	6.8	٦.	14.7	л.	81.7	۲۲.	2.0	л.	0.037	IA IA	0.010		1.7 1.9	1A 2	5.0 5.7	AL IA	9.9 11.4
NEST LINKT RIVER	THO BRIDES	F078003	3	3	4.6]A	6.2	- 1	17.7	1	88.0	<u> </u>	1.9		0.068		0.010		1.4	2	5.9	1	16.2
WEST DART RIVER	HUCCNEY	F078004	j 2	j 1A	5.5	j 1.v.	7.0	1 A	16.4	118	76.5	j IA	2.3	j IA	0.041	i IA	0.010	j 1A	1.7	i z	11.8	1 13	12.7
CPRC .	NEW FRIDGE	19078005	2	j 1A	5.4	1 1A	7.0	1.	18.0	1 A	86.1	j 1B	3.3	j DA	0.053	j 1a	0.010	AL I	2.1	i 2	5.7	11	8.3
DAKT	QUEEN OF THE DART	RU78006	1 1 N	I IA	6.1	1A	7.1	1 A	20.8	11	90.2	11	1.7	i 1A	0.020	1.	0.010	j IA	2.9	j 1A	6.9	i 1A	50.8
DART	BARRAST ABBLY	1078007	I IA	1A	6.4	1A	7.0	1A	21.0	11.	89.8	11	1.8	j 1.	0.030	j 1.	0.010	j 1A	1.9	i JA	6.2	i IA	9.2
	HELON BUCKPRST PLACING(DART HELDE)	R078038	j 1A	j 1A	6.4	1Å	7.3	j 1A	20.8	11	92.3	j 1A	1.7	j 1 .	0.047	j 1a	0.010	j IA	3.2	j IA	6.0	i 1A	41.7
DART	ALBEIN'S HOLE	R078008	j 18	<u>1</u> A	6.6	1 IA	7.8	j 1A	20.8	118	64.4	j IA	2.2	j la	0.040	j 1.	0.010	j IA	3.5	j 1A	5.8	1	8.0
DIRT	BELOW BUCKPASTLETICH STW	F078053	118	j IA	6.7	1.	7.6	1	20.0	11	92.0	j 1A	2.6	1138	0.410	j IA	0.010	14	3.7	1 14	6.0	1	22.0
DARC	RIVERCIED BRIDLE	F078009	3	I JA	6.9	1A.	8.6	j 1A	20.7	1 .	83.6	14	2.3	1	0.148	3	0.027	14	6.9	I IA	11.3	IA	15.8
DAKI	TOINES WEIR	18078010	j 118	1.1.	6.8	, IV	7.6	17	18.8	18	75.3	138	3.1	1A.	0.258	1Ă.	0.010	1A.	8.0	1A	7.0	IN	13.0
HARBOLINE REVER	HARECLEVERCRD	10724001	2	1.	6.7	 1A	8.2	1	16.1	1.	80.7	2	6.3	1	0.112	14	0.010	A	4.1	-		(-
HARBOLINE RIVER	LEIGH BRIDGE	1807/002	18	1A	7.0	1).	8.1	AL I	16.5	1B	80.0	138	3.8	118	0.575	j 1 a	0.010	İ 1A	7.6	I IA	12.6	1.	11.7
ARECLANE RIVER	HEANERICH	190724003	3	1 A	7.4	AL	8.3	1	15.5	19	69.6	2	5.9	138	0.433	I IA	0.010	3	26.3	I IA	8.8	17	30.8
HRM	TUCKENIRY	F072004	18	٨	7.5	18	8.2	AL	16.0	AL	85.9	18	3.4	18	0.424	A	0.010	1.	8.0	10	5.6	1	10.6
HD/5	RECERCICE	 R078011		1	7.2	 1A	8.0		16.0	 	28.0	2	6.6		1.520	 	0.020		53.5		53.0		50.0
HØG	LETTLEHENPEDICN	18078012		17	7.6	1A.	8.3	1A	16.0	13	72.3	2	7.8	2	1.142	3	0.022	3	27.6			цу.	22.6
AM ERCOK		 R07H016	3	<u>אר</u>	7.3	1	8.2	AL	15.9	2	56.3	2	6.5	1 	3.748		0.057		31.6	 1A	50.0	1.4	51.0
am Brock	i rish ce brizze	R07B017	3	1A I	ר.ר	12	8.3	AL I	15.0	19	64.3	2	5.7	3	2.963	3	0.073	14	19.1	Ā	6.0	14	9.0
BUDWELL BROOK	TIELEY	1078018	3	1A	7.4	1A	8.2	14	15.5	2	51.6	2	6.3	18	0.408	1	0.010	3	25.1	[10 .	1	61.0
RIDWELL BROOK	DARTINGION LODGE	R07 8 019	3	ί 1λ	7.5	17	8.2	AL	16.0	2	44.8	3	9.2	2	0.979	1	0.010	1Å	11.9	1 JA	10.8 9.1	1 A 1 A	52.9 20.9
MNICLE		R078013	3		6.0	 1A	6.9		16.9	 3	16.7	1	1.7		0.020		0.010	- 	2.1		9.8		13.8
MARCLE	RAIDAY BRIDE HURPASTLEICH	R078014	1	, AL	7.2	, IV	8.4	1A	18.0	, 1 <u>v</u>	83.6	ТА.	2.4	11	0.104	1A	0.010	1A	23.6	ц.	24.5	1V IV	44.2
dern elrn	B3380 BRIDGE	18078052	2	٨	6.5	12	8.1	17	16.0	18	76.8	17	3.0	I IA	0.176	1	0.010	1.	19.9	2	47.8	1	103.0
ASHELRN	DART BRIDGE	R078050	 1B	- JA	6.9]A	8.6	<u></u>	19.9	12	89.1	118	3.8	 1Ā	0.148	 	0.010	 1A	7.7	 1A	6.0	 	20.6
HILLY BROOK	NORTHCOD BLONPAST	 R078020	 18	 1A	6.7	<u>مد</u> ا	7.6	1	18.7	 18	76.9		2.1	 A	0.067	 	0.010	۱	4.8	 	6.0		12.4
EAST WEBBLIEN RIVER		 R078036			6.6				16.0		~~~~	<u> </u>			0.100	<u> </u>		<u> </u>		<u> </u>		Ĺ	
NETELINI	BUCKING BRIDE	1807801S	. –	1A 1A	6.5	1A 1A	7.2 7.2	1A 1A	16.0 14.9	118	76.0 61.9	1A 1A	2.2	1A 1A	0.108	I IA	0.010 0.010	1A 1A	4.7 2.3	1A 1A	10.5 5.4	1A 1A	12.0 7.4
EST WEHELEN RIVER	PONSINCRUDY BRUDGE	 R078037	i i 18	 1A	6.6		71		14.0		74.0	<u> </u>		i		í		i		i		į	_
	i	_i	i	 	0.0	1A 	7.1	1.A 	14.9	138 	74.9	1 X	1.7	LA. 	0.044	1A 	0.010	1A 	2.3	1.	5.0	14	9.7
JENFORD BROOK	VENFORD RESERVOIR	R078048	2	I IA	5.3	1.4	6.4	2	22.0	1A	87.0	17	1.8	I IA	0.070	AL	0.010	AL	2.5	-	-	i -	-


NETLINEL RIVERS AUTHRITY - SOUTH WEST NEGLIN 1990 RIVER WRIER QUELITY CLASSIFICATION CALLIAUED DETERMINYND SURTISTICS USED FOR QUELITY ASSESSMENT CRICHENT : DNIT (07)

River	Reach upstreem of	User	90	Γ		Calcul	ated Det	emina	nd Statis	tics u	ad for Q	uality	Assessme	nt.							000		1
1		Ref.	NHC	1		1		ł		1		1		1		1		1		1		1	
1	ì	Number	Class	⊉H∶	Lower	pH	Upper	Tem	endane	0	(1)	BOD	(AUU)	[Ibtal	Ammia	Union.	. America	(S.9	olids	Total	Copper	1 Tota	ul Zinc
1	l I	1		Class	Skile	Class	95kile	Class	s 95kile	Class	5 Skile	Class	95%ile	Class	s 95kile		s 95kila	Class	Maara	Class	95 kile	Class	: 95kile
1	I	1				1		I		1		1		1		1		1		1		1	- I
1	I	1				1				1		ł		1		1		1		1		1	1
<u> </u>				l		<u> </u>				<u> </u>		ļ		<u></u>		l		L		<u>ا</u>			
WHILA BROOK	BAEERY	R078051	2	1A	6.0	11	6.9	18	15.0	18	65.3	1A	2.0	1 14	0.057	I IV	0.010	I IA	1.7	2	6.8	18	6.0
	l					.L		L		I		<u> </u>		l				L					
SKINITHE	HRIDE TO WEST DINT REVER	R078021	3	3	5.0	1A	6.7	1 A	15.7	118	75.0	1A	2.5	A L	0.044	AL	0.010	1	1.8	1 X	Š.O	1 1	16.9
l		<u>I</u>				<u> </u>		l		l				<u> </u>		L				!			!
CHERRY BROOK	LOWER CHERRYBROOK BRIDGE	F07E032	3	3	4.9	14	6.7	[1A	16.0	AL	87.8	1A	1.8	1A	0.059	<u> 1</u>	0.010	I IA	1.7	1 λ	5.0	IA	20.5
<u></u>								l		<u> </u>		l		<u></u>				L		L			
HACKERCOK	TOR ROBAL	R079049	18	_ 1 A	5.5	IA	6.8	AI	17.7	118	76.2	1 IA	2.0	1 1	0.106	1A	0.010	1	3.0	1A	7.7	<u> 1</u> A	20.2
										<u> </u>		<u> </u>		<u> </u>									

Dart Catchment Compliance - 1990

۱

NUTLING, ALVERS AUDIORITY - SOUTH WEST REGION 1990 RIVER WHER GUNLETY CLASSIFICATION NUMBER OF SHIFLES (N) AND RUMEER OF SHIFLES EXCEEDING GUNLETY SUNDARD (P) ONCOMENT : DNCT (07)

River	Panch upstress of	User	ph I	OWEL	pH t	tper	Tesper	ature	000	(*)	BOD (ATU)	LIDCHT N		juman.	Allonia	S90	LLCB .	Total	Copper	Total	l Z
		Pat.			1		1	_		_	1		1	_	1			_	1	_	1	
		Runber	M	7		r] 14 14	r	 	F		F	19	ľ	14	r (P	N			
					 				1 		 		 			L			l 			
DAT DART RIVER	POSTISFULTZ	10076001	Z	1	া য	-	21	-	21	1	i z	-	<u> 21</u>	-	19	-	21	-	1 7	-	21	
der der eiver	CLANTER BOLLE CHOPEET	19078002	32	-	32	-	1 32	-	32	1	1 22	-	1 32	-	23	-	32	-	32	1	32	
		i <u>a776005</u> i	R	2	21	-	21		21		2		1 21	-	<u> </u>		শ্ব	-	<u>1</u> 21	1	স	1
est dirt river	ps.comer	1078004	32	-	j 32	-	32	-	1 32	1	32	-	32	-	1 25	- 1	32	-	j 32	3	32	
	THE HELDER	2078005	ፚ	-	26	-	25	-	26	-	1 26	1	26	-	19	- j	26	-	1 25	1	26	
)NT	GLEN OF THE DAR	11078006	20	-	į 20	-	20	-	20	-	j 20	-	1 20	-	į 15	- 1	20	-	20	-	20	
JAC	BLOTHER MEET	1078007	35	-	j 35	-	i 34	-	і 34	-	j 35	-	i 35	-	i 23	- i	35	-	j 35	-	35	
797	BELOW BLOWNET FLATING(DIRE" BRIDGE)	1078038	45	-	1 45	-	i 44	_	i 44	-	i 45	-	i 65	-	37	- 1	45	1	1 46	-	46	
1990	ALSEDY'S BRIDGE	F078008	44	-	44	-	43	1	43	2	44	-	4	-	З	~	44	-	4	-	4	
	BELOW BUCKPROTICIDEL SOM	F078053	17	-	17	-	17	-	17	-	17	_	17	2	17	- i	17	-	1 17	-	17	
	BUVEROND BELLER	R078009	24	_	24	-	1 22	-	22	-	24	_	24	-	22	1	24	2	24	- 1	24	
362	ILLINES WEIR	F078010	ଞ	-	େ	-	j 64	-	64	7	65	3	ഒ	1	ត		65	5	65	-	65	
NARCLENE REVER	1998EDUREPCED	F072001	*		26	-	26		26	-	26	1	- 26	-	22	-	x	-		-	1	_
PRELINE FIVER	INTER BRIDGE	R07002	20	-	20	-	19	-	19	-	20	- 2-	20	-	i u	-	20	-	20	-	20	
RELIRUE REVER	Bergeration	1072003	34	-	34	-	33	-	33	-	34	1	34	-	32	-	34	2	34	-	м	
RGR	TUCKERBY	R072004	B	-	1 33	-	33	-	33	1		1	1 33	4	R	-	33	1	33	-	33	-
E15	REPAIRED CE	[R078011]	12	-	1 12	-		-	<u> </u>	3	1 12	1	1 12	4	<u> </u>	-	-12	2	-12-	-	12	
86	LOTLEHENERICA	(R078012)	34	-	34	-	35		34	-	34	2	34	3	<u>u</u>	1	34	•	35	-	35	
N BROCK		1076016	25	-	8	-	8		3	3	25	1	8	7	3	5	Z	3	11	-	12	-
H BROOK	IFTSHICRE IBUDGE	לנספלספן	ð	-	1 25	-	8	-	25	-	1 25	1	25	2	25	1	8	•	1 19	-	19	
TINELL RECOR	Maley	1070018	8		- 30	-		-	20	1	20	2	20	-	TT T		20	1	2		20	
IIIIMILI, INCOL	CHARTHARDS LODGE	(P078019)	25	-	1 25	-	24	•	24	6	25	1	3	2	24	-	25	2	3	-	25	
NUL		(1070013)	20	-	20		20		20	1	20	-	1 20		10	-	20	-	20		20	_
1002.6	PADAY SIDE SUSPACEM	8075014	72	-	32	-	1 22	-	32	-	32		1 32	-	28	-	32		32	-	32	
ZINI BLIRI	(B3380 BRIDE	19078052	20	-	20	-	20	-	20	1	20		20	-	17	-	20	1	20	1	20	-
CERENTER.		1078050	20	-	20	4	20	-	20	-	20	1	20	-	16	-	20	2	20	-	30	-
OLY BROOK	HINNEY BURNET	(19076020)	2	4	3	-	8	-	25	2	8		1 25		20	-	25	1	8	-	8	_
AST WEBBLIE RIVER		19078036	32	-	32	-	1 32	-	1 32	1	1 32	-	32		1 12	-	32	-	32	-	32	~
		1076015	¥	17	, x	-	32	-	32	2	, n	-	22		3	-	22	-	22	-	22	
EST WEELIN RIVER	ROMANNY BRIDGE	19075037	32	-	32	-	32	-	32	1	32	-	32	-	8	-	22	-	12	-	<u>1</u>	_
	MENCIED RESERVOIR	1070040	IJ	-	13	-	13	1	13	-	<u> - 13 -</u>	-	1 13		<u> </u>		Ц					_
		1					1		1 44		1			_		-			1 11	-	Ľ	

.

.

Appendix 10.9

NACIONAL REVERS AUDITRICITY - SOUTH WEST REGION 1990 REVER WEER QUALITY CLASSIFICATION RUMBER OF SWIPLES (N) AND RUMBER OF SAMPLES EXCEEDING QUALITY SUNDARD (P) ORCOMPLET : DNCT (07)

Niver	Peach upstress of	User	pH I	CHRIC .	pHU	fiber	Temper	ature	1 00	(1)	BOD(ATU)	Total #	acria	Union.	Amonia	S.So	lids	Total (Cither	Intal	Zinc
1	1	Ref.			1		1		1		1		1		1				1		ĺ	
l	1	Number	R	P	14	7	I N	7	11	r -	[N	F	11	r	(स	P	N		াম			2
0	1						1		1		1		1		1	1			1		1	
					!		ļ		ļ		ļ		ļ		ļ				ļ			
1							!		!				1		•							
NNLLA BROCK		R078051	21		1 7	-	l		7	1	2		1 71	-	1.18		21		21		21	_
					-		1 -			-						_		-		•		-
SCILLING	FRIOR TO WEST DART RIVER	R07B021	32	1	32	-	32	10	32	1	32	1	32	-	19	-	32	-	32	-	32	-
İ	_L	i			<u> </u>		ĺ		Ĺ		Ĺ		i	1.1	Ĺ	i			i			
CHERRY BROOK	LOUR CHERRENCOK BRIDER	P07B032	*	1	25	-	26	-	26	-	26	-	26	-	1 19	-	26	-	24		24	-
					! <u> </u>		! <u> </u>	_	<u> </u>		<u> </u>	<u> </u>	<u>! </u>			!		-	L			
BLACHERCOK	TOR RORAL	(190 78049	4	-	1 2	-	1 4	-	1 4	T	14	-		-	19	-	21	-	11	- !	21	-
۱ <u> </u>		<u>11</u>			1		1		<u> </u>		ŧ		L									

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT : DART (07)

River	Reach upstream of	User		PERCENTAGE	EXCEEDENCE OF	STATISTIC	FROM QUALIT	Y STANDARD)			
		Ref. Number	pH Lower	 pH Upper 	 Temperature 	DO (%)	BOD (ATU) 	Total Ammonia	 Un-ionised Ammonia 		Total Copper	Total Zinc
				 	1 _1				 		<u> </u>	-
EAST DART RIVER EAST DART RIVER	•	R078001	5	-		-	-	Ē	-	-	14	-
WEST DART RIVER	TWO BRIDGES		 8	!					·	!	18	ļ
	•	R078003	•	-	! - !			-	! -	-	135	-
WEST DART RIVER		R07B004		-	-	4	-	-	-	-	135	-
DART		R07B005		_			10	-	-	-	1 13	
DART		R07B006	•		! - !	-		-	-	-	-	-
DART		R07B007		-	! - !	-	-	-	-	-	-	-
DART	BELOW BUCKPAST PLATING (DART BRIDG)			-	! - !	-	-	-	ļ -	-	-	
DART		R07B008		-	! - !	19	-	-	-	-	-	! -
DART		R078053		-	! - !	-	-	32	-	-	-	-
DART		R078009		-		-	-	-	29	-	-	-
DART	TOTNES WEIR	R078010	1 -	-	-	б	2	-	-	-	-	-
HARBOURNE RIVER	HARBOURNEFORD	R07A001	¦	-	-ii	-	25	-	i -	-	-	i –
HARBOURNE RIVER	LEIGH BRIDGE	R07A002	I –	-	I - I	-	- 1	-	1 -	- 1	- 1	
HARBOURNE RIVER	BEENLEIGH	R07A003	-	-	-	-	1 17	-	-	5	-	- 1
WASH	TUCKENDAY	R07A004	¦	-	-	-	13	37	-	-	-	
HEMS	I PORTBRIDGE	R07B011	 	-	-}	53	32	117	·	114	-	
HEMS		R07B012	i –	-			56	63	5	10	1.549.1	-
AM BROOK	COLLACOMBE BRIDGE	R07B016		-		6	29	435	171	26		1
AM BROOK		R07B017				-	15	326	248	i -	-	i –
BIDWELL BROOK	TIGLEY	1 R07B018	-			14	26			¦		
BIDWELL BROOK	DARTINGTON LODGE	R07B019	-	-	-	25	84	40	-	-	< -	-
MARDLE	COMBE	R07B013		-		79			-¦		95	-
MARDLE	RAILWAY BRIDGE BUCKPASTLEIGH	R07B014	-			-		-	-	! -	! -	-
DEAN BURN	B3380 BRIDGE	R078052		-	-	4	-			-	117	
ASHBURN	DART BRIDGE	R078050	-	-	-		28	-	-	-	-]
HOLY BROOK	NORTHWOOD BUCKFAST	 R07B020		-	-	4	-	_	-	-	1 	
EAST WEBBURN RIVER	COCKINGFORD	1 R078036	¦	-		5			-	 _		
WEBBURN	BUCKLAND BRIDGE	R07B015		-	-	23	-	-	-	i -	i -	i -
WEST WEBBURN RIVER	PONSWORTHY BRIDGE	 R07B037	 	-	-	6			-			
VENFORD BROOK	VENFORD RESERVOIR	R07B048		-	2		-	-		¦		-

.

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT : DART (07)

River		(Reach upstream of	User		PERCENTAGE	EXCEEDENCE OF	STATISTIC	FROM QUALIT	Y STANDARD				
1		ļ	Ref.		1	1 1		ş I		1		1	1
1		1	Number	pH Lower	pH Upper	Temperature	DO (%)	BOD (ATU)		(Un-ionised)	• •	Total	Total
1		•	1 1		1				Ammonia	Ammonia	Solids	Copper	Zinc
1		1	1 1								1	l	
2													
						!						36	
WALLA BROOK		BABENY	R078051	-	-	-	10	-	-	-	-	0 0	-
		PRIOR TO WEST DART RIVER											
SWINCOMBE		PRIOR TO WEST DART RIVER	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			U					_	
CHERRY BROOK		LOWER CHERRYBROOK BRIDGE	R078032	1	-	-		-	-	-		-	
BLACKBROOK		TOR ROYAL	R078049	-			5		<u> </u>		[0-0	
j	_	j	_ii		1	!I				اا	اا		

1

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION IDENTIFICATION OF POSSIBLE CAUSES OF NON-COMPLIANCE WITH ROO CATCHMENT : DART (07)

1990 Map	River	Reach upstream of	User	Reach	Possible causes of non-compliance
Position	1	1	Reference	Length	
Number			Number	(km.)	1
	ĺ		1 1		
i i	Ì		1 1		
i i	ĺ	Ì	i i		1
			i i		l
1	EAST DART RIVER	POSTBRIDGE	R078001	10.2	UP-STREAM ABSTRACTIONS, CATCHMENT GEOLOGY, MOORLAND, DROUGHT
2	EAST DART RIVER	CLAPPER BRIDGE DARTMEET	R07B002	7.6	CATCHMENT GEOLOGY, MOORLAND ORIGINS
	Í	Í	i i		ĺ
3	WEST DART RIVER	TWO BRIDGES	R07B003	7.9	MOORLAND ORIGINS
4	WEST DART RIVER	HUCCABY	R07B004	8.4	MOORLAND ORIGINS, DROUGHT
	DART	NEW BRIDGE	R078005		MOORLAND ORIGINS
	DART	AUSTIN'S BRIDGE	R078008	1.0	SEWAGE TREATMENT WORKS, UP-STREAM ABSTRACTIONS, DROUGHT
	DART	BELOW BUCKFASTLEIGH STW	R078053		SEWAGE TREATMENT WORKS
•	DART	RIVERFORD BRIDGE	R07B009		SEWAGE TREATMENT WORKS, FARMING ACTVITIES
	DART	TOTNES WEIR	R07B010		UP-STREAM ABSTRACTIONS, EUTROPHICATION, BLUE-GREEN ALGAE
			1 1010010	0.5	
13	HARBOURNE RIVER	HARBOURNEFORD		4.4	IDROUGHT
•	HARBOURNE RIVER	BEENLEIGH	1 R07A003		SEWAGE TREATMENT WORKS
1.2	INARDODANG ATVER	BEENLEIGH	1 2012003	5.0	1
<u> </u>	I			7.0	SEWAGE TREATMENT WORKS, UP-STREAM ABSTRACTIONS
16	WASH	TUCKENHAY	I RUZAUU4	7.0	SEWAGE TREATMENT WORKS, OF STREAM ADSTRUCTIONS
•	HEMS	PORTBRIDGE	R07B011		FARMING ACTIVITIES, SEPTIC TANK, DROUGHT
18	HEMS	LITTLEHEMPSTON	R07B012	5.9	FARMING ACTIVITIES
	AM BROOK	COLLACOMBE BRIDGE	R07B016		FARMING ACTIVITIES, SEPTIC TANK
20	AM BROOK	FISHACRE BRIDGE	R078017	3.7	
1000	l	l	II	l	
21	BIDWELL BROOK	TIGLEY	R07B018	3.5	DROUGHT
22	BIDWELL BROOK	DARTINGTON LODGE	R07B019	5.2	SEWAGE TREATMENT WORKS, FARMING ACTIVITIES
۹. Example of the second second second second second second second second second second second second second se			1		
23	MARDLE	COMBE	R078013	4.5	CATCHMENT GEOLOGY, MOORLAND, SEPTIC TANKS
i	i	1	Í		1
25	DEAN BURN	B3380 BRIDGE	R07B052	8.2	MOORLAND, CATCHMENT GEOLOGY
i	i		1	_	
26	ASHBURN	DART BRIDGE	R078050	9.8	FARMING ACTIVITIES, DROUGHT, EUTROPHICATION
,	1	1	1		I I I I I I I I I I I I I I I I I I I
27	HOLY BROOK				
		NORTHWOOD BUCKFAST	R07B020	6.5	DROUGHT, SEWAGE TREATMENT WORKS
!				<u> </u>	
•	EAST WEBBURN RIVER	COCKINGFORD	R078036	6.9	DROUGHT
29	WEBBURN	BUCKLAND BRIDGE	R07B015	3.9	DROUGHT
I	1	I		1	
30	WEST WEBBURN RIVER	PONSWORTHY BRIDGE	R078037	8.7	DROUGHT, UP-STREAM ABSTRACTION
Ì	İ			1	1
31	VENFORD BROOK	VENFORD RESERVOIR	R078048	0.6	DROUGHT
			1)
32	WALLA BROOK	BABENY		6.8	MOORLAND ORIGINS, DROUGHT
1 26				1 0.0	Incondenio onicino, produnt
! <u></u>			I		
33	SWINCOMBE	PRIOR TO WEST DART RIVER	R07B021	6.6	MOORLAND ORIGINS, DROUGHT
۱	I	I	<u> </u>	l	·

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION IDENTIFICATION OF POSSIBLE CAUSES OF NON-COMPLIANCE WITH RQO CATCHMENT : DART (07)

1990 Map River	Reach upstream of	User	Reach	Possible causes of non-compliance
Position	1	Reference	Length	
Number	1	Number	(km)	
		1 1		
1 1		1 1		
	1	1 1		
		I		
34 CHERRY BROOK	LOWER CHERRYBROOK BRIDGE	R07B032	6.7	MOORLAND ORIGINS, DROUGHT
				ll
35 BLACKBROOK	TOR ROYAL	R07B049	6.0	DROUGHT, EUTROPHICATION
1t	I			ll