Environmental Protection Draft Report

REGIONAL RIVER QUALITY MONITORING & SURVEILLANCE

RESULTS OF THE 1990/1991 BIOLOGICAL SURVEY

June 1993 FWS/93/004 Author: JAD Murray-Bligh Assistant Scientist (Freshwater Biology)

Netional Rivers Authority South West Region

REGIONAL RIVER QUALITY MONITORING AND SURVEILLANCE - RESULTS OF THE 1990/1991 BIOLOGICAL SURVEY

Environmental Protection Report Draft Report No. FWS/93/004 July 1993

Author: JAD Murray-Bligh Assistant Scientist (Freshwater Biology)

REGIONAL RIVER QUALITY MONITORING AND SURVEILLANCE - RESULTS OF THE 1990/1991 BIOLOGICAL SURVEY

INTERNAL REPORT NO. FWS/93/004

SUMMARY

This report describes the biological river quality monitoring programme undertaken by NRA South West Region, and the results of the 1990/1991 macroinvertebrate survey.

The survey comprised 954 sites covering 4241 km of river and 29 km of canal, and was completed in two years: 502 sites were surveyed during 1990 and 449 in 1991. Two sites were not surveyed. Twenty-two key sites were visited in both years, to assess annual changes. The survey mirrored the routine chemical monitoring programme, but included additional sites so that all reaches which had been assigned River Quality Objectives were included.

Habitat features were mapped at each site using standard symbols based on the NCC river corridor survey methods. These maps are to help interpret changes in the biota in subsequent years, and to provide data for conservation assessment. Photographs were taken at every site. Macrophyte species were recorded in 1991. The results of these aspects of the survey are not reported here.

Macro-invertebrates were sampled three times in the year: in Spring, Summer and Autumn, using the NRA standard sampling protocols (3 minute kick plus 1 minute search with a pond-net, or in deep water, three to five throws of a medium Naturalists' dredge). Stream width, depth, and substrate attributes, were recorded on each visit to enable RIVPACS to be used to predict the macro-invertebrate fauna expected at each site if it was unpolluted.

Biotic indices including BMWP-score, ASPT and number of BMWP-scoring families (N-taxa) were determined from the aggregated data from all three seasons' samples, as were the equivalent observed to RIVPACS-predicted ratios (= Ecological Quality Indices, EQIs) for each biotic index. The overall NRA Biological Classes were determined, as were the classes based on individual EQIs. The derivation and interpretation of the NRA Biological Classification, and EQIs are discussed in this report.

The ecological quality of most rivers in the South West Region in 1990 and 1991 was good: 86% of the river length classified (representing 3630 km of rivers) had an overall NRA Biological Classification of Class A (good quality); 8% (340 km) was moderate quality; 3% (146 km) was poor quality; and 1% (35 km) was very poor quality: 2% of river were not classified. In the reaches that were not of good quality, toxic influences and siltation ascribed to acidic mine drainage or china clay extraction were common, as were the influences of organic pollution from agriculture, agricultural processing industries, sewage treatment works effluents, and storm overflows. The biological classifications of sites in all catchments are discussed in this report, with an emphasis on those which were not good quality. The overall ecological quality indicated by the NRA Biological Classification is shown on catchment based maps.

The analytical quality audit of this survey demonstrated that the data was of good quality.

i

ACKNOWLEDGEMENTS

This report represents most of the work undertaken by the NRA South West Region's Field Control Biologists in 1990 and 1991. They undertook the initial site reconnaissances, all the sampling, and the sample processing. It also represents a substantial amount of the work undertaken by some members of the Region's Freshwater Science Section, who planned the programme, obtained cartographical site information, proof-checked the data, and produced this report. Data was input into the National Biological database by NRA Thames Region, who also computed the results. The Institute of Freshwater Ecology undertook the quality audits, and put all samples into long-term storage at Wareham.

The data evaluated in Section 3.1.4 was prepared by Moonsoft Ltd.

Especial thanks are due to the biologists of NRA Thames Region who processed 50 samples in 1990.

ii

CONTENTS

SUMMARY

I

ACKNOWLEDGEMENTS

	LIST OF	TABLES	v	
	LIST OF	FIGURES	v	
	1.	INTRODUCTION	1	
	1.1	Biological monitoring in the South West Region	1	
	1.2	Aim of the routine biological river quality monitoring		
,		programme	1	
	2.	METHODS	2	
	2.1	Survey design	2	
	2.2	Site location	2	
	2.3	The collection of site data	. 3	
	2.4	Macro-invertebrate methods	7	
	2.4.1	Sample collection	7	
	2.4.2	Sample processing	9	
	2.4.3	Sample storage	10	
	2.4.4	Analytical quality audit	10	
	2.4.5	Data archiving and analysis	12	
	2.4.6	The derivation of the NRA biological classifications of		
	. 7	ecological quality based on macro-invertebrates	12	
	2.4.7	Biological classification based on less than three season's		
		data	16	
	2.4.8	Interpreting environmental quality from the biological classification	17	i.
	2.4.9	Comparing the NRA Biological Classification with chemical		
		classifications	20	
	3.	THE ECOLOGICAL QUALITY OF RIVERS IN THE SOUTH WEST		
		REGION 1990/1991	22	
	3.1	Overview	22	
	3.1.1	Survey overview	22	
	3.1.2	Quality audit results	22	
	3.1.3	Overview of the ecological quality of the Region's		
	1	watercourses	24	
	3.1.4	The relationship between the NRA Biological Classification		
		and the NWC (chemical) Classification of rivers in the		
		South West Region in 1990	26	
	3.2		28	
	3.2.1	Interpreting the tables and maps	28	
	3.2.2	River Lim Catchment Catchment-1	31	
	3.2.3	River Axe Catchment Catchment-2	34	
	-			

Page

i

ii

CONTENTS cont.

Page 3.2.4 River Sid Catchment Catchment-3 37 3.2.5 River Otter Catchment Catchment-4 40 3.2.6 River Exe Catchment Catchment-5 43 3.2.7 River Teign Catchment Catchment-6 53 3.2.8 River Dart Catchment Catchment-7 57 River Avon Catchment Catchment-8 3.2.9 60 3.2.10 River Erme Catchment Catchment-9 63 3.2.11 River Yealm Catchment Catchment-10 3.2.12 River Plym Catchment Catchment-11 66 68 3.2.13 River Tavy Catchment Catchment-12B, 12C & 12D 72 3.2.14 River Tamar Catchment Catchment-12E to 12P inclusive 75 3.2.15 River Lynher Catchment Catchment-12R & 120 83 3.2.16 River Seaton Catchment Catchment-13 86 3.2.17 River Looe Catchment Catchment-14 89 3.2.18 River Fowey Catchment Catchment-15 92 3.2.19 Rivers Par and Crinnis Catchments Catchments-16 & 17 95 3.2.20 St Austell and South Cornwall Stream Catchments 99 Catchment-18 3.2.21 River Fal Catchment Catchment-19A (part), B, C, D & E 102 3.2.22 Helford and Lizard Peninsula Catchments Catchment-19A 106 3.2.23 River Cober Catchment Catchment-20 109 3.2.24 Lands End Catchments Catchments-21 & 22A (part) 112 3.2.25 River Hayle Catchment Catchment-22 (part) 115 3.2.26 Red River, Portreath, Bolingey and Perranporth Catchments Catchment-23 118 3.2.27 River Gannel Catchment Catchment-241223.2.28 Porth, Gluvian and Menalhyl Catchments Catchment-25A (part) 125 3.2.29 River Camel Catchment Catchment-25A (part), B, C & D 128 3.2.30 Valency and Crackington Streams Catchments Catchment-131 26 3.2.31 Rivers Strat and Neet Catchments Catchment-27 134 3.2.32 Hartland Streams Catchments Catchment-28 137 3.2.33 River Torridge Catchment Catchment-29 3.2.34 River Taw Catchment Catchment 30 140 144 3.2.35 North Devon Coastal and Lyn Catchments Catchments 31 & 32 148 REFERENCES 151 APPENDIX 1 Changes in the definitions of class bands for BMWP-score 153 APPENDIX 2 The National Water Council river classification 154 system APPENDIX 3 Biological sites not classified in 1990/1991 156

iv.

LIST OF TABLES

ľ

.

		Page
2.1	Discharge categories	. 7
2.2	The biological quality classes based on EQIS	13
2.3	The bands of the EQI values (based on 3 season's data) covering each biological class	15
2.4	RIVPACS suitability codes	16
2.5	EQI bands defining the biological classes when derived from single and two seasons combined data	17
2.6	Simplistic interpretation of type of pollution indicated by classes based on EQIs for ASPT and N-taxa	18
3.1	Summary of the quality audit results	22
3.2	Number of sites in each NRA Biological Class compared to each NWC Chemical Class	26
3.3	Mismatches between the NRA Biological Classification and the NWC Classification	28
3.4	Season codes	30
Al	Bands of EQIs for BMWP-score defining the NRA Biological Classes as originally defined independently, and as currently defined arithmetically, from the corresponding bands for the EQI ASPT and EQI N-taxa	153
LIST OF	FIGURES	
2.1	Standard sample data form used to record field data	4 -
2.2	Standard symbols used for habitat maps in the routine biological river quality surveys in 1990 and 1991	5
2.3	An example of a habitat map drawn for the 1990/1991 biological river quality survey	6
2.4	Standard site registration form used to record site information	8
2.5	Standard sample data form used to record macro- invertebrate sample data, and to calculate BMWP-score, ASPT and N-taxa	11
2.6	The determination of class bands for 3 seasons EQI ASPT	14
3.1	Number of 'gains', 'losses' and 'omissions' in successive audited samples. These are in roughly chronological order	23

LIST OF FIGURES cont.

	LIST OF	FIGURES CONT.	1	Page
	3.2	Proportion of sites belonging to different biological classes in 1990/1991		- 25
	3.3	Catchments in NRA South West Region		29
	3.4	Lim Catchment (1) NRA Biological Class - 1990/1991	2	33
	3.5	Axe Catchment (2) NRA Biological Class - 1990/1991		36
	3.6	Sid Catchment (3) NRA Biological Class - 1990/1991		39
	3.7	Otter Catchment (4) NRA Biological Class - 1990/1991		42
	3.8	Exe Catchment: River Exe (5 in part) NRA Biological Class - 1990/1991		48
	3.9	Exe Catchment: Exe Estuary and Clyst (5A & 5B) NRA Biological Class - 1990/1991		49
	3.10	Exe Catchment: Culm and Little Dart (5C & 5D) NRA Biological Class - 1990/1991		50
	3.11	Exe Catchment: Upper Exe (5E, 5F, 5G & 5H) NRA Biological Class - 1990/1991	•	51
	3.12	Exe Catchment: Yeo and Creedy (5J & 5K) NRA Biological Class - 1990/1991		52
	3.13	Teign Catchment (6) NRA Biological Class - 1990/1991		56
	3.14	Dart Catchment (7) NRA Biological Class - 1990/1991		59
•	3.15	Avon Catchment (8) NRA Biological Class - 1990/1991		62
	3.16	Erme Catchment (9) NRA Biological Class - 1990/1991		65
	3.17	Yealm Catchment (10) NRA Biological Class - 1990/1991	÷	68
	3.18	Plym Catchment (11) NRA Biological Class - 1990/1991		71
	3.19	Tavy Catchment (12B, 12C & 12D) NRA Biological Class - 1990/1991		74
	3.20	Tamar Catchment: River Tamar (12 in part) NRA Biological Class - 1990/1991		78
	3.21	Tamar Catchment: Inny (12E & 12P) NRA Biological Class - 1990/1991		79
	3.22	Tamar Catchment: Lyd, Thrushel and Wolf (12F & 12G) NRA Biological Class - 1990/1991		80

vi

LIST OF FIGURES cont.

3.23 Tamar Catchment: Upper Tamar (12H, 12J, 12K & 12L) NRA 81 Biological Class - 1990/1991 3.24 Tamar Catchment: Ottery & Kensey (12M & 12N) NRA Biological Class - 1990/1991 82 3.25 Lynher Catchment (12R & 12Q) NRA Biological Class -85 1990/1991 88 3.26 Seaton Catchment (13) NRA Biological Class - 1990/1991 91 3.27 Looe Catchment (14) NRA Biological Class - 1990/1991 Fowey Catchment (15) NRA Biological Class - 1990/1991 94 3.28 3.29 Par and Crinnis Catchments (16 & 17) NRA Biological 98 Class - 1990/1991 3.30 St Austell and South Cornwall Coastal Catchments (18) NRA Biological Class - 1990/1991 101 Fal Catchment (19A in part, 19B, 19C, 19D & 19E) NRA 3.31 Biological Class - 1990/1991 105 3.32 Lizard Peninsula and Helford Catchments (19A) NRA 108 Biological Class - 1990/1991 3.33 Cober Catchment (20) NRA Biological Class - 1990/1991 111 3.34 Lands End Catchments (21 & 22A, part) NRA Biological Class - 1990/1991 114 3.35 Hayle Catchment (22, part) NRA Biological Class - 1990/1991 117 3.36 Red, Portreath, Bolingey and Perranporth Catchments (23) NRA Biological Class - 1990/1991 121 3.37 Gannel Catchment (24) NRA Biological Class - 1990/1991 124 Porth, Gluvian and Menalhyl Catchments (part of 25A) NRA 3.38 127 Biological Class - 1990/1991 3.39 Camel Catchment (25A (part), 25B, 25C & 25D) NRA Biological 130 Class - 1990/1991 Valency and Crackington Catchments (26) NRA Biological 3.40 133 Class - 1990/1991 Strat and Neet Catchments (27) NRA Biological Class -3.41 136 1990/1991 3.42 Hartland Catchments (28) NRA Biological Class - 1990/1991 139

vii

Page

LIST OF FIGURES cont.

		Page
3.43	Torridge Catchment (29) NRA Biological Class - 1990/1991	143
3.44	Taw Catchment (30) NRA Biological Class - 1990/1991	147
3.45	North Devon Coast and Lyn Catchments (31 & 32) NRA Biological Class - 1990/1991	150

1. INTRODUCTION

This report describes the results of NRA South West Region's biological river quality monitoring survey for 1990/1991. Although the whole programme is described, only the results of the macro-invertebrate survey are presented here.

1.1 Biological monitoring in the South West Region

Before the NRA's formation in September 1989, there had been no comprehensive biological survey of the South West Region's rivers since the 1980 National River Quality Survey. The biological component of the 1980 survey covered 174 sites in the South West Region. These were actually sampled in either 1979 or 1980. Although a chemical river quality monitoring programme was being undertaken, there was no equivalent biological programme. In the western part of the Region, comprehensive audit surveys of macroinvertebrate species were undertaken on a catchment basis between 1980 and 1988. In the eastern part of the Region, detailed surveys were undertaken on selected catchments only.

The NRA South West Region's current biological monitoring programme was established in 1990. It is based on nearly 1000 sites representing more than 4000 km of river and approximately 30 km of canal. Apart from 22 key sites which are surveyed every year, each site is surveyed every two years. Macro-invertebrate samples are collected in three seasons, and macrophytes and habitat information are recorded once. The macro-invertebrate surveys are a part of the NRA's National Biological Survey programme.

1.2 Aim of the biological river quality monitoring programme

The aim of the biological monitoring programme was to monitor the ecological quality of running waters in the South West Region. It was to provide information complementing chemical data to enable more effective assessments of overall river quality and the impact of environmental changes to be made. In 1990/1991, biological monitoring was the only form of monitoring undertaken at 87 sites, most of which represented smaller tributaries. The surveys undertaken in 1990 and 1991 were to provide the baseline against which conditions in subsequent surveys could be compared.

The biological surveys undertaken in 1990/1991 represented the South West Region's contribution to the 1990 quinquennial National River Quality Survey, undertaken for the Department of the Environment by the NRA in England and Wales (National Rivers Authority, in prep.), by the Department of the Environment for Northern Ireland (DoE N Ireland, 1993) and the River Purification Boards (RPBs) in Scotland (Scottish Office, 1992).

The macro-invertebrate component of the programme, and the new methods developed for it which are described in this report, may become the basis of the United Kingdom's approach to implementing the forthcoming European Union Council Directive on the ecological quality of water. This directive will require ecological quality targets to be set for watercourses, and target dates for compliance to be specified.

2. METHODS

To ensure comparability between samples within the National Biological Surveys of the NRA, RPBs and DoE N Ireland, considerable effort was made to ensure that the methods were defined precisely.

2.1 Survey design

The NRA's Statutory Water Quality Objective Group recommended that regional biological monitoring surveys of all monitored watercourses should be undertaken, and that these surveys should be completed in one year. Resources available in the South West Region to implement this programme meant that these surveys could only be accomplished over two years. Each site is surveyed every other year, except for 22 key sites representing the main types of watercourses found in the South West, which are investigated every year to provide information on annual changes and the effect of droughts. This monitoring programme continues to be followed.

In 1990, at least one site was investigated on each of the main rivers and larger tributaries, including all the sites surveyed in the 1980 National Survey. In 1991, the intermediate sites on larger watercourses and smaller watercourses not covered in the chemical monitoring programme were sampled. For the 1992/1993 survey, whole catchments were surveyed in one or other of the two years.

In 1990/1991, 951 sites on rivers and 6 sites on canals were surveyed, representing 4241 km of river and 29 km of canal. Five chemically monitored reaches on lakes which form part of a watercourse were not included in the biological survey, because the biological methods were unsuitable for lakes.

2.2 <u>Site location</u>

Each site in the biological river quality monitoring network represented either a reach of river monitored in the routine chemical water quality monitoring programme, or a watercourse not monitored chemically but assigned a Water Quality Objective in the South West Water Asset Management Plan (South West Water Authority, 1989). The number of sites in the programme changes slightly as new sites are added or replaced.

Wherever possible, the biological monitoring sites were located away from artificial influences such as bridges, livestock watering holes and canalized reaches. Each site was chosen so that it was typical of the reach as a whole: if the reach was mainly deep and slow flowing, the site was deep and This was a major departure from previous biological slow flowing. monitoring surveys, where shallow riffles were chosen in preference. It reflected the fact that the programme was designed to monitor ecological quality as opposed to solely water quality, although water quality is a major component of ecological quality, and the different approach taken to dealing with habitat variations when relating the biota to water quality (see Section 2.4.6). Biological monitoring sites were as close as possible to their corresponding chemical monitoring sites, or at the downstream end of watercourses that were not monitored chemically. The precise locations of all the sampling sites were chosen after a field reconnaissance. An additional criterion for the site location was that, wherever possible, the sites were to be the same as those used in the 1980 National River Quality

Survey. We were fortunate in being one of the few NRA Regions that had kept the original biological records from that survey. These records included six-figure National Grid References. Unfortunately these were insufficient to find the precise location of most sites, so all were allocated new codes, and detailed records were made of their location (see Section 2.3) to enable them to be relocated with sufficient precision. The criteria for locating sites are described in more detail in Furse et al. (1986), and a training video (National Rivers Authority, 1990).

2.3 The collection of site data

Basic environmental data was recorded whenever a sample was taken. This was to enable a prediction to be made of the fauna that the site should support, if its environmental quality (including water quality) was good. To do this the River InVertebrate Prediction and Classification System; Version II (RIVPACS II) programme, developed by the Institute of Freshwater Ecology (IFE), was used. Standardised procedures for measurement and recording were used to maintain compatibility with RIVPACS. Stream width was measured to the nearest centimetre: this was the width of the water, not the stream The mean of three readings was recorded. Average depth was channel. measured as the average of quarter, half, and three-quarter distance across Both stream width and depth were to reflect the predominant the stream. conditions at the sampling site. Visual estimates of the composition of the stream bed over the whole sampling site were made. Boulders/cobbles (>64 mm diameter), pebbles/gravel (2-64 mm diameter), sand, and silt/clay were At sites representing recorded as percentage cover, ignoring bedrock. reaches that were not monitored chemically, electrical conductivity was This information was recorded on standard sample data forms measured also. (Figure 2.1). The methods have been described in more detail by Furse et al. (1986), and in a training video (National Rivers Authority, 1990).

A photographic record of the sites was made in each season, to aid relocating them precisely, and to provide a record of the surroundings. Brief notes were made to enable the sites to be re-located easily, and to warn of parking and access difficulties. The move from recording 6-figure National Grid References to 8-figure was also to ensure that the sites could be relocated accurately: a 10 m error could result in an apparent 10% change in habitat. It was very difficult to find where some samples for the 1980 National Survey had been taken, and a few could not be located at all.

Habitat maps were drawn covering 100 m of river centred on the invertebrate sampling site. The Nature Conservancy Council's (NCC) river corridor survey methods were used, as outlined in Nature Conservancy Council, 1985, although a number of the symbols were altered (see Figure 2.2). From 1992, the standard NRA symbols were used (see National Rivers Authority, 1982b), but with slight modifications to the substrate symbols. These habitat maps were to provide additional data to help interpret changes in biological samples in subsequent years. They were also to be used by the Region's Conservation Section as fixed transects to support their strategic habitat surveys. A single map was drawn each year that the site is visited. An example of one of the habitat maps is shown in Figure 2.3.

An attempt was made to record the presence of macrophyte species in the 100 m

NATIONAL RIVERS A RIVER QUALITY SUR BIOLOGY		SOUTH V	VEST (06) SAMPLE DATA
Themes use only Sample Reference	0690	0690	0690
SAMPLE	SPRING	SUMMER	AUTUMN
Stotus	01	01	01
Sample Date	···/··/ 1990	····/ 1990	···/···/ 1990
Sample Time Survey	901	902	ست:سب 903
Site Reference NRA06		1 502	505
Watercourse Litit			
Location			
Grid Reference	-		
Width	<u> </u>	m	i Li Li m
Average Depth	cm -	L. L. L. CM	
Boulders/Cobbles	·····×	×	····×
Pebbles/Gravel	····· X	·····×	····×
Sand	·····X	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	× × × ×
Silt/Clay	~ ~ ~ %	····· %	····» %
Sampling Method Sampler Initials		یر ہے۔ اسٹ جا سا	
TAXA DETAILS (see	over)		
SCORE RESULTS AN	D PREDICTIONS		
Scoring Families	<u> </u>	فتقترب	د است
BHMP Score	تعبيت	L.L.	
BHMP ASPT	بنت، بنت	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Predicted BMWP		<u> </u>	· · · · · · · ·
Predicted ASPT		····	السطيبة والمطيسة
No of Predicted Taxa			<u> </u>
IFE/FBA Group Method Of Prediction			
Suitable for Prediction ?	Y/N	Y/N	Y/N
WATER CHEMISTRY		Alternetives	to Alkalinity
Chemical Class		Handness	u u mg/l CaCOz
Chloride	mg/l	Calcium	mg/1
Alkalinity	_ mg CaCQ /l	Conductivity	ப் uS/cm
COMMENTS			
Signed Date		8 F A A	RA Thames Region 10Jogy 1990 Survey obney Mead bas Kiln Lane EADING erks R62 OSF

Figure 2.1 Standard sample data form used to record field data. Biological data was recorded on the reverse side, see Figure 2.5

artificial .	Symbols are the same as in FLORA	the NCC methodology, NRA except those marked *
B Bood bank	+ name	Habitats and Flow
SS sand	BITTE MARITATS	
gravel/pebbles	tindoes	slack
w: vegenied	ALAW WOUTS	ff rulle +
9 natural cobbies	Com locks	ትት iapids ፍሬ መስቀ
AA natural boulders a	S milei	39
ANE VEGETATION	↔ Width m	protructing rocks
) + name trees +	(no symbol) undercut bank	★ trash dan * ★ fallen log/tree *
P Willow - recent pollard	Substrates (submerged)	tallen log ciee
W Willow old, not pollard	BR bed rock	Margins/Exposed substrates
5 Standard willows	b boulders	
A Alder	c cobbles	
Milli Scrubishrubs	p pebbles	Start blue
	g grave)	grave!/pebbles
Dense open	s sano	- vegetaled
Sparse open	+ sil/mud	or cobbles
Recd/Scdoc Dense open Sparse open y short grass w	- peai	AA boulders
Exposed tree roots	draw tree symbols to sc	ale of tree on an

River Survey Habitat Types

н я. WOODLAND & SCRUB C. TALL BERB & FERN F. SWAMP/DUNDATION 1 Broad-leaved semi-nat 1 Bracken Upland spp rich veget Swamp - single sp. dom 1. planta hon Tall mixed assemblage Conterous semi-nal 3. Other - tail suderal 2 non ruderal plantation Mixed semi-natural plantation G. OPEN WATER D. ELATELAND Sandino Scrub - dense 1. 2 1. Dwarf scrub - dry scattered canalwe1 Carr - alder d.tch Lichen/bryophyle 3 milow Montane dyre €. Parkland pond. pool cut-off Healt/grassland - dry wei Recently felled wood ale 6. gravel par reservoir 8. GRASSLAND & MARSE E. MIRE, FLUSE AND SPRING marina Funning 1. Acidic unimproved Mares - bog 1. semi-improved Fen - reed stream Neutral unumproved sedge sweet-grass semi-improved COASTLAND 8. Calcareous unimproved muzed semi-improved 2. Bog flushes Improved/reserved 4. 5 Marsh/marshy grassland (For definitions refer to 4

345 Burray-Bligh NCC River Corridor Survey Draft Methodology)

ROCK cliff scree limestone pavement cave other artifictuation aster

1.

J. MISCELLANEOUS arable amenity grassland ephemeral/short herb hedge fence on bear lence set back wail building CATAVARS lish farm silage clamp sewage works galden stick pile food debris toad railway - distaed - used othe:

Figure 2.2 Standard symbols used for habitat maps in the routine biological river quality surveys in 1990 and 1991

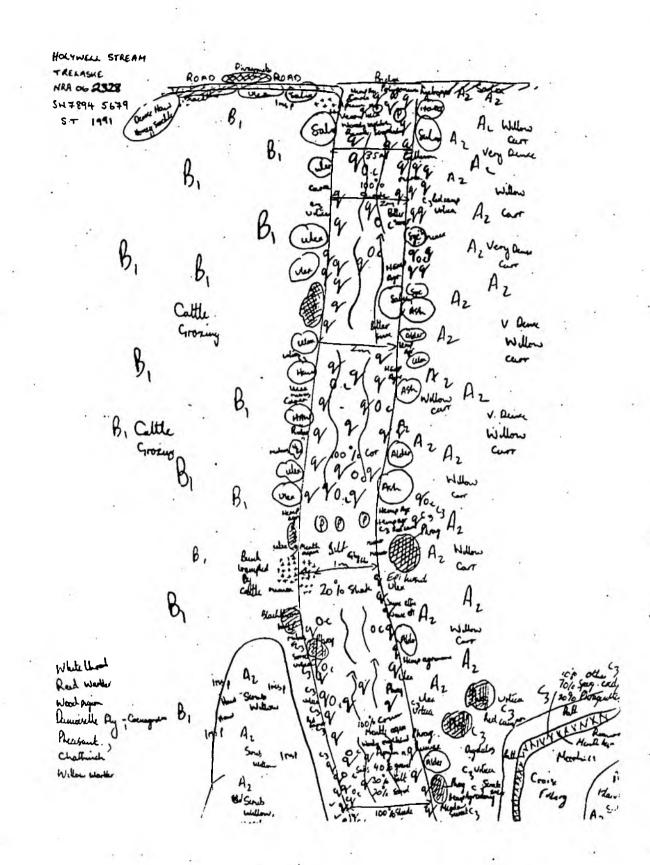


Figure 2.3 An example of a habitat map drawn for the 1990/1991 biological river quality survey

of river covered by the habitat maps; however the introduction of this in addition to the rest of the programme proved to be impractical in 1990. The recording of macrophytes began in earnest in 1991, following further training. In 1991 macrophyte species were recorded in Spring, Summer and Autumn, when the invertebrate samples were taken. From 1992 they were recorded in the Summer only (as recommended in Section B of Standing Committee of Analysts, 1987), and the coverage of mosses was enhanced.

In addition to field environmental data, some cartographical data was required to enable RIVPACS II to be used, including 6-figure Ordnance Survey National Grid Reference (from which longitude, latitude, mean air temperature and mean air temperature range was estimated by RIVPACS II); altitude, to the nearest meter; distance from source, to the nearest 0.01 km; and an estimate of slope to the nearest 0.1 m per km. Mean annual discharge was taken from hydrometric data, and recorded as discharge categories according to Table 2.1. Details of the methods have been described in Furse et al.(1986). This information was recorded on standard site registration forms (Figure 2.4). Note that although only 6-figure grid references were required for the data analysis using RIVPACS, more precise 8-figure grid references were recorded.

Table 2.1 Discharge categories

	Discharge	Category		mean annual flow cubic metres per s	econd)	
	1 2 3 4			≤ 0.31 0.31 - 0.62 0.62 - 1.25 1.25 - 2.50		
	5 6 7	• ,	1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		7
·	8 9 10	:	÷	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		

2.4 Macro-invertebrate methods

2.4.1 Sample collection

Samples were collected in each of three seasons:SpringMarch-MaySummerJune-AugustAutumnSeptember-November.

The standard NRA sampling methods for invertebrate monitoring surveys were used to ensure compatibility with RIVPACS and comparability between samples. The sampling was qualitative, the aim being to collect representatives of as many of the taxa that were present at the site as possible. At each site, all the invertebrate habitats were sampled in proportion to their cover. This standardisation enabled comparable, albeit coarse, estimates of relative

RIVER QUALITY SURVEY - 1990 BIOLOGY	SOUTH WEST (06 SITE REGISTRATIO	
SITE DETAILS		
Site Reference NRAO5 :		
Locotion <u>Locotion</u> Grid Reference	<u> </u>	
Cotchment 06	<u> </u>	
District 99		
RQO		
Altitude (m)	·	
Upstream Grid Ref. Downstream Grid Ref. Length of Reach (km)		
Chemical point		
Chemical point		
Chemical point		
Chemical point	Dote	
Comments	Det.	
Chemical point	Det.	

Figure 2.4 Standard site registration form used to record site information.

abundances to be made.

At shallow-water sites, samples were obtained by a three minute kick with a pond-net, and a one minute manual search. A standard FBA-pattern longhandled pond net was used, with a flat bottomed 250 x 200 mm aperture, fitted with a 1 mm mesh collecting bag that was at least 270 mm deep. When kick sampling, the net was placed downstream from the sampler's feet, resting on the river bed, and the sampler disturbed the substrate rigorously with the heel of their boot to dislodge the fauna to a depth of about 10 cm. The net was held close enough to the sampler for the invertebrates to flow into the net with the current, but far enough away for most of the stones and gravel to drop out before entering the net.. Where there was insufficient current, the net was swept over the disturbed area to collect the invertebrates. The three minutes included only this active sampling. whenever it became too full or blocked. Animals The net was emptied Animals from marginal areas; including emergent vegetation and tree roots, were collected by actively searching them with the pond net. Animals from the surfaces of large stones were picked-off by hand or with a stiff brush during the manual search, and were added to the rest of the sample.

Deeper water sites were sampled with a medium naturalist's dredge (also known as a rectangular dredge), with a 457×200 mm aperture, and fitted with a 1 mm mesh collecting net. The sample comprised from three to five trawls, plus a one minute search in the shallows close to the river banks using a pond net. The number of trawls varied, the aim being to collect a similar sized sample to a 3 minute kick.

Large stones and fragments of vegetation were washed over the collecting net and discarded. The samples were put into standard screw-topped containers or large watertight buckets for transporting them back to the laboratory.

The samples were preserved in 70% alcohol (industrial methylated spirit) to which 5% glycerol was added. The preservative was added either in the field or immediately on return to the laboratory at the end of the day. The strength of alcohol added to the samples was increased to 90% in Summer 1990. This was because some of the earlier samples were preserved inadequately, because the alcohol was diluted by the liquid held in sediment and plant material, and because the samples were not fixed in formaldehyde.

There was a national requirement to fix the samples in formaldehyde before preservation in alcohol to make the specimens more resistant to damage, because the samples were to be deposited in long-term storage. The samples from the South West Region were not fixed in formaldehyde because there were no suitable laboratory facilities. This was the only major deviation from the standard NRA invertebrate sample processing procedures.

2.4.2 Sample processing

The samples were stored in the laboratory prior to sorting and identification. All the samples were sorted in the laboratory.

Before sorting, the samples were washed over 0.5 mm mesh sieves to remove the preservative and silt. Larger stones and fragments of vegetation were discarded. Shallow, flat-bottomed white trays were used for sorting. Large samples were sorted a portion at a time. Identification was to family, except for oligochaetes and water mites which were not identified further. Logarithmic abundance categories were estimated. The data was recorded on standard sample data sheets (Figure 2.5), on which the abundance categories are defined.

Contrary to the method described in Furse et al. (1986), more than 2 hours was often spent in sorting the samples. This reflected both the richness of the fauna and flora in the South West Region, and the initial inexperience of the mostly newly appointed staff. Sample processing is now much quicker, but sorting still often takes more than two hours.

For the quality audit (see Section 2.4.4), one or two specimens of each invertebrate family were placed in a small vial containing 70% alcohol preservative. When sorting had been completed, the sample and the vial were put into a standard 1.3 litre polythene screw-topped container to which 70% alcohol preservative had been added. The screw-topped jars were placed in standard sized plastic containers (lidded trays) for transporting them to IFE Wareham, for the quality audit and for long-term storage.

To help clear a backlog of samples at the end of 1990, approximately 50 samples were processed by biologists in NRA Thames Region. The backlog was caused by insufficient staff and laboratory resources being available at the start of the survey.

2.4.3 Sample storage

All the invertebrate samples collected in 1990 and 1991 for this survey were placed in long-term storage at IFE Wareham, together with other samples collected throughout the United Kingdom in 1990 for the National Surveys of River Quality.

2.4.4 Analytical quality audit

This and all subsequent biological river quality monitoring surveys have been subject to an independent quality audit. Before 1990, there had been no systematic programme of quality assurance for the Region's biological data.

The need for quality assurance was recognised during the initial discussions about the NRA Routine Biological Monitoring Programmes and the 1990 National Biological Survey. Cost and time did not allow for a full quality control programme to be introduced, which would have involved independent sampling, sorting and analysis. Instead, a quality audit was instigated, covering sample processing, and taxonomic identification. A training video on sample collection was made (National Rivers Authority, 1990), and shown to all staff as a substitute for a quality audit on sample collection, which would have been impractical and too costly.

The audit of the quality of sample sorting and identification involved a small percentage of the samples being re-sorted and identified by IFE. The methods and the results were discussed in Kinley and Ellis (1991).

TAXA LIST	Site Refer	where NRA:
Sort Contract	A Care and	and the set of the set
GROUP 1 TAXA (10)	GROUP 4 TAXA (6)	GROUP 6 TAXA (4)
Siphionuridae	Nertidoe Viviparidoe Ancyfidae (Acroloxidae) Hydroptilidae	Boetidoe Stolidoe U SUB-TOTAL TAXA
Toenlopterygidoe Leuctridoe Capnildoe Pertodidoe	Unionidae Corophilidae Corophilidae Commarkae Commarkae Corongonyctidae	GROUP 7 TAXA (3) Valvotidae
Perfidoe	Plotycnemidae Coenagriidae SUB-TOTAL TAXA	Lymnoeldae Physidae Planorbidae Sohoeriidae
Phrygoneldae Image: Comparison of the second se	GROUP 5 TAKA (5) Mesovelidoe	Giossiphoniidoe
SUB-TOTAL TAXA	Cortxidoe U U U Hollpildoe U U U Hygrobildoe U U U Dytlecidoe U U U (Notaridoe)	Chironomidoe Ch
Lestidoe	Combidae Com	Oligochoeto
Corduilidos	Dryopidae Emidae Chrysomeildae Curcuijanidae	
(Ecnomidoe) Philopotamidoe 🗖 🗖 🗖	Hydropeychidoe 🗀 🗖 🗖	Other Taxa
	Tipulidae 🛛 💭 🖓	
GROUP 3 TAXA (7) Coonldoe	Pionarfidae (Dugesildae) Dendrocasildae	
Nemouridos 🗆 🗆 🗖		1
Rhyocophilidae 📄 🗖 💭 (Glassosomotidae)	No of individuals $A = 1-9$	
Polycentropodidoe	B = 10-99 Abundance C = 100-999 D = 1000-9999 E = 10000+	

Figure 2.5 Standard sample data form used to record macro-invertebrate sample data, and to calculate BMWP-score, ASPT and N-taxa. Total taxa = N-taxa. Field data was recorded on the reverse of this, see Figure 2.1

2.4.5 Data archiving and analysis

The data from the National Biological River Quality Surveys undertaken in 1990/1991 by the NRA, RPBs and DoE (N Ireland) was analyzed centrally on computer by the Biology Section at NRA Thames Region. They also entered the data onto the National Biological Database, which they managed. The central data processing ensured that all the biological classifications were calculated from the same algorithms. It also enabled the latest version of RIVPACS to be used (RIVPACS II was not completed until early in 1991), and also facilitated the development and testing of the NRA Biological Classification. Having all the biological data on the same database enables it to be compared easily to data collected in other or subsequent surveys, and for developments in RIVPACS and the NRA Biological Classification to be applied retrospectively to it. Central processing was also cheaper.

Manually completed data recording forms were sent to NRA Thames Region, where the data was entered into the computer database. A print-out of the data was returned to Exeter, where it was checked against the original data forms for transcription errors. Following correction, the biotic indices, RIVPACS predictions, Observed : Expected ratios (see below) and the NRA Biological. Classification were computed. This took approximately 8 hours, in batch mode, overnight. The results were returned to the Region in dBase and ASCII format on floppy disk, and as hard copy on paper. The data from South West Region was also returned on a copy of the Thames Biologists' System database, which formed the basis of the Region's biological computer archive.

2.4.6 The derivation of the NRA biological classifications of ecological quality based on macro-invertebrates

Biological quality is linked to water quality by biotic indices. The indices used by the NRA are the Biological Monitoring Working Party score (BMWP-score), which is the sum of individual scores for each family, as listed in Figure 2.5; the Average BMWP-score Per Taxon (ASPT); and the number of taxa (N-taxa, only the indicator families used in the BMWP-score system are considered). These indices were developed for the 1980 National Survey. The definitions of the individual taxon scores have been amended to take account of some advances in taxonomic nomenclature (see Figure 2.5).

Different watercourses, and different sites on the same watercourse, will support different macro-invertebrates because of differences in their geography, climate, geology, and the habitats that they provide. The values of biotic indices derived from different sites will therefore vary, even when their water is of similarly good quality. Biotic indices cannot be used to compare the water quality of different sites directly, unless the sites are very similar morphologically and geographically.

To overcome this problem, the NRA biological classifications are based on Observed to Expected ratios (O/E ratios) of the biotic indices. The observed values are those obtained from the pooled samples from three seasons, and the expected values are the values expected if the site had good water quality. The ratios remove the effects of natural differences between the invertebrate communities at different sites, and so place the biotic indices on universally comparable scales. The O/E ratios were originally termed Ecological Quality Indices (EQIs) by Wright et al. (1988). Although the term EQI is no longer favoured by its original authors because it has more widespread connotations than merely the ability of a site to support its appropriate macro-invertebrate assemblage (Institute of Freshwater Ecology, 1991), it is still used by the NRA because of its simplicity,.

RIVPACS II was used to predict the composition of the fauna (and hence the values of biotic indices) expected at any site under natural, unpolluted conditions, based on its physical and geographical characteristics.

EQI ASPT = <u>observed ASPT</u> ASPT predicted by RIVPACS

EQI BMWP-score = <u>observed BMWP-score</u> BMWP-score predicted by RIVPACS

EQI number of BMWP taxa = observed number of BMWP taxa number of BMWP taxa predicted by RIVPACS

These EQIs represent a major development of biotic indices, because they enable them to be used to compare the conditions at different sites directly. They were made possible by the development of RIVPACS II. The national surveys undertaken by the NRA, RPBs and DoE (N Ireland) in 1990 represented the first large-scale operational use of RIVPACS.

Four biological quality classes are defined in terms of these EQIS (Tables 2.2, 2.3 and 2.5).

The class boundaries were determined from the original data-set on which RIVPACS II was based. For the EQI ASPT, Class A represented the largest 95% of values in the data-set; the ranges of Classes B, and C were the same as the band between EQI = 1, and the lower limit of Class A (see Figure 2.6). The class limits for EQI N-taxa (and originally BMWP-score too) were determined in the same way, except that Class A represented the highest 90% of values in the data-set. The difference was because of the greater sensitivity of N-taxa to sampling variations.

Table 2.2 Descriptions of the biological quality classes based on EQIs

Biological Class	Class Description	observed index in relation to predicted index
 	4 - 41	
A	Good	similar
В	Moderate	moderately poorer
С	Poor	poorer
D	Very Poor	very much poorer

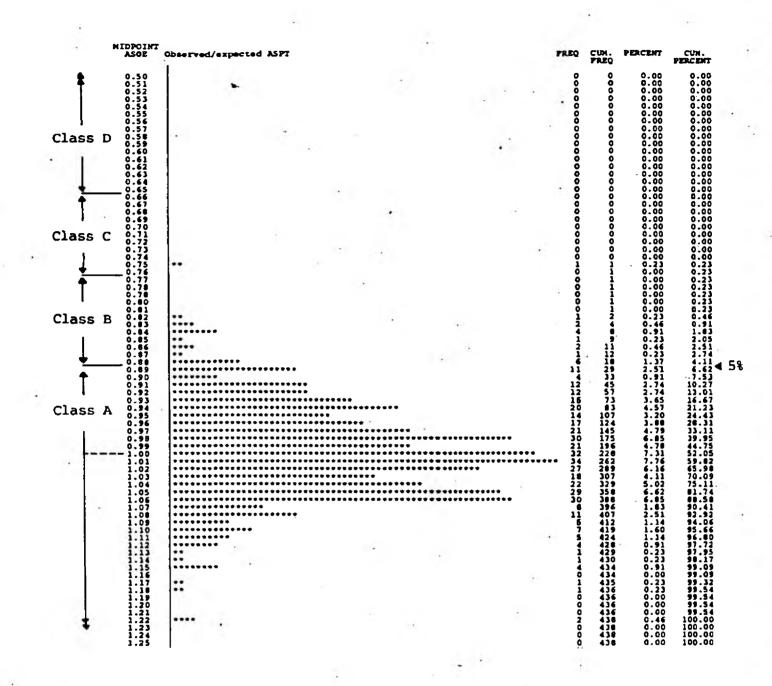


Figure 2.6 The determination of class bands for 3 seasons EQI ASPT. This was based on data from 438 supposedly un-impacted sites throughout Britain, from which RIVPACS II was derived. The first two columns show the EQI ASPT values and their frequency in the data-set. Class A represented the highest 95% of EQI values, and poorer classes the lowest 5% of values. From the location of the 5 percentile cumulative percentage frequency (last column), the EQI value representing the lower boundary of Class A can be read off the first column. The range of values comprising Classes B and C was the same as the range between EQI = 1 and the lower limit of Class A.

Biolog Class	ical	EQI ASPT range	EQI N-taxa range	EQI	BMWP-score range	4	
· A		>0.89	>0.79		<u>></u> 0.70		-
В		0.77-0.88	0.58-0.78	. 0	.45-0.69		
С		0.66-0.76	0.37-0.57		.24-0.44		
D		≤0.65	≤0.36		≤0.23	,	

Table 2.3 The bands of the EQIs (based on 3 season's data) covering each biological class. See also Table 2.5.

The class limits for BMWP-score were originally determined independently from those of ASPT and N-taxa, however they should have been calculated from the class limits of ASPT and N-taxa. This error was revealed by the Region's Freshwater Science Section (see Institute of Freshwater Ecology, 1991). The values used in this report (see Tables 2.3 and 2.5) may differ from values used in older reports. The new and old class bands are shown in Appendix 1.

When there is no difference between the observed and predicted fauna, and therefore between the biotic indices derived from them, the EQIs will approximate unity, and it can be assumed that the water quality is good. When the observed values of biotic indices are much less than the predicted values, it can be assumed that the environmental quality, and in particular the water quality, is degraded.

The number of BMWP-scoring taxa (and EQI N-taxa) is sensitive to toxic pollution as well as to organic pollution. The EQI N-taxa will also respond to other environmental disturbances including the physical degradation of habitats by siltation or channelisation.

The ASPT (and EQI ASPT) relates solely to organic pollution, and the few pollutants with toxic effects related to respiration, such as cyanides. The tolerance of invertebrates to organic pollution is based on their tolerance to respiratory impairment caused by the deoxygenation that accompanies organic pollution. The ASPT is insensitive to other types of toxic pollution, such as acidification and metalliferous discharges, although it is sometimes affected by them, because they reduce its precision (sometimes drastically), by reducing the number of taxa on which it is based.

The BMWP-score (and EQI BMWP-score) responds to both organic and toxic pollution. It is the arithmetical product of ASPT and N-taxa. Being a derivative index, it provides no additional information to that provided by ASPT and N-taxa. The EQI BMWP-score is used in the overall NRA Biological Classification (see below) to prevent a marginally poorer EQI of N-taxa alone from downgrading the overall class.

There is considered to be a 5% chance of misclassification by EQI ASPT, but a 10% chance of misclassification by EQI N-taxa and EQI BMWP-score. This was the basis of the percentiles used to defined Class A. The chances of misclassification are greater when the EQI is near the band limits of the classes. ASPT is less reliable when N-taxa is very small.

An overall NRA Biological Classification has also been derived from the

classifications based on each of the EQIs shown in Tables 2.3 and 2.5. Its value is either the median of the classes indicated by the EQIs of ASPT, Ntaxa and BMWP-score, or the class indicated by EQI ASPT if that is the poorest. This is to take account of the greater certainty of poor quality when indicated by the ASPT.

RIVPACS' predictions are most reliable when the site is similar to other sites in the data-set from which it was derived. This is indicated by the suitability codes (Table 2.4), also known as box numbers. RIVPACS does not attempt to predict the faunas of sites that are very different to any of those from which it was derived.

Suitability codes	Probability that site below 25 different site groups re	
1 2 3 4 5 7 8 9	<0.1% predict unable to predict	tion abandoned tion abandoned t probability tion abandoned

Table 2.4 RIVPACS suitability codes

The biological classifications are suitable only for permanently flowing watercourses. Streams that usually become dry naturally at some time of the year, such as winterbournes, cannot be classified because RIVPACS II cannot predict their natural fauna. The data-set from which RIVPACS II was derived included only permanent streams. If a stream becomes dry because of overabstraction, or an unusually bad drought, RIVPACS II can be used, because it will predict the fauna that the site should support under normal conditions.

RIVPACS II is unsuitable for ponds, lakes, reservoirs and canals. Sites in these habitats are inappropriate for the NRA Biological Classification.

The NRA biological classifications relate solely to the quality of the macroinvertebrate communities. They recover from pollution more quickly than fish (over months rather than years), because macro-invertebrates have shorter life-cycles, and their populations can recover by drift from unaffected regions upstream. Invertebrates (at family level and as biotic indices) are less sensitive to eutrophication than either macrophytes or algae.

2.4.7 Biological classification based on less than three seasons' data

RIVPACS II can be used to predict the invertebrates that should be obtained from a site in any single season (Spring, Summer or Autumn); in any combination of two.of_these seasons; or in all three seasons. Its predictions are less reliable when based on fewer seasons' data. This reflects the greater sampling error inherent in single samples compared to multiple samples from a site. Because of this, the NRA biological classifications are based on the pooled data from three seasons' samples. Data from two seasons or a single season was only used when unavoidable.

Table 2.5 EQI bands defining the biological classes when derived from single and two seasons combined data. The standard three seasons' bands are shown for comparison.

Index	Biological class		al	single season's data	two seasons' pooled data	three seasons' pooled data	
ASPT	• •	A B C D		≥0.84 0.68-0.83 0.52-0.67 ≤0.51	≥0.88 0.76-0.87 0.64-0.75 ≤0.63	≥0.89 0.77-0.88 0.66-0.76 ≤0.65	×
N-taxa		A B C D		≥0.67 0.34-0.66 0.01-0.33 0.00	≥0.77 0.54-0.76 0.31-0.53 ≤0.30	≥0.79 0.58-0.78 0.37-0.57 ≤0.36	4
BMWP- score		A B C D	2	≥0.56 0.23-0.55 0.01-0.22 0.00	≥0.67 0.41-0.66 0.20-0.40 ≤0.19	≥0.70 0.45-0.69 0.24-0.44 <u><</u> 0.23	

The biological classes are defined by different bands of EQI values when determined from only one or two seasons' data (Table 2.5), to take account of the poorer precision in these circumstances. When these different bands are used, the probability of a good quality site being misclassified as poorer quality is the same as when three seasons' data is used, ie 5% for EQI ASPT, and 10% for EQI N-taxa and EQI BMWP-score. These EQIs must depart further from unity than EQIs for three seasons data, before the disparities between observed and predicted biotic indices can be ascribed to environmental stress, rather than to sampling variation.

Class bands have also been derived for each individual season and each combination of pairs of seasons, to take account of faunal differences between seasons. These have not been adopted by the NRA for evaluating single and two season data, because it was felt that they would make the classification too complex.

2.4.8 Interpreting environmental quality from the biological classification

Although the derivation of the NRA Biological Classification is more complicated than that of other biotic indices, it is actually much simpler to interpret. This is because the NRA Biological Classification is not affected by natural environmental conditions that influence conventional biotic

indices, and which have to be taken into account when interpreting them.

At its simplest, the overall NRA Biological Classification indicates whether the underlying quality of the invertebrate fauna, and therefore the environment which supports it, is good, moderate, poor or very poor throughout the whole year (ignoring transient deteriorations). The classification errs on the side of caution, a good class being assigned unless there is a reasonable certainty of poor quality. There is a relatively small chance of a site being classed as not good when it is good (Type I error).

If more information about the cause of poorer quality is needed, the classes indicated by the EQIS for N-taxa and ASPT can be interpreted. ASPT indicates the degree of organic pollution. N-taxa indicates toxic pollution, or habitat degradation such as siltation. Again, the classification is cautious. Sites are classed as good unless there is a reasonable chance that they are not good. When a site is good, there is a 5% chance of it being classed as not good according to ASPT, and a 10% chance when classed according to N-taxa or BMWP-score. When N-taxa is very low, ASPT is imprecise, because it is based on few taxa. The classes indicated by N-taxa and ASPT can be interpreted separately; however it is better to interpret them together. Table 2.6 is a very simplistic guide to the probable cause of poorer classes (though whenever EQI ASPT is low organic pollution may be present, and vice versa). The table is only a rough guide to the to the most obvious causes, and should be treated with caution, because there are instances when it may not provide the correct interpretation. BMWP-score can be used as a single index relating to both effects, but it gives no indication about the causes of poor quality.

Table 2.6	Simplistic :	interpretation	of	type	of	pollution	indicated	by
	classes base	d on EQIs for 1	ASPT	and N	-ta	a		

ASPT N-taxa	GOOD	MODERATE	POOR	VERY POOR
GOOD	good	organic	organic	organic
MODERATE	toxic	organic	organic	organic
POOR	toxic	toxic (+ organic)	toxic (+ organic)	organic (+toxic)
VERY POOR	toxic	toxic (+ organic)	toxic +/or organic	toxic +/or organiç

Note: parentheses indicate that this type of pollution may be present as well

Where EQI ASPT is poor, but EQI N-taxa suggests good quality, organic pollution (such as from sewage effluent or farm waste) is the most likely cause of poor ecological quality. Organic pollution is also most probably the cause of poor ecological quality where both EQI ASPT and EQI N-taxa are low, though some form of toxic pollution could also be responsible. Where EQI N-taxa is poor, but EQI ASPT is good, toxic pollution (such as from acidic metalliferous discharges or industrial effluents) or habitat degradation (such as siltation or channelisation) are the most likely causes of poor ecological quality.

More information can be obtained from the taxa lists themselves (although these have not been presented in this report), by considering the tolerance of each taxon to different forms of pollution or disturbance. This information cannot be gained from the biological classifications. The tolerance of each taxon to organic pollution is indicated by its individual BMWP-score. These scores are approximate, for example some chironomids and oligochaetes are very intolerant of organic pollution, although these taxa have been assigned the lowest BMWP-scores. The tolerance of each taxon to other forms of stress such as from acidification, metal pollution, or siltation bear no relationship to their BMWP-scores.

The EQIs and biological classifications based on the combination of three seasons' data indicate the extent to which a site supports its expected range of macro-invertebrate taxa throughout the year. They will not detect variations in quality that occur during the year. They are influenced little by intermittent pollution except where there is insufficient time for full recovery, or by pollution that occurs at only one time of the year (in the South West of England slurry pollution from farm yards is a problem mainly in Winter, from which biotas often recover during the rest of the year). This is a direct result of basing the classifications on data pooled from different seasons. Consider an extreme condition, where a site with good biological quality in one season is lifeless in the other two. The pooled sample would include most of the taxa that were expected at the site, except for the relatively small number that occur naturally only in the two seasons when the river was lifeless. The site is likely to be classed as being of good biological quality because only a few of the taxa expected in the year were absent, despite it being lifeless for much of the time. The following year's classification is likely to be affected, and will represent the degree of recovery achieved that year (when the last sample of the year was collected). Pollution events that cause long-term impacts and which influence subsequent years' classifications, are probably 'more important' than those which have only short-term effects. Most pollution incidents are not this severe, and are unlikely to affect the classification. This is not a shortcoming of the classification, it is merely that the classification has been designed as a measure of overall biological health rather than to measure the severity of individual pollution incidents.

Pollution events and other short-term impacts can be monitored by evaluating individual samples. For this, it is important that biological samples are taken regularly: an advantage of sampling in three seasons each year.

Changes in the biological quality at any site, as opposed to differences between sites, are much better monitored by the actual biotic indices, rather than their EQIs. The EQIs provide baseline target values.

The NRA biological classifications based on combined seasons' data describe

the long term biological quality of rivers. They reflect chronic impacts such as from continuous pollution and channelisation. Where there is regular or frequent intermittent pollution, the biological classifications indicate the state to which the biota recovers moderately quickly (within a year). They represent the state to which the biota is likely to recover from small or moderate pollution incidents that have transient physical or chemical impacts. The overall NRA Biological Classification is a statement of the overall ecological resilience and health of a river, and as such is a useful measure.

2.4.9 Comparing the NRA Biological Classification with chemical classifications

The overall NRA Biological Classification is not meant to mirror the National Water Council (NWC) River Quality Classification (reported in National Rivers Authority, 1991a) or the proposed NRA General River Quality Classification (discussed in National Rivers Authority, 1991b). If the biological and chemical classifications reflected the same environmental factors, and were interchangeable, one or other would be unnecessary.

Two major differences between the biological and chemical classifications arise solely because of the way in which they are derived from the raw data:

- (1) Biological classifications based on data pooled from three seasons' samples more closely represent best than worst conditions, as they are statements of the underlying ecological health of the watercourse. In contrast, the chemical classifications are based on 'worst' (95 percentile) conditions to make them compatible with discharge consent conditions. The chemical classifications are therefore influenced by a small number of samples that reflect poor conditions, whereas the biological classifications only respond to long-term conditions;
- (2) The chemical classifications relate to conditions during a three year period, whereas the biological classifications relate to conditions in one year only.

Differences between the biological and chemical classifications other than because of the method of derivation include:

- (1) The biological classifications are based on a different and much larger set of determinands (the individual taxa): as a result, the biological classifications respond to a much wider range of environmental influences. Physical degradation of the habitat (such as siltation) is the main influence on the overall NRA Biological Classification other than water quality, although it is very often caused by water quality (for example the deposition of ochre is associated with metal contamination, which is itself toxic to invertebrate communities);
- (2) Individual biological samples have a greater likelihood of detecting the influence of pollution incidents than chemical samples, especially those that occur intermittently, because biological systems take time to recover from pollution and other impacts. Unlike chemical samples, which usually represent conditions in a

fixed window between 09.00 hrs and 16.00 hrs, biological samples will reflect conditions outside this window. Biological samples will only miss pollution events if the impact is transitory, involves a small volume of pollutant, or occurs a long time before a biological sample is taken;

(3) The chemical classification is based on absolute limits, regardless of the natural state of the watercourse, whereas the biological classification is based on limits relative to what is expected at each site if conditions were good. Some sites may never be capable of achieving a very good chemical class.

Sampling and statistical errors influence the classifications differently:

- (1) The classifications have different precision. The errors associated with wrongly downgrading a site to a poorer class have been minimised in the NRA Biological Classification, at the expense of increased errors in wrongly assigning a good class to a poorer quality environment;
- (2) Whereas the bands of chemical conditions defining each chemical class are fixed, and the risk of misclassification because of error increases when the number of samples on which it is based is reduced, the bands of biological conditions defining each biological class depend on the number of samples (see Table 2.5), so that the risk of erroneously downgrading is independent of the number of samples.

The biological classes are not equivalent to the chemical classes in terms of the ranges of quality that they represent. NRA Biological Class A ("good ecological quality") covers a much wider band of environmental conditions than NWC-Class 1 ("good river quality"). The conditions represented by the biological classes were determined independently from those of the chemical classifications; they were based purely on the conditions that could be differentiated by the biological methods used.

There will be a greater difference between the NRA Biological Classification and the proposed NRA Chemical Classification (National Rivers Authority, 1991b), which represents sanitary criteria only (biochemical oxygen demand, dissolved oxygen, and ammonia), than with the NWC classification. The NRA Chemical Classification will not respond to acidification, metal pollution, or suspended sediment. A higher proportion of sites will therefore be assigned a good chemical class and a poor biology class.

It is inevitable that the chemical and biological classifications will be compared. This is possible, so long as both classifications are understood. See Section 3.1.4 for a comparison of the NWC (chemical) River Quality Classification and the NRA Biological Classification in the South West Region in 1990.

THE ECOLOGICAL QUALITY OF RIVERS IN THE SOUTH WEST REGION 1990/1991

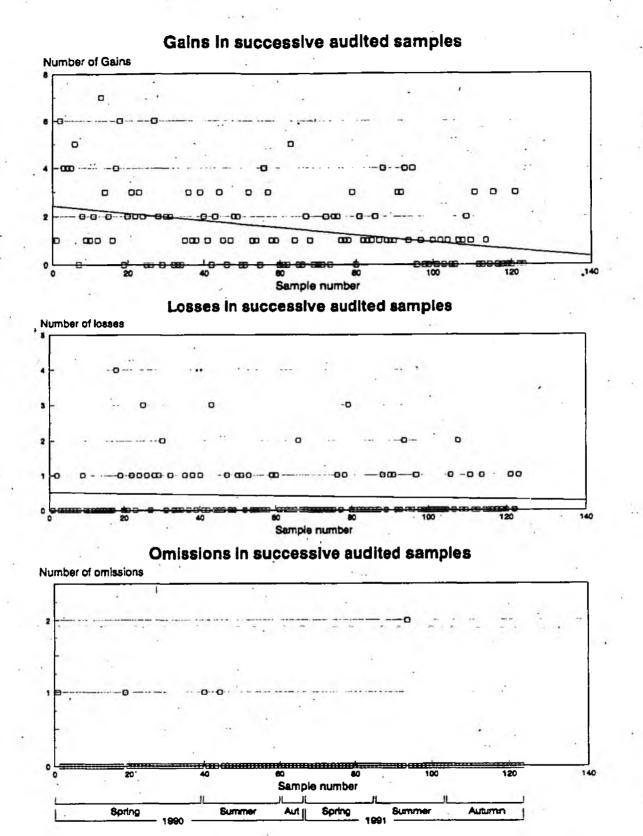
3.1 Overview

3.

3.1.1 Survey overview

In 1990/1991, 943 sites on rivers were surveyed. Three sites were not surveyed because their locations were not found. Of those surveyed, one was sampled but not classified because it was lacustrine, and two were sampled but not classified because they regularly become dry for part of the year. This left 940 sites that were classified in 1990/1991. Six canal sites were also surveyed, but not classified.

3.1.2 Quality audit results


The results of the independent quality audit have been reported in detail by Gunn et al. (1991), and Gunn et al. (1992), and were discussed in Kinley & Ellis, 1991. They are summarised in Table 3.1. BMWP-scoring families found in the sample by the auditors that were not found by NRA biologists were termed 'gains'. Taxa recorded as present by NRA biologists that were not found in the sample by the auditors were termed 'losses'. There were more gains than losses, and this was typical of the audit results from other NRA Regions and RPBs. A small number of recording errors were noted by the auditors, where NRA biologists had recognised the presence of a taxon and placed an example in the vial, but failed to record its presence on the sample data sheets. These errors were termed 'omissions'.

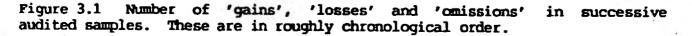

i.	Total number of samples taken	number of samples au	dited	mean losses	mean omissions		
19	90 1490	63		0.48	1.83	0.01	-
19	91 1425	60		0.33	1.08	0.03	

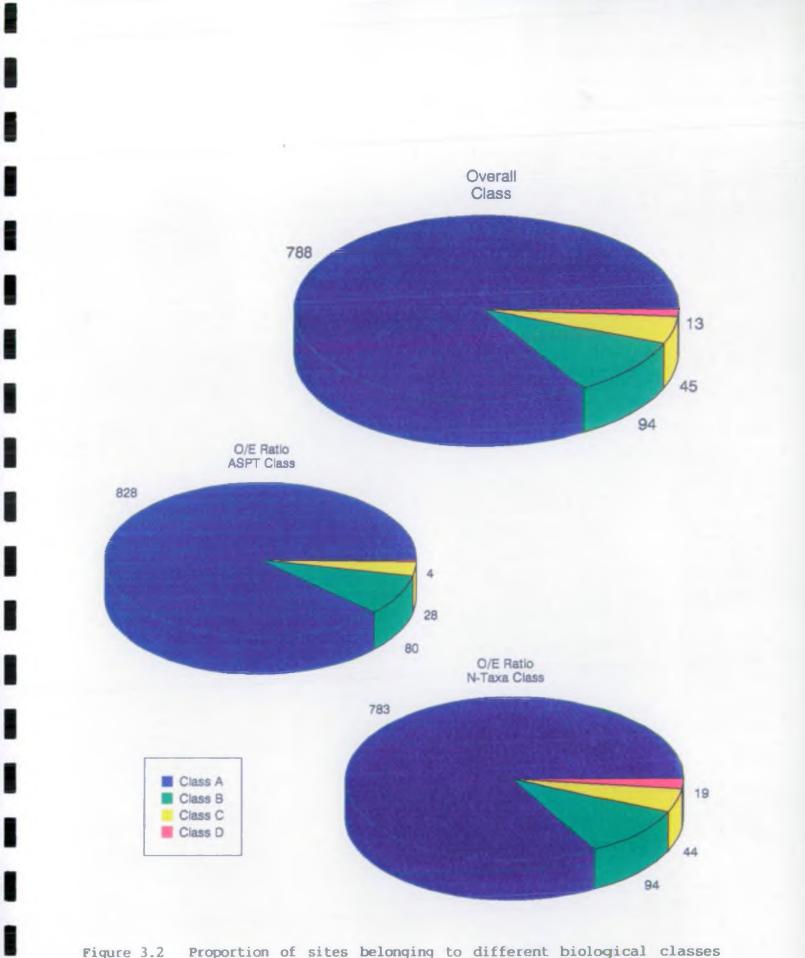
Table 3.1	Summary	of	the	quality	audit	results
-----------	---------	----	-----	---------	-------	---------

The audit results for NRA South West Region were good compared to the results from other NRA Regions in 1990 (see Kinley & Ellis, 1991) and RPBs (see Scottish Office, 1992). South West Region was one of three NRA Regions whose audit results in 1990 were considered suitable for defining a proposed target distribution. The South West Region's results improved further in 1991.

Figure 3.1 shows the variations between consecutive samples that were audited. Poorer results early in the programme reflected the lack of experience and training of staff. The results improved quickly as staff gained competence, and this was reflected clearly in the results for individual staff.

é

3.1.3 Overview of the ecological quality of the Region's watercourses


The biological quality of streams and rivers in the South West Region, as reflected in their macro-invertebrate communities, was generally good (Figure 3.2). Approximately 87% of the river length classified in 1990/1991 was good quality according to the overall NRA Biological Classification. The high proportion of good quality waters reflected the paucity of heavy industry in the Region, and the fact that most of the larger conurbations were near the coast, with their sewage (representing that of three quarters of the Region's population) being discharged to the sea.

The invertebrate fauna of the Region was particularly rich, reflecting the mild maritime climate. Other biological surveys in the Region indicated that taxonomic richness at the family level was not always translated to richness at the species level.

Agriculture probably had the greatest impact on water quality in the Region. Unfortunately, macro-invertebrate communities (particularly at family level) are relatively insensitive to eutrophication, which is one of the main impacts of agriculture on freshwaters. Agriculture is thought to have contributed to the blue-green algal blooms in many of the Region's lakes and ponds during 1989 and 1990. In 1990 and 1991, more pollution incidents were recorded from farms than from any other identified source in the South West Region (National Rivers Authority, 1992a, 1992c).

Both the china clay extraction industry, and the largely defunct metal ore mining industry had major impacts on the ecological quality of many watercourses, particularly in the western part of the Region. Most of the Region's surface waters were neutral to acidic, and many were influenced by the underlying metalliferous geology.

A severe drought in 1990, following a similar drought the year before, affected many smaller streams in the Autumn, particularly in East Devon and on Dartmoor, although low flows did not substantially affect the NRA Biological Classifications based on pooled seasons' data. Many of the Region's watercourses also suffered from low flows in 1991.

3.1.4 The relationship between the NRA Biological Classification and the NWC (chemical) Classification of rivers in the South West Region in 1990

The NRA Biological Classification and the NWC River Quality Classification of rivers in the South West Region in 1990 were very different, and at face value contradictory: the NRA Biological Classification indicated that most rivers were of good quality, whereas the NWC Classification indicated that a much larger proportion were of fair, poor or bad quality (see Table 3.2).

Table 3.2 Number of sites in each NRA Biological Class compared to each NWC (chemical) Class in 1990. Biological classification based on original bands, shown in Appendix 1; NWC-classification based on criteria shown in Appendix 2.

NRA Biological Class							
155	A	В	Ċ	D	`	Total	
•	56	3	1	. 0	2	60	
	143	10	. 0	0		153	
•	124	14	0	0		147	
	58	17	16	5		96	
4.14	3	0	2	0		5	
	384	44	27	6		461	
	•	56 143 124 58 3	55 A B 56 3 143 10 124 14 58 17 3 0	55 A B C 56 3 1 143 10 0 124 14 0 58 17 16 3 0 2	56 3 1 0 143 10 0 0 124 14 0 0 58 17 16 5 3 0 2 0	A B C D 56 3 1 0 143 10 0 0 124 14 0 0 58 17 16 5 3 0 2 0	

Despite the fact that the NRA Biological Classification and the NWC chemical classifications reflect very different aspects of water quality (see Section 2.4.9), there is still concern in some quarters that they do not give identical classifications to the same sites. This is mostly because of a misunderstanding of the NRA Biological Classification (see Section 2.4.8). Before a realistic assessment of the disparities between the NRA Biological and NWC classifications is possible, mismatches owing to differences in their derivation must first be identified, so that they can be discounted.

In the evaluation described below, an attempt was made to estimate the possible extent of differences between the NRA Biological Classification and NWC Classification owing to two differences in their derivation: the duration to which the classification relates (a single year for the biological classification and a three year period for the chemical classification); and that the chemical classification relates to worst (95 percentile) short-term quality whereas the biological classification more closely relates to best long term quality (see Section 2.4.9). Both will cause sites' NRA Biological Class to be better than their NWC Class, but cannot cause the NRA Biological Class to be worse than the NWC Class.

A mismatch because of the different periods to which the classifications relate was considered likely to have occurred when a poor chemical class was assigned to a site where the chemical samples collected in 1990 alone did not indicate such a poor chemical class. To do this, an NWC Classification based on data from 1990 only was calculated for all sites and compared to the NWC Classification based on data for the three year period from 1990 to 1988. Chemical classifications derived from one year's data are less precise than those based on three years' data, because the number of samples on which they are based is much less. The chances of missing occasional poor quality that defines the 95 percentile conditions is greater with fewer samples, so single year classifications will be biased in favour of better quality. The degree of bias has not been estimated. In many cases the chemical classifications derived from 1990 data alone were based on only 12 samples. It is usual not to determine an NWC-Class when there are less than ten samples, because the precision is considered to be too low. Two sites were not classified on the 1990 data alone, because of this. In the South West Region, the Weibull method is used to estimate 95% percentile values on which the NWC classification is based, and this requires a minimum of 19 samples, see Ellis (1989). When there were less than this number, the highest value observed was used as an estimate of the 95 percentile.

Mismatches because the biological classification reflects only chronic poor quality, whereas the NWC classification reflects the 95 percentile (worst short-term) conditions was considered likely to have occurred when a poor chemical class was assigned, but less than 30% of samples reflected poor quality.

NRA Biological Class A, representing 'good ecological quality', covers a wider range of conditions than NWC-Classes 1A and 1B, which represent 'good [chemical] river quality'. Because of this, two evaluations were undertaken In the first, it was assumed that NRA Biological Class A (see Table 3.3). equated to NWC-Classes 1A and 1B (Assumption 'a'). The biological and chemical classifications were considered to match when a site was classified as either: of good biological quality (Class A) and of good chemical quality (NWC-Class 1A or 1B); or not of good biological quality (Class B, C or D) and not of good chemical quality (NWC-Class 2, 3 or 4). In the second evaluation it was assumed that NRA Biological Class A equated to NWC-Classes 1A, 1B and The biological and chemical classifications were 2 (Assumption 'b'). considered to match when a site was classified as either: of good biological quality (Class A) and of good to fair chemical quality (NWC-Class 1A, 1B or 2); or not of good biological quality (Class B, C or D) and of poor or bad chemical quality (NWC-Class 3 or 4). In reality, NRA Biological Class A probably relates to a range of water quality conditions from NWC-Class 1A to somewhere between NWC-Classes 1B and 2.

The NRA Biological Classification and NWC Classification were in agreement at 57% of sites, assuming biological Class A = NWC-Classes 1A-1B (assumption 'a'), and 79% of sites, assuming biological Class A = NWC Classes 1A-2 The true extent of agreement was probably somewhere (assumption 'b'). Mismatches, where the NRA Biological between these two values. Classification indicated better conditions than the NWC chemical Classification owing to differences in the period that they relate to (three years v one year), accounted for 31% of all mismatches (Assumption 'a') or 28% (Assumption 'b'). Mismatches owing to the chemical classification being based on worst conditions whereas the biological classification is based on longer-term 'best' conditions accounted for 54% (Assumption 'a') or 30% (Assumption 'b') of mismatches. These are over estimates, because some of the mismatches would have been because of real differences, or statistical error.

Table 3.3 Mismatches between the NRA Biological Classification and the NWC Classification

Assumption	Matches	Mis- matches	Biol Class worse than	Biol Class better than		Reaso	n
		ind cones		NWC Class	Year	Acute	Other
'a'(A = 1A-1	B) 262	199	14	185	62	108	15
'b'(A = 1A-2)	•	97	37	60	27	29	4
Notes:							
Assumptio	on 'a' -	NRA Biolo and 1B	gical class A	is equivalent	to NW	C-Clas	ses lA
	'b' =	NRA Biolo 1A, 1B and	gical class ∦ d 2.	is equivale	nt to	NWC-C	lasses
Matches	-		of sites whe ations 'agreed		and	biolo	ogical
Mismatche	S =		sites where t		ficat	ions d	id not
Reason	•	reason fo	or the NRA B. an the NWC (ch				being
Year	-		istry occurred	-			1990
Acute	-	poor chem	ical quality <30%) and the	occurred in a	ı smal	1 num	per of

Although these estimates are subject to errors (real differences and sampling errors are hidden), and bias in the case of errors owing to year, a substantial proportion of the differences between the two classifications could be explained by differences in the classification procedures. None of the mismatches where the biological classification was worse than the chemical classification could have been caused by these differences in the classification procedures.

The proposed NRA Chemical Classification differs from the NRA Biological Classification because it is based on only three sanitary determinands. Most of the poorer biological quality in the South West was caused by pollution from acidic metalliferous mine drainage and china clay extraction, to which the NRA Chemical classification would not respond.

3.2

The ecological quality of individual catchments

The order in which the quality of each catchment is discussed in this section is that of the catchment codes, shown in Figure 3.3.

3.2.1 Interpreting the tables and maps

The maps in (Figures 3.4-3.45) show the overall NRA Biological Classification for each catchment. Biological classes based on EQI ASPT, EQI N-taxa, EQI BMWP-score and the overall NRA Biological Classification are listed in the tables for each catchment, as are the actual EQIs and the biotic indices observed from the samples. The data is

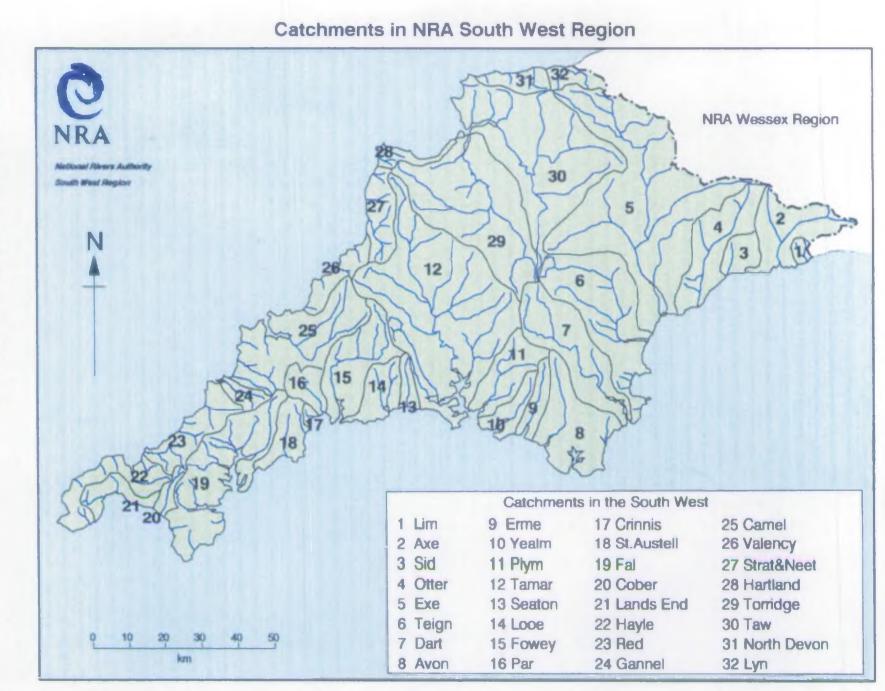
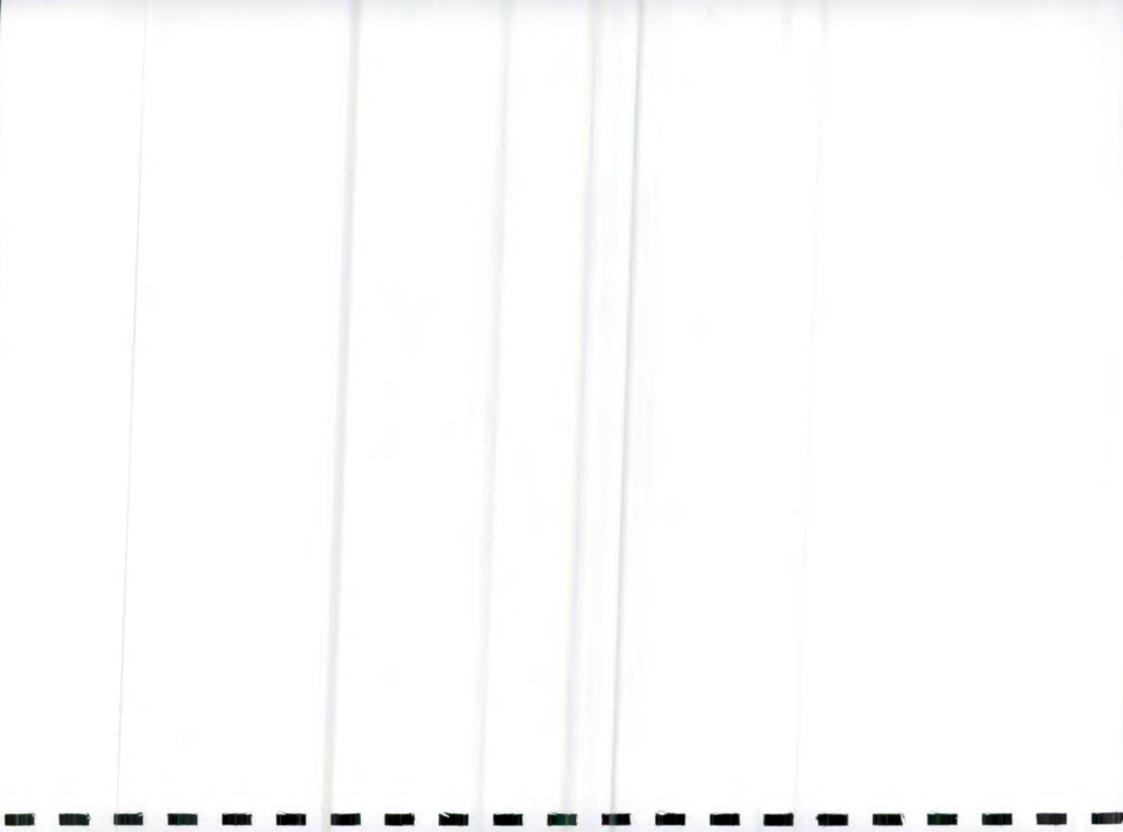



Figure 3.3 Catchments in NRA South West Region

that pooled from samples collected in all seasons. The data therefore reflects the ecological quality achieved during 1990 or 1991, but not variations in quality that may have occurred during the year '(see Section 2.4.8) Data from 1991 only is given for sites that were surveyed in both 1990 and 1991.

Sites with a RIVPACS suitability code of 1 (see Table 2.4) are distinguished on the maps from those that were less suitable (suitability codes 2-5). The actual suitability codes are included in the tables. The classification of sites with low RIVPACS suitability is less accurate than those with high suitability, because RIVPACS predictions will be less accurate. It is not possible to quantify the degree of inaccuracy.

The EQI bands that determine the biological classes depend on the number of samples on which they are based (see Section 2.3.7). The seasons in which each site was sampled have been tabulated as codes, defined in Table 3.4.

Both the biological site codes and the chemical site codes (User Reference Numbers, URNs) that are used to archive the data are listed in the tables. It is helpful if these are quoted when requesting further data for the sites. Although not part of the Public Register, biological data collected in monitoring surveys are treated as if they were, in accordance with NRA policy.

	Table	3.4	Season	codes
--	-------	-----	--------	-------

. *	Code		Season(s)	
	1		Spring only	
	2		Summer only	
	3		Autumn only	
	. 4	· · ·	Spring and Summer only	. 4
	5		Spring and Autumn only	
•	. 6		Summer and Autumn only	
1. A.	7		Spring, Summer and Autumn	
	7			

3.2.2 River Lim Catchment Catchment-1

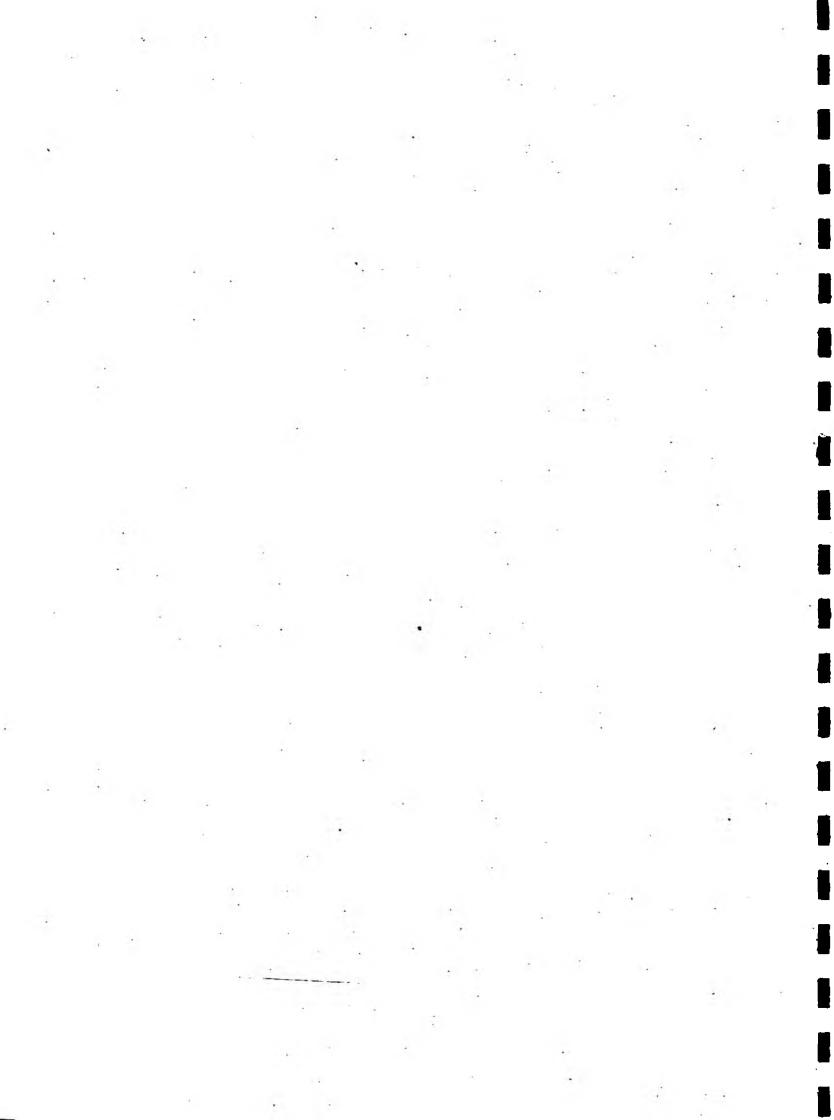
Summary

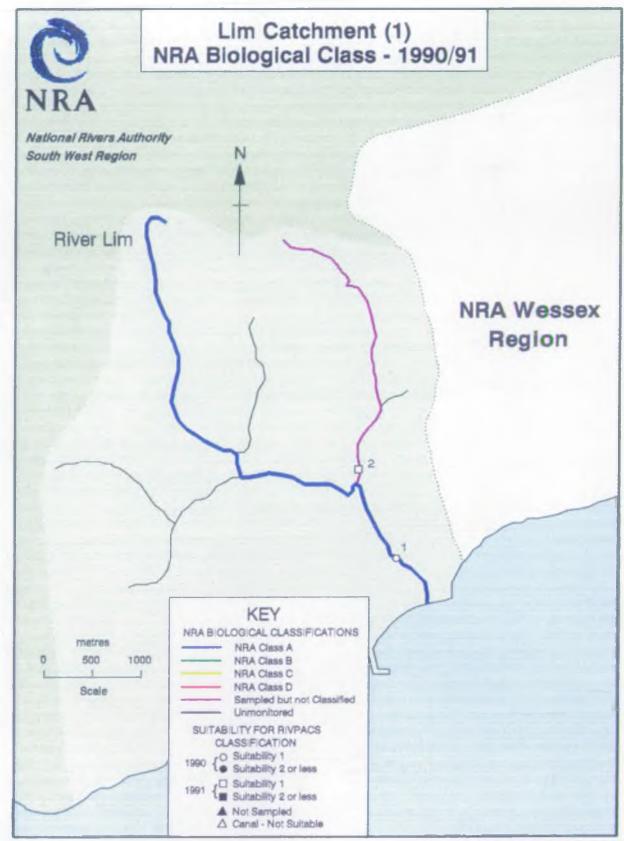
Of 10 km of watercourses in the Lim catchment monitored by 2 sites, 65% were classed as good quality, according to the NRA Biological Classification. The remaining 35% (representing Harcombe Stream) could not be classified because this watercourse becomes dry regularly.

Likely reasons for poorer biological quality

Although Harcombe Stream could not be classified, its fauna indicated that it was of good quality when flowing.

Catchmer	nt: Alver Lim	Corresponding	Freelance map	filena	me(s):CATC	H1.DRV		•										
No. on Map	Watercourse Name	Site Location Name			Chem. URN	RIVPACS Suitebility		Sesson Code		ASPT			C Ratio			ASPT B		
1	L1m	25m u/s br Mill Green	SY 3400 9253	0101	R01A002	1	1990	7	30	5.80	174	0.90	0.93 0	0.04	٨	A	A	A
2	Harcombe Stream	5m u/s br prior to STW	SY 3330 9333	0102			1991	4	24	6.40	153	0.00	0.00	0.00				•
1	L		1			1		1								ي المستعمل	î	ليسسط


(ey to Biol. Cles	s: A = Good, ∉ = Site	B = Moderate, C = Poor, D = Very Poor. * = Canal - Unsuitable for regularly dries up - cannot be classified, \$ = Site was not sampled	classification, + = Lacustri d due to location difficulty	ine site - also unsuitable, j = New site far 1992/1993' or other error,
Ver: 91.3	June 1993	NRA South West Region, Manley House, Exater.		Index compiled by Russ Dellen. Freshwater Biology. Ext 2472.
	4			


. .

•

:

I

RDALLEN MAPS V913 (CATCHI.DRW)

Figure 3.4 Lim Catchment (1) NRA Biological Class - 1990/1991

3.2.3 River Axe Catchment Catchment-2

Summary

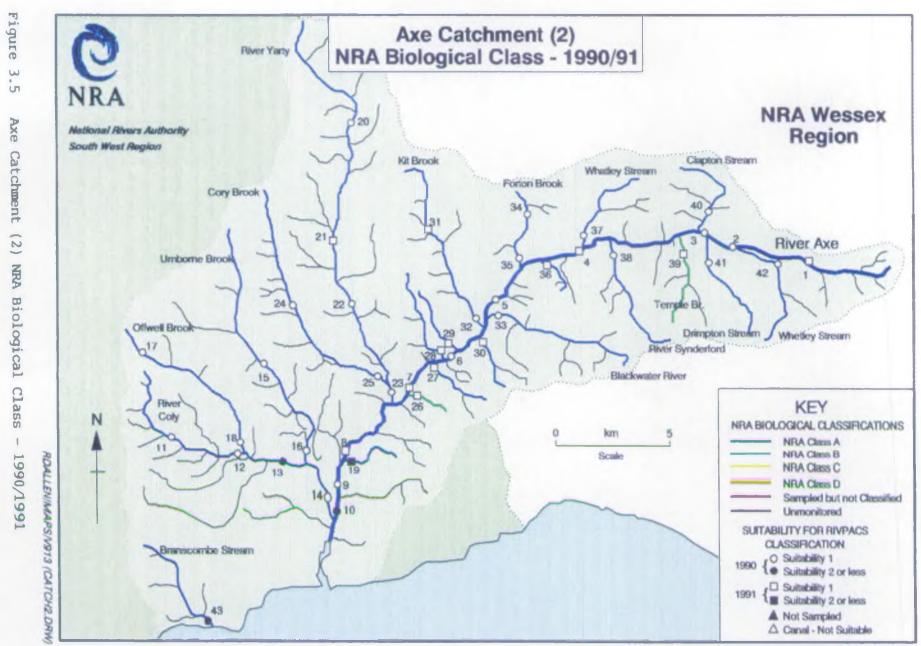
Of the 192 km of watercourses monitored by 43 sites in the River Axe catchment, 96% (41 sites) were good, and 4% (2 sites) were moderate quality, according to the NRA Biological Classification. None were classed as poor or very poor quality.

Likely reasons for poorer biological quality

Despite being classed as good quality, the River Axe and many of its tributaries including the River Yarty were known to be suffering from eutrophication. Although not reflected in the biotic indices based on macro-invertebrate communities, eutrophication was thought to have affected the fish and algal communities. There was a permanent bloom of benthic diatoms at Whitford Bridge throughout the year, and large stands of blanket weed (<u>Cladophora</u>) and water crowfoot (<u>Ranunculus</u>) were present in the lower reaches of the Axe during the Summer and Autumn.

The lower reach of **Umborne Brook** was of only moderate quality in terms of its EQI N-taxa (although its overall NRA Biological Class was good) which suggested either a degraded habitat or toxic pollution, though no potential sources of such pollution were identified other than a sewage treatment works effluent.

Old Park Brook was of moderate quality because of moderately poorer than expected N-taxa. A poor quality sample in Autumn, which had a low ASPT and N-taxa, indicated that the monitoring site was affected by a severe organic pollution incident.


There was insufficient water in **Chappelcroft Brook** for a sample to be collected in Autumn 1991. This was thought to be an effect of the drought, rather than a regular occurrence, so this watercourse was classified. RIVPACS is unsuitable only for streams which normally dry-up in most years.

The moderate quality of Temple Brook was the result of moderately poorer than expected ASPT. This suggests that it was affected by organic enrichment, which is consistent with the problems from farm discharges that are known to affect this stream. No specific discharges were identified.

Although the lower reach of the Branscombe Stream had an overall NRA Biological Class of A, it was classed as moderate quality according to its EQI N-taxa. This was thought to be a result of dredging at the monitoring site. This monitoring site has since been replaced by another that is not dredged, and which represents the biological quality of the lower Branscombe Stream better.

No. on Map	Watercourse Name	Site Location Name	NGR	Site Ref.	Chem. URN	RIVPACS Suitability	Yest	Season Code	Ob N-Fams	ASPT			E Rat ASPT		0/E Re N-Fams			Btol Clas
1 2 3 4 5 6 7 8 9 10	Ало Ало Ало Ало Ало Ало Ало Ало Ало Ало	20m d/s A3066 br Mosterton 30m d/s Sesborough Bridge Oethill Ferm Waycroft 60m u/s Forde Bridge 25m u/s br Broom 75m u/s A358 br Weycroft 125m u/s Bow Bridge 300m u/s Whitford Bridge 100m d/s footbr Nunford Deiry 50m u/s Ane Bridge	ST 4568 0525 ST 4295 0570 ST 4035 0603 ST 3626 0534 ST 3263 0248 ST 3075 0002 SY 2902 9833 SY 2645 9555 SY 2611 9463 SY 2593 9265	0232 0212 0213 0233 0214 0215 0234 0230 0202 0203	R02C001 R02C002 R02C003 R02C004 R02C005 R02C005 R02C007 R02B001 R02B002 R02B002		1991 1990 1990 1991 1990 1990 1990 1991 1991 1990 1990	7 7 7 7 7 7 7 7 7 7	37	5.90 6.00 6.00 6.00 6.40 5.80 6.00 5.80 5.80	244 227 246 307 226 221 217	1.09 1.20 1.10 1.20 1.44	1.02 1.05 0.98	1.08 1.20 1.51 1.09 1.07 1.05	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	****	*******	~~~~~~
11 12 13 14	Coly Coly Coly Coly Coly	2Dm u/s Woodbridge 75m u/s Brinkley Bridge 15Dm u/s ford (10m u/s footbr) Heathayn 5Dm u/s bridge Colyford	SY 1885 9533 SY 2125 9514 SY 2342 9437 SY 2535 9268	0208 0209 0210 0211	R028003 R028004 R028005 R028005	1 1 3 1	1990 1990 1990 1990	7 7 7 7	31	6.00 6.00 6.00 6.30	186 191 187 233	0,93 0,95 0,98 1,08	0.95 0.95 0.98 1.01	0.91 0.96	~ ~ ~	***		
15	Umborne Brook Umborne Brook	25m u/s Triffords Farm br 75m u/s Coly confluence	SY 2232 9946 SY 2485 9430	0205 0204	R028007 R028008	1	1990 1990	7		6.70 6.30	221 171	0.98	1.06		A B	Â	Â	1
17	Offwell Brook Offwell Brook	100m d/s Offwell footbridge 25m u/s br Road Pitt Ferm	SY 1930 9874 SY 2148 9534	0206 0207	R028009 R028010	\cdot $\frac{1}{1}$ \cdot	1990 1990	7		6.50 5.80	229 179	1.09 0.91	1.01 0.92		Â	Â	Â	Â
19	Bulmoor Stream	100m u/a Whitford Bridge	SY 2633 9533	0231		2	1991	7 5	31	5.30	164	1.19	1.08	1.28	A	•	•	•
20 21 22 23	Yarty Yarty Yarty Yarty	100m u/s Newhaven Bridge 15 u/s Longbridge 100m u/s Beckford br 100m u/s A35 br Gemmons Hill	ST 2587 1103 ST 2552 0551 ST 2650 0158 SY 2813 9812	0225 0243 0227 0228	R020003 R020004 R020005 R020006	1 1 1 1	1990 1991 1990 1990	7 7 7 7	39 34	6.40 6.40 6.30 6.10	219 248 213 252	0.99 1,10 0.98 1.27	1.01 1.01 0.99 1.01	1.11 0.97	~~~	~~~~	***	***
24 25	Corry Brook Corry Brook	40m u/s rd br Rose Farm 100m u/s rd br Old Corryton	ST 2421 0244 SY 2684 9908	0228 0229	R02D001 R02D002	1	1990 1990	777		6.40 6.00	218 227	1.01 1.09	1.01 0.95	1.02 1.03	~	~~	Â	Â
26	Dld Perk Brook	50m u/a Axe confl	SY 2909 9798	0235		1	1991	7	21	5.60	117	0.63	0.91	0.57	8		8	B
27	M111 Brook	20m u/s Axe confl	SY 2965 9921	0236		1	1991	7	35	6.00	211	1.01	0.98	0.98	•		A]	۸
28	Chapplacroft Brook	60e u/s Axe confl	ST 3045 0000	0237		1	1991	4	23	5.80	133	0.74	0.99	0.73	0	A	A	A
29	Smellridge Stream	25m u/s rail br prior to Axe	ST 3068 0037	0238	1	1	1991	7	38	6.20	236	1.13	0.99	1.12	A	A	Α.	A
30	Stanmery Stream	50m u/s Axe confl	ST 3202 0100	0239		1	1991	7	37	6.40	236	1.09	1.03	1.11	A	A	A	A
31 32	Kit Brook Kit Brook	10m u/s br Marfords 25m u/s road bridge Axe Farm	ST 2958 0628 ST 3194 0167	0241 0223	R02C012 R02C013	1	1991 1990	777	36 36	6.30 6.40	2 28 2 32	1.09	0.99 1.03	1.08	Å	*	1	- 2
33	Blackwater River	50m u/a br Buddlewall	\$1 3301 0217	0222	R02C006	1	1990	1	30	6.30	240	1.09	1.01	1.09	A	A	A	A
34 35-	Forton Brook Forton Brook	50m u/s B3162 rd br 100m d/s Tatworth STW	ST 3403 0709 ST 3375 0463	0220 0221	R02C010 R02C011	1	1990 1990	7 7	33 35	5,90 5,80	195 204	0.99 1.04	0.99 1.01		* *	A	*	Â
36	Hewood Stream	40m u/s Axe confl	ST 3462 0498	0240		1	1991	7	41	6.20	254	1.24	1.01	1.26	A	A	•	A
37	Whatley Stream	30m d/s railway bridge Anmarham	ST 3648 0556	0219	RO2CO1S	1	1990	7	36	6.10	221	1.09	1.07	1.16	A	A .	A	A
38	Synderford	20m.u/s footbridge Beare Farm	ST 3776 0573	0218	R02C014	1	1990	7	37	6.30	233	1.06	1.04	1.12	A		A	A
39	Temple Brook	20m u/a Dathfil br	ST 4072 0587	0242	R02C018	1	1991	7	27	5.10	137	0.80	0.84	0.67	•	8	B	
40	Clapton Stream	50m u/a rd br u/s Clapton	ST 4162 0718	0216	R02C017	1	1990	7	35	6.00	210	1.07	1.05	1.13	÷ A	A	A	۸
41	Drimpton Stream	20m u/s Netherhey Ford	ST 4165 0542	0217	R02C009	1	1990	7	33	6.00	198	0.99	1.01	1.00	A	A	A	
42	Whatley Stream	25m u/s road bridge Potew11 Farm	ST 4469 0493	0224	R02C016	1	1990	7	36	6.10	220	1.08	1.04	1.12	A		A	A
43	Branscombe Stream	25m u/a pylona Branscombe Mouth	SY 2068 8820	0201	R02A001	2	1990	7	23	6.10	140	0.69	1.03	0.71	8	A	•	•
			· · · · · · · · · · · · · · · · · · ·								_	_						

Key to Biol. Class		B = Moderate, C = Poor, D = Very Poor, $*$ = Cenal - Unsuitable regularly dries up - cannot be classified, $\$$ = Site was not as	a for classification, + = Lacustrine site - also unsuitable, $ $ = 1 ampled due to location difficulty or other error,	New site for 1992/199	3
Ver: 91.3	June 1993	NRA South West Region, Menlay House, Exeter.	Index compiled by Russ Dallan.	Freehwater Biology.	Ext 2472.

3.2.4 River Sid Catchment Catchment-3

Summary

All 15 km of watercourses monitored by 4 sites in the River Sid catchment were classed as good quality, according to the NRA Biological Classification.

Likely reasons for poorer biological quality

N/A

atchme	nt: River Sid	Corresponding	Freelance map	filen	ame(s):CATO	H3.DRM							_					
No. on Map	Watercourse Name	Site Location Name	NGR	Site Ref.	Chem. URN	- RIVPACS Suitability	Year	Season Code	Ob N-Fams	ASPT			E Rat ASPT		O/E Re N-Fam			
1 2 3	Sid Sid Sid	75m u/s Stoney br Sidbury 20m u/s A3052 br Sidford 25m u/s footbr Sidmouth 300m u/s chem	SY 1402 9168 SY 1375 8995 SY 1260 8812	0301	R03A001 R03A002 R03A003		1991 1990 1990	77	34	6.30	213	1.02 1.00 0.79	1.01	1.01	A		Â	Â
4	Roncombe Stream	15m u/s br Cotford	SY 1425 9222	0304	R03A013	1	1991	- 7	32	6.40	205	1.00	0.99	0.99	A	A	A	^

Key to Biol. Class: A	i = Good, B = Moderat I = Site regularly dr	e, C = Poor, D = Very Poor, $*$ = Cenal - Unsuitable for classification, $*$ = Lacustries up - cannot be classified, $$$ = Site was not sampled due to location difficulty	ine site - also unsuitable, ; - New site for 1992/1993 or other error,
Ver: 91.3 Jun	ne 1993 NRA Sou	th West Region, Manley House, Exeter.	Index compiled by Russ Dallen. Freshwater Biology. Ext 2472

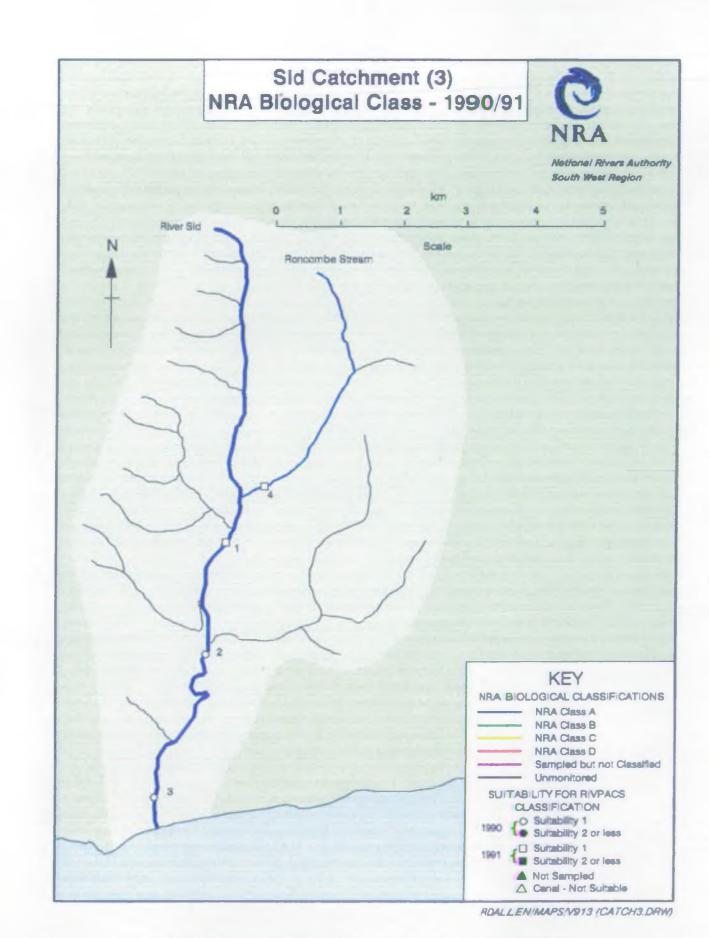


Figure 3.6 Sid Catchment (3) NRA Biological Class - 1990/1991

3.2.5 River Otter Catchment Catchment-4

Summary

Of the 106 km of watercourses monitored by 25 sites in the River Otter catchment, 82% (20 sites) were good, and 18% (5 sites) were moderate quality, according to the NRA Biological Classification. None were classed as poor or very poor quality.

Likely reasons for poorer biological quality

Three of the middle reaches of the River Otter were of only moderate quality because of moderately poorer than expected ASPT. This was ascribed to organic enrichment, most probably from farming activities, although overabstraction for irrigation may have contributed to the problem.

Gittisham Stream was classed as moderate quality because of a moderately poorer than expected ASPT, which indicates organic pollution. The monitoring site was downstream from a sewage works, which may have caused the organic enrichment.

Coombe Raleigh Stream was classed as moderate quality because of moderately poorer than expected ASPT, which suggests that it was caused by organic pollution. Dead leeches found at this site in the Summer indicated that there had recently been a significant pollution incident. There was a substantial cover of algae at the monitoring site throughout the year, which is also indicative of organic enrichment. Effluents from a sewage works, septic tanks, and farming activities were all thought to have contributed to the low quality of this stream.

Catchment: River Otter Corresponding Freelance map filename(s):CATCH4.DRM No. on Chem. RIVPACS Observed O/E Ratio O/E Retio Class Biol. N-Fams ASPT BM/P N-Fams ASPT BM/P N-Fams ASPT BM/P Class Site Season Suitebillty Year Map Watercourse Name Sits Location Name NGR Ref. URN Code ST 2212 1040 ST 1983 0627 ST 1850 0310 Otter 50m u/s br Hoemore Farm 0401 R048001 1.13 1.03 1.16 1990 6.60 246 17 A AA Otter 45m u/s footbr Rewridge 0412 R048042 36 6.60 237 1.04 1.03 1.07 1991 R048035 Ottar 200m u/s Ford Bridge 0402 1990 31 6.60 205 0.90 1.04 0.93 . . R048002 1.12 i Otter 70m u/s Clapperlame br ST 1638 0123 0411 1991 39 6.30 244 0.98 1.11 A 50m d/s bridge Weston 150m u/s br Fenny Bridges Otter ST 1422 0006 0403 R048003 1990 33 5.80 193 0.98 0.93 0.91 0.88 0.84 Otter ST 1145 9870 0414 R048019 1991 7 33 5.60 184 0.96 50m u/s br Ottery St Mary Otter SY 0937 9607 0404 R048004 1990 7. 33 5.40 177 0.99 0.86 0.85 8 A SY 0895 9196 0405 R048005 0.87 Otter 200m u/s br Tipton St John 1990 5.50 159 0.88 0.76 7 29 A . 50m u/s footbr Dotton Mill SY 0873 8853 0415 R048006 5.80 0.85 0.93 0.78 Otter 1991 28 161 77 . . 0406 Otter SY 0790 8524 R04B007 6.00 174 10 25m d/s Otterton br 1990 29 0.87 0.98 0.85 . ٠ . A SY 0527 8570 R048034 1991 7 A 11 Budleigh Brook 20m u/s br Yettington 0425 1 29 6.50 189 0.86 1.04 0.89 A A 12 Colaton Releigh Stm 15m u/s br Pophams SY 0718 8767 0424 R048032 1 1991 7 34 6.00 203 1.00 0.96 0.96 A A A A 20m u/s br Metcombe SY 0797 9197 0423 R048028 1991 7 37 6.30 234 1.12 1.00 1.11 A A A A 13 Metcombe Stream 1 SY 0863 9283 0422 R048027 1991 37 6.30 233 1.09 1.01 1.10 Fluxton Stream 40m u/s br Fluxton 1 7 . A . . 14 West N111 Streem SY 0883 9455 0421 R048026 1991 7 35 5.90 205 1.07 0.91 0.98 A A A . 15 25m u/s br Salston Barton 1 50m u/s bridge Danes Mill 25m d/s br Teleford ST 0755 0335 0410 R048008 1990 1990 33 5.90 5.70 196 164 0.96 0.94 0.90 16 Tele A Å A 1 77 0411 17 Tele. SY 0895 9689 R048009 29 0.82 . SY 1108 9914 0420 R048025 1 1991 7 5.60 0.93 0.98 A A A A 18 Vine Water 25m d/s Feniton signpost Feniton 36 200 1.06 SY 1343 9913 R04B024 1991 7 0.88 0.82 В A 19 Gittisham Stream 10m d/s top of field d/s Pomereroy 0419 1 31 5.50 172 0.94 . B 7 0.95 0.93 A A 20 Wolf 30m u/s rd br Winniford ST 1432 0060 0409 R048011 1 1990 34 5.90 201 0.98 . A 0.95 1.06 A A A ST 1528 0117 0408 1 1990 7 39 5.90 230 1.11 . 22 Otter Mill Leat (prov) 20m u/s Otter confluence ST 1520 0114 R048023 0 0.00 0.00 0.00 0.00 21 Gistage prior to River Otter 0428 0 Combe Raleigh Stream ST 1630 0175 0418 R048022 1991 7 27 5.10 138 0.82 0.81 0.66 A . 8 23 50m u/s farm Ford Longwood 1 . 24 Wick Stream 100m u/s fm br Mill House Nursery ST 1685 0293 0407 R048010 1 1990 7 36 6.60 236 1.04 1.03 1.08 A A A 25 Odle Brook ST 1925 0640 0417 R04B021 1 1991 7 37 15.60 207 1.20 0.89 1.07 . . . 10m u/s treck Spurtham Ferm 30m u/s br Upottery R048020 1 1991 7 36 6.50 233 1.12 1.00 1.12 A A ۸ ۸ 28 Feiroak Stream ST 1994 0778 0416

 Key to Biol. Class: A = Good, B = Moderate, C = Poor, D = Very Poor. * = Canal - Unsuitable for classification, + = Lacustrine site - also unsuitable, j = New site for 1992/1993

 f = Site regularly dries up - cannot be classified, S = Site was not sampled due to location difficulty or other error,

 Ver: 91.3
 June 1993

 NRA South West Region, Manley House, Exeter.
 Index compiled by Russ Dallen. Freshwater Biology. Ext 2472.

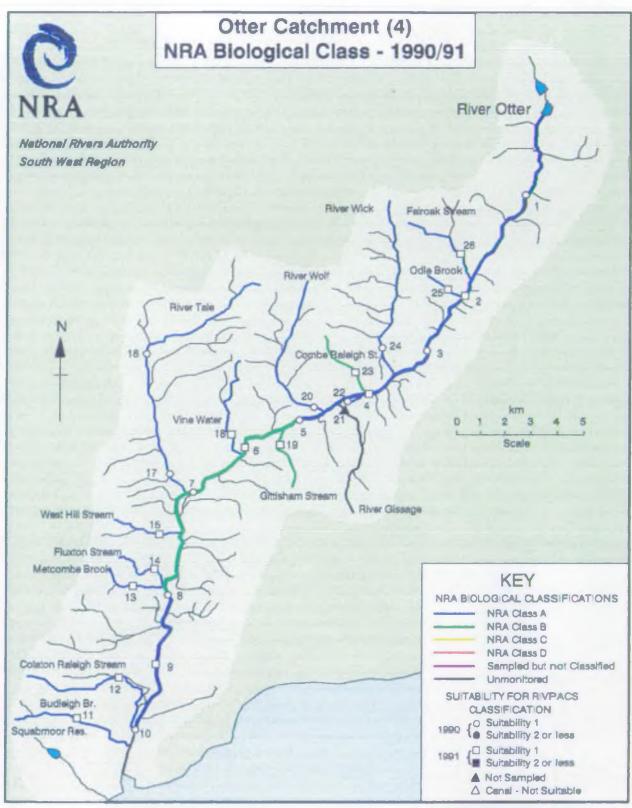
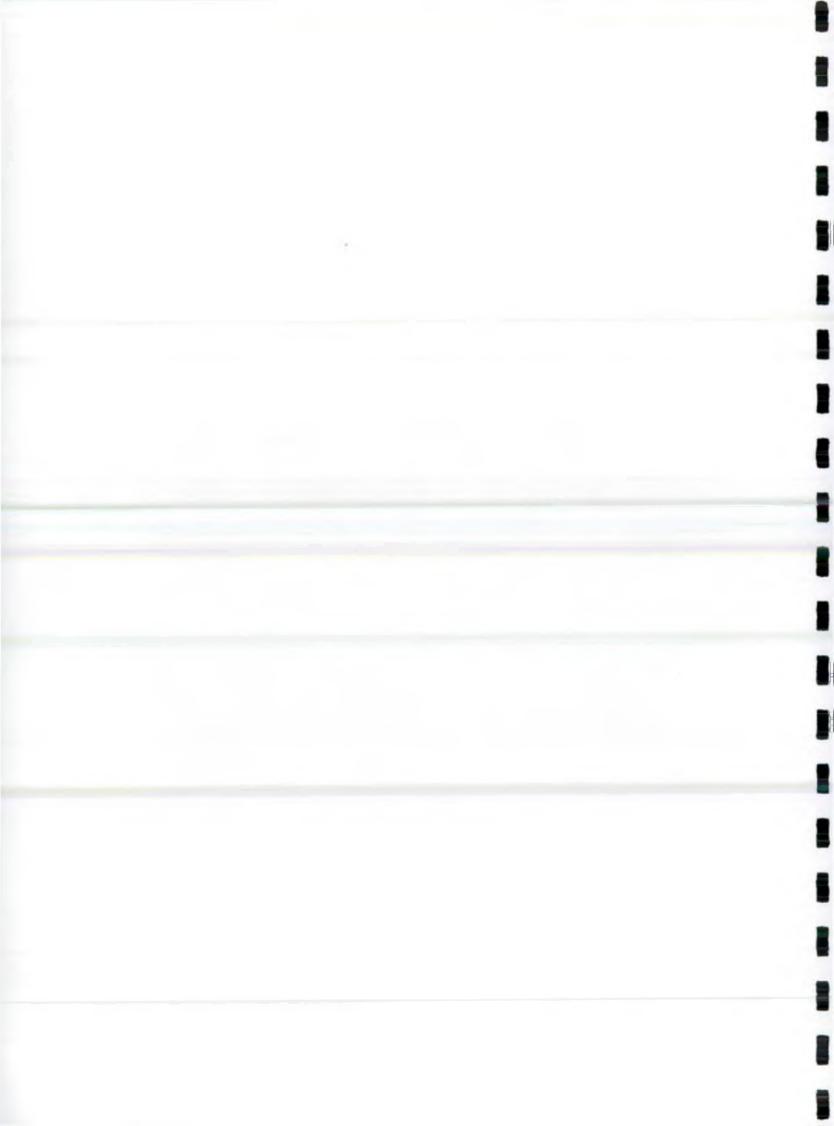



Figure 3.7 Otter Catchment (4) NRA Biological Class - 1990/1991

RDALLEN/MAPS/V913 (CATCH4.DRW)

3.2.6 River Exe Catchment Catchment-5

Summary

Of the 583 km of watercourses monitored by 100 sites in the River Exe catchment, 85% (79 sites) were good, 14% (19 sites) were moderate, and 2% (2 sites) were poor quality, according to the NRA Biological Classification. None were classed as very poor quality.

One reach of 3.4 km on the River Culm was not monitored, because the site that was used for the 1980 National Survey could not be located.

26 km of canals were monitored by 3 sites in this catchment.

Likely reasons for poorer biological quality

The main River Exe was of good quality, except for its lowest reach monitored at Trews Weir, which was of only moderate quality because of both moderately poorer than expected ASPT and N-taxa. It was difficult to collect samples from this site, and this is likely to have affected its classification. The monitoring site for this reach was replaced for the 1992/1993 survey.

The moderate quality of the upper reach of the River Kenn was ascribed to organic enrichment, mostly from farming activities. This was confirmed by a detailed investigation by the Region's Freshwater Investigations Team (see National Rivers Authority, 1991c).

The biological monitoring site on Dawlish Water that was sampled in 1990 (Site Code 0507; 20m d/s footbr car park Dawlish; SX 9548 7679) was destroyed by dredging in the Autumn of that year. It was replaced by a new site (05105) which was sampled in 1991, the results from which are reported here.

Most of the sites on the River Clyst, and the lowest reach of its tributary the Cranny Brook, were of only moderate quality owing to organic enrichment, most probably caused by farming activities. The poor quality of the most upstream reach of the Cranny Brook was also likely to have been the result of farming activities, though an industrial discharge has also been suggested as the cause.

Pin Brook was of poor quality owing to poorer than expected ASPT and moderately poorer than expected N-taxa, which suggests organic pollution. Pin Brook was known to suffer from suspended sediment from a quarry, and its lower reaches by storm sewerage overflows.

The lower reach of Alphin Brook, which runs through an industrial estate, is canalised and was subject to dredging; it was of moderate quality owing to moderately poorer than expected ASPT, which indicates that organic enrichment may also affect the watercourse.

The moderate quality of the Northbrook was ascribed to urbanisation and storm-water overflows; the biological data indicated that the contamination was largely organic.

The moderate quality of the River Creedy at Westacott Cottages was caused by moderately poorer than expected ASPT, indicating organic enrichment, which

was ascribed to effluent from Crediton sewage treatment works and to farming activities in the catchment.

Moderate quality in the **River Culm** between Skinners Farm Bridge and Silverton Mill was caused by organic enrichment (as indicated by moderately poorer than expected ASPT but good EQI N-taxa) was ascribed to effluent from a paper mill at Higher Kings Mill, as well as to farming activities.

The lower and middle reaches of Spratford Stream were of moderate quality owing organic enrichment, most probably caused by farming activity, sewage works effluent, and in the lowest reach, effluent from a meat processing factory.

The moderate quality of the River Burn was caused by its moderately poorer than expected ASPT, which suggests organic enrichment. The profusion of algae at this site indicated that it was eutrophicated. The quality problems may be related to effluent from a fish farm, and to low flow caused by over-abstraction in 1991.

Biological quality of canals

The NRA Biological classification is unsuitable for canals.

The Exeter Canal and the Eastern reach of the Great Western Canal were of good biological quality. The Great Western Canal in Tiverton was poor.

Catchment: River Exe

Corresponding Freelence map filename(s):EXEALL.DRV, CATCHSAB.DRV, CATCHSCD.DRV, CATSEFGH.DRV & CATCHSJK.DRV

•

۰.

•

lo. on Nap	Wetercourse Name	Site Location Name	NGR	Site Ref.	Chem. URN	RIVPACS Suitability	Year	Season Code		ASPT		0/ N-Fams	E Rati ASPT	o BMM/P	O/E Ra N-Farms	tio C ASPT	1433 844/P	81o C1a
23456	Exe Exe Exe Exe Exe Exe Exe Exe Exe Exe	10m u/s fm br Court Farm Exford 75m d/s rope bridge Below Winsford 25m u/s br Warmore 150m u/s Exebridge 150m u/s Halfpenny Bridge 250m u/s Halfpenny Bridge 250m u/s Tiverton New Bridge Kennedy 175m d/s top of field Collipriest 150m d/s STW Ashley 25m u/s footbridge Bickleigh Castle 100m d/s br Horverton 90m u/s Exefford Bridge 50m u/s Exefford Bridge 50m u/s Exefford Bridge	SS 9310 2448 SS 9510 2045 SS 9475 1513 SS 9484 1330 SS 9520 1170	0591 0547 0592 0535 0536 0536 0536 0538 0539 0530 0582 0531 0582	R05G001 R05G002 R05E001 R05E002 R05E002 R05E004 R05E006 R05E006 R05D001 R05D001 R05D001 R05D003 R05D004		1991 1990 1991 1990 1991 1990 1990 1990	7 7 7 7 7 7 7 7 7 7 7 7	29 35 28 30 33 29 34 31 35 36 27 37 42 42	6.30 6.80 6.80 6.80 6.80 6.50 6.50 6.10 6.30 6.30 6.30 6.30 6.30 6.30 6.4.80	184 239 184 203 224 197 222 188 210 225 170 214 253 114	0.83 1.07 1.20	1.03 1.08 1.08 1.09 1.05 0.98 0.97 1.01 1.02 1.02	1.13 0.89 1.02 1.18 1.01 1.15 1.06 1.07 1.14 0.85 1.10 1.23	***	A A A A A A A A A A A A A A A A A A A	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
15 16	Kenn · · · · · · · · · · · · · · · · · ·	A38br Kennford 50m u/s footbr Brenton Fm 20m u/s A379 br u/s Kenton	5X 9117 8663 5X 9527 8463	0502 0503	R05A001 R05A002	1 1	1990 1990	?	24 34	5.10 6.40	123 219	0.71 0.98	0.84 1.06	0.59 1.04	B A	D A	B A	
17	Polly Brook	200m d/a A376 br Exton	SX 9836 8627	0566	R05A029	. 3 .	1991	7 :	30	5.30	159	0.90	0.90	0.81	Α,	•		
20 21 22 23	Clyst Clyst Clyst Clyst Clyst Clyst Clyst Clyst	30m u/s bridge Clyst Hydon 13m u/s br Clyst St Lewrence 50m u/s rd br Ashclyst Farm 20m u/s B3181 br Broedclyst 100m u/s Withy Bridge 150m u/s rd br Clyst Honiton 50m u/s field br Clyst St Mary	ST 0363 0158 ST 0273 0005 SY 0115 9830 SX 9843 9760 SX 9748 9580 SX 9860 9357 SX 9728 9165	0508 0567 0509 0510 0511 0512 0568	R058001 R058002 R058003 R058004 R058005 R058006 R058007	1 1 1 1 2 1	1990 1991 1990 1990 1990 1990 1991	7777777	22 26 32 27 31 31 35	4.40 4.80 5.50 4.80 4.90 5.10 5.00	96 124 175 129 151 156 176	0.70 0.77 0.96 0.80 0.86 0.91 0.98	0.79 0.82 0.93 0.87 0.86 0.86 0.88	0.63 0.90 0.70 0.74 0.79		8 6 6 8		
25	Grindle Brook	40m d/e welr Winslede Park	SX 9770 9019	0506	R05A028	1	1990	7	37	5.50	204	1.10	0.94	1.03	A	•		17
26	Aylesbeare Stream	175m u/s br Dymonds Farm	SX 9883 9260	0569	R058013	1	1991	7	30	5.70	171	0.90	0.98	0.68	A	•	A	
27	Pin Brook	15m u/s br Hosshayne	SX 9812 9435	0570	R058012	1	1991	,	21	4.00	85	0.64	0.72	0.47	8	C	9	
2B 29 30	Cranny Brook Cranny Brook Cranny Brook	50m u/s field br Barnshayes 75m u/s bridge Crannaford Crossing 100m u/s rd br Wishford Farm	SY 0382 9710 SY 0135 9600 SX 9919 9527	0513 0514 0515	R058009 R058010 R058011		1990 1990 1990	77777	18 29 28	4.10 5.20 5.10	74 152 144	0.54 0.85 0.81	0.71 0.90 0.88	0.77	C A A	C A B	C	
31	Ford Stream	20m u/a_A30 br	SY 0091 9526	0571	R058014	1	1991	7	32	5.30	170	0.95	0.90	0.86	Α.		A	17
32 33 34	Alphin Brook Alphin Brook Alphin Brook	10m u/s Dymond's Bridge 30m d/s footbr Alphington u/s A379 rd-b 150m u/s Countess Wear br	SX 8671 9288 SX 9130 9040 SX 9387 8948	0565 0504 0505	R05A003 R05A004 R05A005	1 2 4	1991 1990 1990	?	33 36 30	6.30 5.90 4.70	207 213 142	0.96 1.07 0.90	1.02 1,00 0.82		A A A	Â	Â	
35	Exeter Cenal	30m u/s A38 br Countess Vear	SX 9395 8940	0501	R05A006		1990	7	28	5.10	143	0.00	0.00	0.00		•		t
36	Northbrook	150m u/s rd br Northbrook Park	SX 9403 9080	0500	ROSA026	3	1990	7	22	4.60	102	0.66	0.80	0.52	8		8	┢
37 38 39 40 41	Creedy Creedy Creedy Creedy Creedy Creedy	75m u/a Ashridge Bridge 75m d/s footbridge Lords Maedow 150m u/a fleld br Westecott Cottages 150m u/a br Newton St Cyres 100m d/s bridge Oskford Farm	\$\$ 8182 0619 \$\$ 8485 0070 \$X 8545 9997 \$X 8798 9850 \$X 9010 9673	0557 0558 0594 0595 0559	R05J001 R05J002 R05J003 R05J013 R05J004	1 1 1 1 1	1991 1990 1991 1991 1991 1990	1 7 7 7 7	23 39 34 34 42	6.00 6.10 5.50 5.90 6.30	139 236 188 202 263	0.68 1.11 0.99 0.90 1.24	0.68	1.08	****	A A A A A A A A A A A A A A A A A A A	****	
42	Jackmoor Brook	Langford 120m d/s footbr	SX 8983 9772	0596	R05J018	3.1	1991	7	. 36	5.80	210	1.06	0.99	1.05	A	•	A	t
43 :	Shuttern Brook	prior to Creedy Barton House	SX 8817 9817	0598	R05J021	1	1991	7	- 35	6.30	220	1.07	0.97	1.04	A	A	A	t
44	Shobroote Lake	35m d/s black pipe Creedy Barton	SX 8670 9963	0597	R05J017	1	1991	, ,	29	6.30	183	0.83	1.01	0.84	A		A	t
45 46 47	Yeo Creedy Yeo Creedy Yeo Creedy	Binneford 100m u/s ford 50m u/s rd br. Gunstone Mills 300m u/s br Downes Mill	5X 7596 9676 SX 8051 9849 SX 8525 9910	0562 0561 05100	R05K003 R05K004 R05K005	131	1990 1990 1991	4 7 7 7	24 36 34	6.20 6.40 6.30	232	1.12		0.76 1.14 0,98	**	Â	Â	t
48	Culvery Alver	50m u/s bridge Uton	SX 8342 9855	0564	R05K011	1	1990	7	36	5.90	213	1.04	0.94	0.98	A		A	t
	Ford Brook	10m u/s br Ford Ferm	SX 7938 9769	05104	R05K010	5	1991	7	31	6.30	195	0.93	0.99	h	A	A		┢
49	li ol o produ							1									1	

45

:

4.

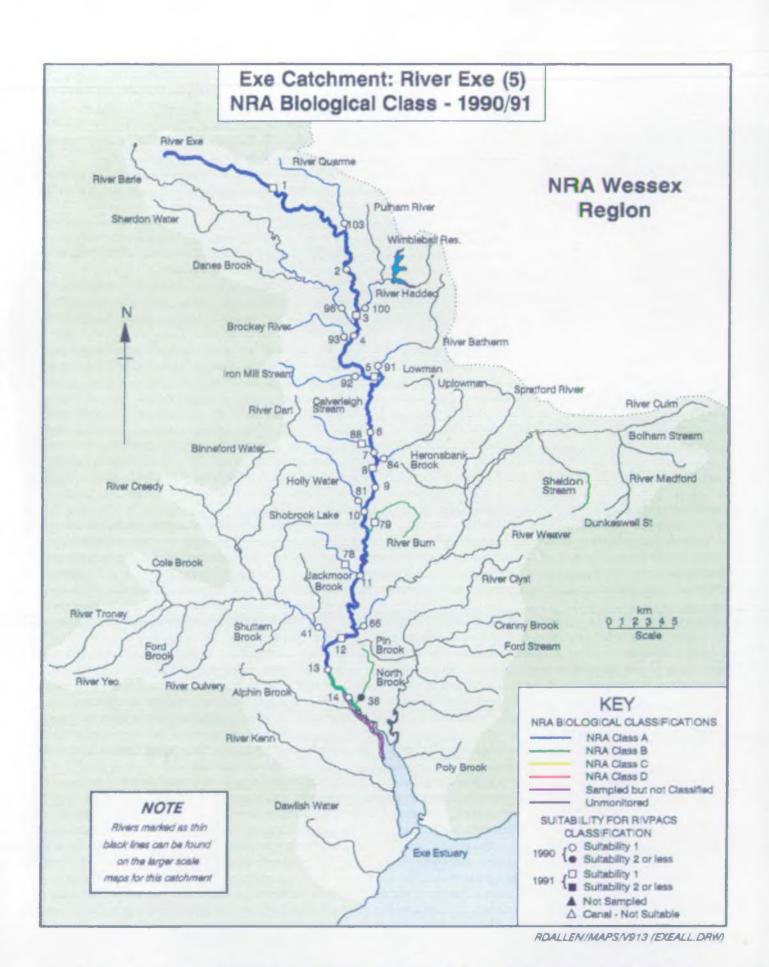
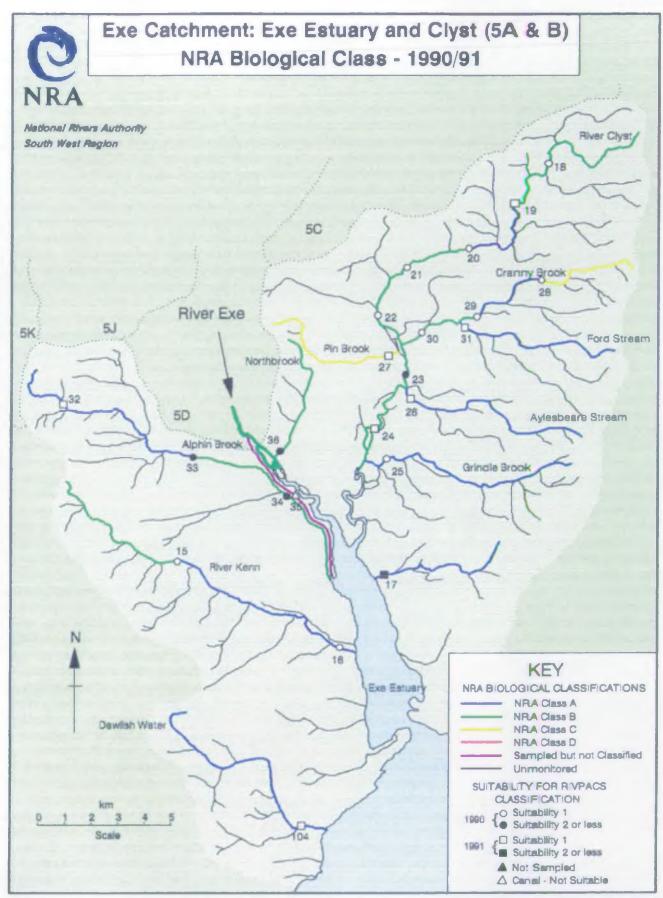
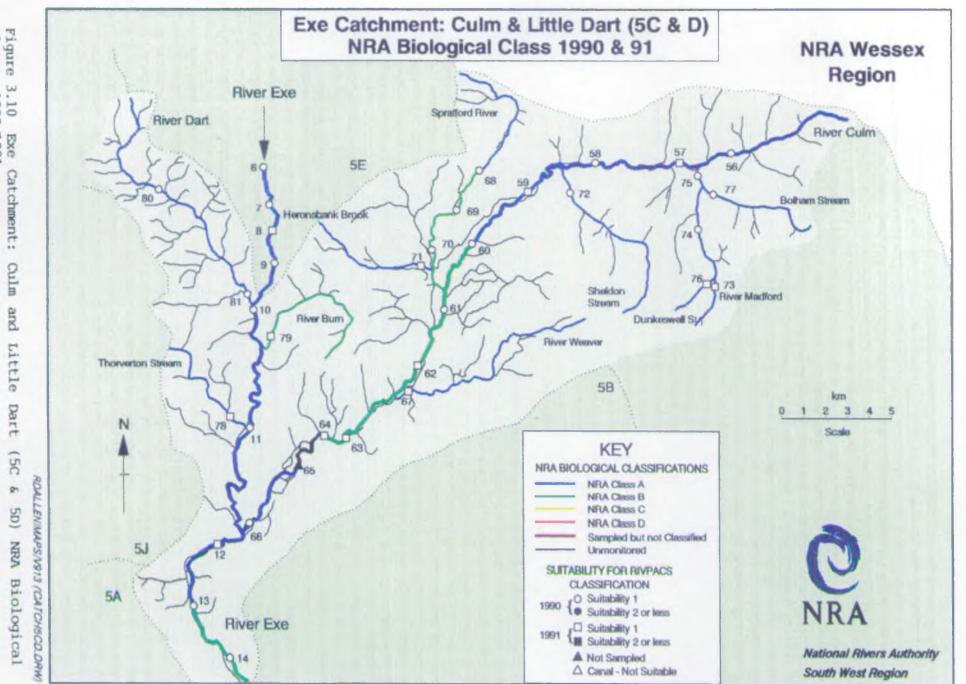
Corresponding Freelen	ce map filename(s	1: EXEALL.ORM.	CATCH5AB.DRM.	CATCH5CD.DRW.	CATSEFGH.DRW & CATCHSJK.DRW

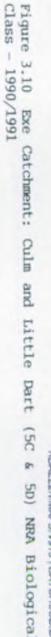
			NGR	Ref.	URN	Suftability	TORP	Code	N-Fams	ASPT	Burn	14-1-6174	ASPT	Charles 1	19-1-6075	POP1	Death is	<u> </u>
\$2 10	Ironey	50m u/s Yeoford Bridge	5X 7830 9900	0563	ROSKOOZ	- 1	1990	7	30	6.20	167	0.86	0.99	0.85	A	A	A	ľ
~ ~	Cole Brook	75m u/s br Colebrooke	SX 7779 9960	05103	R05K009	1	1991	7	32	5.90	168	. 0.91	0.95	0.87	A	A	A	1
53 H	forwell Stream	55m u/s br Colebrooke	SS 7715 0043	05102		1	1991	7	33	6.20	205	0.96	1.02	0.98	A	A	A	1
54 H	folly Water	50m u/s Heath Bridge	SS 8445 0451	0560	R05J015	1	1990	7	34	6.30	213	0.97	0.99	0.96	A	A	A	1
55 B	Sinneford Water	100m u/s confl Ashridge Ferm	55 8198 0618	0599	R05J016	1	1991	,	34,	5.90	199	0.97	0.92	0.90	A	A	A	
57 C 58 C 59 C 60 C 61 C 63 C 63 C 64 C 65 C	Culm Culm Culm Culm Culm Culm Culm Culm	50m u/s br Rosemery Lene 20m u/s br Hemyock 100m d/s rd br Culmstock 100m d/s footbr Uffculme 90m d/s Skinner's Ferm br 225m u/s Higher Upton br 25m u/s br Westcott 25m d/s weir u/s mill 350m d/s weir u/s mill 350m d/s br d/s Silverton Mill 75m d/s Columbjohn br 250m d/s Scie Canon Bridge	ST 1605 1408 ST 1388 1391 ST 1000 1375 ST 0713 1279 ST 0418 1014 ST 0270 0677 ST 0135 0427 SS 9600 0102 SS 9745 0138 SX 9575 9970 SX 9363 9745	0516 0572 0517 0573 0518 0519 0574 0575 0577 0520 0521	R05C002 R05C003 R05C004 R05C005 R05C006 R05C007 R05C009 R05C009 R05C011 R05C012 R05C013		1990 1991 1990 1991 1990 1990 1990 1991 1991 1991	7 7 7 7 7 7 7 7	33 34 32 0	6.30 6.70 6.20 6.40 5.10 5.10 5.30 5.20 0.00 5.50	232 249 199 224 204 144 167 181 167 0 188	0.98 1.05 0.95 0.93 0.93 0.93 0.93 0.90	1.05 0.95 0.98 1.01 0.83 0.81 0.86 0.84 0.00	0.75 0.85 0.78	****	A A A A A B B B B B B B B B B B B B B B	***	
		40m u/s 83181 br	ST 0137 0392	0580	R05C026	1	1991	,		5.70	195	0.99	0.96				Ā	
68 S 69 S	Spratford Stream Spratford Stream	30m u/s Leonerd Moor Bridge 50m u/s B3391 br Tiverton Junction	ST 0449 1410 ST 0320 1160	0522 0523	R05C015 R05C016	1	1990 1990	7	36 28	5.50	198 145	1.04	0.94	0.98	Â	A B	Â	
	Spratford Stream	SOm d/s Five Bridges		0524	ROSCO17	1	1990	7		4.70			<u> </u>	0.55	8	8	B	
71 H	leron's Bank Brook	10m u/s br Heron's Bank	ST 0242 0885	0581	R05C027	1	1991	7		5.80	187		0.95	┝──┾	<u> </u>	A	A	Ľ
72 S	Sheldon Stream	20m u/s Shute Farm Bridge	ST 1239 0901	0525	R05C014	1	1990	,	32	6.90	222	0.97	<u> </u>	1.05	A	A 7	A	<u> </u>
74 (H	ladford Stream ladford Stream ladford Stream	prior to Dunkeswell confl under pylons Dunkeswell Abbey 30m u/s river split 25m u/s Culm Bridge Henyock		0578 0527 0526	R05C041 R05C028 R05C019	1	1991 1990 1990	7777	32	6.60 7.00 6.90	223		1.03 1.09 1.07	1.04	A A A	Â	Â	
76 D	unkaswell Stream	prior to Madford confl	ST 1490 0827	0579	R05C042	1	1991	. 7	29	6.00	175	0.93	0,94	0.87	•	•		1
77 8	Jolham River	100m u/s Five Bridges	ST 1506 1247	0528	R05C018	1	1990	7	39	6.60	257	1.16	1.03	1.19	A	A	A	-
78 T	horverton Stream	25m u/s br opp Thorverton Church	55 9251 0220	0584	R050009	1	1991	7	34	6.10	206	1.01	0.96	0.97	A	•	A	
79 8	lurn	SOm u/s footbr Burn Mill Farm	55 9467 0557	0583	R05D008	1	1991	7	29	5.60	161	0.82	0.68	0.73	A	8		
	Dart [Exe] Dart [Exe]	50m u/s 83137 br Bradley 75m u/s Dart Bridge Bickleigh	SS 8958 1250 SS 9354 0766	0533 0534	R050006 R050007	1	1990 1990	777	34 35	6.60 6.40	223 224	1.03	1.02 1.01	1.05 1.01	Å	Â	Â	
83 L	.comen .comen .comen	60m u/s wood Huntsham Wood 40m u/s Chieflowman Bridge 25m d/s A373 Bridge Tiverton	ST 0085 1836 ST 0080 1567 SS 9577 1256	0587 0543 0544	ROSE009 ROSE010 ROSE011	1 1 1	1991 1990 1990	7777		6.50 6.80 5.70	242 250 165	1.10 1.09 0.84	1.03 1.08 0.91	1.17	***	* * *	AAA	
85 V	plowman Stream	75m d/s gets to field Widhayes	SS 9990 1447	0589	R05E021	1	1991	7	30	5.60	168	88.0	0.90	0.79	Α.	A	A	1
	irand Western Canal irand Western Canal	30m u/s Fenacre Bridge The Basin - Tiverton	ST 0708 1770 SS 9630 1238	0529 0541	ROSCO21 ROSE013		1990 1990	7		5.00 3.90	141 27	0.00		0.00 0.00				1
88 C	alverleigh Stream	100m u/s Swinesbridge	55 9445 1397	0588	ROSEO20	1	1991	7	33	6.40	212	0.97	1.01	89.0	A	A		
90 B	latherm latherm latherm	Sm u/s rd br Ranscombe 75m u/s Pheasant Fm A361 br Shillingfor 500m u/s rd br Bowbierhill under pylons		0590 0545 0546	R05F001 R05F002 R05F003	1 1 1	1991 1990 1990	7 7 7	32	6.90 6.10 6.50	233 196 222	1.05 0.95 1.01	1.07 0.97 1.03	0.92	A A A	~ ~	***	
92 1	ron Mill Stream	40m d/s Iron Mill Bridge Stuckeridge	SS 9177 2082	0542	R05E008	1	1990	7	38	6.80	259	1.15	1.07	1.23	•	A	•	- 4
93 B	Irockey River	50m u/s Brocksbridge Cottage bridge	SS 9238 2455	0540	R05E012	1	1990	7	40	6.40	258	1.10	1.01	1.20	A	A	A	
95 B	iarle Iarle Iarle	100m u/s Simonsbath Bridge 150m u/s ford Terr Steps 100m d/s Pixton Hill	SS 7695 3915 SS 8667 3223 SS 9243 2631	0553	R05H001 R05H002 R05H003	1 1 1	1990 1990 1990	7 7 7	28	6.50 7.00 6.60	195 196 211		11.10	0.95	Â	A A A	A A A	

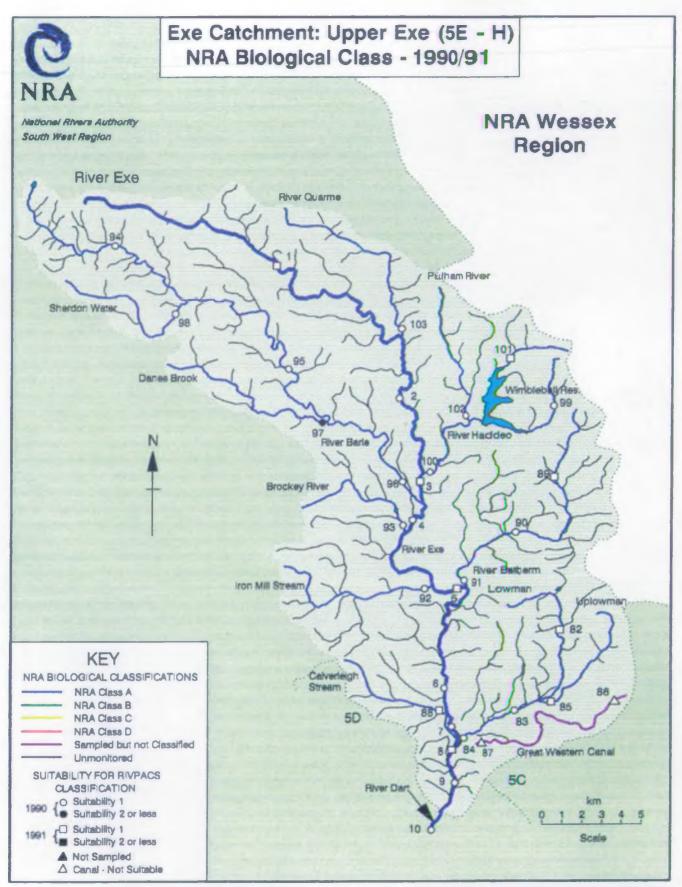
Corresponding Freelance map filename(s):EXEALL.DRW, CATCH5A8.DRW, CATCH5CD.DRW, CATSEFGH.DRW &	CATCHSJK DRV
--	--------------

No. on Map	Watercourse Name	Site Location Name	NGR	Site	Chem. URN	· RIVPACS Suitability	V	Sesson	N-Fams	ACOT		0/	E Rat	to	O/E Re	tio C	855	8101
- p	wettercourse Naphe			Ref.	URN	Suitability		Code	IV-F Ems	<u>H</u>			H ASPI	+	re-ratins			
97	Dana's Brook	3Dm u/s Hawkridge Bridge	SS 8575 3012	0555	R05H004	4	1990	7	26	7.10	164	0.81	1.11	0.90	•	•	•	
98	Sherdon Weter	25m u/s bridge Ferny Ball	SS 8025 3540	0556	R05H005	1	1990	7	. 32	7.00	225	0.99	1.10	1.09	A	•	A .	•
	Haddeo Haddeo	20m u/s bridge Cuckold's Combe 50m u/s bridge Pixy Copse	ST 0014 3077 SS 9377 2658		R05G004 R05G005	1	1990 1990	?		6.50 7.10	209 254	0.99	1.03	1.02	Â	Â	â	Â
101	Withiel Brook	50m u/s fteld br u/s Wimbleball	SS 9805 3266	0593		1	1991	7	34	6.40	219	1.05	0.99	1.05	A	A	•	A
102	Pulham :	25m u/s bridge prior to Haddeo	55 9573 3000	0550	R05G009	1	1990	. 7	33	6.60	217	1.02	1.03	1.05	A	•	A	
103	Querme	50m d/s footbridge Witheridge Farm	55 9202 3500	0551	R05G006	1	1990	7	33	7.10	235	0.99	1.12	1.11	A	•	A	•
104	Dewlish Water	30m u/s footbr Brook House	SX 9548 7679	05105	ROSA027	1	1991	7	31	5.90	183	0.91	0.97	0.89	A	A	A	A

Kay to Biol. Cla	ss: A = Good, # = Site	B - Moderate, C - Poor, D - Very Poor. * - Canal - Unsuitable for regularly dries up - cannot be classified, \$ = Site was not sample	r classification, $+ = Lacustrine site - alse unsuitable, y = New site for 1992/1993 and due to location difficulty or other error,$	
Ver: 91.3	June 1993	NRA South West Region, Manlay House, Exeter.	Index compiled by Russ Dallen. Freehweter Biology. Ext	2472.

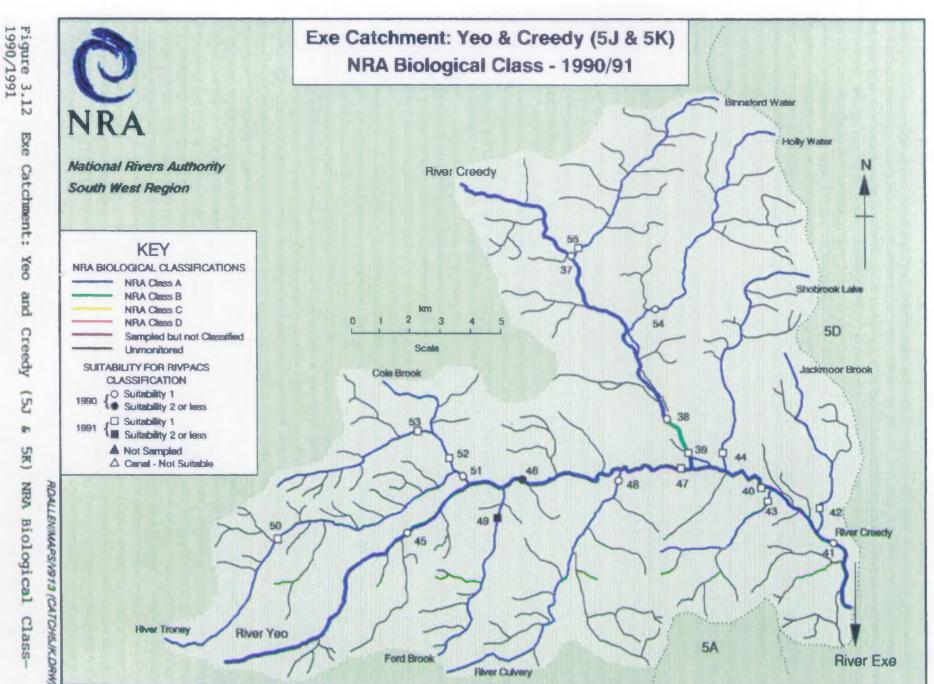





Figure 3.8 Exe Catchment: River Exe (5 in part) NRA Biological Class-199/1991



RDALLEN MAPS V913 (CATCH5AB.DRW)

Figure 3.9 Exe Catchment: Exe Estuary and Clyst (5A & 5B) NRA Biological Class - 1990/1991



Η

RDALLEN/MAPS/V913 (CAT5EFGH.DRW)

Figure 3.11 Exe Catchment: Upper Exe (5E, 5F, 5G & 5H) NRA Biological Class - 1990/1991

3.2.7 River Teign Catchment Catchment-6

Summary

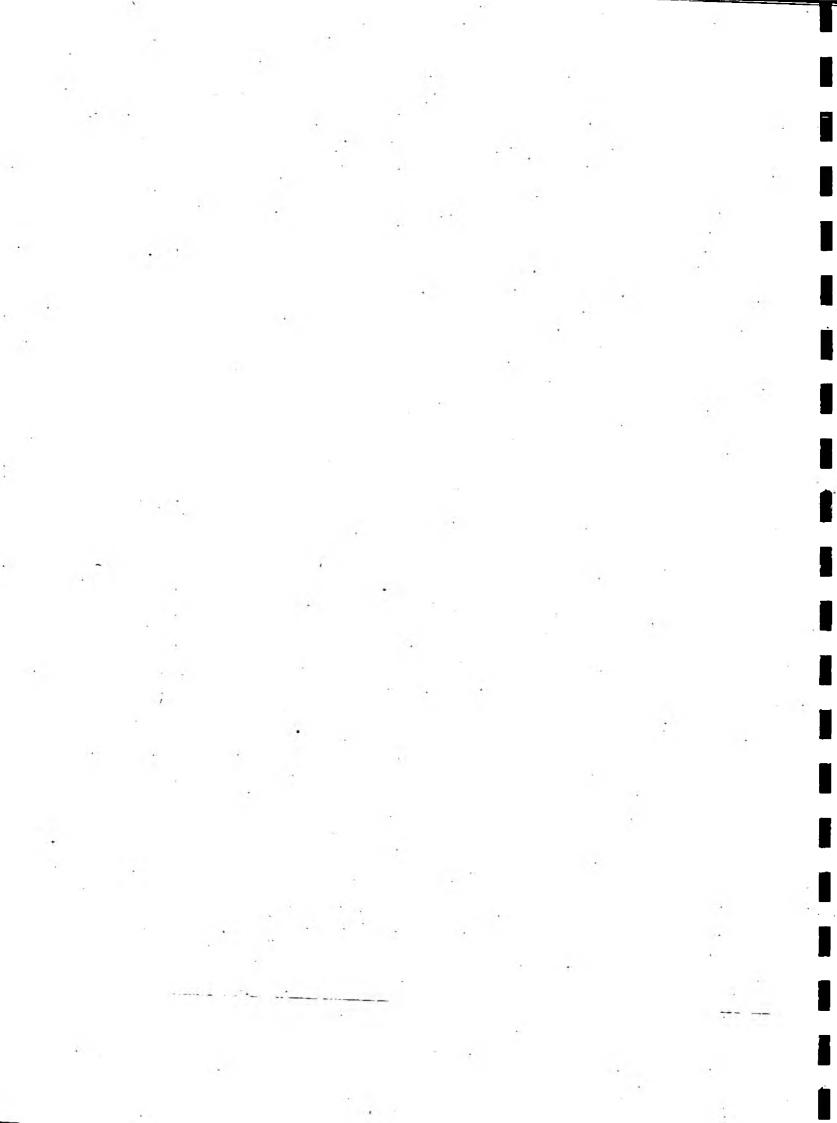
Of the 198 km of watercourses monitored by 45 sites in the River Teign catchment, 91% (38 sites) were good, 3% (2 sites) were moderate, 5% (4 sites) were poor, and 2% (1 site) were very poor quality, according to the NRA Biological classification.

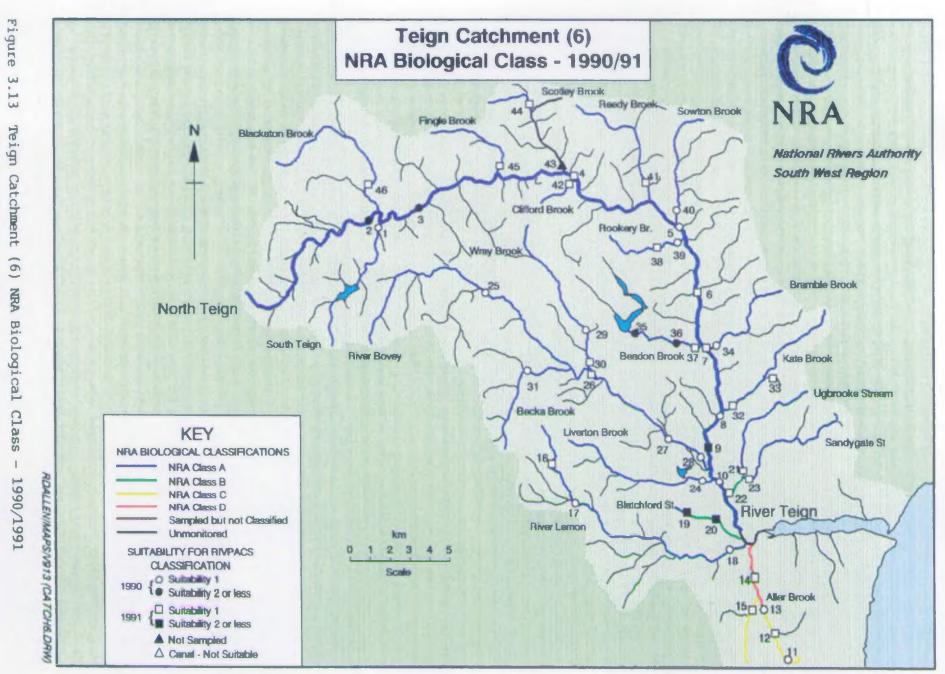
Likely reasons for poorer biological quality

Aller Brook was of poor quality because of organic and inorganic pollution, consistent with its very low EQIs for ASPT and N-taxa. Its upper reaches were affected by seepage from a disused landfill site and by pollution from a potato processing factory. The reach monitored at Manor Drive was affected by discharges from an industrial estate and septic tanks. The reach monitored at Aller Orchard was affected by effluent from Kingskerswell Sewage Treatment Works, which was subsequently decommissioned in 1991. The most downstream reach was affected by drainage from two quarries. Aller Brook was surveyed in detail by the Freshwater Investigation Team in 1992 (National Rivers Authority, 1993).

Compton Pool Stream was classed as poor quality owing to a poorer than expected ASPT and moderately poorer than expected N-taxa. The stream was affected by effluent and drainage from a quarry, and chlorine contamination from a service reservoir pipeline (see National Rivers Authority, 1993).

The lower reach of Blatchford Stream was classed as moderate quality owing to moderately poorer than expected ASPT and N-taxa. Such a result is usually associated with organic pollution, however the only influence on water quality identified in this reach was a ball clay effluent which discharged upstream from the monitoring site. This was identified by the field biologists as a cause of the poor biological results, and was also identified as the cause of the reach's non-compliance with its river quality objective (National Rivers Authority, 1992d).


Despite being classed as good quality and not having a substantial impact on the invertebrate fauna at family level, ochre deposits were found on the stream bed at the site monitoring the upper reach of Ugbrooke Stream, which is consistent with the effects of mine drainage. A large pipe upstream from the site drains an old disused quarry. Moderate quality in the lower reach because of moderately poorer than expected N-taxa was ascribed to the effects of discharges from a ball clay works, and to the unstable stream bed.


Although having a good overall NRA Biological Class, the lower reaches of Beadon Brook appeared to be affected by toxic pollution. Slight ochreous deposits were recorded at Hyner Bridge. The most downstream site had moderately poorer than expected N-taxa which, together with the ochreous deposits at the site, is consistent with the effects of mine drainage. Both of these sites were downstream from a disused barytes mine.

lo, on Lap	Watercourse Name	Site Location Name	NGR	Site Ref.	Chem. URN	RIVPACS Suitability	Yeer	Season Code	Ob N-Fatns	ASPT			E Rat ASPT		O/E Ra N-Fams			
1	South Telgn River	75m u/s Leigh Bridge	SX 6828 8760	0615	R06C001	1	1990	7	32	7.10	226	1.41	1.11	1.56	A	A	A	
2	North Teign	100m u/s Gidleigh Park Hotal Bridge	SX 6772 8783	0616	R06C002	5	1990	7	28	7.00	197	1.25	1.10	1.38	A	A	A	
3 4 5 6 7 8 9	Taign Taign Taign Taign Taign Taign Taign Taign	50m d/s Rushford Br u/s Chagford 30m d/s Clifford Bridge 50'm d/s rd br d/s Bridfordmills Weir 120m u/s Spars Bridge 225m u/s Crocombe Bridge opp Knowle Hou 400m d/s Chudleigh Bridge 100m u/s New Bridge 300m u/s Teignbridge	SX 6940 8798 SX 7812 8979 SX 8343 8720 SX 8425 8422 SX 8470 8135 SX 8560 7814 SX 8480 7630 SX 8573 7358	0607 0631 0608 0632 0633 0609 0634 0603	R06C003 R06C004 R06C005 R06C037 R06C036 R06C006 R06C007 R06C008 R068001	3 1 1 1 1 1 2	1990 1991 1990 1991 1991 1991 1990 1991 1990	7 7 7 7 7 7 7 7	34 33 35 36 34 28	6.80 6.80 6.50 6.60 6.60 6.20 6.40 6.30	231 215 231 239 210 178	1.04 1.01 1.07 1.11 1.02 0.82	1.06 1.05 1.03 1.04 1.06 0.98 1.02 1.02	1.11 1.04 1.11 1.17 1.00 0.83	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	******	******	
1 2 3	Aller Brook Aller Brook Aller Brook Aller Brook	u/s Edginswell Pumping Stn opp Rougement 5m d/s hedge bank Manor Drive pleying f 30m d/s footbridge Aller Orchard 15m u/s fance Plymco Superstore Penninn	SX 8948 6630 SX 8798 6740 SX 8763 6883. SX 8708 7050	0601 0623 0602 0624	R06A001 R06A002 R06A003 R06A004	1 1 1	1990 1991 1990 1991	7 7 5 7	14 15	4.10 3.90 4.20 3.50	55 63	0.44 0.50	0.76 0.70 0.75 0.60	0.31	UUUU	C C C D	C C C C	
15	Compton Pool Stream	25m u/s rd br Langford Bridge	SX 8719 6908	0625		1	1991	7	20	4.30	87	0.59	0.75	0.44	U	с	C	T
16 17 18	Lemon Lemon	10m u/s br Bagetor Mill 250m d/s Sig confl 30m d/s minor trib 20m d/s footbr Bradley Perk 200m u/s cp	SX 7696 7556 SX 7805 7352 SX 8508 7095	0627 0622 0606	R068003 R068004 R068005		1991 1990 1990	777	30	6.80 7.10 6.90		0.94	1.07 1.11 1.11	105	***			And in case of the local division of the loc
19 20	Blatchford Stream Blatchford Stream	25m d/s rd br 10m u/s footbr Perry Farm 25m d/s rd br Blatchford	SX 8360 7289 SX 8559 7303	0628 0629	R068006 R068007	2 4	1991 1991	777		5.60 4.40	151 97		0.98 0.82		A B	A B	AB	I
21 22	Ugbrooke Stream Ugbrooke Stream	15m d/s discharge Higher Sandygate approx 55m u/s footbr prior to Teign co	SX 8660 7530 SX 8575 7397	0626 0604	R068012 R068013	1	1991 1991	777		5.90 5.40	206 135		0.98 0.91		A B		A B	
23	Sandygate Stream	15m u/s rd br New Cross Kingsteignton	SX 8685 7481	0630	R06B010	1	1991	7	37	6.20	228	1.10	1.03	1.13		A	A	
24	Liverton Brook	75m u/s Ventiford Bridge	SX 8470 7475	0605	R06B050	1	1990	7	33	6.10	2 01	0.95	0.99	0.95				Ĩ
25 26 27 29	Bovey Bovey Bovey Bovey Bovey	75m d/s Blackaller Bridge 30m u/s Drakeford Bridge 50m d/s road bridge Little Bovey u/a arm of meander Twinyeo Farm		0617 0644 0618 0619	R06D001 R06D002 R06D003 R06D004	1 1 1 1	1990 1991 1990 1990	1 7 7 7 7	28 31	8.80 7.00 6.50 6.50	273 196 203 202	0.65 0.94	1.07 1.10 1.04 1.04	0.94 0.97	~~~	~~~	~~~~	
	Wray Brook Wray Brook	75m u/s bridge Caseley Court 90m u/s bridge Knowle	SX 7855 8235 SX 7885 8025	0620 0645	R06D008 R06D011	1	1990 1991	777		6.70 5.30	228 214		1.05 0.98		Å	Â	A	
31	Becke Brook	100m u/s Newbridge	SX 7573 8003	0621	R060012	1	1990	7	33	7.00	230	1.35	1.09	1.47	A	•	•	
32	Kete Brook	45m u/s rd br to Gappa	SX 8592 7852	0635	R06C055	1	1991	7	32	6.10	196	0.97	0.99	0.96	. A	A	A	
33	Heldon Stream	160m u/s footbr Hems Barton	SX 8796 8032	0636		1	1991	7	33	6.10	200	1.01	0.95	0.95	A			T
34	Bramble Brook	65m u/s Teign conf 15m u/s br	SX 8407 8116	0610	R06C011	1	1990	7	38	6.70	254	1.11	1.08	1.19	A	A	A	Γ
35 36 37	Baedon Brook Beadon Brook Beadon Brook	50m d/s bridge Tottiford House 10m u/s Hyner Bridge 40m d/s 83193 br prior to Teign	5X 8075 8231 5X 8368 8170 5X 8433_8169	0611 0612 0637	R06C009 R06C010 R06C040	2 2 1	1990 1990 1991	77777	24	6.00 5.60 6.90	151 159 158	0.79	0.93 1.04 1.09	0.82	A A B		Â	
	Rookery Brook Rookery Brook	20m u/s footbr u/s barytes mine 30m d/s 83193 rd br proir to R Teign	SX 8255 8614 SX 8376 8670	0638 0613	R06C013 R06C014	1	1991 1990	7		6.80 7.10	216 178		1.04 1.13		Â	A	Â	
40	Sawton Brook	150m u/s Sowton Bridge	SX 8343 8755	0614	R06C015	1 (1)	1990	5	29	6.10	178	0.92	0.97	0.89	•	•	A	
41	Reedy Brook	· 10m d/s Reedy Bridge	SX 8199 8928	0639	R06C054	1	1991	7	31	6.20	193	0.9Z	0.98	0.90	A	A	A	
42	Clifford Stream	10m d/s br Clifford Bridge Park	SX 7811 8974	0642		1	1991	7		7.10	241	1.09	1.08	1.18	٨	A	A	
43	Scotley Brook	100m u/s br prior to Teign	SX 7769 9016	0651	R06C057				0	0.00	0	0.00	0.00	0.00				
44	Crockernwell Stream	35m d/s rd br	SX 7617 9267	0640		1	1991	7	37	6.20	229	1.19	0.99	1.10		A	A	
45	Fingle Brook	115m u/s Fingle Bridge 30m u/s sign	SX 7433 9001	0643	R06C053	1	1991	7	39	6.70	263	1.15	1.05	1.21	۸		A	

No. of Map		gn		New	a	+	T	·	Site	me(s):CAT Chem. URN	RIVPACS Suitabilit		Season		bserve	d	0/	E Ratio		/E Rat	to Clas	15	3101.
			Site Location				NGR		Ref.	÷			+		-		_		_				
46	Blacketon B		70m u/s rd br		10	- 4	SX 67	83 8901	0641	R06C052	1	1991	11	34	6.60	224	1.05	1.03 1	.08	A	<u> </u>	`-	A
1												100											
																		٠.					
					1.																*		
									•				4										
					t)														•				
																			•		4		
	2				10 C					÷									•		4		
						2	1.4	2															
			· · · ·				•												•				
										2				×.									
				•																			
		1															•	.+					
						5																	•
	· · ·																					•	
					10	104						•											
					,								•										
											6 4 - 1										•		
						· ·			•							. 1							
													1										
										¥1													
			•		1.45		4.0												•				
					2															•			
					ė											•		۰.					
															•								
	·																			~			
					1																		
											1												
		•								÷							1						
				•																			
				•					1														
_	· · · ·																						-
Kay t	o BiolClass	: A = Good.	B = Moderate, C regularly dries	= Poor, D	- Very Po	or. * =	Canal	- Unsuli	table f	or classi	ication; + •	Lacust	rine sit	b - A	150 481	uiteb	10. 1	- New S	ite f	or 199	2/1993		

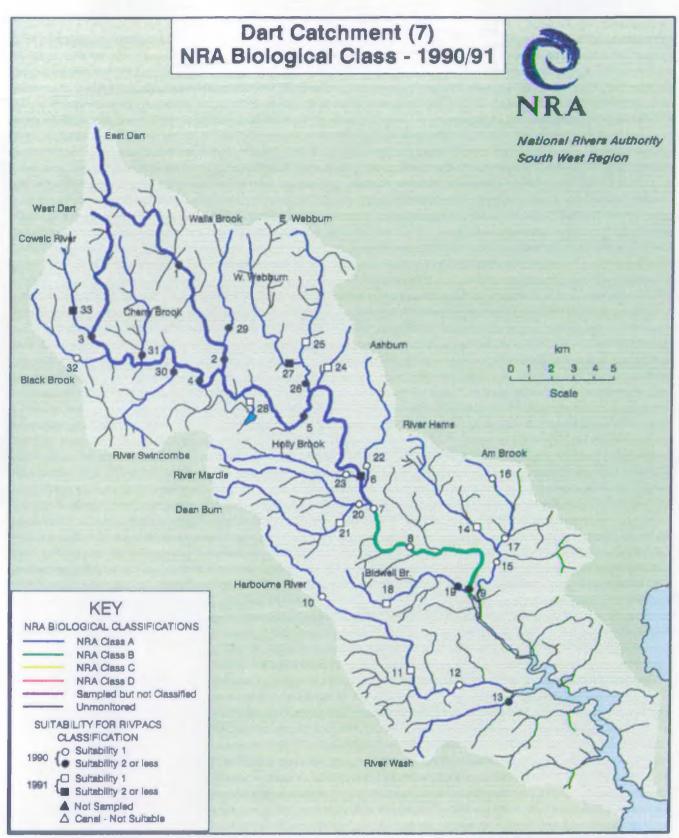
...

3.2.8 River Dart Catchment Catchment-7

Summary

Of the 206 km of watercourses monitored by 33 sites in the River Dart catchment, 93% (31 sites) were good, and 7% (3 sites) were moderate quality, according to the NRA Biological Classification. None were classed as poor or very poor quality.

Likely reasons for poorer biological quality


The whole catchment was of good ecological quality, except for the lower reaches of the River Dart.

The EQI N-taxa of the River Dart at Buckfastleigh indicated only moderate quality, though this was not supported by the overall NRA Biological Classification. The site was downstream from a disused metal plating works, which may explain the toxic impact that was observed there. A poorer than expected N-taxa was also evident at the next site downstream, at Riverford Bridge: this was reflected in its overall NRA Biological Classification of moderate quality. This site was downstream from Buckfastleigh STW discharge, which contains low concentrations of pesticides from a wool mill. The biologists reported difficulty sampling at this site, which may have contributed to the poor taxonomic richness of the samples collected there. The most downstream site on the River Dart, at Totnes Weir, was also of moderate quality, but here the EQIs of both ASPT and N-taxa were affected. This reach suffered from eutrophication, which caused algal blooms during the It was deep and was sampled by dredge, which gives more late Summer. variable samples than the pond-net. Moreover, the site had a low RIVPACS suitability (suitability code 4, see Table 2.4) which would have compromised the reliability of its classification.

Although its overall NRA Biological Class was good, the upper reach of the River Hems was of moderate quality according to its EQI N-taxa but not its EQI ASPT. This indicates toxic pollution. The reach was thought to be affected by septic tank discharges and the drought in 1991 (National Rivers Authority, 1992d).

Catchment: River Dert Corresponding Freelance map filename(s):CATCH7.DRM No. on Site Chem. RIVPACS Season Observed O/E Ratio O/E Ratio Class 8101. Watercourse Name Site Location Name NGR Ref. URN Suitability Year N-Fams ASPT BM/PIN-Fams ASPT BM/PIN-Fams ASPT BM/PICIASS Code Map SX 6477 7895 East Dart River 30m u/s rd br Postbridge 0716 R078001 -5 1990 7 30 6.90 207 1.37 1.08 1.48 . 2 East Dart River 75m u/s clapper bridge d/s Badgers Holt SX 6720 7326 0717 R078002 5 1990 7 25 6.80 171 1.01 1.06 1.07 . A A . - 3 West Dart River 30m u/s road bridge Two Bridges SX 6080 7505 0719 R078003 5 1990 6.40 141 1.02 1.01 1.02 A A 7 22 . A West Dart River 50m u/s Huccaby Bridge SX 6590 7293 0720 R078004 5 1990 . 7 26 6.70 175 1.05 1.04 1.09 . A . . . Dart 20m u/s New Bridge SX 7113 7087 10707 R078005 5 1990 25 7.00 175 0.94 1.09 1.03 A A . -5 Dert 30m u/s wood opp Blackmoor Farm SX 7383 6807 0726 R078007 2 1991 29 6.90 199 0.91 1.08 0.98 . A Dart 10m d/s Dart Bridge Buckfastleigh SX 7449 6670 0708 R078008 1 1991 24 6.50 156 0.77 1.04 0.60 8 A A A 500m u/s Riverford Bridge SX 7682 6398 0709 R078009 1990 98 0.62 0.78 0.48 B 8 Dart 1 20 4.90 . . SX 8000 6133 0710 R078010 1990 23 4.90 113 0.64 0.81 0.52 8 8 25m u/s Totnes Weir 4 7 B . q Dart SX 7175 6235 0701 R07A001 10 Harbourne River 15m u/s road bridge Harbourneford 1 1990 7 36 6.90 250 1.08 1.09 1.18 5X 7710 5670 0724 R07A002 6.40 11 Harbourne River 25m u/s Leigh Bridge 3 1991 33 212 1.01 1.01 1.02 . . . R07A003 Harbourne' River 40m d/s road bridge Beenleigh SX 7978 5660 0702 1 1990 7 36 6.50 233 1.10 1.03 1.13 A . . . 12 A 13 Wash 50m u/s weir Tuckenhay SX 8171 5593 0703 R07A004 2 1991 1 27 6.40 173 1.09 1.001.09 . A . SX 7892 6599 R078011 14 20m d/s rd br Portbridge Cross 0725 1 1991 7 27 5.60 156 0.76 0.95 0.74 A A Ham A 15 Hems 20m d/s bridge u/s Tally-ho SX 8162 6378 0704 R078012 1990 7 38 6.00 229 1.12 1.02 1.14 . . A 1 . Am Brook 16 15m u/s Collacombe Bridge SX 8105 6750 R078016 0705 1 1990 7 29 6.50 189 0.88 1.09 0.96 Am Brook 100m u/s Fishacre Bridge SX 8195 6452 0706 R07B017 1990 6.20 . 17 35 217 1.04 1.07 1.11 . . . Bidwell Brook 6.70 SX 7572 6087 R07B018 1 1991 0.91 1.05 0.95 18 10m u/s rd br Tigley 0727 7 30 200 A Â 81dwall Brook 150m u/s Dartington Lodge SX 7980 6152 0711 R078019 29 5.60 161 Ä 19 1990 7 0.66 0.95 0.61 . 2 SX 7462 6613 9078014 1 1990 0.95 0.77 A . 40m u/s rail br Buckfastleigh 0712 7 28 6.10 170 0.81 A . 20 Mard1e A A 21 Dean Burn 35m u/s 83380 bridge SX 7324 6511 0728 R078052 1 1991 7 31 6.60 206 0.93 1.04 0.97 . A A 1990 7 6.20 217 0.98 1.01 A A 22 Ashburn Yeo 30m u/s Dart Bridge SX 7457 6685 0713 R078050 1 35 1.03 . 0714 1 1990 7 37 7.00 259 1.10 1.22 A A A 23 Holy Brook 40m u/s rd br Northwood Buckfast SX 7400 6767 R078020 1.11 . A A SX 7245 7308 0729 1 1991 7 29 7.00 202 0.94 1.08 1.02 . A 15m u/s bridge Ruddycleave Cottage 24 Ruddycleave Water 7 1.09 1.16 A . . 1 1991 14 7.00 230 1.06 . SX 7165 7505 0731 R07B036 25 East Webburn River 50m d/s Cockingford Bridge A A A 26 34 7.00 238 1.55 1.10 1.70 A Webburn 75m u/s Buckland Bridge 1990 1 SX 7166 7200 0715 R078015 2 0730 R07B037 27 West Webburn River 2Dm u/s Ponsworthy Bridge 5X 7010 7390 2 1991 7 26 6.60 178 0.95 1.07 1.02 26 Venford Brook 25m d/s railings d/s WTW SX 6870 7139 0732 1 1991 7 23 6.60 151 1.07 1.03 1.10 . A A . Walla Brook 300m u/s Babney 40m d/s split SX 6730 7545 0718 29 R078051 5 1990 7 1.07 1.36 . A A 27 6.90 185 1.27 . R078021 5 1990 34 16.70 30 Swincombe 100m d/s bridge prior to West Dart SX 6466 7323 0721 7 228 1.54 1.05 1.62 . . A Α. 31 Cherry Brook 50m u/s Lower Cherrybrook Bridge SX 6311 7485 0722 R078032 5 1991 7 26 7.00 183 1.04 1.10 1.15 . A A A R076049 32 6.50 A A 32 Blackbrook 15m u/s bridge Tor Royal SX 6015 7383 0723 1 1990 7 209 1.27 1.02 1.29 . A A SX 6031 7530 4 1991 1.00 0.92 . 33 Cowsic River 30m u/s Beardown Farm 0733 R078057 7 20 6.40 126 0.92 . A

Key to Biol. Class	t: A = Good, ≠ = Site	B = Moderate, C = Poor, D = Very Poor, * = Canal - Unsuitabl regularly dries up - cannot be classified, \$ = Site was not a	le for classification, + - Lacus sampled due to location difficul	trine site - also unsuitable, j = New site for 1992/1993 ty or other error,	
Ver: 91.3	June 1993	NRA South West Region, Manley House, Exeter.		Index compiled by Russ Dellen. Freshwater Biology. Ext	2472.

ľ

ł

ł

١

RDALLENIMAPS/V913 (CATCHT.DRW)

Figure 3.14 Dart Catchment (7) NRA Biological Class - 1990/1991

3.2.9 River Avon Catchment Catchment-8

Summary

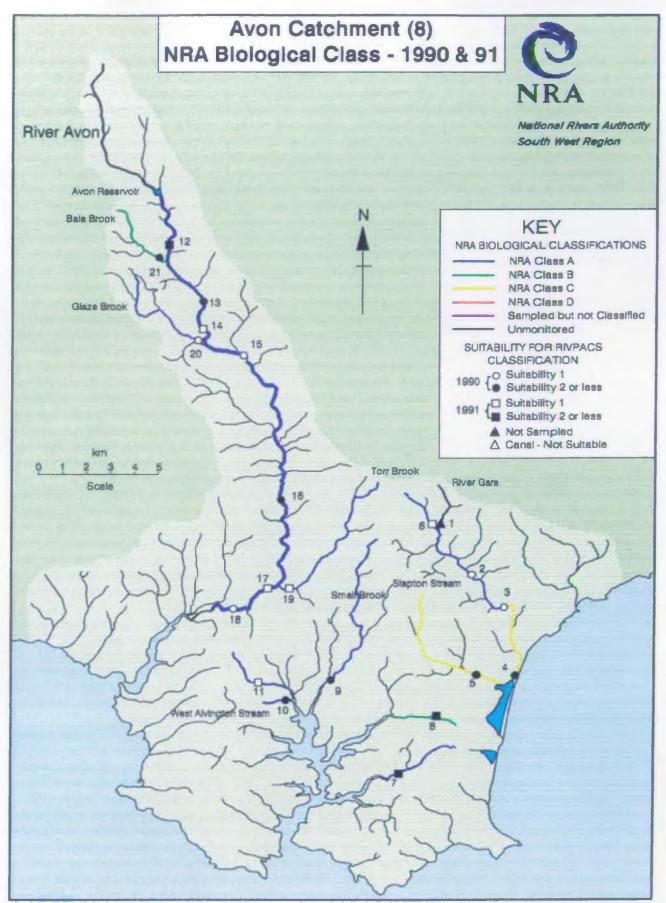
Of the 81 km of watercourses monitored by 20 sites in the River Avon catchment, 77% (15 sites) were good, 10% (3 sites) were moderate, and 13% (2 sites) were poor quality, according to the NRA Biological Classification. None were classed as very poor quality:

Likely reasons for poorer biological quality

The lower reach of The Gara was of poor quality overall, reflected in its poorer than expected ASPT and moderately poorer than expected N-taxa, which is usually indicative of organic pollution. In this case, the nature of the habitat probably had a greater influence on the classification than water quality. The monitoring site at Slapton Bridge was in a reed swamp between two lakes on The Gara. The site was almost lentic. RIVPACS is only suitable for rivers and streams and, not surprisingly, the site had a poor suitability code of 4 (see Table 2.4): consequently, the predictions made by RIVPACS and the classifications based on them were not particularly reliable. The site was also difficult to sample, which may also have contributed to the poor result.

Slapton Stream was also of poor overall quality, because of a poorer than expected N-taxa and moderately poorer than expected ASPT. The moderate EQI ASPT suggests organic pollution. Sampling difficulties may have contributed to the poor EQI N-taxa. The site had low RIVPACS suitability (suitability code 4, see Table 2.4), so the classification of this site would have been imprecise.

Chillington Stream was classed as moderate quality by the NRA Biological Classification because of its moderately poorer than expected N-taxa. The stream was disturbed frequently by cattle near to the monitoring site.


Although its overall NRA Biological Class was good, Churchstowe Stream had only a moderate N-taxa, suggesting toxic pollution or physical degradation.

The River Avon was of good quality, except for its tributary Bala Brook which was of moderate quality. Bala Brook's fauna was affected by discharges from a Water Treatment Works: this was confirmed by a special investigation in 1990 (National Rivers Authority, 1990b). Although its overall NRA Biological Class was good, the most upstream site on the River Avon at Shipley Bridge had a moderately poorer than expected N-taxa. This may have reflected the bouldery river bed which was difficult to sample, though it may also have been related to some form of toxic pollution. Poor chemical quality at this site could have been caused by the catchment's geology and the moorland nature of the reach (National Rivers Authority, 1992d)

Corresponding Freelance map filename(s):CATCH8.DRM

lo, on tap	Watercourse Name	Site Location Name	NGR	Site Ref.	Chem. URN	RIVPACS Suitability	Year	Season Code	Ob N-Fams	ASPT			E Rat ASPT	BHM/P	O/E Ra N-Fams	ASPT	BMM/P	Bfol Clas
1234	The Gare The Gare The Gare The Gare	20m u/s Woodford Bridge 200m u/s br 20m u/s split Forder 60m u/s br Higher North Mill 15m u/s Slepton Bridge		0823 0801 0802 0803	R08A002 R08A003 R08A004 R08A006	1 1 4	1990 1990 1990	7777		0.00 5.60 5.60 4.40	250 217	1.13	1.03	1.18	A A B	A A C	A A 6	A C
5	Slapton Stream	Iron Bridge	SX 8205 4413	0805	R08A012	4	1990	7	18	4.70	85	0.53	0.82	0.44	C ·		C	c
6	Ritson Stream	15m u/s rd br Woodford	SX 7978 5097	0814	R08AD02	1	1991	7.	33	6.50	215	1.00	1.02	1.02	•	A	A	A
7	South Pool Stream	5m u/s crossing point South Pool	SX 7773 4025	0816		4	1991	7	31	5.80	179	0.92	0.97	0.89	٨	A	A	A
8	Chillington Stream	15m d/s rd br Chillington	SX 7925 4265	0817	1	Z	1991	7	28	5.20	146	0.85	0.87	0.73	٨	8	A	8
9	Small Brook	100m u/s road bridge Bowcombe	SX 7511 4448	0806	R08A013	3	1990	7	31	5.90	184	0.69	0.97	0.87	A	A	A	A
10	West Alvington Str	200m u/s bridge Ticket Wood	SX 7323 4364	0807	R08A014	4	1990	7	23	5.70	130	0.76	0.97	0.74	B	A		A
11	Churchstow Stream	25m u/s rd br Redford	SX 7228 4434	0818		1	1991	7	26	5.50	143	0.78	0.91	0.71	B	A	A	
13 14 15 16 17	Avon Avon Avon Avon Avon Avon Avon	30m u/s Shipley Bridge 50m u/s Lydia Bridge 50m u/s discharge 50m u/s A38 b 50m u/s bridge Horsebrook 150m d/s Gare Bridge 40m d/s br Loddiswell 150m u/s Hatch Bridge 500m d/s New Brid	SX 6953 6070 SX 6977 5923 SX 7122 5847 SX 7290 5332 SX 7268 4825	0819 0808 0820 0809 0810 0821 0811	R088007 R088001 R088008 R088002 R088003 R088004 R088005	4	1991 1990 1991 1990 1990 1991 1990	777777777777777777777777777777777777777	27 28 29 39 36	6.70 6.90 6.80 6.90 6.40 6.40 6.40	148 167 190 201 250 236 231	0.86 0.87 0.89 1.30 1.11	1.08 1.06 1.08 1.01 1.03	0.97		*****	****	****
19	Torr Brook	10m d/s rd br The Old Hill	SX 7335 4832	0822	R088015	1	1991	7	35	6.80	237	1.06	1.06	1.13	` A	A	A	A
20	Glaze Brook	opposite mill Higher Turtley	SX 6963 5893	0812	R088009	1	1990	7	37	6.50	340	1.15	1.02	1.15	A	A	•	
21	Bala Brook	100m u/s bridge Zeal	SX 6781 6249	0913	RC88011	4	1990	7	16	5.60	90	0.74	0.68	0.66	8	Ð	в	в

K	ey to Biol. Class	ss: A = Good, B = Moderate, C = Poor, D = Vary Poor. * = Canal - Unsuitable for classification, + = Lacustrine s # = Site regularly dries up - cannot be classified, \$ = Site was not sampled due to location difficulty or of	ite - also unsuitable, j = New site for 1992/1993 ther error,
V.	er: 91.3	June 1993 NRA South West Region, Manley House, Exeter.	ex compiled by Russ Dellen. Freshwater Biology. Ext 2472.

ł

ł

ł

ļ

RDALLEN/MAPS/V913 (CATCH8.DRW)

Figure 3.15 Avon Catchment (8) NRA Biological Class - 1990/1991

3.2.10 River Erme Catchment Catchment-9

Summary

All 31 km of watercourses monitored by 9 sites in the River Erme catchment were classed as good quality according to the NRA Biological Classification.

Likely reasons for poorer biological quality

Although their overall NRA Biological Class was good, the upper three reaches of the River Erme had moderately poorer than expected N-taxa. The most upstream site was very bouldery, which made it difficulty to sample. The next site downstream, at the A30 Bridge, was downstream from an outfall pipe (not the storm sewer overflow mentioned in the site's name), as well as a paper mill discharge which occasionally polluted the river.

No. on Mep	Watercourse Name	Site Location Name	NGR	Site Ref.	Chem. URN	RIVPACS Suitability	Year	Season Code	Ob N-Fares	ASPT		0/ N-Fams	E Rat ASPT	10 BHMP	O/E Ra N-Fams	ASPT	tass BHMP	8101 Clas
2 3 4 5	Erme Erme Erme Erme Erme Erme	120m u/s Stowford Weir 20m u/s A30 bridge u/s storm overflow 10m u/s br Cleave 10m u/s bridge Lower Keaton 30m u/s Fawn's Bridge 500m u/s Sequer's Bridge	SX 6334 5525 SX 6403 5449 SX 6409 5304	0905 0906 0902	R098001 R098012 R098002 R098010 R098011 R098003	5 3 1 1 1	1991 1991 1991 1991 1991 1991 1991	7 7 7 7 7 7	25 23 36 35	7.10 6.60 6.60 6.30 6.30 6.00	165 151 226 220	0.78 0.77 0.71 1.11 1.03 1.13	1.03 1.03 0.99 0.99	0.80 0.73 1.10 1.03	B B A	A A A A A A A A A A A A A A A A A A A	*****	~~~~~
7	Lud Brook	50m w/s br to fish farm Fawn's Bridge	SX 6413 5308	0904	R098017	1	1990	7.	35	6.00	210	1.33	0.96	1.28	A	A		A
9	Left Lake	10m u/s Erme confl u/s weir	SX 6402 6330	0908		4	1991	7	17	5.90	100	0.80	0.93	0.74	A		A	A
. 9	Red Lake	20m u/s Erme confl	SX 6358 6612	0909		4	1991	7	19	5.90	113	0.89	0.93	0.83	A	A	A	A

.

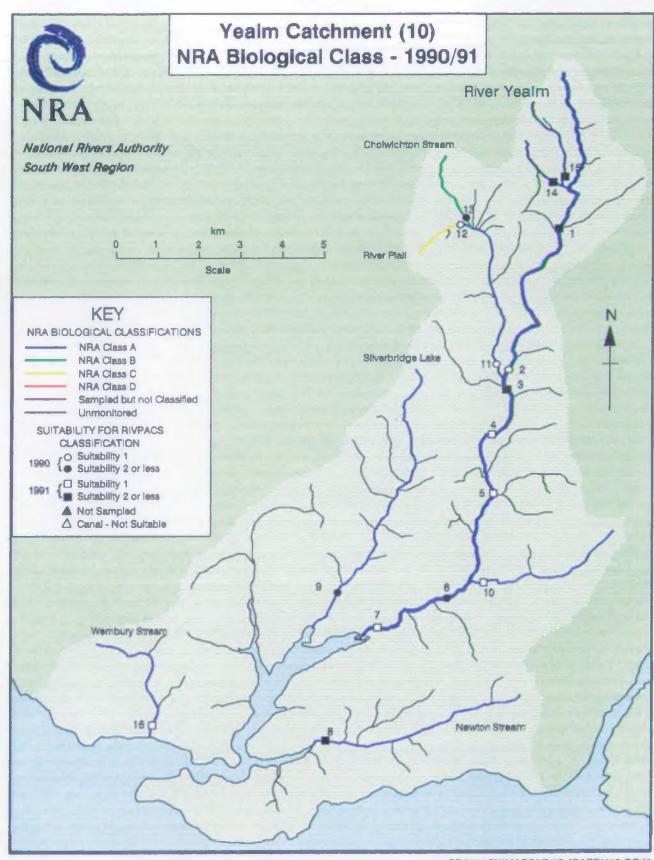
	C = Poor, D = Very Poor. * = Canal - Unsuitable is up - cannot be classified, S = Site was not sam	for classification, + - Lacustrine site - also unsuitable, j - pled due to location difficulty or other error.	New site for 1992/1993
Ver: 91.3 June 1993 NRA South	West Region, Manley House, Exeter.	Index compiled by Russ Daller	n. Freshwater Blology. Ext 2472.

Figure 3.16 Erme Catchment (9) NRA Biological Class - 1990/1991

3.2.11 River Yealm Catchment Catchment-10

Summary

Of the 41 km of watercourses monitored by 16 sites in the River Yealm catchment, 94% (14 sites) were good, 3% (1 site) were moderate, and 3% (1 site) were poor quality, according to the NRA Biological Classification. None were classed as very poor quality.


Likely reasons for poorer biological quality

The upper reach of the River Piall was classed as poor quality (reflected in its poorer than expected ASPT and very much poorer than expected N-taxa), and its tributary Cholwichtown Stream was of moderate biological quality (owing to poorer than expected N-taxa). Both watercourses were in an area heavily influenced by china clay workings. A 70% cover of ochre was recorded on the river bed at the site on the upper reach of the River Piall, which is consistent with the effects of mining.

Although having a good overall NRA Biological Class, Broadall Lake was classed as moderate according to its EQI N-taxa. This may have been a result of the difficulty of sampling from the bouldery stream bed: no water quality problems were identified in Broadall Lake. Although stoneflies were abundant, mayflies, group 1 caddis (see Figure 2.5) and molluscs were absent, which suggests that there may have been acidic and/or toxic metal pollution here.

atcime	nt: River Yealm	Lorresp	anding Freelance map	111ene	me(s):CA10	HIU.URM												
No. on Map	Watercourse Name	Sita Location Name	NGR	Site Ref.	Chem. URN	RIVPACS Suftability	Year	Season Code	Ob N-Fams	ASPT			E Ret ASPT		O/E Ra N-Fams			
1 2 3 4 5 6 7	Yea Im Yea Im Yea Im Yea Im Yea Im Yea Im Yea Im	Hele Cross Fardel Mill Farm Bridge u/s Fardel Moor Weir d/s lake Lee Mill Bridge Popple's Bridge Yealm Bridge Puslinch Bridge		1008 1001 1009 1010 1011 1002 1012	R108022 R108002 R108024 R108003 R108021 R108004 R108005	* 5 1 1 1 3 1	1991 1990 1991 1991 1991 1991 1990 1991	7 7 7 7 7 7 7	39 40 37 27 37	6.80 6.60 6.60 6.70 6.40 6.50 6.50	256 263 247 174 241	1.18 1.21 1.12 0.81 1.23	1.03	1.22 1.25 1.17 0.82 1.29			~~~~	***
8	Newton Stream	Bridgend	SX 5559 4821	1017	R108015	2	1991	7	30	5.50	164	0.87	0.91	0.79	A	A	A	A
9	Silverbridge Leke	Brixton	SX 5620 5204	1003	9108018	4 .	1990	7	43	6.30	273	1.33	1.06	1.40	A	A	A	A
10	Long Brook	Yes1mbridge	5X 5941 5213	1016		1	1991	7	40	6.20	248	1.19	1.02	1.20	A	A	A	1
11 12	Pfall Pfall	Mark's Bridge Quick Bridge		1005 1004	R108008 R108007	, <u>1</u>	1990 1990	;		6.70 4.40						ĉ	ĉ	ĉ
13	Cholwichtown	prior to river Piall	SX 5921 6087	1006	R108006	2	1990	7	21	5.80	121	0.76	0.92	0. 69	8	A	8	10
14	Ford Brook	Dendtes Green	SX 6137 6180	1013		•	1991	7	23	6.50	150	1.04	1.03	1.07	· A	A	A	A
15	Broadall Lake	Dendles Wood Bridge	SX 6138 6184	1014	1.1	•	1991	7	17	6.30	107	0.76	0.99	0,75	8	A	A	•
16	Wembury Stream	Wenbury	SX 5188 4880	1007	R10AD01	1	1991	7	35	6.30	221	1.04	1.02	1.06	A	•	A	A
_			1								_							

Key to Biol. Class: A = Good, B = Moderate, C = Poor, D = Very Poor. * = Canal - Unsuitable for classification, + = Lacustrine site - also unsuitable, j = New site for 1992/1993 # = Site regularly drias up - cannot be classified, \$ = Site was not sampled due to location difficulty or other error, Var: 91.3 June 1993 NRA South West Region, Manley House, Exeter. Index compiled by Russ Dallen. Freshwater Biology. Ext 2472.

RDALLLEN/MAPSN913 (CATCH10.DRW)

Figure 3.17 Yealm Catchment (10) NRA Biological Class - 1990/1991

Cetchment: River Plym

Corresponding Freelance map fileneme(s):CATCH11.DRW

No. on Map		Site Location Name	NGR		Chem. URN	RIVPACS Suitebility	Year	Season Code		ASPT		0/ N-Fems	E Ret ASPT		O/E Ra N-Fams			
1 2 3 4 5 6	P lym Plym Plym Plym Plym Plym Plym	u/s Blackabrook d/s Blackabrook Cadovar Bridge Shaugh Bridge (Wooden) Bickleigh Plym Bridge	SX 5639 6448 SX 5550 6462 SX 5336 6369 SX 5270 6181	1111 1103 1112 1113	R118001 R118002 R118003 R118004 R118018 R118006	5 5 5 1 4	1991 1991 1990 1991 1991 1991 1990	7 7 7 7 7 7	25 27 23 29	6.80 6.90 6.70 7.20 7.10 6.70	172 180 166 205	1.17 0.87 0.90	1.07 1.04 1.12 1.11	1.05 1.21 0.97 1.00		*****	***	***
7 8 9 10 11	Tory Brook Tory Brook Tory Brook Tory Brook Tory Brook	Tolchmoor Bridge Colelend Bridge Portworthy Bridge Stetion Road - Plympton Mersh Mills Bridge	5X 5660 6088 5X 5558 6016 5X 5431 5692	1107 1108 1102	R11A001 R11A002 R11A003 R11A004 R11A005	3 3 2 1 2	1990 1991 1991 1990 1990	7 1 7 7 7	9 23 11	5.50 4.90 5.90 5.20 5.70	44 136 57	0.42	0,70 0,93 0,83	0.33 0.65 0.26	6 8 0	8 8 4 8	C B C B	C 8 6 C 8
13 14	Maavy Maavy Maavy Maavy Maavy	Veir u/s Burretor Reservoir d/s Burretor Reservoir Gretton Ford Bridge Hoo Meavy	SX 5515 6790 SX 5297 6705	1105	R118008 R118009 R118010 R118011	5 5 1 1	1991 1990 1991 1991	7 7 7 7	28 31	7,20 6,50 6,80 6,50	183 211	0.99	1.03		A	~ ~ ~	A A A A A	
16	Bleckebrook	confluence with River Plym	SX .5648 6441	1116	R118007	4	1991	7	23	6.70	167	1.16	1.05	1.22	A	A	A	A

7

20

 Kay to Biol, Class: A = Good, B = Moderate, C = Poor, D = Vary Poor. * = Canal = Unsuitable for classification, + = Lacustrine site - elso unsuitable, j = New site for 1992/1993

 # + Site regularly dries up - cannot be classified, \$ = Site was not sampled due to location difficulty or other error,

 Ver: 91.3
 June 1993

 NRA South West Region, Manley House, Exeter.

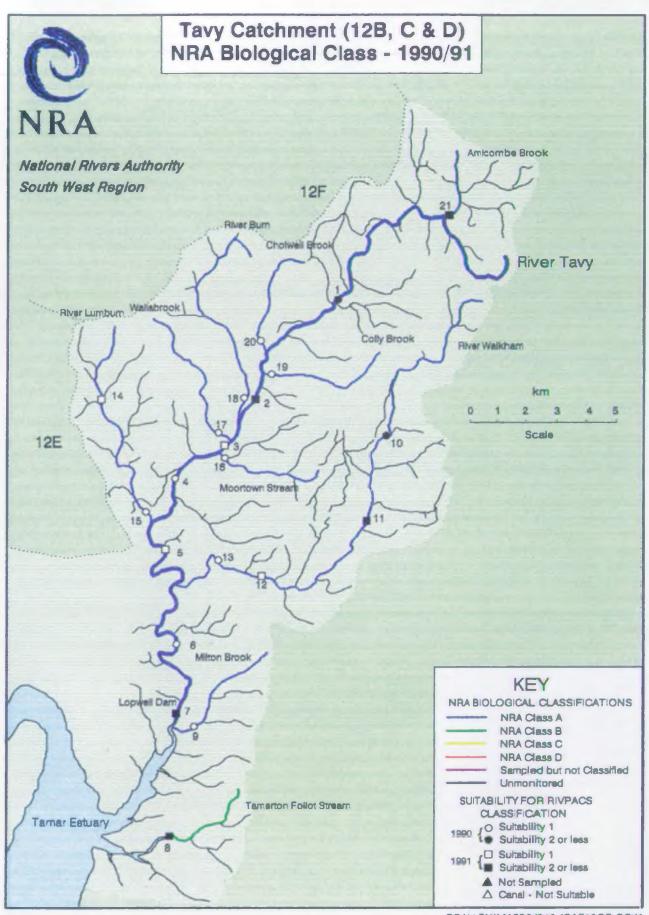
 Index compiled by Russ Dallen. Freshwater Biology. Ext 2472.

Figure 3.18 Plym Catchment (11) NRA Biological Class - 1990/1991

RDALLEN/MAPS/V913 (CATCH11.DRW)

3.2.13 River Tavy Catchment Catchment-12B, 12C & 12D

Summary


Of the 96 km of watercourses monitored at 20 sites, 95% (19 sites) were good, and 5% (1 site) were moderate quality, according to the NRA Biological Classification. None were classed as poor or very poor quality.

Likely reasons for poorer biological quality

Tamerton Foliot Stream was classed as moderate quality owing to both moderately poorer than expected ASPT and N-taxa, which is indicative of organic pollution. Storm sewerage overflows and land run-off were postulated causes of its poor chemical quality (National Rivers Authority, 1992d). These are also consistent with the impacts on the biota.

o. on Map	Watercourse Name	Site Location Name	NGR	Site Ref.	Chem, URN	RIVPACS Suitability	Year	Season Code		ASPT			E Rat ASPT		0/E Ra N-Fams			
1 2 3 4 5 6 7	Tavy Tavy Tavy Tavy Tavy Tavy Tavy Tavy	Hill Bridge Herford Bridge Kelly School West Bridge Washford Denham Bridge mid Lopwell Dam	SX 5329 8049 SX 5056 7678 SX 4913 7498 SX 4774 7383 SX 4699 7106 SX 4769 6800 SX 4773 6513	1203 1280 1281 1204 1282 1205 1203	R12C001 R12C002 R12C015 R12C003 R12C003 R12C005 R12C006 R12C007	· 2 1 1 1	1990 1991 1991 1990 1991 1990 1991	7 7 7 7 7 7		5.80 5.60 6.90 5.40 5.30		1.12 1.01 1.02 0.85 1.08 0.88 1.03	1.03 1.08 1.02 1.02	1.04 1.10 0.87 1.10 0.91	A	*****	~~~~~	******
8	Tamarton Foliot Stream	Tamerton Foliot (d/s trib)	SX 4687 6090	1279	R128005	5	1991	7	22	5.30	116	0.63	0.85	0.54	B	В	8	Ð
9	Milton Brook	point d/s Milton Coombe	SX 4829 6479	1202	R128001	1	1990	7	36	6.60	236	1.10	1.02	1.12	•	A	•	•
10 11 12 13	Walikham Walikham Walikham Walikham	Merrivale Bridge Ward Bridge Bedford Bridge Grenofen Bridge	SX 5510 7512 SX 5422 7202 SX 5044 7035 SX 4890 7101	1212 1206 1207 1213	R120001 R120002 R120003 R120004	4	1990 1991 1991 1991 1990	4 7 7 4		7.00 7.10 6.80 6.50	167 212 212 203	1.19 1.18 0.96 1.05	1.10 1.11 1.07 1.03	1.30		A A A A		
14 15	Lunburn Lunburn	Rushford Bridge Shillamill (prior to R. Tavy)	SX 4495 7633 SX 4668 7191		R12C009 R12C010		1991 1991	7		6.70 6.70	274 249			$1.31 \\ 1.13$	Â	Â	A	Â
16	Moortown Brook	Mt House School	SX 4930 7460	1207	912C021	1	1990	7	33	6.70	222	0.98	1.06	1.04	A	A	•	A 1
17	Wallabrook	prior to River Tavy	SX 4921 7548	1208	A12CO11	1	1990	7 5	33	6.40	212	1.02	1.00	1.02		A	•	•
18	Burn	prior to River Tavy	SX 4980 7618	1209	R12C008	1	1990	7	39	6.90	268	1.16	1.08	1.25	٨	A	A	A
19	Colly Brook	Peter Tavy	SX 5146 7765	1210	RIZCOZZ	1	1990	7	33	6.80	224	1.05	1.06	3.11	A	A	A	•
20	Cholwell Brook	Brook Tavy	SX 5081 7861	1211	R12C019	1	1990	7	25	6.50	162	0.92	1.02	0.94	•	A	•	•
21	Amicombe Brook	22m u/s confluence Dertmoor	5X 5717 0337	1285	1 –	5	1991	7	19	6.60	126	0.88	1.05	0.92	A	A		A

73

RDALLEN/MAPS/V913 (CAT12CD.DRW)

Figure 3.19 Tavy Catchment (12B, 12C & 12D) NRA Biological Class - 1990/1991

3.2.14 River Tamar Catchment Catchment-12E to 12P inclusive

Summary

Of the 468 km of watercourses monitored at 97 sites, 98% (93 sites) were good, 1% (2 sites) were moderate, and 1% (2 sites) were poor quality, according to the NRA Biological Classification. None were classed as very poor quality.

Likely reasons for poorer biological quality

With the exception of a few smaller tributaries, all the watercourses in the Tamar catchment were of good ecological quality.

Blanchdown Stream was of poor overall NRA Biological Class owing to poorer than expected N-taxa and moderately poorer than expected ASPT, which indicated toxic pollution. This, and the complete covering of ochre on the stream bed, was consistent with the effects of metalliferous mine drainage that was known to affect the stream.

Latchley Brook was of poor quality because of poorer than expected N-taxa, which indicates toxic pollution. Run-off from quarrying, and the acidic metalliferous geology of the catchment were thought to be the cause.

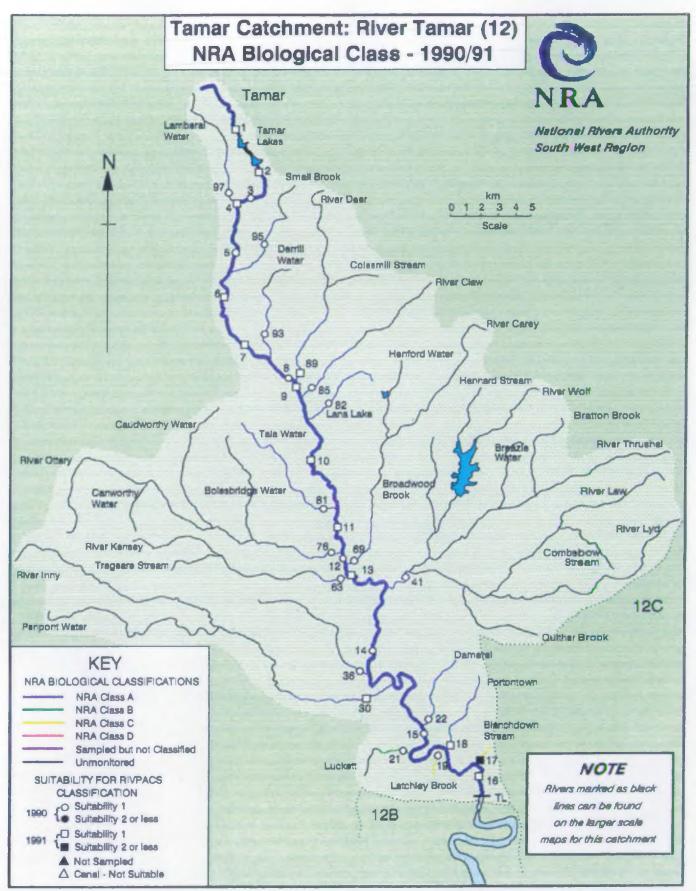
The lower reach of the River Luckett was of moderate quality owing to poorer than expected N-taxa, probably as a result of discharges from abandoned mines. There were also some crude sewage discharges to this stream, which were identified and reported by NRA pollution staff (National Rivers Authority, 1992e).

The upper reach of the Small Brook was of moderate quality owing to poorer than expected N-taxa. Land run-off, catchment geology, and metal residues from pig slurry were suggested as the causes of this.

Catchment: River Tamar

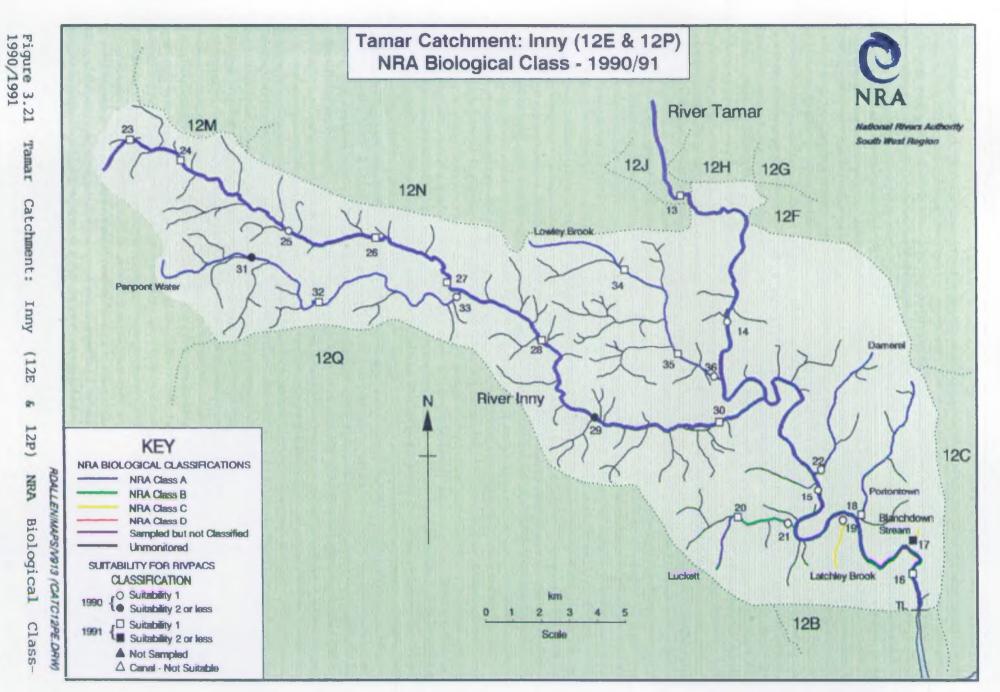
Corresponding Freelance map filename(s): TAMARALL.DRW, CAT12PE.DRW, CATC12FG.DRW, CATC12HM.DRW & CA12HJKL.DRW

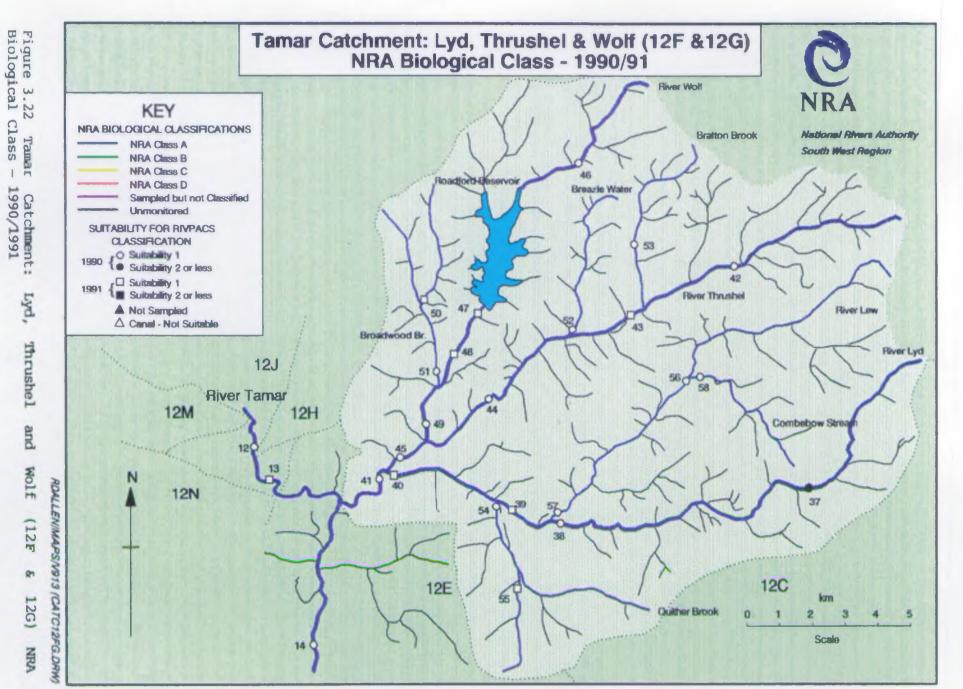
io. on Isp	Watercourse Name	Site Location Name	NGR	Site Ref.	Chem. URN	RIVPACS Suitability	Year	Season				0/	E Rat	10	O/E R	tio C	1855	8101
1	Tamar	Buses Bridge	55 2809 1345	12111	R12L001	1	1991	7	34	6.40	216			1.00	N-Fam		BPW/P	
2 3 4 5	Tamer Tamer Tamer	d/s Lower Tamar Lake Dexbeer Bridge Moreton Mill Tamarstone Bridge	SS 2955 1070 SS 2957 0894 SS 2833 0850 SS 2832 0559	12112 1247 12113	R12L009 R12L006 R12L016		1991 1991 1991 1991		41 37 41	5.80 6.10 5.40	238 226 221	1.17 1.06 1.15	0.91	1.07	A ·			
6 7 8	Tamar Tamar Tamar	Bridgerule Crowford Bridge Tamerton Bridge	SS 2748 0290 SX 2872 9943 SX 3179 9739	1248 12114 12115 1249	R12L002 R12L015 R12L003 R12L004		1991 1991 1991 1991		41 44 42 37	6.20 6.50 6.50 6.70	286 272	1.14 1.26 1.16 1.04	0.97 1.02 1.02 1.05	1.29				Î
9 10 11	Tamar Tamar Tamar	d/s confluence with River Deer Boyton Gridge Druxton Bridge	SX 3190 9726 SX 3288 9230 SX 3443 8830	12116 12104 12105	R12L013 R12J001 R12J002		1991 1991 1991	7777	42 45 42	6.30 6.20 6.20	265 278 261	1.16 1.25 1.25	0.99 0.98 0.99	1.15				
12 13 14 15	Tamar Tamar Tamar Tamar	Netherbridge Polson Bridge Greystone Bridge Horsebridge	5X 3497 8662 5X 3556 8492 5X 3683 8025 5X 4001 7482	1239 12106 1214 1215	R12J003 R12J004 R12E001 R12E002		1990 1991 1990 1990	777777	40 42 30 43	6.40 6.40 6.70 6.60	268 253 284	1.18 1.30 1.11 1.36	1.03 1.03 1.06 1.08	1.33 1.18 1.46	A			
16 17	Tamar Blanchdown Stream	Gunnislakë Bridge prior to River Tamar	SX 4332 7221 SX 4325 7290	1288 1293	R12E003	4	1991 1993	7	37	6.00	223 66	1.10	0.98		A C	A B	A C	^
	Partontown Stream	prior to River Tamar weir	SX 4143 7374.	1289	R12E034	1	1991	1	32	6.40	205	0.95	——	0.96		A		
19	Latchley Brook	Latchley	SX 4090 7368	1217	R12E028	1	1990	7	15	5.70	86	0.46	0.92	0.42	С	A	c	c
20 21	Luckett Luckett	Oldmill Luckett Bridge	SX 3697 7386 SX 3882 7367	1292 1220	R12E016 R12E007	1 1	1991 1990	777	35 21	6.80 6.90	238 145	1.07 0.63		1.13 0.68	AB	Â	A B	Â
22	Damerel Stream	prior to River Tavy	SX 3988 7549	1218	R12E014	1	1990	7	36	6.70	240	1.06	1.05	1.11	A	•	A	^
23 24 25 26 27 28 29 30	Inny Inny Inny Inny Inny Inny Inny Inny	u/s Davidstow Creamery Trawinnow Bridge St Clather Bridge Gimblatt's Mill Two Bridges Trakelland Bridge Bealamill Bridge Bealamill Bridge	SX 1534 0704 SX 1704 8647 SX 2052 0419 SX 2410 8342 SX 2700 8180 SX 3000 7989 SX 3217 7710 SX 3587 7704	12130	R12P001 R12P002 R12P003 R12P012 R12P004 R12P005 R12P013 R12P006	1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1991 1991 1990 1991 1991 1991 1990 1991	777777777777777777777777777777777777777	33 36 38 42 40 41 42 40	6.20 6.40 6.60 6.70 6.70 6.60 6.40 6.60	206 229 252 283 267 271 267 265	1.08 1.21 1.19 1.22 1.29	0.97 1.00 1.04 1.06 1.05 1.04 1.01 1.04	1.03 1.12 1.28 1.24 1.26 1.30	*****		*****	~~~~~
	Penpont Water Penpont Water Penpont Water	Trelyn Bridge Altarnun Bridge Two Bridges	SX 2000 8288 SX 2228 8125 SX 2695 8165		R12P010 R12P007 R12P008	3 1 1	1990 1991 1990	7 7 7	37 38 38	6.60 6.80 6.80	246 259 258	1.22 1.18 1.14	1.06 1.07 1.06	1.29 1.25 1.21	A A A		* * *	Â
34 35 36	Lowley Brook Lowley Brook Lowley Brook	Landlake Bridge Landue Bridge Lowleybridge	SX 3288 8237 SX 3471 7970 SX 3589 7878	1290 1291 1219	R12E005 R12E017 R12E006	1 1 1	1991 1991 1990	7777	30 41 36	6.00 6.30 6.50	179 259 235	0.86 1.13 1.01	0.94 1.00 1.03	0.81 1.13 1.04	***		*	A A A
37 38 39 40 41	Lyd Lyd Lyd Lyd Lyd Lyd	A386 road bridge Lydford Greenlanes Bridge Sydenham Bridge prior to River Thrushei Lifton Bridge	SX 5211 6446 SX 4443 8321 SX 4291 8388 SX 3922 8497 SX 3893 8477	1221 1222 1294 1295 1223	R12F012 R12F001 R12F011 R12F002	3 1 1 1 1	1990 1990 1991 1991 1991	7 7 7 7 7	28	6.50 6.80 6.80 6.80 6.80	137 231 252 190 216	0.98 0.98 1.09 0.85 1.02	1.07	1.00 1.04 1.17 0.92 1.12	~~~~	~ ~ ~ ~	~~~~	
44	Thrushel Thrushel Thrushel Thrushel	Rivermead Bridge Wrizhill Bridge Stowford Bridge (Townleigh) Tinhay Bridge	SX 4990 9127 SX 4654 8987 SX 4280 6738 SX 4171 8672	1228 1297 1229 1230	R12G001 R12G002 R12G003 R12G004	1 1 1 1	1990 1991 1990 1990	7 4 7 7	34 27 40 39	6.80 6.50 6.60 6.30	231 175 262 246	0.95 0.61 1.13 1.10	1.02		~~~	***	~ ~ ~ ~	
47 48	Wolf Wolf Wolf Wolf	Week's Mill Bridge Roadford New Bridge Raxon Bridge prior to River Thrushel	SX 4464 9425 SX 4188 8979 SX 4141 8890 SX 4035 8638	1233 1298 1299 1234	R12G005 R12G084 R12G006 R12G007	1 1 1 1	1990 1991 1991 1990	777777	32 34 30 41	6.80 6.20 6.50 6.70	216 212 248 276	0.98 0.95 1.11 1.15	1.07 0.97 1.02 1.06	1.14	~~~~		~~~	
50	Buddle Brook	Buddle Bridge	SX 4022 8989	12100	de	1	1991	7	36	6.70	242	1.07	1.05	1.11	٨	•	A	A
51	Broadwood Brook	Kellacott Bridge	SX 4065 8800	1235	R12G012	1	1990	• 7	32	6.70	215	0.90	1.06	0'.95	•	•	-	•
	Breazle Water	prior to River Thrushel	SX 4480 8924	1232	R12G010	1	1990	7	37	6.60	246	1.07		1.11	A	A	A	<u>^</u>
53	Bretton Brook	Bratton Clovelly	SX 4677 9202	1231	R12G009	1	1990	7	32	6.40	205	0.95	1.00	0.95	A	۸.	•	^
ey to	Biol. Class: A = Good, B # = Site re	- Moderate, C = Poor, D = Vary Poor, * = : gularly dries up - cannot be classified, \$	Cenal - Unsulta = Site was not	ble for	r classifie d due to	ation, + + location dif	.ecustr	ine eite	- als	unsu	Itabl	•. : •	New 1	ite 1	or 199	2/1993		
er: 91		NRA South West Region, Manley House, Exe																2472

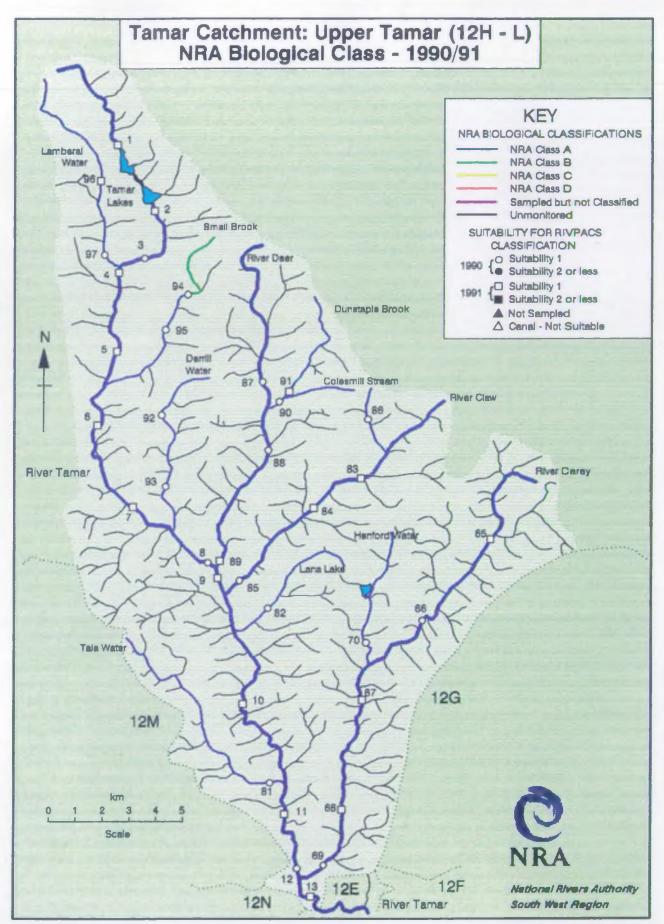

No. on Mep	Watercourse Name	Site Location Name	NGR	Site - Ref.	Chem. URN	RIVPACS Sultability	Year	Season Code	Ob N-Fams	ASPT			E Rat		O/E Ra N-Fams			
54	Quither Brook	prior to River Lyd	5X 4268 8393	1224	R12F013	1	1990	7	34	6.40	219	1.00	1.01	1.01	A	A	A	A
55	Chilleton Streem	Chillaton Bridge	SX 4325 8184	1296		1	1991	7	37	6.70	249	1.17	1.03	1.20	Α.,	A	A	•
56 57	Low Low	Combebow Bridge prior to River Lyd	SX 4854 8799 SX 4268 8393	1226 1225	R12F003 R12F004	1 1	1990 1990	6 7	.35 35	6.80 6.80	238 239	1.16		1.27 1.00	Å	1	1	Â
58	Combebow Stream	access rd culvert nr quarry	SX 4883 8898	1227	A12F030	1	1990	7	34	6.70	228	0.99	1.05	1.04	A	A	A	A
59 60 61 62 63	Kensey Kensey Kensey Kensey Kensey	Badgall Bridge Badharlick Bridge Truscott Bridga Newport St Leonards Bridge	SX 2312 8596 SX 2575 8542 SX 284 8498 SX 3262 8512 SX 3523 8485	1260 12124 1261 12125 1262	R12N003 R12N001 R12N004 R12N005 R12N005	1 1 1 1	1990 1991 1990 1991 1991 1990	7 7 7 7 7 7	36 42 36 35 33	6.80 6.80 6.50 6.70 6.50	243 285 233 234 215	1.14 1.19 1.04 0.98 0.94	1.07 1.07 1.01 1.05 1.02		A A A A A		****	
64	Tregeere Streem	Red Down Bridge	SX 2672 8629	12126	R12N006	1	1991	7	37	6.60	244	1.08	1.04	1.12	A	•	A	1
65 66 67 68 69	Carey Carey Carey Carey Carey Carey	Halmill Bridge - Quoditch Ashmill Bridge Panson Boldford Bridge Heale Bridge	SX 4207 9851 SX 3937 9537 SX 3715 9258 SX 3645 8824 SX 3589 8617	12101 1236 12102 12103 1237	R12H006 R12H001 R12H007 R12H008 R12H008 R12H002	1 1 1 1 1	1991 1990 1991 1991 1991 1990	1 7 7 7 7	38 38	6.40 6.40 6.40 6.50 6.30	186 251 244 247 247	1.06	1.01 1.01 1.01 1.02 0.99	1.04 1.13 1.07 1.08 1.10	~ ~ ~ ~	A A A A A A A A A A A A A A A A A A A		****
70	Henford Water	Henford	SX 3736 9479	1238	R12H005	1	1990	7	35	6.70	235	0.90	1.06	1.04	A	A	A	A
71 72 73 74 75 76	Ottery Ottery Ottery Ottery Ottery Ottery	Otterham Mill Trengune Bridge Canworthy Water Bridge Hellescott Bridge Yaolmbridge Ham Mill Bridge	5X 1742 9087 5X 1885 9329 5X 2220 9170 5X 2284 8782 5X 3176 8737 5X 3456 8685	12118 12119 1255 1256 12120 1257	R12H004 R12H005 R12H001 R12H002 R12H006 R12H006 R12H007	1 1 2 1 1 1	1991 1991 1990 1990 1990 1991 1990	7 7 7 7 7 7	35 37 38 39 39 40	6.20 6.60 6.40 6.60 6.40 6.30	218 244 244 257 251 252	1.08	1.03 1.01 1.04	1.09 1.17 1.16	A A A A A A A	*****	*****	****
77	Bolasbridge Water	200m d/s Neverino Bridge	SX 2895 8818	1258	R124012	1	1990	7	31	6.40	197	0.65	1.00	0.85	Α		A	
78 79	Caudworthy Mater Caudworthy Water	Caudworthy' Bridge prior to River Ottery	SX 2469 9267 SX 2672 8890	12122 1259	R12M010 R12M011	1 1	1991 1990	;	34 30	6.30 6.50	213 247	0.95	0.98 1.02		Å	Â	Â	Â
80	Canworthy Water	prior to River Ottery	SX 2238 9144	12123	R12H008	1	1991	7	39 :	6.60	256	1.13	1.03	1.17		A	A 1	1
81	Tala Water	Bridgetown	SX 3410 8913	1240	R12J006	1	1990	7	36	6.50	234	1.01	1.02	1.03		A	A	1
82	Lene Lake	Lana Bridge	SX 3412 9592	1241	R12J005	1	1990	7	30	6.30	166	0.66	0.99	0.85	A	A	A	A
83 84 85	Claw Claw Claw	Claw Bridge Clawton Bridge Tetcott Bridge	55 3742 0068 5X 3536 9933 5X 3279 9696	12107 12108 1242	R12K016 R12K001 R12K002		1991 1991 1990	7777	40 42 39	6.30 6.40 6.30	269		0.98 1.01 1.00	1.20	A A A	Â	Â	
86	Hollscombe Stream	Hayna Farm	SS 3728 0255	1243	<u> </u>	1	1990	,	31	5.90	184	0.91	0.93	0.85	A	A	A	
87 58 89	Dear Dear Dear	Rydon Bridge Winscott Bridge Deer Bridge	SS 3354 0413 SS 3385 0144 SK 3192 9734	1244 1245 12109	R12K003 R12K004 R12K005	1 1 1	1990 1990 1991	; ;	39 39 42	6.40 6.30 6.60		1.06 1.08 1.17		1.10 1.09 1.20	A A A	Â	Â	
90	Colesmill Stream	100m d/s Holsworthy STW	55 3387 0316	1246	R12K007	1	1990	1,	30	5.90	177	0.64	0.94	0.78	·A		A	
91	Dunsteple Brook	u/s Coles Hill confluence	55 3452 0352	12110	†	1	1991	7	40	6.30		• 1.15	0.99		A		TA.	
92 93	Derrill Water Derrill Water	Dux Bridge Dusistone Bridge	55 2957 0279 55 3013 0063	1251 1252	R12L012 R12L005	1 1	1990 1990	?.	31 33	6.10 6.30		0.87 0.90	0.96	0.83 0.90	Â	Â	Â	Â
94 95	Small Brook Small Brook	Headon Bridge Youldon Bridge	SS 3101 0730 SS 2997 0530	1253 1254	R12L011 R12L008	1 1	1990 1990	?	26 32	5.80 6.30			0.93	0.66 0.87	B A	1	B	,
96 97	Lamberal Water Lamberal Water	Forda Moreton Found Bridge	SS 2774 1116 SS 2757 0894	12117	R12L010 R12L007	1	1991 1990	?	36 35	6.40	231	1.09	1.01	1.10	Å	1		

Key to Biol. Cle	ss: A = Good, B = Moderate, C = Poor, D + Very Poor. # = Site regularly dries up - cannot be classifie	* = Canal - Unsuitable for classification ed, \$ = Site was not sampled due to locati	n, + = Lacustrine site - elso unsuitable, j = New site for $1992/1993$ - ion difficulty or other error,	
	# = Site regularly dries up - cannot be classifie	ed, \$ = Site was not sampled due to locati	ion difficulty or other error,	

Ver: 91.3 June 1993

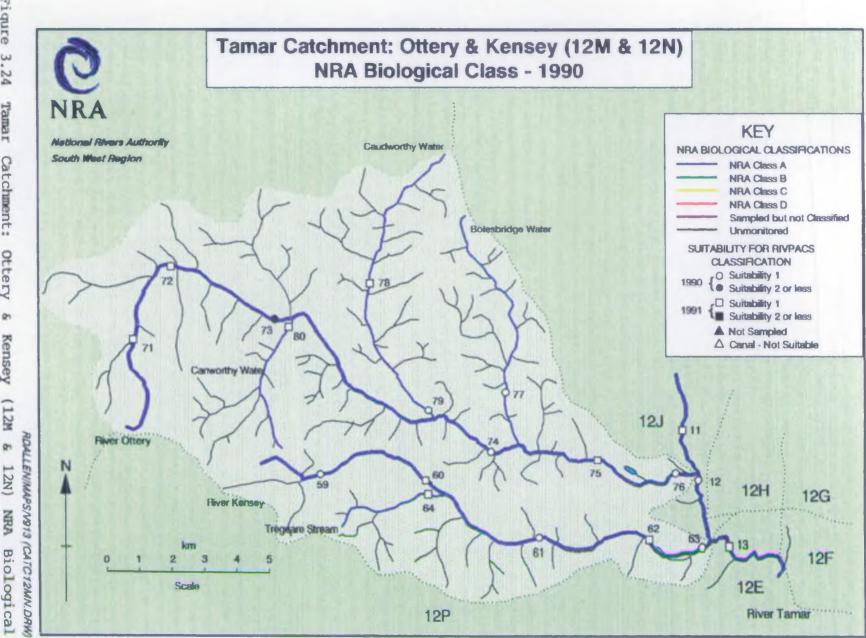

NRA South West Region, Manley House, Exeter.

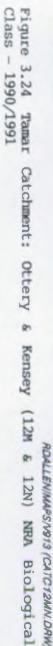

Index compiled by Russ Dallen. Freshwater Biology. Est 2472.



RDALLEN/MAPS/V913 (TAMARALL.DRW)

Figure 3.20 Tamar Catchment: River Tamar (12 in part) NRA Biological Class-1990/1991





RDALLEN/MAPS/V913 (CA12HJKL.DRW)

Figure 3.23 Tamar Catchment: Upper Tamar (12H, 12J, 12K & 12L) NRA Biological Class - 1990/1991

3.2.15 River Lynher Catchment Catchment-12R & 120

Summary

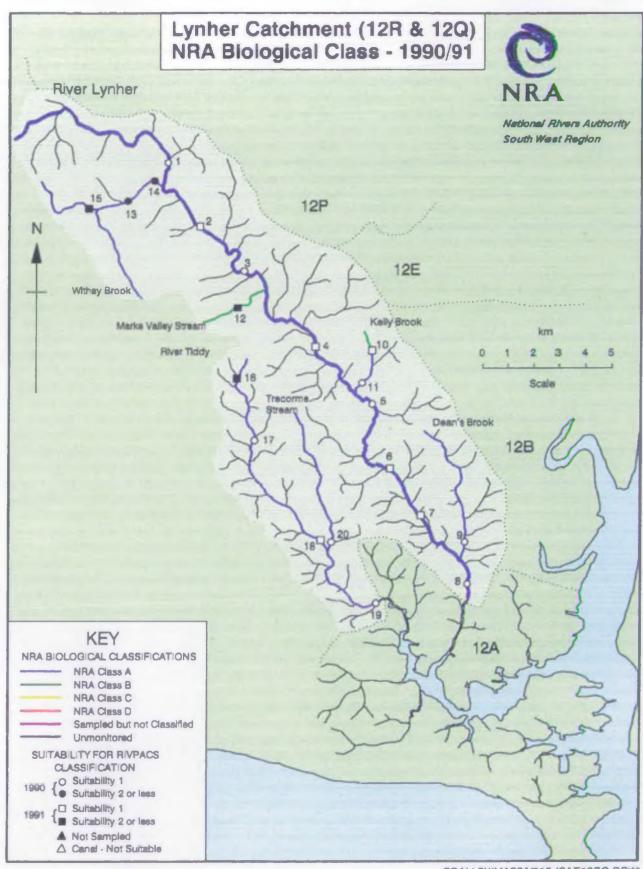
Of the 80 km of watercourses monitored by 20 sites on the River Lynher catchment, 93% (18 sites) were good, and 7% (2 sites) were moderate quality, according to the NRA Biological Classification. None were classed as poor or very poor quality.

Likely reasons for poorer biological guality

The upper reach of Kelly Stream was classed as moderate quality overall, owing to its moderately poorer than expected N-taxa. Ochre deposits were observed on the stream bed at the monitoring site. Metal contamination is thought to have been the cause. This is supported by the abundance of stonefly taxa that are tolerant to moderate metal contamination.

Marke Valley Stream was of moderate quality because of poorer than expected N-taxa. The stream bed at the monitoring site was completely covered by ochre. Metalliferous drainage from abandoned ore mines were thought to have caused the moderate quality.

84


o. on ap	Watercourse Name	Site Location Name	NGR	Site Ref.	Chem. URN	RIVPACS Suitebility	Year	Season Code	Ob N-Fams	ASPT			E Ret ASPT		O/E Re N-Fams			
1 2 3 4 5 6 7 8	Lynher Lynher Lynher Lynher Lynher Lynher Lynher Lynher	Treberthe Road Bridge Berriowbridge Starabridge Bicton Mill Bridge Newbridge U/s Clapper Bridge Pillaton Notter Bridge	SX 2629 7782 SX 2732 7565 SX 2895 7385 SX 3215 7007 SX 3473 6809 SX 3513 6527 SX 3659 6316 SX 3848 6099	1269 12136 12137	R12Q001 R12Q002 R12Q003 R12Q004 R12Q005 R12Q005 R12Q025 R12Q006 R12Q007	1 1 1 1 1 1 1	1990 1991 1990 1991 1990 1991 1991 1991	7 7 7 7 7 7 7 7	36 37 32 31 34 31	6.90 6.60 6.80 6.80 6.50 6.50 6.90 6.90	237 253 216 200 225 214	1.12 0.97 0.93 1.02 0.95	1.03 1.07 1.06 1.01 1.04 1.08	1.24 1.14 1.20 1.03 0.95 1.06 1.03 1.04		~~~~~~	******	****
9	Dean's Brook	Bridge	5X 3824 6235	1273	R12Q029	1	1990	7	36	6.60	238	1.04	1.07	1.11	A		A	A
10 11	Kelly Stream Kelly Stream	Haye Ceddapit	SX 3467 7008 SX 3400 6888		R120026 R120009	1	1991 1990	7		6.00 6.50		0.68		0.65		*	B A	8
12	Marke Valley Stream	Upton Cross	SX 2862 7192	1275	R12Q027	2	1990	7	11	5.60	62	0.51	0.89	0.45	C	•	8	В
13 14	Withey Brook Withey Brook	u/s Bastreet Intake prior to River Lynher	SX 2436 7636 SX 2610 7720		R120010 R120008	4	1990 1990	777		6.80 6.80	204 198				Â	Â	Â	Â
15	Rushyford Water	Trawortha Marsh	SX 2322 7603	12138		2	1991	7	28	6.80	190	0.87	1.07	0.94	A	A		A
16 17 18 19	Tiddy Tiddy Tiddy Tiddy Tiddy	u/a Pensilva STW Buttardon Mill Tilland Mill Bridge Tideford Bridge	SX 2900 6890 SX 2952 6625 SX 3285 6188 SX 3451 5964	1276	R12R001 R12R002 R12R003 R12R004		1991 1990 1991 1990	7 7 7 7	39 34	6.50 6.80 6.40 6.70	267	1.15	1.09	0.93 1.25 1.01 1.03	A	****	A A A A A	~~~~
20	Trecorme Stream	Tilland Bridge	SX 3320 6200	1278	R12R006	1	1990	7	39	6.80	266	1.15	1.00	1.25	A	A	A	A

 Key to Biol. Class: A = Good, B = Moderate, C = Poor, D = Very Poor. * = Cenal - Unsuitable for classification, + = Lacustrine site - also unsuitable, j = New site for 1992/1993

 f = Site regularly drias up - cannot be classified, S = Site was not sampled due to location difficulty or other error,

 Ver: 91.3
 June 1993

 NRA South West Region, Manley House, Exeter.
 Index compiled by Russ Dallen. Freshwater Biology. Ext 2472.

RDALLEN MAPS/V913 (CAT12RO.DRW)

Figure 3.25 Lynher Catchment (12R & 12Q) NRA Biological Class - 1990/1991

3.2.16 River Seaton Catchment Catchment-13

Summary

Of the 24 km of watercourses monitored at 8 sites, 31% (2 sites) were good, 23% (2 sites) were moderate, and 46% (4 sites) were poor quality, according to the NRA Biological Classification. None were classed as very bad quality.

Likely reasons for poorer biological quality

Poor biological quality in the River Seaton was mainly the result of poorer than expected N-taxa, which is indicative of toxic pollution. this was probably caused by toxic drainage from disused mines, urbanisation and road run-off. Poor habitat probably contributed to the poor ecological quality; the river bed at the site at Hendra consisted of flat cobbles which is inhospitable to invertebrates; the site at Hessenford had been channelised; the site at Seaton Beach was slow flowing and deep.

Tremar Stream was classed as moderate by the NRA Biological Classification because of moderately poorer than expected N-taxa, which is consistent with the effects of toxic pollution. Metal contamination was considered to have been the cause of this stream's poor chemical water quality (National Rivers Authority, 1992d). This could have been the cause of the moderate biological quality, although there was an unusual paucity of stoneflies and absence of ochre deposits if this was the case.

Cetchment: River Seaton

Corresponding Freelance map filename(s):CATCH13.DRW

No. on Map	Watercourse Name	Site Location Name			Chem. URN	REVPACS Suitability	Year	Season Code	Ob N-Fams	serve ASPT		0/ N-Fams	E Rat ASPT	1o DMM/P	O/E Re N-Fams	itio C ASPT	1455 644/P	81o1. Class
2 3 4 5	Seston Seaton Seaton Seaton Seaton Seaton	Crow's Nest Hendra Bridge Roselend Courtney's Mill Bridge Hessenford Seaton Beach	SX 2640 6938 SX 2650 6565 SX 2754 6323 SX 2878 6164 SX 3071 5740 SX 3033 5450	1301 1302 1305 1303	R13A001 R13A002 R13A006 R13A003 R13A004 R13A005	2 1 1 1 1 1	1991 1990 1990 1991 1990 1991	7 \ 7 7 7 7 7 7	28 14 24 13	4.60 6.60 6.40 6.10 6.50 6.10	185 90 145 84	0.84 0.43 0.72 0.38	1.04 1.01 0.96 1.03	0.87 0.43 0.69 0.39	A C B C		CAUBUU	CACECC
7	Nenhenlot trib.	at factory	SX 2844 6207	1308	R13A009	1	1991	7	37	6.80	251	1.09	1.08	1.18	A.	A.	A	A
8	Tramer Stream	Rosecreddoc	SX 2646 6758	1307	R13A008	1	1991	7	22	6.10	135	0.67	0.97	0.65	8	A	B	8

Key to Biol. Class		B = Modarata, C = Poor, D = Vary Poor, * = Canal - Unsuitable for clau egularly dries up - cannot be classified, \$ = Site was not sampled due	sification, $+ =$ Lacustrine site - also unsuitable, $y = New site for 1992/1993$ to location difficulty or other error.	
Ver: 91.3	June 1993	NRA South West Region, Manley House, Exeter.	Index compiled by Russ Dellen. Freshwater Biology. Ext	2472.

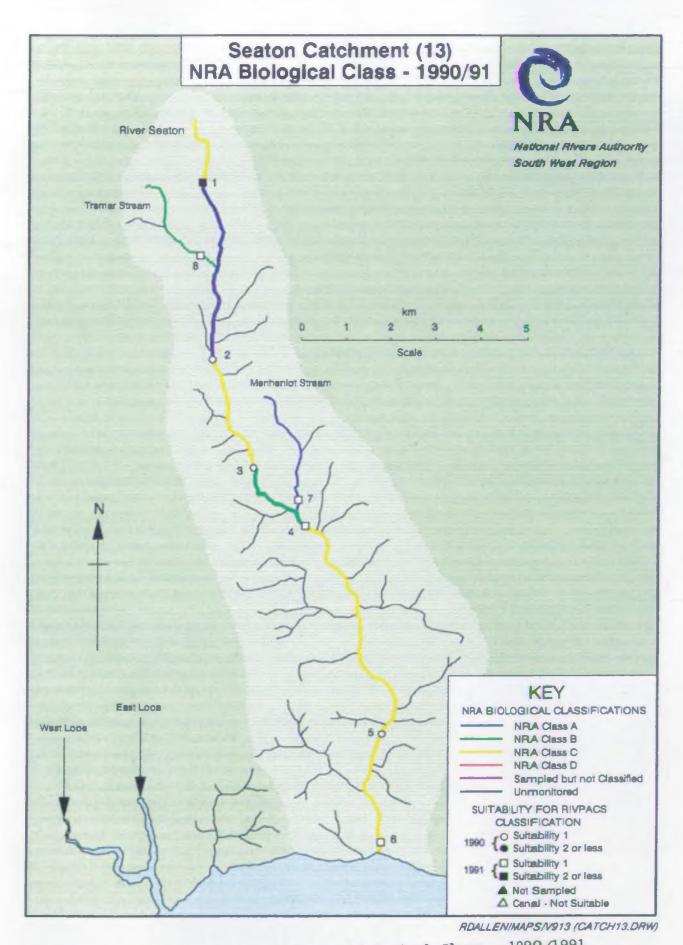


Figure 3.26 Seaton Catchment (13) NRA Biological Class - 1990/1991

3.2.17 River Looe Catchment Catchment-14

Summary

All 43 km of the watercourses monitored by 17 sites in the River Looe catchment were classed as good quality, according to the NRA Biological classification.

Likely reasons for poorer biological quality

Although Connon Tip Stream, a very small tributary of Connon Stream, had a good overall NRA Biological Class, it was of moderate ecological quality according to its EQI N-taxa. Ochre completely covered the stream bed at the monitoring site. According to the Region's pollution inspectors, the stream was contaminated by leachate from an old waste disposal site; the existing tip no longer discharges directly to this stream, but via a woodland irrigation system (which was itself considered to be unsatisfactory). Some leachate may still have been entering the stream from different sources.

Catchmer	nt: River Looe	Correspon	ding Freelance mep	filen	sme(s):CATO	H14.DRW										2		
No. on Map	Watercourse Name	Site Location Name	NGR	Site Ref.	Chem. URN	RIVPACS Suitability	Year	Seeson Code		ASPT		0/I N-Fams	E Ret ASPT		O/E Ra N-Fams			
2345	East Looe River East Looe River East Looe River East Looe River East Looe River East Looe River	Venton Veor Bridge Looe Mills Lamellion Mill Trussel Bridge Landlooe Bridge Railway Halt Sandplace	SK 2325 6574 SK 2328 6465 SK 2507 6109 SK 2455 6205 SK 2459 5956 SK 2499 5956 SK 2490 5719	1411 1412 1402 1413 1403 1414	R148005 R148001 R148002 R148003 R148006 R148006 R148004		1991 1991 1990 1991 1991 1990	7 7 7 7 7	37 31 29 29	5.90 5.90 6.30 6.10 6.00 6.20	250 254 194 177 174 187	1.08 0.90 0.83 0.82	1.09 1.00 0.97 0.97	1.16 1.17 0.90 0.81 0.80 0.85	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		A A A A A	
7	Dobwalls Stream	Tuelmenna Bridge	SX 2329 6574	1415	R148007	1	1991	7	34	7.00	238	0.99	1.12	1.11	A		A	
9 10	West Loce River Wast Loce River Wast Loce River West Loce River	Bosent Bridge Scawn Mill Bridge Churchbridge Sowden's Bridge	SX 2127 6353 SX 2160 6216 SX 2189 5865 SX 2300 5562	1404 1405 1406 1416	R14C010 R14C001 R14C002 R14C003	1 1 1 1	1990 1990 1990 1991	7 7 7 7		6.30 6.80 6.90 7.00	184 226 263 237	0.96	1.09	0.86 1.05 1.24 1.06	A	A A A A		
12	Coldrinnick Stream	Tregarrick Hill Bridge	SX 2060 5711	1407	R14C011	1	1990	7	38	6.60	252	1.12	1.06	1,18	A	A	A	1
14	Connon Stream Connon Stream Connon Stream	d/s Connon Bridge landfill site Trevillis Wood Herodsfoot Bridge	SK 1958 6165	1408 1409 1417	R14C005 R14C006 R14C008	1 1 1	1990 1990 1991	7777	34	6.60 6.90 6.80	185 233 259	1.00	1.09	0.87 1.09 1.24	A			Â
16	Connon Tip Stream	Tip discharge	SX 1891 6241	1410	<u> </u>	2	1990	,	24	6.00	144	0.73	0.96	0.70	B	A	•	
17	Polperro River	Polperro	SX 2073 5098	1401	R14A001	1	1990	7	30	6.60	196	0,91	1.03	0.95	A	•	1	1
						I. <u>.</u>												

Key to Biol. Class	is: A - Good, ∉ = Site	, $B = Hoderata, C = Poor, D = Very Poor, * = Canal = Unsuitable for classification, * = Lacustr regularly drias up - cannot be classified, S = Site was not sampled due to location difficulty$	ine site - also unsuitable, - New site for 1992/1993 or other error,
Ver: 91.3	June 1993	NRA South West Region, Manley House, Exeter.	Index compiled by Russ Dallen, "Freshwater Biology. Ext 2472.

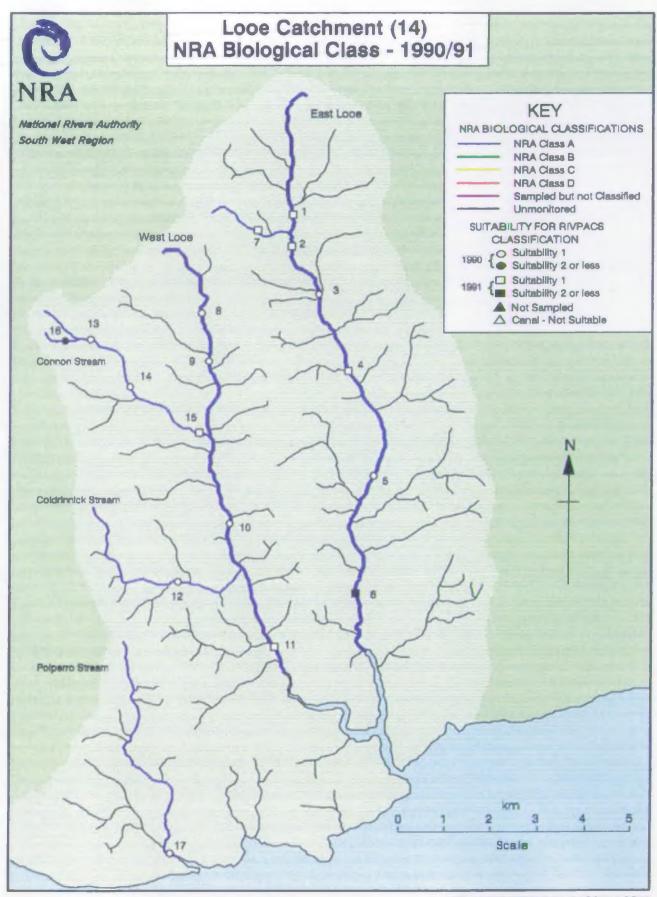


Figure 3.27 Looe Catchment (14) NRA Biological Class - 1990/1991

RDALLEN/MAPS/V913 (CATCH14.DRW)

3.2.18 River Fowey Catchment Catchment-15

Summary

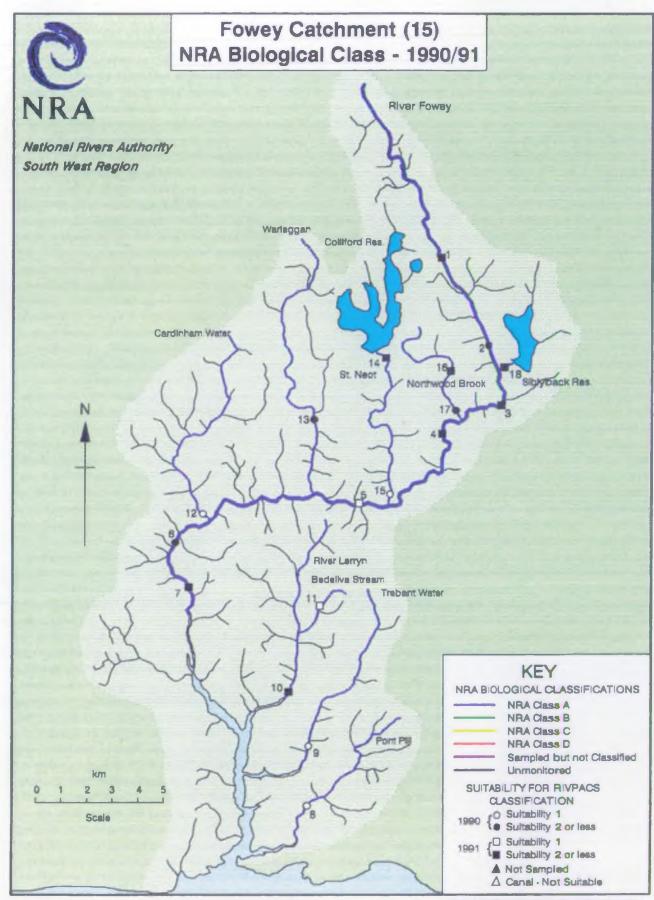
All 84 km of watercourses monitored by 18 sites in the River Fowey catchment were classed as good quality, according to the NRA Biological classification.

Likely reasons for poorer biological quality

N/A

Catchment: River Fowey

Corresponding Freelance map fileneme(s):CATCH15.DRW


Ho. on Nap	Vetercourse Name	Site Location Name	NGR		Chem. URN	RIVPACS Sultability	Yeer	See son Code		ASPT		0/ H-Fams	E Ret ASPT	BHMP	O/E Re N-Fams	tio C ASPT	85 P	81o1. Cless
1 2 3 4 5 6 7	Forway Forway Forway Forway Forway Forway Forway	Harrowbridge Lamelgate Draynes Bridge Treverbyn Bridge Bodithiel Bridge Respryn Bridge Restormel	SX 2230 7080 SX 2281 6898 SX 2065 6754 SX 1766 6488 SX 0998 6360	1513 1514	R158001 R158024 R158002 R158003 R158004 R158025 R158006	4 5 3 1 2	1991 1990 1991 1991 1991 1990 1991	7 7 7 7 7 7	36 33 35 29 32	7.10 6.80 7.00 7.10 6.90 6.90	246 224 245 206 220	1.02 1.09 0.90 1.02	1.07 1.06 1.10 1.11 1.09	1.28 1.08 1.19 1.00 1.11		~~~~~	A A A A A A A A A A A A A A A A A A A	
6	Pont Pill	Trethake Mill - u/s Pont	SX 1561 5315	1501	R158032	1	1990	7	27	6.00	163	0.79	0.96	0.76	A	A	A	A
9	Trebent Weter	East Trancrook u/s Panpoll	SX 1510 5551	1502	R15B031	1	1990	7	40	6.60	264	1.15	1.06	1.22	A	A	A	A
10	Lerryn River	Lerryn	SX 1432 5734	1510	R15A004	4	1991	7	37	6.80	253	1.05	1.10	1.15	A	A	٨	
11	Badelive Stream	Boconnoc	SX 1550 6036	1511	R158030	1	1991	7	32	6.60	212	0.95	1.05	1.00	•	A		A
12	Cerdinham Weter	01ynnm111	SX 1110 6444	1506	R158021	1	1990	7	36	6.90	248	1.10	1.08	1.18	A		Α.	
13	Warleggen River	Panters Bridge	SK 1583 6810	1507	R158009	4	1990	7	32	7.30	233	0.98	1.14	1.12	A	•		
	St Neot River St Neot, River	Colliford Bridge Two Waters Foot		1517 1508	R158014 R158008	4	1991 1990	;		6.30 6.90			0,99			Â	Â	
16 17	Northwood Brook Northwood Brook	Wortha Trenent Bridge		1518 1509	R158016 R158011	4	1991 1990	?		6.70 7.10		1.33 1.32	1.05			Â	Â	Â
19	Siblyback Stream	Traketvesteps	SX 2279 6991	1519	R158010	2	1991	7	35	6.50	228	1.34	1.02	1.37	A		A	•

93

 Key to Biol. Class: A = Good, B = Moderate, C = Poor, D = Very Poor. * = Canal - Unsuitable for classification, + = Lacustrine site - also unsuitable, ; = New site for 1992/1993

 Image: A = Good, B = Moderate, C = Poor, D = Very Poor. * = Canal - Unsuitable for classification, + = Lacustrine site - also unsuitable, ; = New site for 1992/1993

 Image: I

RDALLEN/MAPS/V913 (CATCH15.DRW)

Figure 3.28 Fowey Catchment (15) NRA Biological Class - 1990/1991

3.2.19 Rivers Par and Crinnis Catchments Catchments-16 & 17

Summary

Of the 54 km of watercourses monitored by 22 sites in the Rivers Par and Crinnis catchments, 42% (8 sites) were good, 20% (5 sites) were moderate, and 33% (8 sites) were poor quality, according to the NRA Biological Classification. None were classed as very poor quality.

Likely reasons for poorer biological quality

The upstream reaches of the River Par were classed as moderate owing to moderately poorer than expected N-taxa, indicating toxic pollution or physical degradation. This was ascribed to the effects of china clay extraction. Further downstream, at Luxulyan Bridge, the moderate quality was because of moderately poorer than expected ASPT, which indicates organic enrichment. This was ascribed to the effects of a sewage works discharge. This site was also affected by china clay workings.

The poor quality of **Tywardeath Stream** was because of poorer than expected ASPT and moderately poorer than expected N-taxa, suggesting that it was organically polluted. It was also thought to be affected by china clay workings. This stream was channelised. It was very slow flowing and silty at the monitoring site, and there was an abundance of macrophytes which may have entrained organic matter.

In Treverbyn Stream, the moderate quality indicated by the overall NRA Biological classification was a result of poorer than expected ASPT and moderately poorer than expected N-taxa, which indicates organic pollution. High BMWP-scoring mayflies (in Group 1, see Figure 2.5) were absent, supporting this conclusion. China clay and metal contamination were known to contaminate the headwaters of this stream, and may also have influenced the fauna at the monitoring site.

Rosevean Stream was one of the few watercourses in the South West Region that was of very poor quality according to the overall NRA Biological Classification. Its EQI N-taxa was classed as very poor, although it had moderately poorer than expected ASPT, which suggests that the quality problem was a result of toxic pollution and/or physical degradation. Ochre completely covered the stream bed at the monitoring site. The effects of china-clay extraction were thought to have been the cause of the very poor quality.

Moderate quality in the lower reach of Carbis Stream was a result of its moderately poorer than expected N-taxa and ASPT. The stream was affected by china clay works. The upstream reach of Carbis Stream, downstream from Wheal Prosper Mica Dam, was good quality.

Both reaches on Molinnis Stream had a poor NRA Biology Class owing to poorer than expected N-taxa. This was ascribed to the effects of china clay workings.

Roseveath Stream's poor overall quality was the result of poorer than expected N-taxa (although its EQI ASPT was good). This, and the fact that the stream bed was completely covered by ochre, suggested that the poor

quality was the result of acidic mine drainage, which was known to discharge into this stream.

The poor quality of all three reaches of the Crinnis River was the result of poorer than expected (or in the lowest reach very much poorer than expected) N-taxa. The EQI ASPT varied downstream, from poor to good. Ochre was recorded at the sites monitoring the two upper reaches. The most downstream reach was channelised, with caged granite banks. The poor quality was ascribed to china clay extraction.

Bodelva Brook was classed as poor quality (upper reach) and very poor quality (lower reach) because of poorer than expected N-taxa. The stream was channelised, and influenced by china-clay workings. The stream suffered from very low flow in Autumn 1991. There was insufficient water in the stream to obtain a sample, so its classification was based on Spring and Summer samples only.

1

:

٠.

÷

No. on Map	Watercourse Name	Site Location Name		Site Raf.	Chem. URN	RIVPACS Suitebility	Year	Season Code		ASPT			E Ret ASPT		O/E Re N-Fams			
23456	Par River Par River Par River Par River Par River Par River Par River	Criggen Muor A 391 Bridge Higher Menadew Lavreen Bridge Luxulyen Bridge Treffry Bridge St. Blazey Bridge	SX 0229 6069 SX 0296 5930 SX 0315 5927 SX 0481 5804 SX 0567 5737	1606 1607 1608 1601 1609 1602 1610	R16A007 R16A001 R16A006 R16A002 R16A003 R16A004 R16A005	4 1 2 2 1 1 1	1991 1991 1991 1990 1991 1990 1991	777777777777777777777777777777777777777	20 27 25 28 28	6.40 5.60 5.80 5.90 5.50 5.50 5.50 5.50	156 148 153 153	0,59 0,80 0.75 0.85 0.85		0.52 0.73 0.70 0.73 0.73	B B A A	A B A B B B B	***	A 8 A 8 8 8 8 8
8	Tywardeath Streem	d/s Elmsleigh Pond	SX 0768 5431	1611	R16A017	4	1991	7	22	4.50	100	0.64	0.75	0,48	B	C	В	С
9 10	Bokiddick Brook Bokiddick Brook	Lowertown Ferm Luxulyen	5X 0538 6099 SX 0555 5804	1612 1603	R15A014 R16A009	2	1991 1990	7		6.00 6.40			0.94			-	\$	1
11	Treverbyn Stream	200m u/s Par River confluence	SX 0433 5794	1605	R16A013	1	1990	7	31	5.40	168	0,90	0.86	0.78	A 1		A	8
12	Rescorle Brook	Lestoon Ferm	SX 0353 5835	1617	1	2	1991	7	28	6.20	174	0.81	1.00	0.81	A	A	A	A
· 13	Rosevean Stream	prior to Par River	SX 0312 5858	1604	R16A012	2	1990	7	9	5.20	47	0.27	0.84	0.22	D		0	0
14 15	Carbis Stream Carbis Stream	d/s Wheel Prosper mica dam prior to Per River		1613 1614	R16A018 R16A011	4	1991 1991	;		5.80 5.00		0.94				Å	â	Â
16	Molinnig Stream	Moltinis	SX 0246 5927	1615	R16A016	4	1991	7	16	5.30	85	0.49	0.83	0.41	C	В	C	C
17	Roseveth Stream	Rosevath	SX 0206 6100	1616	R16A008	4	1991	7	. 15	5.90	.88	0.44	0.93	0.41	C -	•	С	¢
18 19 20	Crinnis River Crinnis River Crinnis River	Cuddre Road Bridge (A 390) Ceryon Bay road bridge Crinnis Beach (adit portel)	SX 0543 5275	1703 1701 1702	R17A002 R17A003 R17A004	1 1 5	1991 1990 1990	7777	14	4.80 4.90 5.70	91 69 68	0.40	0.79	0.32	Ċ	C B A	C C C	c í c
21 22	Bodelve Brook Bodelve Brook	Bodelve A 3082 Bridge	SX 0548 5323 SX 0564 5290	1704 1705	R17A007 R17A001	3	1991 1991	4	97	4.60	43 20		0.77			C C	C D	C D

97

2

* x

Key to Biol. Cless		B = Moderate, C = Poor, D = Very Poor, * • Canal - Unsuitable for classific regularly dries up - cannot be classified, s = Site was not sampled due to lo								
Ver: 91.3 June 1993 NRA South West Region, Manley House, Exeter. Index compiled by Ruse Dallen. Freshwater Biology. Ext 2472.										

+

:

MEMORANDUM

To: See circulation

From: Dr JAD Murray-Bligh Extn: 2324 / 727-4668

Our Ref: JMBM556

Date: 22 April 1994

REGIONAL RIVER QUALITY MONITORING & SURVEILLANCE : RESULTS OF THE 1990/1991 BIOLOGICAL SURVEY

This report is the first and currently the only report of the biological quality of all the rivers and canals in Devon and Cornwall Areas (the former South West Region).

A similar draft report has been drafted for the results of the 1992 survey, covering about half the catchments in Devon and Cornwall. Unfortunately the biological classifications for 1992 need to be re-calculated because of changes in the limit of detection by which alkalinity is reported on the chemical archive. Alkalinity is used by RIVPACS to predict what the biological quality should be if the water quality is good. Hopefully the classification of relatively few sites will be affected, and the 1992 draft report could be revised within a couple of months. This problem has also affected the biological classification of the sites surveyed in 1993.

This report was relatively expensive to produce because of the number of colour pages in it. If at any time you no longer require your own copy, please return it. Copies have been deposited in the Exeter and Bodmin libraries.

JOHN MURRAY-BLIGH Senior Biologist

Di	C	t r	• i b	110	io	n •
~	. 0	~.		<i>u</i>	10	

REGION R Broome C Fileman A Holt C Moore N Morris * B Milford * R Grantham * R Saxon * A Spratley * J Driver * S Bray * S Edwards * R Smith * P Nicholson *

CORNWALL R Taw * R Waite * C Leach S Thurley D Turley B Letts * M Williams * D Sherriff T Renals DEVON M Chudley * G Clarke * R Harwood * J Hancock * J Proctor M Williams * N Reader M Newton J Collett

 Receiving shared copies or circulated copies

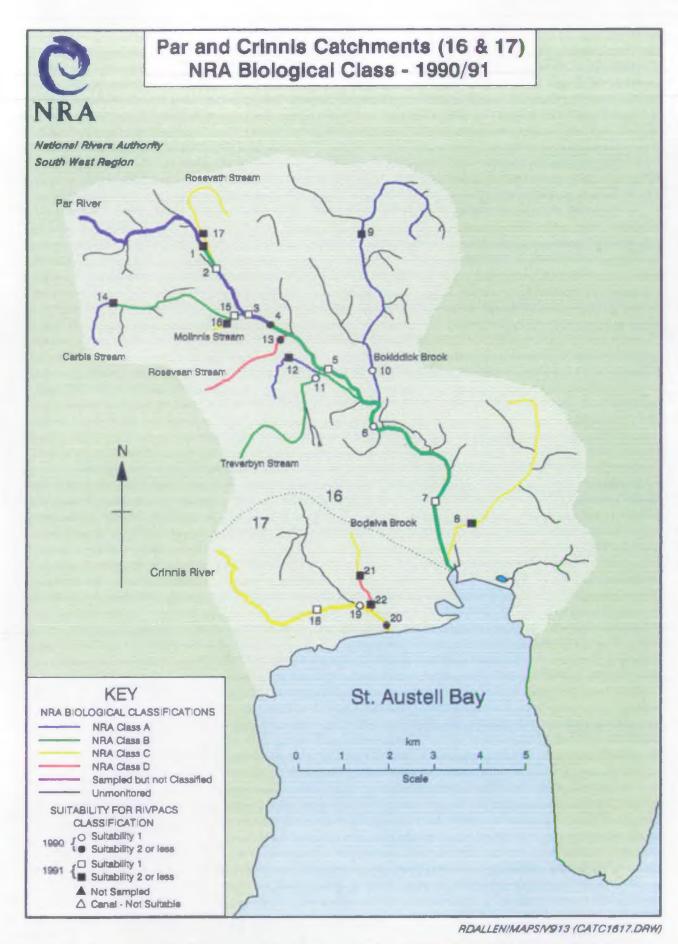


Figure 3.29 Par and Crinnis Catchments (16 & 17) NRA Biological Class-1990/1991

3.2.20 St Austell and South Cornwall Stream Catchments Catchment-18

Summary

Of the 53 km of watercourses monitored by 18 sites in the St Austell and South Cornwall Stream catchments, 41% (7 sites) were good, 40% (7 sites) were moderate, and 2% (2 sites) were poor quality, according to the NRA Biological Classification. None were classed as very poor quality.

Likely reasons for poorer biological quality

The St Austell River and its tributary Gover Stream were affected by china clay works. The St Austell River and Gover Stream were of poor quality owing to their poorer than expected N-taxa, which is consistent with toxic effects and smothering by fine suspended particles of china clay. The St Austell River at the monitoring site upstream from St Austell sewage treatment works was also channelised.

The upstream reach of **Polgooth Stream** was of moderate overall quality because of moderately poorer than expected ASPT. This suggested that it was affected by organic pollution, although other evidence indicated that it also suffered toxic pollution.

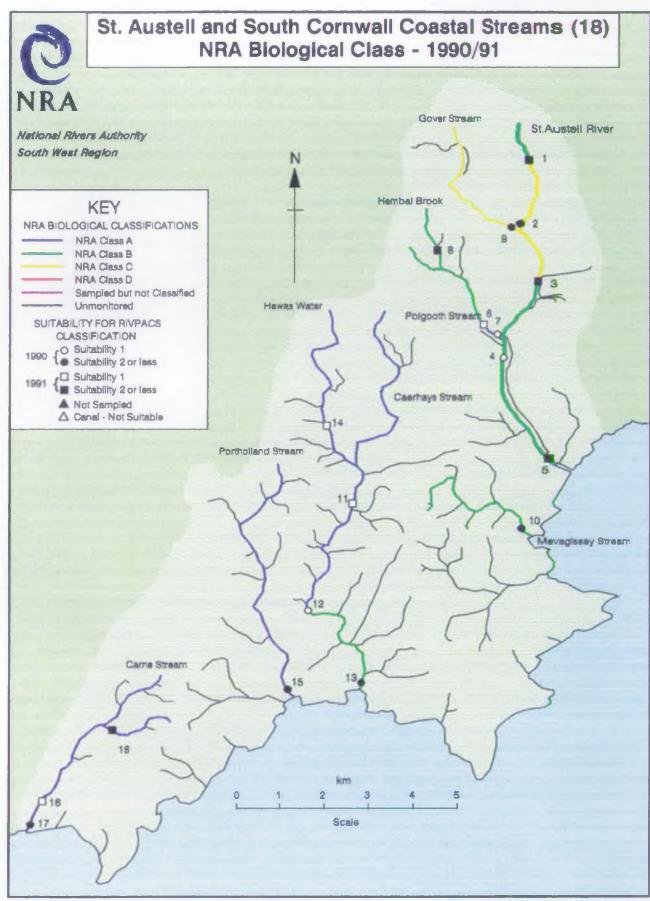
The Hembal Brook, although classed as being of moderate quality by the overall NRA Biological Classification, was classed as poor in terms of its EQI N-taxa. High BMWP-scoring mayflies (in Group 1, see Figure 2.5) were absent. The biological quality of this stream was much improved in Spring 1993.

The moderate quality of Mevagissey Stream was because of both moderately poorer than expected ASPT and N-taxa, and was ascribed to the effects of urbanisation and channelisation.

The most downstream reach of Caerhays Stream, which was of moderate quality overall and poor quality in terms of its EQI N-taxa, was affected by channelisation and possibly also by saline intrusion. This site was sampled by dredge, which is suspected of yielding less reliable results than pondnets.

Portholland Stream was of moderate ecological quality because of a moderately poorer than expected N-taxa: no causes were ascribed to this. A problem with silage pollution was identified upstream from the monitoring site in Summer 1993.

Cetchment: St Austell & South Cornwell Streams


Corresponding Freelance map filename(s):CATCH18.DRW

No. on Map	Watercourse Name	Site Location Name	NGR	Site Ref.	Chem. URN •	RIVPACS Suitability	Year	Season Code	Ob N-Fams	ASPT			E Ret ASPT		O/E Re N-Fems			
1 2 3 4 5	St Austell River St Austell River St Austell River St Austell River St Austell River	Lensaison Bridge u/s Gover Stream u/s St Austell STW Molingey Geuging Station Pentewan Bridge	SX 0122 5116 SX 0074 4955	1810 1801 1811 1802 1812	R18A003 R18A004 R18A006 R18A007 R18A008	5 4 4 1 2	1991 1990 1991 1990 1990 1991	7 7 7 7 7	15 12 16 25 20	5.10 5.30 4.70 5.60 5.40	76 63 75 141 151	0.38 0.48 0.74	0.83 0.74 0.89	0.31 0.36 0.66	C C B	8 8 C A 8	8 C C 8 8	8 C C 8
6 7	Polgooth Stream Polgooth Stream	Polgooth Bridge prior to St Austell River	SX 0034 4994 SX 0068 4985	1813 1804	R18A014 R18A010	1 1	1991 1990	7		5.10 6.00	139 180			0.65		BA	8 A	B
8	Hembel Brook	u/s Bridge	SW 9893 5205	1818	R18A016	2	1991	47	18	5.50	99	0.56	0.86	0.48	c	0	8	B
9	Gover Stream	prior to St Austell River	SX 0068 5274	1803	R18A005	4	1990	7	. 13	5.00	65	0.42	0.79	0.33	с	0	c	c
10	Mevagisaey Stream	cer park Havagissey	SW 0130 4500	1805	R18A009	1	1990	7	22	5.20	115	0.64	0.84	0.54	8	0	0	8
11 12 13	Caerhays Stream Ceerhays Stream Caerheys Stream	Polmassick Bridge Tubbs Mill Caerhays Beach Bridge		1814 1806 1807	R16A001 R16A015 R16A002	1 1 5	1991 1990 1990	7777	33	6.40 6.50 6.20	217 215 106	0.96	1.03	0.99	A	Â	AAB	Â
14	Hewas Water	Cerlooze Bridge	SW 9679 4730	1815		1	1991	7	30	6.00	179	0.87	0.95	0.83	A	A	A	A
15	Portholland Stream	Portholland	SW 9568 4180	1808	R18A017	2	1990	7	24	6.30	15z	0.70	1.02	0.72	8	•		•
	Carne Stream Cerne Stream	Melinsey Hill Pendower Besch	5¥ 9055 3925 5¥ 8944 3825	1816 1809	R18A011 R18A012	1 4	1991 1990	7	31 32	6.20 6.30	191 203	0.92 0.93	0.98 1.03	0.90 0.96	A	1	Â	Â
18	Trangrouse Streem	Trelegossick	S¥ 9231 4127	1817		4	1991	7	11	6.10	189	0.96	1.01	0.97	A	A	A	A

100

Key to Biol. Cless		, $B = Moderate$, $C = Poor$, $D = Very Poor$, $* = Canel - Unsuitable for classification, + = Lacustr regularly dries up - cannot be classified, +s = Site was not sampled due to location difficulty$	
Ver: 91.3	June 1993	NRA South West Region, Menley House, Exeter.	Index compiled by Russ Dallen. Freshwater Biology. Ext 2472.

.

RDALLEN/MAPS/V913 (CATCH18.DRW)

Figure 3.30 St Austell and South Cornwall Coastal Catchments (18) NRA Biological Class - 1990/1991

3.2.21 River Fal Catchment Catchment-19A (part), B, C, D & E

Summary

Of the 191 km of watercourses monitored at 58 sites in the river Fal catchment, 69% (37 sites) were good, 18% (9 sites) were moderate, 10% (8 sites) were poor, and 3% (4 sites) were very poor quality, according to the NRA Biological Classification.

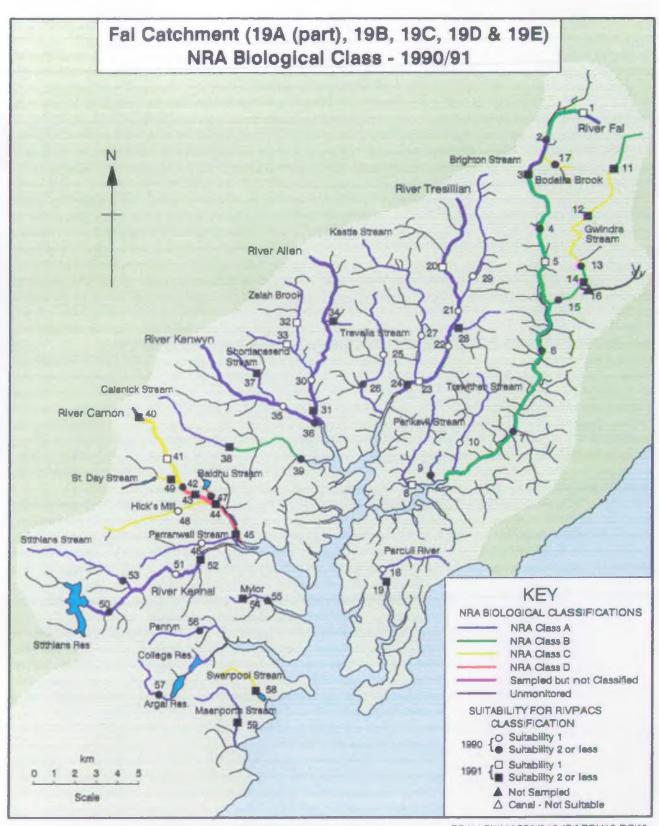
Likely reasons for poorer biological quality

All the sites surveyed on the River Fal were of only moderate quality, whilst two tributaries sampled in its upper reaches, Bodella Brook was poor quality and Gwindra Stream, was moderate or poor quality. This was probably the result of the china clay extraction in the area. Bodella Brook was also influenced by STW's effluent. Unlike the upper reaches, the lower reaches of the River Fal were of moderate quality, not only because of only moderately poorer than expected N-taxa, but also moderately poorer than expected ASPT, which suggests that organic enrichment also affected this reach.

Calenick Stream was of only moderate quality according to its overall NRA Biological Classification because of poorer than expected N-taxa alone, which indicates toxic pollution. This is consistent with the effects of the mining activity that are known to affect the watercourse.

All the sites on the River Carnon and its tributaries were of either poor or very poor quality according to their overall NRA Biological Classification. Toxic effects were implicated, as N-taxa was degraded more than ASPT; in Baldhu Stream and Hick's Mill Stream the EQI N-taxa was classed as very poor. These results are consistent with the severe effects of metalliferous mine waters that were known to drain into these streams.

The Perranwell Stream and the most upstream reach of the River Kennal were of good overall quality, but of only moderate quality in terms of their EQI N-taxa, the reasons for which were unknown.


The St Day Stream was of poor overall quality because of poorer than expected ASPT and moderately poorer than expected N-taxa. Metal pollution was suspected. There was a 60% cover of ochre on the stream bed, and the watercourse contained moderately high concentrations of copper and zinc. The poor ASPT suggests that there was organic pollution also.

Swanpool Stream was classed as poor quality owing to poorer than expected Ntaxa and ASPT, which suggests organic pollution. The stream was turbid in spring because of engineering works upstream from the monitoring site. Land run-off, urbanisation, and spates were suspected to be the causes of its poor NWC-Class (National Rivers Authority, 1992d).

23		Site Location Name	NGR	Ref.	URN	Suitability	Year	Season Codo	N-Fams	ASPT	8HM/P	N-Fems	ASPT	BMAP	I-Fams	ASPT	DHAP	010 C10
3	Fal	Tregoss Bridge	5W 9663 6009	1958	R19C001	1	1991	7	25	6.20			0.97	0.73	8	A	A	Ì
	Fel Eel	Geverigen Bridge Rotew Bridge	SW 9373 5881 SW 9262 5700	1923 1959	R19C002 R19C003		1990 1991	}		5.70			0.90		B	A'	B	₿ P
4 1	Fal	Kernick Bridge	SW 9321 5462	1922	R19C011	4	1990	+		5.80	167 136		0.90		â	Â	â	
5	Fal	Torras Bridge	SW 9345 5335	1960	R19C004	i	1991	7	25	5.70	143	0.77	0.90	0.69	ě	Â	ĕ	l i
	Fal Fal	Grampound Bridge Tregoney Gauging Station	SW 9334 4845 SW 9215 4486	1923 1924	R19C005 R19C006	4	1990 1990	;	24 24	5.10	122		0.81		B .	B	8	1 1
	Penkovil Streem		SW 8706 4198	1981	R198004	1	1991	, ,		5.80	237	1.01	1.08		A	۵ ۸	A	1
9	Lamorran	Lamorran Wood	SW 8806 4228	1929		3	1990	,		6.50	208	0.97	1.03		<u> </u>		Ā	╢
10	Trewithan Stream	Mellingcose	SW 8952 4440	1928	R190016	1	1990	7		6.50	200	0.90	1.04	<u> </u>	A	Â		╊
11	Owindra Stream	Nanpeen Bridge	SW 9641 5585	1961	R19C014	5	1991	7	14	5.60	79	0.52	0.89	0.46	c	A	B	┢
12	Gwindre Stream	Goonebern	SW 9555 5491	1962	R19C017	4	1991	1 2 1		5.10	72	0.42	0.81	0.34	ç	6	ç	
	Gwindre Stream Gwindre Stream	(Gwindra Bridge Coombe u/s cenfi		1925 1963	R19C008	2	1990 1991	}	17 24	4.90	83 132		0.76		C D	C	8	1
	Gwindra Stream	Treway Bridge	SW 9409 5088	1926	R19C009	, j	1990	7		5.20	99	0.57	0.02		č	ŏ	ĕ	
15	Coombe Stream	Coombe	SW 9519 5164	1982	R19C021			1	0	0.00	0	0.00	0.00	0.00				
2	Bodalla Brook	Carsalla	SW 9404 5768	1927	R19C018	4	1990	1	17	5.10	87	0.51	0.82	0.42	C	B	C	
	Percuil River Percuil River	Lanhoosa Tratham Mill	SW 8605 3790 SW 8620 3648	1901 1947	R19A034 R19A013	1 2	1990 1991	7		6.60	256 168	1.14	1.06	1.21		A A	Å	
20	Tresillian River	Trendeel	SW 8866 5282	1964	R190033	1	1991	7	37	6.60	253	1.10	1.08	1.19	A	A	A	Ť.
11 F	Tresillien River	Ladock Water Pumping Station	SW 8927 \$1]4	1930	R190001	1 i	1990	1 7	33	6.70	222	0.95	1.07	1.02	Â	Ä		1
	Tresillian River	Tresowgen Bridge		1931	R190002	1 1	1990	?	34	6.60	225	0.98	1.05	1.03	A	A		
	Trestillen River Trestillen River	Tresilien Pumping Station d/s Ladock STW		1966 1965	R190032 R190034		1991 1991	;	36 33	6.70	240 219	1.04 0.92	1.05	0.96				L
25 26	Trovella Stream Trovella Stream	Frognore Bridge Tregurre Bridge	SW 8585 4849 SW 8476 4684	1933 1934	R190009 R190014	1 3	1990 1990	;		6.90	221 185		1.10		1	1	Â	Γ
17	Kestle Streem	Cendor Ford	SW 8738 4902	1932	R190008	- 1	1990	7	35	6.70	236	1.02	1.07	1.06	A	•		Γ
8	Treworgans Stream	Gunnow	SW 6681 4851	1967		2	1991	7	30	6.40	191	0.89	1.02	0.91	A	A	A	
9	Brighton Stream	New Mills	SW 9010 5239	1939	R190005	1 .	1990	7	35	6.60	238	1.04	1.08	1.12	A	•	A	
	Allen Allen	Idless Bridge Moresk Laundry	SW 8220 4704 SW 8268 4505	1935 1968	R190018 R190004	1 2	1990 1991	?;		6.60	270 258	1.17	1.04	1.23		1	Â	Γ
12	Zelah Brook	Gramick Hill	SW 8161 4929	1972	R190030	1	1991	7	39	6.40	248	1.15	1.01	1.16	•	A	A	┢
3	Minnis Stream	Trevellan	Sw 8132 4829	1970	<u> </u>	1	1991	7	41	6.60	271	1.20	1.06	1.28	•	A	A	
4	Trispen Streem	Trevorgen	SW 8313 4989	1969		2	1991	7	34	6.70	228	1.02	1.06	1.09	A		A	
	Kenwyn Kenwyn	New Mill Bosvigo Bridge		1936 1937	R19D016 R19D007	1 2	1990 1990	7		6.00 6.00	191 210		0.95		Â		Â	
-+	Boscolle Stream	Roseworthy	SW 8000 4709	1973	 	1	1991	7	38	6.10	231	1.13	0.97	1.09	•		A	t
	Calenick Stream Calenick Stream	Hugus Calenick Bridge	SW 7841 4380 SW 8200 4320	1971 1938	R190025 R190006	1	1991 1990	;		6.30 6.10	184 122		3.00		ĉ	Â	Å	Γ
	Cernon River	Chacemater Vieduct		1974	R19E016	5	1991	2		6.10	171		0,98		A		A	
	Carnon River	d/s Chacewater STW	SW 7530 4331	1975	R19E008	i	1991	}	13	5.00	65	0.38	0.80	0.30	ç İ		ç I	1
	Carnon River	Twelveheeds d/s County and Wellington edits		1940 1976	R19E001 R19E015	5	1990 1991	}	17	5.00	85 26	0.50	0.60	0,40	6	e l	S I	
iā ≦]i	Carnon River	Bissoe Bridge	SW 7748 4128	1977	R19E003	4	1991	7	6	5.00	30	0.18	0.79	0.14	ō	8	Ď	H
15	Cernon River	Devoren Bridge	SW 7909 3942	1978	R19E004	4	1991	,	•	4.00	32	0.23	0.64	0.15	P	D.	0	ļ
-	Perranwell Stream	Perrenwell		1943	R19E020	1	1990	7		6.30	163		1.00		•	A	^	
17.	Baldhu Stream	Bissoe Bridge	SW 7760 4149	1941	R19E021	2	1990	7	2	5.50	11	0.06	0.88	0.05	D	0	D	

Catchme	nt: River Fel	Correspondi	ng Freelance mep	filens	me(s):											· · ·		
No. on Map	Watercourse Name	Site Location Name	NGR	Site Ref.	Chem. URN	RIVPAC5 Suitebility	Year	Season Code	Db: N-Fams	ASPT			E Rat ASPT		O/E Ra N-Fams			
48	Hick's Mill Stream	Hick's Mill	SW 7676 4113	1942	R19E019	1	1990	7	12	4.60	55	0.35	0.73	0.26	D	c	c	c
49	St Day Stream	Twelve Heads prior to R Carnon	SW 7595 4225	1960	R19E022	5	1991	7	13	4.80	62	0.59	0.75	0.44	B	C	C	C
50 51 52	Kenna 1 Kenna 1 Kenna 1	Tregolls Bridge Ponsencoth Gauging Station Sticken Bridge	SW 7295 3605 SW 7562 3795 SW 7735 3819	1944 1945 1979	R19E005 R19E006 R19E007	4	1990 1990 1991	7777	33.	6.30 6.60 6.00	218	0.76 1.00 0.82	1.04	1.04	A	Â	Â	Â
53	Stithians Stream	Seaureaugh Moor	SW 7343 3747	1946	R19E023	4	1990	7	27	6.50	176	0.83	1.02	0.85	A	A		A
54 55	Mylor Stream Mylor Stream	Enys Hylor Bridge		1948 1902	R19A035 R19A014	:	1991 1990	777		6.60 6.30		0.82 0.87	1.07			1	1	1
56	Penrym River	Tremough	SW 7732 3506	1903	R19A037	- 2	1990	-6	26	6,00	157	0.90	0.97	0.87	A.		A	•
57	Argal Streem	Helland Hill	SW 7538 3199	1904		3	1990	7	. 30	6.10	183	0.90	0.96	0.86	A	A	•	•
58	Swenpool Stream	u/s Swanpool	SW 8004 3166	1949	R19A009	3	1991	7	17	4.20	72	0.49	0.68	0.34	C	C	C	, c
59	Meenporth Stream	Tregedna Bridge	SW 7881 3029	1950	R19A008	4	1991	7	34	5.70	194	0.98	0.92	0,90	Α.	A	A	•
1.94							t	<u>+</u>	1				1			1		

Key to Biol. Clas	a: A = Good,	B = Moderate, C = Poor, D = Vary Poor. * = Canal $\stackrel{-}{\sim}$ Unsuitable for egularly dries up - cannot be classified, S = Site was not sample	er classification, + • Lacustr ad due to location difficulty	rine site - also unsuitable, j = New site for 1992/1993 y or other error,
Ver: 91.3	June 1993	NRA South West Region, Munley House, Exeter.	÷	Index compiled by Russ Dallen. Freshwater Biology. Ext 2472.

I

RDALLEN/MAPS/V913 (CATCH19.DRW)

Figure 3.31 Fal Catchment (19A in part, 19B, 19C, 19D & 19E) NRA Biological Class - 1990/1991

3.2.22 Helford and Lizard Peninsula Catchments Catchment-19A

Summary

Of the 83 km of watercourses monitored by 21 sites in the Helford and Lizard Peninsula catchments, 77% (17 sites) were good, 9% (2 sites) were moderate, and 14% (2 sites) were classed as poor quality, according to the NRA Biological Classification. None were classed as very poor quality.

Likely reasons for poorer biological quality

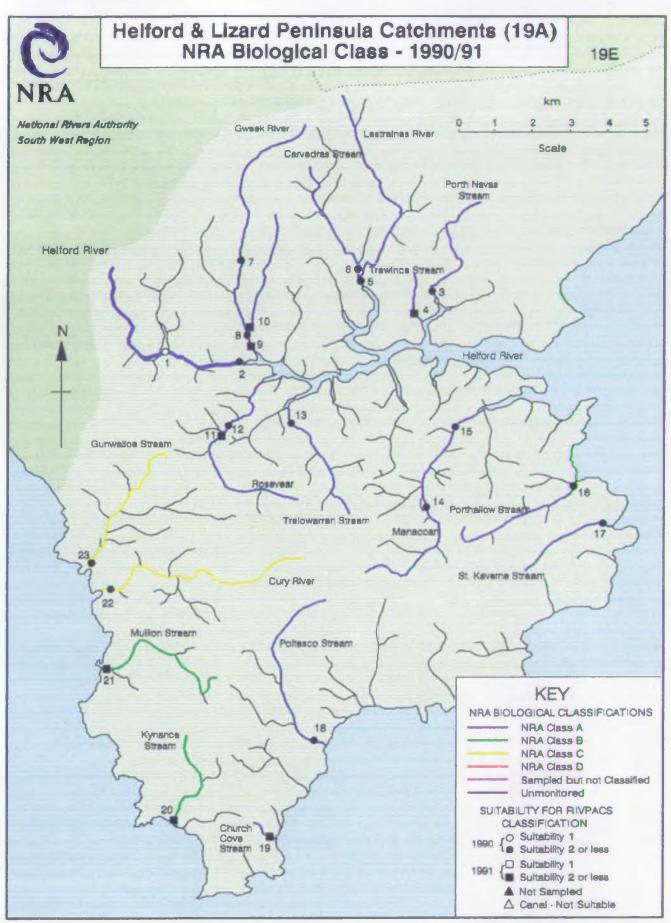
Many of the streams in these catchment were small maritime streams, which have low RIVPACS suitability because of the paucity of such streams in the original RIVPACS II data-set. This is being addressed in the development of RIVPACS III.

Although it was classed as good overall quality, **Church Cove Stream** had moderately poorer than expected N-taxa, suggesting toxic pollution or habitat degradation. This stream commonly experiences low flows, and problems with septic tank discharges were also suspected.

Kynance Stream was moderate quality because of moderately poorer than expected N-taxa (but good EQI ASPT), suggesting toxic pollution or habitat degradation. Its poor biological quality was ascribed to the serpentine geology, though difficulties of sampling owing to large boulders and bedrock in this torrential stream may also have reduced the number of taxa collected.

Mullion Stream was of moderate quality owing to moderately poorer than expected ASPT (but good EQI N-taxa), which indicates organic pollution. The monitoring site was overgrown, and visual observations also suggested organic enrichment. Land run-off and sewage works effluent were considered to have been possible causes of chemical water quality problems in this stream (National Rivers Authority, 1991e).

The Cury River and the **Gunwalloe Stream** were of poor overall ecological quality owing to both poorer than expected ASPTs and N-taxa. Both sites were subject to dredging, and eutrophication was reported in both streams. Oil and tar were reported at the biological monitoring site on the Cury River.


Catchment: Lizard Paninsula Streams & Helford

Corresponding Freelance map filename(s):CATCH19A.DRW

.

No. on			1	Site	Chem.	RIVPACS		Season	05	Lerves		0/	E Rat	10	O/E Ra	+1+ C	1	8101.
	Wetercourse Name	Site Location Name	NGR	Ref.	URN	Suitebility	Year		N-Fams					BHMP	N-Fams	ASPT	BHMP	Class
1 2	Helford River Helford River	Mellangoose u/s Gwaek Mill	SW 6826 2676 SW 7020 2647	1909 1910	R19A029 R19A005	1 3	1990 1990	777		5.60 6.20				0.71 0.85			A	1
3	Porth Naves Stream	Trenarth Bridge	SW 7577 2830	1905	R19A001	2	1990	7	31	6.50	202	0.92	1.03	0.95		•	A	•
4	Trewince Stream	Porth Navas Bridge	SW 7520 2776	1954	R19A002	5	1991	7	34	6.60	223	1.00	1.06	1.06	A	A		A
5	Lestraines River	Polwhevers) Bridge	SW 7377 2900	1906	R19A003	4	1990	7	35	6.90	242	1.05	1.09	1.15	•	A	•	-
5	Gweek River	Greek Bridge	SW 7061 2717	1908	R19A004	4	1990	7	38	6.60	251	1.16	1.04	1.20	٨	A	A	•
6	Cervedras Stream	prior to Lestraines River	SW 7365 2913	1915	R19A027	2	1990	7	27	6.90	185	0.80	1.09	0.87	A	•		
7 9	Gwaak River Gwaak River	Mether-wny Mill Bridge Denetto Bridge	SW 7042 2918 SW 7062 2682	1907 1951	R19A028 R19A042	1	1990 1991	7	29 33	7.00 6.50	203 216	0.88 0.95		0.97 1.00		Â	Â	Â
10	Tolvan Cross Stream	Kestle Dee	SW 7077 2751	1952		2	1991	7	35	6.80	237	1.03	1.08	1.12	A	•	•	
11 12	Rosevear River Rosevear River	Ponson Tuel Ford Roseveer	SW 7033 2551 SW 7036 2563	1953 1911	R19A043 R19A006	:	1991 1990	;		6.20 6.30						Â	A	Â
13	Trelowarren Stream	Trelowerren Hill	SW 7177 2478	1916	R19A030	3	1990	7	36	6.50	235	1.05	1.04	1.09		•	A	
14 15	Manaccen River Manaccan River	Polkenoggo Meneccan Road Bridge		1912 1913	R19A031 R19A021		1990 1990	?	34 34	6.70 6.30				1.08	Â		Â	Â
16	Porthallow Stream	Porthallow	SW 7970 2316	1917	R19A032	4	1990	7	28	5.80	162	0.81	0.94	0.77	A	•	A	
17	St Keverne Stream	Porthoustock Bridge	SW 8047 2182	1914	R19A017	4	1990	7	32	5.80	187	0.94	0.94	0.66	_ A	•	A	A
18	Poltesco River	Poltesco Bridge	SW 7236 1574	1918	R19A016	4	1990	7	35	6.10	212	1.07	0.95	1.02	A	A	A	A
19	Church Cove Stream	Church Cove	5₩ 7120 1268	1956	R19A016	5	1991	7	18	5.00	90	0.70	1.04	0,72	Ð	A	A	A
20	Kynance Streem	Kynance Cove	5₩ 6840 1340	1957		5	1991	7	23	5.40	124	0.70	0.96	0.67	8	A	0	0
21	Mullion Stream	Mullton Cove	SW 6685 1788	1955	R19A012	5	1991	7	32	5.10	163	0.95	0.83	0.79	A	B	A	
22	Cury River	u/s Poldhu Beach	SW 6675 2003	1919	R19A011	- 5	1990	7	16	4.10	66	0.44	0.72	0.32	C	C	C	C
23	Gunnellos Stream	Winnlenton Farm	SW 6610 2076	1920	R19A040	5	1990	7	14	4.40	- 61	0.39	0.77	0.30	c	C	C	C
						1												

Kay to Biol. Class	A = Good, # = Site	B = Moderate, C = Poor, D = Very Poor, * = Canal - Unsuitable for classification, + = Lacustr regularly dries up - cannot be classified, \$ = Site was not sampled due to location difficulty	ine site - also unsuitable, ; - New site for 1992/1993 or other error,
Ver: 91.3	June 1993	NRA South West Region, Menley House, Exeter.	Index compiled by Russ Dallen. Freshwater Biology. Ext 2472.

RDALLEN/MAPS/V913 (CATCH19A.DRW)

Figure 3.32 Helford and Lizard Peninsula Catchments (19A) NRA Biological Class - 1990/1991

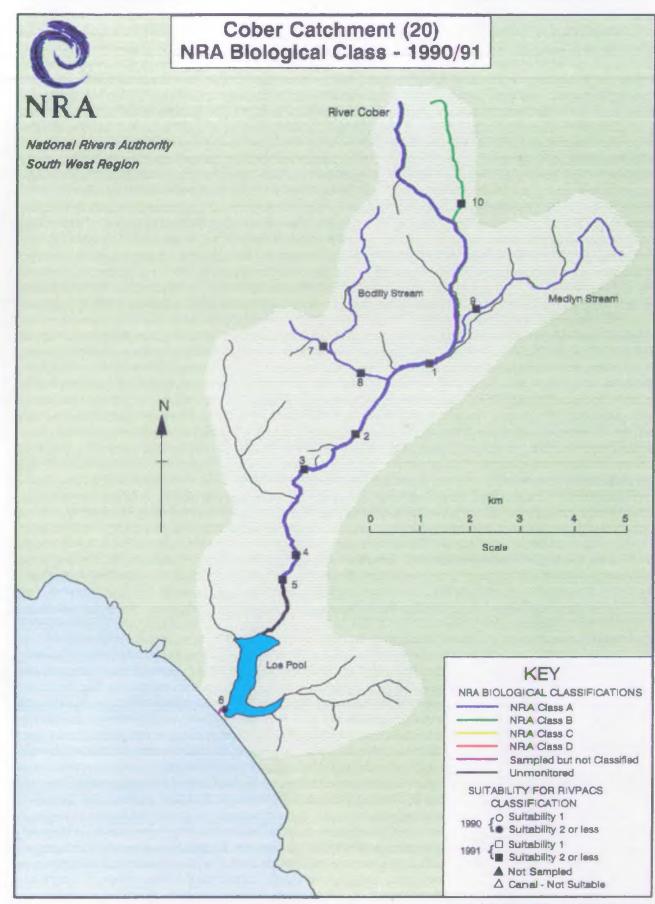
3.2.23 River Cober Catchment Catchment-20

Summary

Of the 32 km of watercourses monitored by 10 sites in the River Cober catchment, 88% (8 sites) were good, and 12% (1 site) was moderate quality, according to the NRA Biological Classification. None were classed as poor or very poor quality. One site, Loe Pool at Bar outfall was surveyed, but not classified because the site was principally lacustrine, with strong marine influences.

All sites in the River Cober catchment had low RIVPACS suitability (4 or 5, see Table 2.4).

Likely reasons for poorer biological quality


Tolcarne Stream was of moderate quality owing to both moderately poorer than expected ASPT and N-taxa. This suggests organic pollution, but there was evidence of the influence of mining activities which are known to occur in this catchment. The watercourse was dredged upstream from the monitoring site in 1991. The stream also suffered low flows.

Catchment: River Cobar

Corresponding Freelence map filename(s):CATCH20.DRW

No. on Map	Watercourse Name	Site Location Name	NGR	Site Ref.	Chem. URN	RIVPACS Suitability	Year	Seeson Code	Ob N-Fams	ASPT			E Rati ASPT		O/E Ra N-Fams			
1 2 3 4 5 6	Cober Cober Cober Cober Cober Cober	Tranear Bridge Covereck Bridge Lowertown Bridge Helston Park d/s Helston STW Loe Pool at Bar outfall	SW 6688 3012 SW 6594 2910 SW 6553 2730 SW 6524 2679	2002 2006 2007	R20A001 R20A008 R20A003 R20A009 R20A009 R20A004 R20A005	4 5 5 4 5	1991 1991 1991 1991 1991 1991 1990	7 7 7 7 7	31 33 32 32	6.80 6.90 6.90 6.00 5.80 4.70	215 229 193 184	0.95	1.09 1.09 0.96 0.93	1.04 1.11 0.68 0.84		~ ~ ~ ~	~~~~	~ ~ ~ ~ ~
7	Releath Stream	Vellanewson	SW 6625 3270	2010		4	1991	7	27	6.10	164	0.60	0.97	0.77	A	A		A
8	Bodilly Stream	Bodilly Mill	SW 6700 3165	2004	R20A002	5	1991	7	27	6.30	171	0.63	1.00	0.83	A	•		•
9	Medlyn Streem	Lower Polkellis	SH 6937 3263	2003	R20A006	5	1991	7	29	6.40	186	0.87	1.02	0.69	A	A		A
10	Tolcarne Stream	Tolcarne	SH 6876 3470	2008		5	1991	7	22	5.40	119	0.65	0.86	0.56	B	8	8	8
								Ī								[

Key to Biol.	Class: A = Good	l, B = Moderate, C = Poor, D = Very Poor. * = Canal - Unsuitable for classification, + = Lacu	strine sita - elso unsuitable, j = New sita for 1992/1993
	# = Site	regularly dries up - cannot be classified, S = Site was not sampled due to location difficu	Ity or other error,
Ver: 91.3	June 1993	NRA South West Region, Menley House, Exeter.	Index compiled by Ruse Dallen. Freshwater Biology. Ext 2472.

RDALLENIMAPSN913 (CATCH20.DRW)

Figure 3.33 Cober Catchment (20) NRA Biological Class - 1990/1991

3.2.24 Lands End Catchments Catchment-21

Summary

Of the 61 km of watercourses monitored by 23 sites in the Lands End catchments, 82% (15 sites) were good, 12% (5 sites) were moderate, and 6% (2 sites) were poor quality, according to the NRA Biological Classification. None were classed as very poor quality.

All the sites in these catchment had low RIVPACS suitability, as most were small maritime streams. This is would have affected the accuracy of their classification.

Likely reasons for poorer biological quality

The lower reach of Porthleven Stream was of only moderate quality owing to both moderately poorer than expected ASPT and N-taxa. The monitoring site was slow-flowing and silty, and the effects of mining upstream would have contributed to its poor quality. The upstream reach of Porthleven Stream was of poor quality owing to poorer than expected N-taxa (but good EQI ASPT). This is consistent with the effects of toxic pollution known to affect this reach because of metal contaminated mine drainage. The stream bed at the monitoring site was covered by ochre.

Tregilliowe Stream was of only moderate quality because of moderately poorer than expected N-taxa, which suggests either toxic pollution, or poor habitat. The site was deep, slow-flowing and silty, and the reach's failure to comply with its River Quality Objective was though to be possibly because of the influence of drought and mining activities National Rivers Authority (1992d).

Chyandour Brook was classed as being of poor quality, largely on the basis of its EQI ASPT, which suggests organic pollution. This was thought to be from urban wastes; the reach was also channelised. This watercourse was subject to pollution by Tecnazene from a fish and chip shop that was washing potatoes. This discharge has since stopped, as it is now fed to the foul sewer.

The lower three reaches of the Newlyn River and both reaches of the Trereife Stream were of only moderate quality. Pesticide contamination has been identified in this catchment. The most downstream site, at Newlyn Bridge, may also have been influenced by an industrial estate and general problems associated with urbanisation.

Cutchment: Lands End Streams

Corresponding Freelance map filename(s):CATCH21.DRM

No. on Map	Watercourse Name	Site Location Name	NGR	Site Ref.	Chem. URN	RIVPACS Suitability	Year .	Season Code	Ob N-Fams	ASPT			E Rat ASPT	10 BMMP	O/E Ra N-Fams	tio C ASPT	lass BMMP	8101. Class
1 2	Porthleven Stream Porthleven Stream	Penbro upstream from harbour	SW 6284 2826 SW 6275 2595	2112 2101	RZ1A013 R21A010	2 5 4	1991 1990	;		5.80 5.40		0.41 0.70				Â	C B	C
3 4	Marazion River Marazion River	Nancledre Truthwell Mill Bridge		2113 2102	R21A028 R21A002	:	1991 1990	;		6.40 6.20		0.98				Â	1	Â
5	Tregilliows Stream	Genellon	SW 5258 3213	2114	R21A026	5	1991	7	24	5.60	135	0.70	0.93	0.65	0	A	8	0
6.	Treveylor Streem	Trythogga	SW 4764 3183	2103	R21A022	4	1990	7	32	6.30	200	0.97	0.98	0.95	A	A	A	-
7 8	Rosemorran Stream Rosemorran Stream	A30 Bridge et Chyandour Kenegle Cottage	SW 4812 3113 SW 4788 3222	2104 2115	R21A008 R21A021	2	1990 1991	;		6.50 6.60		0.90 0.91		0.94 0.94		Â	Â	1
• 9	Chyandour Brook	A30 Bridge at Chyandour	SW 4782 3104	2105	R21A006	4	1990	7	23	4.90	112	0.70	0.76	0.53	8	C	8	C
. 10	Lariggan River	Wharry Town Bridge	SW 4608 2995	2106	R21A007	3	1990	7	29	6.00	174	0.87	0.95	0.82	A	•	A	•
11 12 13 14	Nawlyn Rivar Nawlyn Rivar Nawlyn Rivar Nawlyn Rivar Nawlyn Rivar	Skimmel Bridge Buryaa Bridge Stable Hobba Newlyn Bridge	SW 4460 2910 SW 4542 2930	2107 2111 2116 2108	R21A003 R21A004 R21A027 R21A027 R21A005	5 4 4 3	1990 1990 1991 1990	7 7 7 7	24 30	6.30 5.50 6.00 5.80	132 181	0.74	0.86 0.95	0.64	B. A'	A B A A	A B A B	A 8 8
15	Trenelfe Stream	Dennis Plece	SW 4457 3008	2117	R21A019	5	1991	7 5	15	5.40	113	0.63	0.87	0.54	0	0	8	
16	Trerelfa stream	prior to Newlyn River	SW 4519 2932	2118	R21A020	4	1991	7	21	5.10	106	0.63	0.81	0.51	B	8		
17	Sancreed Brook	Little Sellan Bridge	SW 4231 2981	2120	R21A017	5	1991	7	27	6.10	164	0.83	0.95	0.79	A		A	A
18	Lamorna Stream	Lamorna	54 4500 2416	2109	R21A011	5	1990	7	30	6.30	190	0.92	0.99	0.91	•	A	A	
19	Carn Euny Stream	Trançofe	5# 4390 2520	2110	R21A015	5	1990	7	27	6.40	174	0.83	1.01	0.83		A	A	A
20	Fiddlers Brook	Bojsmns -	SW 4321 2661	Z119		4	1991	7	35	6.20	218	1.03	0.99	1.02	A	A		
21	Penberth Streem	Penberth Bridge	SW 4008 2295	2201	RZZA009	4	1990	7	32	5.90	190	0.97	0.93	0.91	A	•	A	A
22	Tregeseal Stream	prior to see	SW 3590 3235	2208	R22A007	5	1991	7	29	6.40	185	0.90	1.00	0.90	A	A	A	A
53	Zennor Streem	Zennor	54 4540 3846	2209	R22A008	5	1991	7	28	6.20	174	1.03	0.98	1.01	•		A .	•
			1		I													

	Key to Biol. Class	a: A = Good ∮ = Site	, B = Moderate, C = Poor, D = Very Poor. * = Canal - Unsuitable for classification, $*$ = Lacustr regularly dries up - cannot be classified. S = Site was not sampled due to location difficulty	fine site - also unsuitable, ; = Hew site for 1992/1993 y or other error,
Ver: 91.3 June 1993 NRA South West Region, Manley House, Excter. Index compiled by Russ Dallen. Freshwater Biology. Ext 24	Ver: 91.3	June 1993	NRA South West Region, Manley House, Exeter.	Index compiled by Russ Dallen. Freshwater Biology. Ext 2472

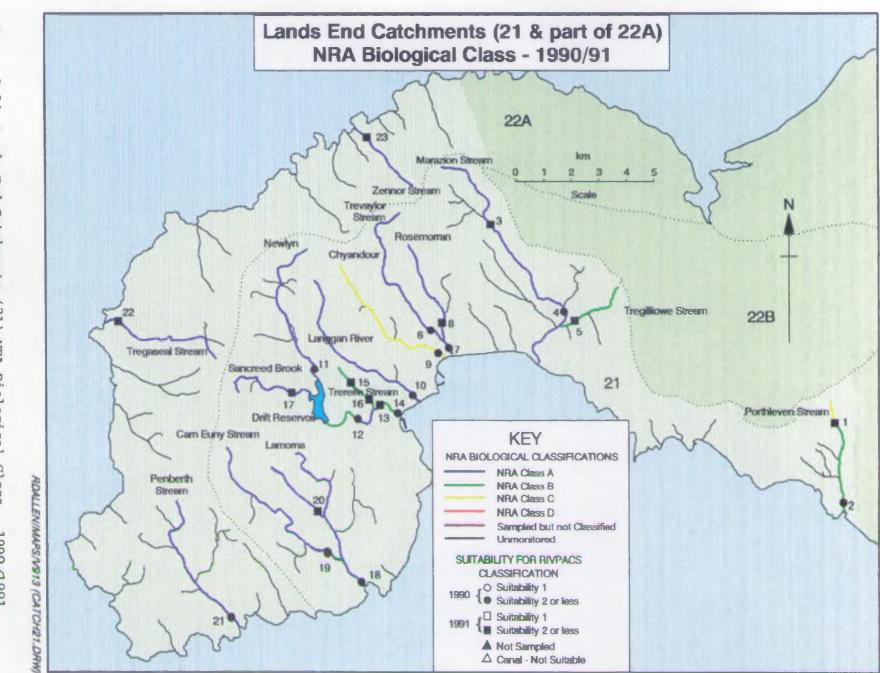


Figure 3.34 Lands End Catchments (21 -NRA Biological Class 1 1990/1991

3.2.25 River Hayle Catchment Catchment-22 (part)

Summary

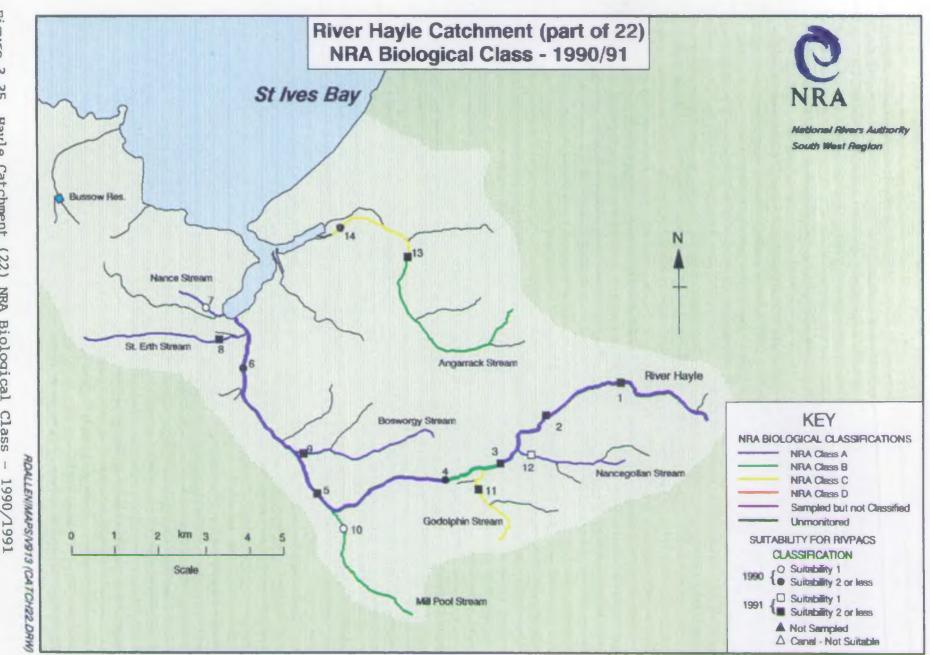
Of the 42 km of watercourses monitored by 14 sites in the Hayle River catchment, 74% (10 sites) were good, 15% (2 sites) were moderate, and 11% (2 sites) were poor quality, according to the NRA Biological Classification. None were classed as very poor quality.

Likely reasons for poorer biological quality

The River Hayle at Godolphin Bridge and Relubbus was of only moderate quality owing to poorer than expected N-taxa. No causes were attributed to this, though the effects of mining were suggested. The low diversity of the fauna was ascribed to the uniformity of the habitat.

Although classed as good quality overall, Millpool Stream had a moderately poorer than expected N-taxa. The watercourse was subject to dredging and channelisation, both of which would have affected its taxonomic richness; mine drainage was also thought to have affected it. The stream was dredged before the Spring sample was taken.

Godolphin Stream was classed as poor quality by the overall NRA Biological Classification because of its very much poorer than expected N-taxa (Class D), and poorer than expected ASPT. This stream was known to be severely affected by mining. This was thought to have caused its non-compliance with chemical River Quality Objectives, National Rivers Authority, 1992d), and was probably the cause of the poor biological quality also. There was concern that the stream was also affected by pesticides. Following investigation, it was concluded that any impacts that pesticides may have had on the stream's biota were masked by the effects of mining.


The upper reach of Angarrack Stream was of moderate quality, and the lower reach of poor quality, solely because of moderately poorer than expected N-taxa. This is consistent with the effects of urbanisation and channelisation which affected the stream in the vicinity of the downstream monitoring site. The stream was silty, and suffered from low flow during the Summer.

Catchment: River Hayle Corresponding Freelance map filename(s):CATCH22.DRW No. on RIVPACS Observed O/E Ratio O/E Ratio Class Biol. N-Fams ASPT BM/P N-Fams ASPT BM/P Class Site Chem. Season Map Watercourse Name Site Location Name NGR URN Suitability Year Code Ref. SW 6375 3467 2210 SW 6375 3382 2211 SW 6115 3277 2212 SW 5969 3246 2204 SW 5664 3193 2213 8'3303 bridge Crowen Hay1e R22B014 1991 23 6.60 152 0.70 1.05 0.74 7 A Hayle 5.80 Drym Farm R22B015 1991 26 35 151 0.77 0.92 0.71 221 1.03 1.00 1.03 Ū Hayle 3 Binner Bridge R22B001 1991 7 A 777 129 0.60 0.97 0.58 151 0.68 1.03 0.70 . Heyle Godolphin Bridge RZZBOOZ 1990 21 6.10 8 6.60 151 0.68 1.03 0.70 175 0.81 0.95 0.77 5 Hay1e Relubbus R228003 1991 23 2 A 6 Hay1e St Erth Gauging Station SW 5493 3507 2205 R228004 1990 29 2 A . 7 Nanca Stream Lelant SH 5407 3647 1990 2203 RZZA005 1 7 28 5.60 157 0.82 0.90 0.73 A A A . Treloweth Ø St Erth Stream SW 5435 3558 2217 RZ28018 5 1991 7 29 169 5.60 0.84 0.94 0.79 . A A . SW 5610 3299 9 Bosworgy Stream Trennack 2214 4 1991 7 41 6.10 250 1.18 1.00 1.18 A **A** A A 10 Millpool Stream H111poo1 SW 5715 3138 2206 R22B013 1 1990 7 25 6.20 154 0.72 0.99 0.71 A . . 11 Godolphin Stream Gwedna SW 6043 3208 2215 R22B017 3 1991 7 0.76 0.27 12 4.80 57 0.35 D C С С SW 6145 3306 R228016 12 Nancegollan Stream Tremheal 2216 1 1991 7 31 6.50 202 1.04 0.95 A A . A 0.91 Nanpusker Philiack - Copperhouse SW 5885 3734 SW 5699 3834 2207 R22A014 1991 777 19 15 5.70 109 78 0.56 0.91 0.50 c c 13 Angarrack Stream **4** 5 A B C B 14 Angerrack Stream 2202 R22A001 1990 5.20

Key to Biol. Class	s: A = Good, # = Site	B = Moderate, $C = Poor$, $D = Very Poor$. $* = Canel - Unsuitable for classification, * = Lacustregularly dries up - cannot be classified, S = Site was not sampled due to location difficulty$	rine site - also unsuitable, ; - New site for 1992/1993 y or other error,
Ver: 91.3	June 1993	NRA South West Region, Manley House, Exeter.	Index compiled by Russ Dallen. Freshwater Biology. Ext 2472.

116

٠.

3.2.26 Red River, Portreath, Bolingey and Perranporth Catchments Catchment-23

Summary

Of the 111 km of watercourses monitored by 33 sites in the Red River, Portreath, Bolingey and Perranporth catchments, 52% (18 sites) were good, 16% (5 sites) were moderate, 8% (3 sites) were poor, and 23% (6 sites) were very poor quality, according to the NRA Biological Classification. One reach, representing 1% of the watercourses, was unsuitable for classification because it was dry during the Summer.

This catchment included streams with some of the worst biological qualities in the South West Region.

Likely reasons for poorer biological quality

Apart from its most upstream reach, **The Red River** was classed as poor or very poor quality according to the overall NRA Biological Classification. At all sites, the class indicated by the EQI N-taxa was worse than that indicated by the EQI ASPT, suggesting toxic pollution or habitat degradation. This was the result of mine drainage, although the river was also badly affected by storm-water overflows. In the most downstream reach sampled at Gwithian Towans, the very poor quality was the result of both mining and organic pollution (at this site both N-taxa and ASPT were very much poorer than expected).

Although it attained an overall NRA Biological Class of good quality, the lower reaches of Roseworthy Stream were classed as only of moderate quality on the basis of their EQI N-taxa, indicating toxic pollution or habitat degradation. The stream was thought to be affected by mining (National Rivers Authority, 1992d).

The lower reach of the **Praze River** was of only moderate overall quality because of moderately poorer than expected ASPT, which indicates that it was organically polluted. The monitoring site at Praze-an-Beeble was very shallow.

Reen Stream was of poor overall quality, largely because of poorer than expected N-taxa which may have been the result of channelisation, or of the mining influences which were considered to have been the cause of this reach's failure to meet its chemical River Quality Objective.

The upper reach of **Tehidy Stream**, monitored at Tolvaddon Bridge, was classed as very poor quality overall because of very much poorer than expected Ntaxa. This stream had been channelised, and was overgrown by Japanese Knotweed. The stream flowed underground just upstream from the monitoring site, and again downstream from the site. This may have hampered the dispersion of the invertebrates, however the effects of mine drainage, storm overflows, and land run-off which were considered to have affected the chemical quality of this stream (National Rivers Authority, 1992d) were probably the main causes of the very poor biological quality.

The Portreath River was of very poor quality according to its overall NRA Biological Classifications, largely because of very much poorer than

expected N-taxa, though it was also classed as poor quality by its EQI ASPT. The watercourse is known to be affected by metalliferous drainage from disused mines.

Redruth Stream was classed as very poor quality because of both very much poorer than expected N-taxa and ASPT. This was ascribed to the effects of mining, channelisation, and sewage works effluent.

Cambrose Stream was of moderate overall quality owing to moderately poorer than expected N-taxa, although it had a good EQI ASPT, which suggests toxic pollution. A possible, though unconfirmed, source of this was a piggery upstream.

The lower reach of Porthtowan Stream was of very poor quality according to its overall NRA Biological Classifications, because of very much poorer than expected N-taxa, though it also had a poorer than expected ASPT. The watercourse is known to be affected by metalliferous drainage from disused mines.

St Agnes Stream was of moderate quality overall, owing to moderately poorer than expected N-taxa and moderately poorer than expected ASPT, which implies that it was subject to organic pollution. The monitoring site was channelised, and contained household rubbish.

The most upstream reach of **Perranporth Stream** was dry in the Summer, which not only had a substantial impact on its biota, but made the stream unsuitable for RIVPACS prediction and hence also unsuitable for classification.

Trevellas Stream was of only moderate overall quality owing to historic metal ore mining. The toxic influence of this on the macro-invertebrate fauna was evident in its moderately poorer than expected N-taxa.

Bolingey Stream was of moderate quality, and was subject to a number of influences including the effects of historic mining activity, dredging, and contaminated run-off from spoil heaps.

Catchment: Red River, Portreath, Bolingey & Perranporth

Corresponding Freelance map fileneme(s):CATCH23.DRW

No. on Map	Watercourse Name	Site Location Name	NGR	Site Ref.	Chem. URN	RIVPACS Suitability	Year	Season Code		ASPT	BMM/P	0/i N-Fams	ASPT	io BHMP	O/E Re N-Fams	tio Ci ASPT	1635 BM6/P	01o1. Class
4	Red River Red River Red River Red River Red River	u/s Brea Tin Works u/s South Crofty Mine Rosecroggan Bridge Kleve Bridge Gwithian Towans	SW 6692 3917 SW 6615 4088 SW 6498 4197 SW 6292 4228 SW 5880 4200	2314 2315 2301 2316 2302	R23A001 R23A002 R23A003 R23A005 R23A005	4 4 2 1 5	1991 1991 1990 1991 1991 1990	7777777777	16 1 8	6.20 5.70 5.00 4.40 3.40	156 91 5 35 17	0,48 0.03 0.24	0.90 0.79 0.68	0.43	8 C D D O	A B C D	A C O D D	A C 0 D 0 D
67 8	Roseworthy Stream Roseworthy Stream Roseworthy Stream	Botatos Bridge Penponda Nancemallin	SV 6304 3907	2303 2317 2304	R23A038 R23A008 R23A009	2 3 2	1990 1991 1990	7777	26	6.80 6.10 6.10	191 159 165	0.84 0.78 0.75	0.96	0.90 0.75 0.73	A B B		Â	
9 10	Praze River Praze River	Praze-an-Beeble Berripper	SW 6409 3558 SW 6334 3815	2318 2305	R23A045 R23A037	4 2	1991 1990	;	28 30	5.90 5.50	165 166			0.78 0.76	Â	8	Â	î
11	Reen Stream	Ramsgate	SW 6420 3845	2307	R23A007	4	1990	4	12	5.30	63	0.41	0.83	0.34	C	8	C	C
12 13 14	Tehldy Stream Tehldy Stream Tehldy Stream	Tolvaddon Bridge Old Marrose Goombe	SW 6633 4220 SW 6513 4327 SW 6298 4238	2320 2319 2306	R23A042 R23A041 R23A017	5 2 1	1991 1991 1990	7777	9 27 28	4.70 5.80 6.00	42 156 168		0.91	0.20 0.73 0.77	A		D A A	D A A
15	Portreath Stream	Bridge	SW 6708 4495	2308	R23A015	1	1990	,	8	4.50	36	0.24	0.70	0.17	D	C	D	0
16	Redruth Stream	North Country Bridge	SW 6899 4379	2330	R23A014	2	1991	7	8	4.00	32	0.24	0.63	0.15	Ð	D	D	D
17	Cambrose Stream	Pigallie Cambrose	SW 6870 4528	2321		3	1991	7	21	5.60	117	0.62	0.90	0.55	. 0	*A	8	8
- 10	Mewle Stream	Pigallie Mawla	SW 6873 4529	2322		5	1991	7	28	6.10	172	0.87	1.00	0.86	•	•	A	A
19 20	Porthtowan Stream Porthtowan Stream	Banns Vale Porthtowan Bridge	54 7141 4795 54 6954 4740	2331 2309	R23A043 R23A013	34	1991 1990	;		6.50 4.50				0.92 0.24		Â	A C	< C
21	Menagissey Stream	Menagissey Bridge	SW 7082 4638	2323	R23A052	1	1991	7	32	6.40	206	0.94	1.02	0.96		•	A	
22	St Agnos Stream	prior to culvert St Agnes	5₩ 7212 5128	2332	R23A016	4	1991	7	23	5.30	123	0.71	0.83	0.59	B	8	8	0
23	Trevellas Stream	u/s Trevelance Cove	SW 7284 5166	2310	R23A051	1	1990	6	18	6.10	109	0.63	0.97	0.61	8		0	0
24 25 26	Perranporth Stream Perranporth Stream Perranporth Stream	Silverwall Mithlan Pleasure Gardens Perranporth	SW 7471 4770 SW 7468 5055 SW 7555 5396	2325 2326 2312	R23A046 R23A047 R23A012	1 4	1991 1991 1990	1 7 7	11 37 31	4.50 6.60 6.50		1.13	1.04	0.00 1.18 0,90		Â		Ŕ
27 28	Bolingey Stream Bolingey Stream	Perrenwell Ponsmere Bridge	SW 7691 5287 SW 7604 5432	2324 2311	R23A048 R23A011	14	1991 1990	7	28 23	7.00 5.10		0.81 0.64		0.89 0.52		Å	AB	Â
29	Pennerthe Stream	Pennartha	SW 7583 5226	2327		2	1991	7	38	6.60	249	1.15	1.04	1.17	A		•	^
30 31	Holymell Stream Holymell Stream	Treleske Holywell Bay Bridge	SW 7894 5679 SW 7680 5868	2328 2313	R23A049 R23A010	23	1991 1990	7	28 32	5.60 5.90		0.79 0.92		0.71 0.91		A	Â	Â
32	Treamble Stream	Trinklet	SW 7842 5606	2329	-	2	1991	7	41	6.40	263	1.20	1.07	1.28	A	A	A	A
33	Porth Joke Stream	prior to beach	SW 7728 6039	2334	R23A061	4	1991	• 7	34	5.90	199	0.99	1.01	1.00		A	A	A
				1			I						1	Ι				

Key to Biol. Class	: A = Good,	B = Moderate, C = Poor, D = Very Poor, * = Canal - Unsuitable for class	sification, + = Lacustrine site - also unsuitable, = New site for 1992/1993
	# = Site v	egularly dries up - cannot be classified, \$ = Site was not sampled due	to location difficulty or other error,
Ver: 91.3	June 1993	NRA South West Region, Menley House, Exeter.	Index compiled by Russ Dellen. Freshwater Biology. Ext 2472.

.

.

Figure 3.36 Red, Portreath, Bolingey and Perranporth Catchments (23) NRA Biological Class - 1990/1991

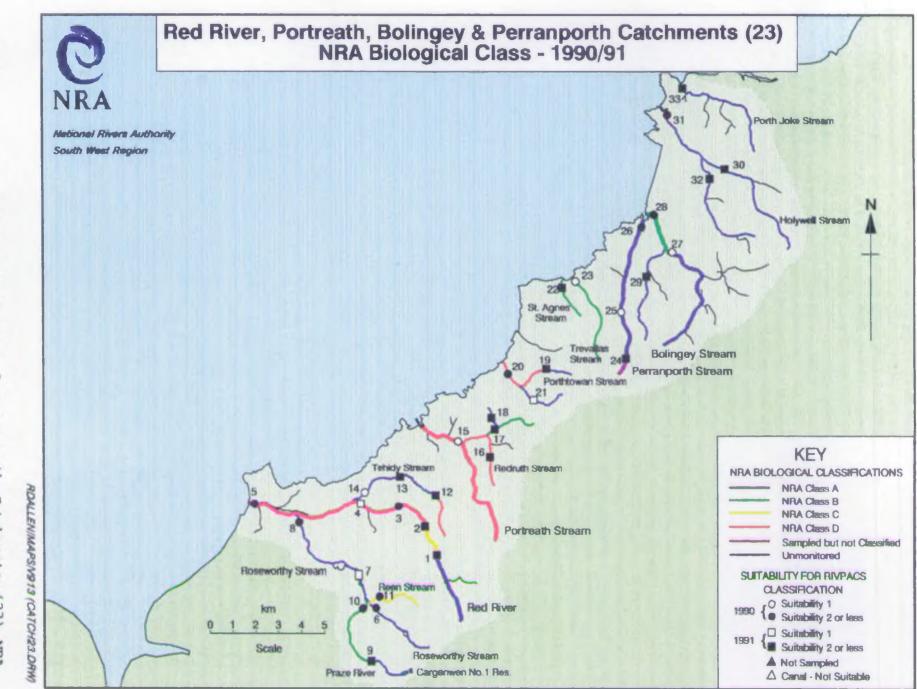


Figure 3.36 Keq Biological Class 3.36 Red -1 Portreath, 1990/1991 Bolingey and Perranporth Catchments (23) NRA

3.2.27 River Gannel Catchment Catchment-24

Summary

Of the 25 km of watercourses monitored by 11 sites in the River Gannel catchment, 94% (10 sites) were good, and 6% (1 site) was moderate quality, according to the NRA Biological Classification. None were classed as poor or very poor quality.

Likely reasons for poorer biological quality

The River Gannel was of good ecological quality.

The middle reach of East Wheal Rose Stream was of moderate quality owing to poorer than expected N-taxa. In common with the upstream reach (which although classed as good quality overall, was classed as moderate according to its EQI N-taxa), the stream bed was covered in ochre. Both the ochre, and the worse than expected N-taxa, indicated metal pollution from mine drainage which is known to affect this stream. The effects of this drainage on the invertebrates was less marked downstream.

Although classed as good quality overall, Treloggan Stream had moderately poorer than expected N-taxa. There has been concern about its water quality for some time, and a number of pollution incidents have been reported. Although measures have been taken to improve its water quality, including the removal of potentially polluting discharges, water quality problems persist.

Corresponding Freelance map filename(s):CATCH24.DRW

Catchme	nt: River Gannel	Currespondi	ng Freelance map	filane	ime(s):CATC	HZ4.DRW												
No. on Map		Site Location Name	NGR	Site Ref.	Chem, URN	RIVPACS Suitability	Yeer	Seeson Code		ASPT		0/ N-Fams	E Ret ASPT		O/E Ra N-Fami			
23		Perrose Kestle Mill Bridge Gwills Gauging Station Trevemper	54 8846 5826 54 8510 5925 54 8301 5929 54 8194 5983	2403	R24A008 R24A005 R24A006 R24A009	1 1 1 1	1991 1990 - 1990 1991	7 7 7 7 7	39 34	6.60 6.60	257	0.99 1.14 0.97 0.99	1.04	1.16	Â			A A A A
5	Newlyn East Stream	Rosecliston	SM 8171 5877	2405	R244012	1	1990	7	.33	6.70	222	0.98	1.06	1.04	A	A	A	A
	Benny Streem Benny Streem	Benny Mill Bridge Trewerry Mill	SW 8421 5739 SW 8373 5800		R24A004 R24A010	1 1	1990 1990	777		6.40 6.40	210 237	0.97	1.00			Â	A	Â
9	East Wheel Rose Str East Wheel Rose Str East Wheel Rose Str	East Wheal Rose Bridge Matha Bridge Benny Bridge	SW 8346 5523 SW 6387 5632 SW 8377 5712	2413	R24A001 R24A003 R24A011	1 1 1 1 1	1991 1991 1990	7 7 7	20		116	0.77 0.58 0.67	0.93	0.54	Ċ		A B A	8
11	Treloggen Stream	A3075 roundebout	5W 8196 6007	2404	1	5	1990	7	19	5.00	95	0.74	0.98	0.72	8	A	A	•
																		Ĺ

Ver: 91.3 June 1993 MRA South West Region, Menlay House, Exeter. Index compiled by Russ Dellen. Freshwater Biology. Ext 2472.	Key to Biol. Class	s: A - Good. ∉ = Site	, B = Moderate, C = Poor, D = Very Poor. $^{\circ}$ = Canal - Unsuitable for classification, + = Lacustr regularly dries up - cannot be classified. S = Site was not sampled due to location difficulty	ine site - also unsuitable, j = New site for 1992/1993 or ether error,	
	Ver: 91.3	June 1993	NRA South Wast Region, Manlay House, Exeter.	Index compiled by Russ Dellen. Freshwater Biology. Ext 24	172.

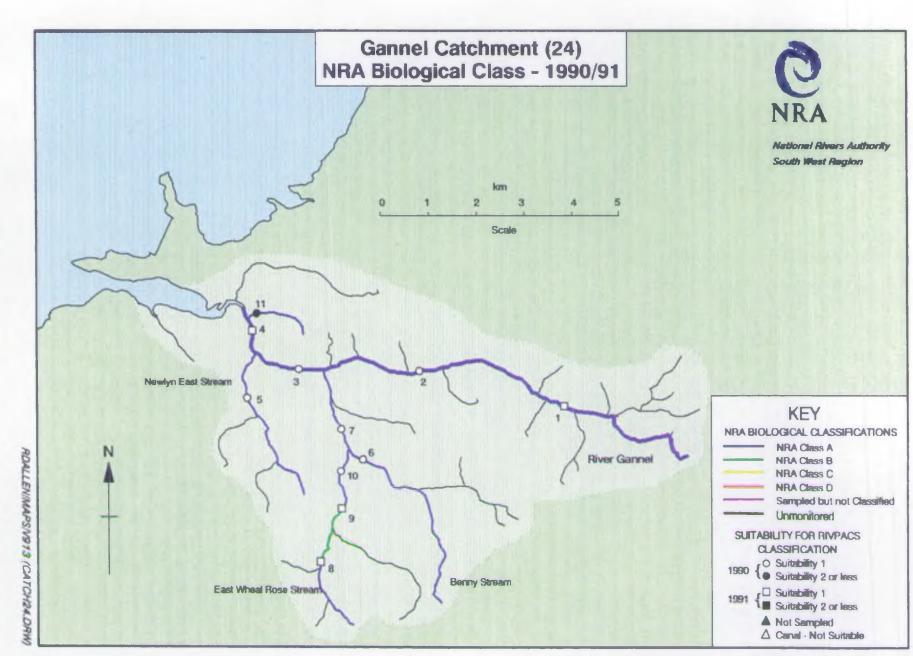


Figure 3.37 Gannel Catchment (24) NRA Biological Class 1 1990/1991

3.2.28 Porth, Gluvian, Menalhyl Catchments Catchment-25A

Summary

Of the 59 km of watercourses monitored by 18 sites in the Porth, Gluvian and Menalhyl catchments, 80% (13 sites) were good, 15% (3 sites) were moderate, and 5% (1 site) was poor quality, according to the NRA Biological classification. None were classed as very poor quality.

Likely reasons for poorer biological quality

St Mawgan Stream was of moderate quality because of both moderately poorer than expected ASPT and N-taxa, which suggests organic pollution. A silty discharge was noticed by the biologists from a campsite upstream from the monitoring site, and this may have been the cause of the pollution. The stream may have been affected by run-off and sewage from an aerodrome.

The most downstream reach of The Menalhyl was classed as poor because of poorer than expected ASPT and moderately poorer than expected N-taxa, which is consistent with the effects of organic pollution. Storm overflows, farming, and sewage effluent were cited as possible causes of chemical water quality problems (National Rivers Authority, 1992d), which together with the deep and silty nature of the stream, could have caused the poor biological quality.

The Reterth Stream was of moderate overall quality because of poorer than expected N-taxa, although it had a good ASPT. This is indicative of toxic pollution or habitat degradation. Metalliferous mine discharges were considered to have been the most likely cause of the poor biological quality. Their effect is consistent with the poor taxonomic richness and considerable amount of ochre recorded on the stream bed.

Harlyn Water, downstream from Harlyn Lake, was of moderate quality owing to both its moderately poorer than expected ASPT and N-taxa, which suggests that organic enrichment was a problem. The reach was affected by the drought (it was almost dry in the Autumn), and by effluent from septic tanks. However, the biological monitoring site was in a reed-bed where the water was barely flowing and which would have been naturally rich in organic detritus. The site had a low RIVPACS suitability (suitability code 4, see Table 2.4), which would have reduced the accuracy of the classification. A new monitoring site was established upstream from Harlyn Lake in 1992.

Catchment: Porth, Gluvian & Henalhyl

Corresponding Freelance map filename(s):CATCH25A.DRW

No. on Map	Watercourse Name	Site Location Name	NGR	Site Ref.	Chem. VRN	RIVPACS Suftability	Year	Season Code	Ob N-Fams	ASPT			E Rat ASPT	10 BHMP	O/E Ra N-Fams	tio C ASPT	lass 846/P	Biol. Class
1 2 3	Porth Stream Porth Stream Porth Stream	Tregoose Ford Bridge Melencoose Rialton Bridge	SW 8621 6212	2525 2501 2502	R25A004 R25A009 R25A005		1991 1990 1990	?	31	6.70 6.00 6.20	186	0.89		0.84	Ä	Â	Â	Â
4	St Mawgan Stream	Whipsiderry ·	SV 8373 6338	2526	R25A013	2	1991	7	24	5.00	119	0.69	0.60	0.55	8	8	8	8
5	Mountjoy Stream	Trawassick Bridge	SW 8606 6179	2536	R25A015	3	1991	7	37	6.60	250	1.09	1.09	1.19	A	•	A	A
6 7 8 9 10	Manalhyl Mañalhyl Manalhyl Manalhyl Manalhyl Manalhyl	Tregamere St Columb Major Bridge d/s St Columb STW St Mawgen Bridge Mawgen Porth Bridge	SW 9145 6398 SW 9046 6412 SW 8730 6592	2527 2528 2529 2503 2530	R25A014 R25A001 R25A001 R25A002 R25A003	1 1 1 2 4	1991 1991 1991 1991 1990 1991	7 7 7 7 7	- 37 34 38 31 23	6.60 6.40 6.40 6.50 4.70	218 243 201	1.03 1.12 0.91	1.01 1.01 1.02	1.04 1.12 0.93	Α	***	A A A B	A A A C
11	Tregatillian Stream	Tregetillian	SW 9269 6323	2531	R25A016	1	1991	,	30	6.20	187	0,89	0.99	0.68	A			
12	Retarth Stream	Reterth	SW 9434 6356	2532	R25A017	1	1991	7	16	6.30	113	0.53	1.00	0.53	c	A	8	8
13	Gluyian Stream	Gluvian	SW 8629 6693	2504	R25A018	1	1990	7	36	6.60	236	1.03	1.03	1.06	A	A		
14	Porthcothan Stream	Porthcothan Road Bridge	SW 8597 7206	2505	R25A008	3	1990	7	33	6.10	201	0.92	0.97	0.89	A	A	· A	A
15	Penrose.Stream	Penrose	SW 8748 7061	2533		1	1991	7 .	32	6.10	195	0.93	0.98	0.91	A	A	A	A
	Harlyn Water Harlyn Water	Treneerne Bridge Herlyn Bridge		2555 2506	R25A026 R25A007	4	1990	7		0.00 5.00		0.00 0.63				8		ł
18	St Merryn Brook	Treveglos	SW 8885 7431	2534		3	1991	7	36	6.00	216	1.07	1.02	1.09	A	A	A	
					I										_		┶╾╌┙	

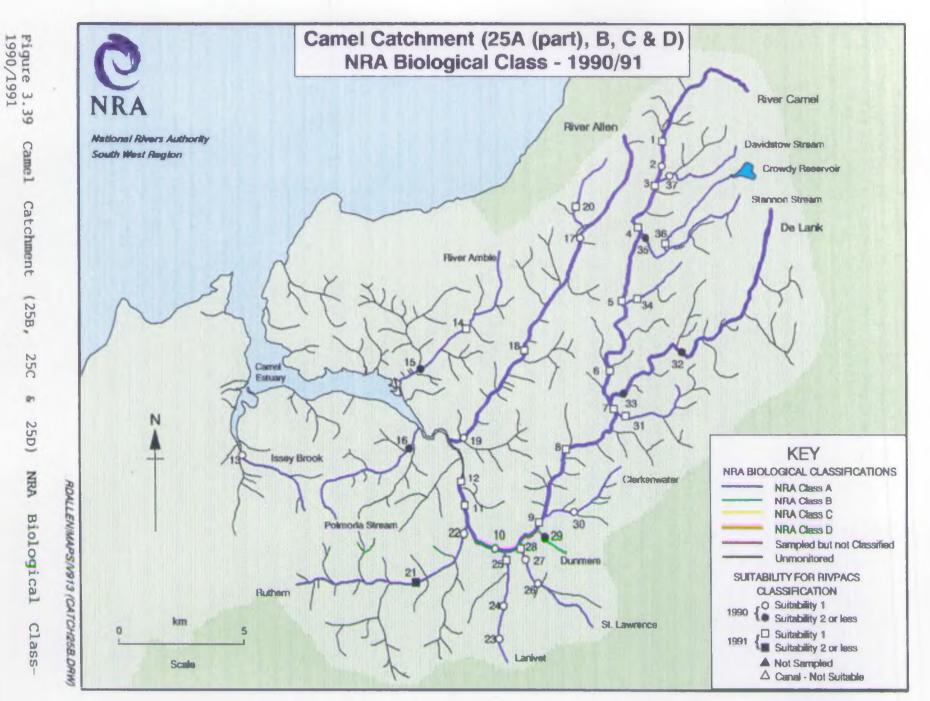
Key to Biol. Clas	is: A = Good d = Site	, B = Moderate, C = Poor, D = Vary Poor. * - Canal - Unsuitable for classification, regularly dries up - cannot be classified, $\$ = $ Site was not sampled due to location	 - Lacustrine site - also unsuitable, ; - New site for 1992/1993 difficulty or other error,
Ver: 91.3	June 1993	NRA South West Region, Manlay House, Exeter.	Index compiled by Russ Dellen. Freshwater Biology. Ext 2472.

RDALLEN/MAPS/V913 (CATCH25A.DRW)

Figure 3.38 Porth, Gluvian and Menalhyl Catchments (25A) NRA Biological Class - 1990/1991

3.2.29 River Camel Catchment Catchment-25B, C & D

Summary


Of the 145 km of watercourses monitored by 37 sites in the River Camel catchment, 99% (36 sites) were good, and 1% (1 site) was moderate quality, according to the NRA Biological Classification. None were classed as poor or very poor quality.

Likely reasons for poorer biological quality

Dummere Stream was of moderate overall quality. This was because of organic pollution (both N-taxa and ASPT were affected). This was though to have originated from Scarlett's Well STW. Its effluent is now piped directly to the River Camel, where it receives much greater dilution.

ercourse Name e1 e1 e1 e1 e1 e1 e1 e1 e1 e	Site Location Name Slaughterbridge Cemelford Bridge Pencarrow Trecarne Bridge Gem Bridge Wenford Tresarret Bridge Hellandbridge Dunmere Bridge Nanstallon Bridge Groglay Polbrock Hellingey St Kew ford	SX 1043 8278 SX 0968 8057 SX 0890 7790 SX 0890 7519 SX 0882 7317 SX 0650 7150 SX 0454 6780 SX 0354 6741 SX 0144 6660	Site Ref. 2537 2510 2538 2539 2540 2541 2542 2543 2544 2511 2545 2545	Chem. URN A258021 R258001 R258002 R258003 R258003 R258004 R258004 R258005 R258005 R258007 R258007 R258008 R258029	RIVPACS Suitabiiity 1 1 1 1 1 1 1 1 1 1 1	1991 1990 1991 1991 1991 1991 1991 1991	Season Code' 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	N-Fains 33 34 20 34 33 40 36 37 39 34	ASPT 6.70 6.40 6.30 6.50 6.70 8.70 7.00 6.90 7.00 6.40	221 218 175 220 221 267 253 255 273	1.00 1.04 0.65 1.04 1.01 1.21 1.10 1.13 1.20	1.05 1.00 0.98 1.01 1.05 1.05 1.10 1.08 1.11	1.05 1.04 0.64 1.05 1.06 1.26	O/E Rai N-Ferns A A A A A A A A A A			8101. Class A A A A A A A A
e) e) e) e) e) e) e) ey Brook	Camelford Bridge Pencerrow Trecerrow Gam Bridge Gam Bridge Wenford Treserret Bridge Hellandbridge Dunmere Bridge Groglay Polbrock Mellingey St Kew Ford	SX 1067 8343 SX 1043 8276 SX 0968 8057 SX 0849 7519 SX 0842 7519 SX 0682 7317 SX 0650 7150 SX 0484 6780 SX 0144 6660 SX 0145 6940	2510 2538 2539 2540 2541 2542 2543 2544 2511 2545 2546	R258001 R258022 R258002 R258003 R258003 R258004 R258005 R258006 R258007 R258008		1990 1991 1991 1991 1991 1991 1991 1991	777777777777	34 20 34 33 40 36 37 39 34	6.40 6.30 6.50 6.70 6.70 7.00 6.90 7.00	218 175 220 221 267 253 255 273	1.04 0.66 1.04 1.01 1.21 1.10 1.13 1.20	1.00 0.98 1.01 1.05 1.05 1.10 1.08 1.11	1.04 0.64 1.05 1.06 1.26 1.21 1.23	A A A	***	~~~~	~~~~
1e 1e	St Kew Ford	SW 9212 7171			L I	1991	7	35 37	6.50 6.80	226	1.00 1.00 1.08		1.00	A A A		~ ~ ~	~ ~ ~
1.			2507	R25A024	1	1990	7	34	6.30	214	0.99	1.00	0.99	A	•	A	۸
	Chapel Amble Bridge	SX 0211 7678 SW 9968 7535	2535 2500	R25A010 R25A006	1 2	1991 1990	7	35 32	6.50 6.00		0.99 0.89	1.04 0.99	1.03 0.89	Å	Â	Â	Â
morla Stream	Polmorla	SW 9835 7159	2509	R258053	2	1990	7	37	6.40	238	1.03	1.04	1.07	Α.	•	A	A
en en	Knightsmill Bridge Kellygreen Bridge Sledesbridge	SX 0455 7591	2553	R250001 R250002 R250003	1 1 1 1	1990 1991 1990	777	41 42 38	6.90 6.80 6.60	284	1.23 1.23 1.08	1.06	1.30	A A A			ÂÂ
abole Stream	Nauhall Green	SX 0701 8221	2554	R250009	1	1991	7	32	6.40	206	0.95	1.01	0.96	A	A	A	A
hern hern	Withial Bridge Grogley Downs Bridge	SW 9971 6590 SX 0157 6777	2547 2512	R258027 R258028	2 1	1991 1990	7	39 39	6.50 6.60	253 265	1.17 1.10			Â	Â	Â	Â
ivet Stream ivet Stream ivet Stream	Lanivet Hoopers Bridge Nanstallon	SX 0388 6546	2514	R258014 R258015 R258016	1 1 1	1990 1990 1991	7 7 7	30	5.90	178	0.91	0.93	0.85	* * *	A A A	â	~
Lewrence Stream Lawrence Stream Lawrence Stream	A389 Bridge u/e St Lawrence STW prior to River Camel	SX 0525 6586 SX 0456 6690 SX 0432 6732	2515 2516 2549	R258017 R258040 R258038	1 1	1990 1990 1991	7777	31	5.90	184	0.88	0.94	0.03	~ ~ ~	Â	Â	**
more Stream	Dunnere	SX 0475 6779	2517	R258026	4	1990	7	21	5.50	115	0.60	0.87	0.52	8	B	8	B
rkenneter	Clarkenweter	SX 0688 6877	2518	R258018	1	1990	7	35	6.80	237	1.06	1.07	1.13	A	A	<u>^</u>	A
sand Stream	Lavethen Hills	SX 0905 7301	2550		1	1991	7	. 40	6,90		1.20	1,08	1.30	•	A	A	A
Lenk River Lenk River	Bradford Bridge Keybridge	SX 1140 7593 SX 0890 7390	2521 2522	R25C001 R25C002	5	1990 1990	;	45 30	6.60 7.00					• •	â	2	Â
11ow Water	Jordan	SX 0912 7790	2551		1	1991	7	23	7.00	230	1.02	1.09	1.11	A	A	Α.	A
nnon Streem	Trecarne	SX 0978 8053	2519	R25B025	4	1990	7	34	6.90	236	1.13			A	•	A	•
wdy Stream	Neuhall	SX 1110 8016	2552		1	1991	7	36	6.80	245	1.10	1.07	1.17	A	A	Α.	^
Idstow Stream	Tregoodwell	SX 1089 6327	2520	R258024	1	1990	7	39	6.80	267	1.20	1.07	1.29	A	A	•	•
	n n bole Stream ern ern arn vet Stream avrence Stream	n Knightsmill Bridge n Knightsmill Bridge Sladesbridge bole Stream Newhall Green ern Withiel Bridge grogley Downs Bridge vet Stream Hoopers Bridge wet Stream A389 Bridge avrence Stream a/Se St Lawrence STW avrence Stream prior to River Camel ere Stream Dummere kerneter Clarkerneter and Stream Lavathan Hills enk River Bradford Bridge ank River Keybridge low Mater Jordan non Stream Newhall	n Kightsmill Bridge SX 0715 8067 Kellygreen Bridge SX 0455 7591 Sladesbridge SX 0106 7145 bole Stream Newhall Green SX 0701 8221 ern Withiel Bridge Grogley Downs Bridge SX 0157 6777 vet Stream Lanivat Hoopers Bridge SX 0358 6456 stream Hoopers Bridge SX 0358 6456 SX 0358 6456 SX 0358 6586 swrence Stream Joint Stream Prior to River Camel SX 0425 6790 avrence Stream Dummere STW SX 0456 6690 prior to River Camel SX 0475 6779 themseter Clarkenwater SX 0456 6497 and Stream Lavethen Hills SX 0905 7301 ank River Stream Lavethen Hills SX 0905 7301 ank River Keybridge SX 0912 7790 Iow Mater Jordan Trecarne SX 0978 8053 dy Stream Newhall SX 1100 8016	Knightsmill Bridge SX 0715 8067 2523 n Kallygreen Bridge SX 0455 7591 2553 sidesbridge SX 0106 7145 2524 bole Stream Newhall Green SX 0701 8221 2554 ern Withiel Bridge SW 9971 6590 2547 ern Withiel Bridge SW 9971 6590 2547 ern Grogley Downs Bridge SX 0157 6777 2512 vet Stream Hoopere Bridge SX 0386 6456 2513 vet Stream Hoopere Bridge SX 0355 6730 2548 swrence Stream A389 Bridge SX 0525 6586 2515 swrence Stream Up St Lawrence STW SX 0475 6779 2517 kernester Clerkenneter SX 0475 6779 2517 kernester Clerkenneter SX 0407 5791 2518 and Stream Bradford Bridge SX 0905 7301 2550 ank River Bradford Bridge SX 0905 7301 2551 ank River Bradford Bridge SX 0905 7301 2551 <td< td=""><td>Knightsmill Bridge SX 0715 8067 Z523 R25D001 n Kallygreen Bridge SX 0106 7145 Z523 R25D002 stadesbridge SX 0106 7145 Z524 R25D003 bole Stream Newhall Green SX 0701 8221 Z554 R25D009 ern Mithial Bridge SW 9971 6590 Z547 R258027 ern Grogley Downs Bridge SX 0157 6777 Z512 R258028 vet Stream Lanivet SX 0388 6456 Z513 R258017 vet Stream Hoopers Bridge SX 0388 6456 Z514 R258018 swrence Stream A389 Bridge SX 0525 6586 Z516 R258016 swrence Stream J389 Bridge SX 0432 6732 Z549 R258038 swrence Stream Dummere SX 0475 6779 Z517 R258040 swrence Stream Dummere SX 0475 6779 Z517 R258038 swrence Stream Dummere SX 0475 6779 Z517 R258040 swrence Stream Dummere SX 0475 6779</td><td>Knightsmill Bridge Keilygreen Bridge Sladesbridge SX 0715 6067 SX 0455 7591 SX 0106 7145 Z523 Z553 Z554 R25D001 R25D002 R25D003 1 1 R25D002 R25D003 bole Stream Mewhall Green SX 0701 8221 2554 R25D009 1 ern Withial Bridge Grogley Downs Bridge SW 9971 6590 SX 0157 6777 2512 R258027 2 ern Withial Bridge Grogley Downs Bridge SW 0308 6456 2513 R258014 1 vet Stream Lanivat Hoopers Bridge vet Stream SX 0326 6456 2513 R258014 1 sverence Stream A389 Bridge u/e St Lawrence STV swrence Stream SX 0425 6586 2515 R258015 1 swrence Stream Dummere SX 0475 6779 2517 R258038 1 swrence Stream Dummere SX 0475 6779 2517 R258038 1 swrence Stream Dummere SX 0456 6690 2518 R258038 1 stream Dummere SX 0475 6779 2517 R258038 1 stream Dummere SX 0475 6779 2518 R258018</td><td>Knightsmill Bridge Kellygreen Bridge Stadesbridge SX 0715 8067 X 0455 7591 SX 0455 7591 SX 0106 7145 2523 2524 R250001 R250002 1 1990 bole Stream Newhell Green SX 0701 8221 2554 R250003 1 1990 arm Withle1 Bridge Grogley Downs Bridge SW 9971 6590 2547 R258027 2 1991 arm Withle1 Bridge Grogley Downs Bridge SW 9971 6590 2547 R258027 2 1991 arm Withle1 Bridge Grogley Downs Bridge SK 0156 6456 2511 R258014 1 1990 vet Stream Lanivet Hoopere Bridge Wet Stream SK 0386 6456 2511 R258014 1 1990 swrence Stream A389 Bridge W/e St Lawrence STW Barrence Stream SX 0425 6732 2518 R258017 1 1990 arrence Stream Dummere SX 0432 6732 2518 R258026 1 1990 arrence Stream Dummere SX 0432 6732 2518 R258040 1 1990 arrence Stream Dummere SX 0435 6730 2517 R258040<</td><td>Knightsmill Bridge Kallygreen Bridge Sladesbridge SK 0715 6067 SK 0455 7591 SX 0455 7591 SX 0106 7145 2523 2524 R250001 R250003 1 1990 1990 7 bole Stream Newhall Green SX 0701 B221 2554 R250003 1 1990 7 arn Withiel Bridge Grogley Downs Bridge SW 9971 6590 SX 0157 6777 2512 R258027 2 1991 7 arn Withiel Bridge Grogley Downs Bridge SW 9971 6590 SX 0157 6777 2512 R258014 1 1990 7 vet Stream Lanivet Hoopers Bridge SX 0388 6545 2513 R258014 1 1990 7 servence Stream Nanstallen SX 0326 5516 R258015 1 1990 7 servence Stream A389 Bridge SX 0452 6586 2516 R258040 1 1990 7 servence Stream Jummere SX 0452 6586 2517 R258040 1 1990 7 servence Stream Jummere SX 0452 6792 2516 R258048 1 1990 7 <td>n Knightamill Bridge Kellygreen Bridge Sladesbridge SX 0715 8067 X 0455 7591 SX 0455 7591 SX 0106 7145 2524 2523 R250002 R250002 R250002 1 1 1990 1 1990 7 1990 7 7 42 38 bole Stream Newhall Green SX 0701 8221 Grogley Dows Bridge ern SX 0701 8221 Grogley Dows Bridge SX 0157 6777 2512 2554 R258028 1 1990 1 1990 7 7 39 32 ern Withiel Bridge Grogley Dows Bridge SX 0157 6777 SX 0157 6777 2512 R258027 R258028 2 1 1990 7 1 990 7 7 39 vet Stream Vet Stream Lanivet Hoopers Bridge Wet Stream SX 0158 6456 SX 0358 6456 2513 R258016 R258014 1 1990 7 1 1990 7 1 30 swrence Stream Prior to River Camel SX 0456 6586 SX 0456 6680 SX 0456 679 SX 0456 679 Z514 R258015 1 1 1990 7 3 4 30 swrence Stream Prior to River Camel SX 0475 6779 Z517 R258026 1 1990 7 7 30 and Stream Dummere SX 0455 6790 Z514 R258018 1 1990 7 7 30 3 4 and Stream Lavethen H11s SX 0905 7301 Z550 1 1990 7 1 1990 7 7 30 and Stream Bredford Bridge Keybridge SX 0107 790 Z518 2 519 R25002 1 1990 7 7 30 and Kriver Keybridge Jordan SX 0978 8053</td></td></td<> <td>n Knightsmill Bridge SX 0715 8067 2523 R250001 1 1990 7 41 6.90 n Stadesbridge SX 0455 7591 2553 R25002 1 1991 7 42 6.60 bole Stream Newhall Green SX 0701 8221 2554 R25009 1 1991 7 32 6.40 ern Withial Bridge SW 9971 6590 2547 R258027 2 1991 7 39 6.50 vet Stream Lanivet SK 0358 6456 2513 R258014 1 1990 7 30 5.90 vet Stream Hanstallon SX 0525 6586 2514 R258015 1 1990 7 30 5.90 awrence Stream A389 Bridge SX 0456 6590 2516 R258040 1 1990 7 31 5.90 awrence Stream A389 Bridge SV 0456 6690 2516 R258040 1 1990 7 31 5.90 awrence Stream Clarkenmater SX 0456 679 2517 R258048 1</td> <td>n Knightsmill Bridge SX 0715 8067 2523 R25D001 1 1990 7 41 6.90 264 n Stadesbridge SX 0455 7511 2533 R25D002 1 1991 7 42 6.60 264 n Stadesbridge SX 0106 7145 2524 R25D003 1 1991 7 32 6.40 264 bole Stream Newhall Green SX 0701 8221 2554 R25D009 1 1991 7 32 6.40 206 ern Withiel Bridge SX 0715 8057 2547 R25B027 2 1991 7 39 6.50 253 ern Greglsy Downs Bridge SX 0156 6456 2513 R25B015 1 1990 7 39 6.50 253 vet Stream Hanstilen SX 0356 6456 2513 R25B015 1 1990 7 39 5.90 171 vet Stream Hanstilen SX 0356 6456 2515 R25B015 1 1990 7 31 5.90 184 awre</td> <td>n Knightsmill Bridge SX 0715 8067 2523 R250001 1 1990 7 41 6.00 284 1.23 n Kellygreen Bridge SX 0455 7591 2553 R250002 1 1991 7 42 6.00 284 1.23 n Stadesbridge SX 0106 7145 2524 R250002 1 1991 7 42 6.00 284 1.23 bole Stream Newhall Green SX 0701 8221 2554 R250009 1 1991 7 32 6.40 206 0.95 ern Withial Bridge SV 0971 6590 2547 R258027 2 1991 7 39 6.50 253 1.17 ern Mithial Bridge SX 0156 7035 2547 R258027 2 1991 7 30 6.50 253 1.17 ern Mithial Bridge SX 0158 6456 2513 R258016 1 1990 7 30 5.00 171 0.89 5.00 171 0.89 5.00 178 0.86 6.00</td> <td>n Knightsmill Bridge SX 0715 8067 2523 R250001 1 1990 7 41 6.90 264 1.23 1.08 n Sladsbridge SX 0455 7591 2553 R250003 1 1990 7 42 6.90 264 1.23 1.08 bole Stream Newhall Green SX 0106 7165 2524 R250003 1 1990 7 32 6.40 266 0.95 1.01 arn Withiel Bridge SX 0715 677 Z512 R250027 2 1991 7 39 6.50 253 1.10 1.07 vet Stream Lanivat SX 0380 6465 2514 R25014 1 1990 7 39 6.50 253 1.10 1.07 vet Stream Lanivat SX 0380 6465 2514 R25015 1 1990 7 39 6.50 254 1.08 0.92 1.08 0.92 1.07 0.92 5.90 171 0.69 72 1.08 0.92 1.07 0.92 5.90 171 0.650</td> <td>n Knightsmill Bridge SX 0715 8067 2523 R250001 1 1990 7 44 6.90 264 1.23 1.06 1.33 n Sladesbridge SX 0165 7591 2533 R250003 1 1991 7 42 6.40 204 1.08 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.01 1.07 1.07 1.03 1.11 1.02 1.19 1.03 1.11 1.00 1.19 1.03 1.11 1.02 1.19 1.07 1.03 1.01 1.07 1.17 1.02 1.19 1.07 0.39 6.50 255 <</td> <td>An Knightsmill Bridge Kellygreen Bridge SX 0715 8067 SX 0455 7591 2523 2553 R250001 2503 1 1990 1990 7 41 6.90 6.02 264 1.23 1.06 1.06 1.33 1.06 A n. Sidesbridge SX 0455 7591 2533 2534 R250003 1 1990 7 42 6.60 264 1.23 1.06 1.30 A A bole Stream Mewhall Green SX 0701 8221 2554 R250009 1 1991 7 32 6.40 266 0.95 1.01 0.46 ern Grogley Downs Bridge SX 0157 6777 2512 R258027 2 1991 7 39 6.50 253 1.10 1.07 1.17 A vet Stream Hoopers Bridge SX 0386 6546 2513 R258014 1 1990 7 39 6.50 250 171 0.96 0.92 0.82 A vet Stream Hoopers Bridge SX 0386 6546 2513 R258015 1 1990 7 30 6.50 10.01 0.87</td> <td>Nn Knightsmill Bridge Kellygreen Bridge SX 0715 8067 SX 0455 7591 2523 2553 R250002 1 1 1990 7 44 44 6.60 6.60 264 26 26 26 1.23 21 1.06 1.03 1.33 A A A A A A A A A A A A A A A B nn Sidesbridge SX 0715 8067 SX 0105 7145 2524 2554 R250002 1 1 1990 1991 7 42 42 6.60 264 26 1.02 1.06 1.03 1.04 A A A bole Stream Mewhall Green SX 0701 R221 2547 2554 R250007 2512 2 1991 1990 7 32 6.60 265 1.10 1.02 1.19 A A A ern Grogley Downs Bridge SX 0176 777 SX 0138 6546 2511 2512 R258027 R258028 1 1990 1 7 39 6.60 265 1.10 1.02 1.19 A A A A vet Stream wet Stream Lantet Moopers Bridge SX 0138 6546 2511 SX 0138 6546 1 1990 1990 7 34 6.50 220 0.97 1.02 1.02 0.40 A A <tr< td=""><td>Nn Knightsmill Bridge Kellygreen Bridge SX 0715 5067 SX 0455 7511 SX 0455 7511 1 1990 1 7 41 6.90 S.60 244 264 S.60 244 1.00 1.13 A A A bole Stream Mewhall Green SX 0701 8221 Gregley Downs Bridge SX 0701 8221 SY 0157 6777 Z512 2547 R258027 R258027 R258028 1 1991 SY 7 32 6.60 S.60 265 1.10 1.00 1.11 A A A arm Mithial Bridge Gregley Downs Bridge SX 0156 2531 S 0157 S 0158 2531 R258016 1 1990 Sy 0 7 23 6.50 250 1.10 1.00 1.11 A A A arm Lanivat Weit Stream Happer Lanivat SX 0356 5515 R258017 R258015 1 1990 Sy 0 7 23 5.00 171 0.92 0.92 0.6</td></tr<></td>	Knightsmill Bridge SX 0715 8067 Z523 R25D001 n Kallygreen Bridge SX 0106 7145 Z523 R25D002 stadesbridge SX 0106 7145 Z524 R25D003 bole Stream Newhall Green SX 0701 8221 Z554 R25D009 ern Mithial Bridge SW 9971 6590 Z547 R258027 ern Grogley Downs Bridge SX 0157 6777 Z512 R258028 vet Stream Lanivet SX 0388 6456 Z513 R258017 vet Stream Hoopers Bridge SX 0388 6456 Z514 R258018 swrence Stream A389 Bridge SX 0525 6586 Z516 R258016 swrence Stream J389 Bridge SX 0432 6732 Z549 R258038 swrence Stream Dummere SX 0475 6779 Z517 R258040 swrence Stream Dummere SX 0475 6779 Z517 R258038 swrence Stream Dummere SX 0475 6779 Z517 R258040 swrence Stream Dummere SX 0475 6779	Knightsmill Bridge Keilygreen Bridge Sladesbridge SX 0715 6067 SX 0455 7591 SX 0106 7145 Z523 Z553 Z554 R25D001 R25D002 R25D003 1 1 R25D002 R25D003 bole Stream Mewhall Green SX 0701 8221 2554 R25D009 1 ern Withial Bridge Grogley Downs Bridge SW 9971 6590 SX 0157 6777 2512 R258027 2 ern Withial Bridge Grogley Downs Bridge SW 0308 6456 2513 R258014 1 vet Stream Lanivat Hoopers Bridge vet Stream SX 0326 6456 2513 R258014 1 sverence Stream A389 Bridge u/e St Lawrence STV swrence Stream SX 0425 6586 2515 R258015 1 swrence Stream Dummere SX 0475 6779 2517 R258038 1 swrence Stream Dummere SX 0475 6779 2517 R258038 1 swrence Stream Dummere SX 0456 6690 2518 R258038 1 stream Dummere SX 0475 6779 2517 R258038 1 stream Dummere SX 0475 6779 2518 R258018	Knightsmill Bridge Kellygreen Bridge Stadesbridge SX 0715 8067 X 0455 7591 SX 0455 7591 SX 0106 7145 2523 2524 R250001 R250002 1 1990 bole Stream Newhell Green SX 0701 8221 2554 R250003 1 1990 arm Withle1 Bridge Grogley Downs Bridge SW 9971 6590 2547 R258027 2 1991 arm Withle1 Bridge Grogley Downs Bridge SW 9971 6590 2547 R258027 2 1991 arm Withle1 Bridge Grogley Downs Bridge SK 0156 6456 2511 R258014 1 1990 vet Stream Lanivet Hoopere Bridge Wet Stream SK 0386 6456 2511 R258014 1 1990 swrence Stream A389 Bridge W/e St Lawrence STW Barrence Stream SX 0425 6732 2518 R258017 1 1990 arrence Stream Dummere SX 0432 6732 2518 R258026 1 1990 arrence Stream Dummere SX 0432 6732 2518 R258040 1 1990 arrence Stream Dummere SX 0435 6730 2517 R258040<	Knightsmill Bridge Kallygreen Bridge Sladesbridge SK 0715 6067 SK 0455 7591 SX 0455 7591 SX 0106 7145 2523 2524 R250001 R250003 1 1990 1990 7 bole Stream Newhall Green SX 0701 B221 2554 R250003 1 1990 7 arn Withiel Bridge Grogley Downs Bridge SW 9971 6590 SX 0157 6777 2512 R258027 2 1991 7 arn Withiel Bridge Grogley Downs Bridge SW 9971 6590 SX 0157 6777 2512 R258014 1 1990 7 vet Stream Lanivet Hoopers Bridge SX 0388 6545 2513 R258014 1 1990 7 servence Stream Nanstallen SX 0326 5516 R258015 1 1990 7 servence Stream A389 Bridge SX 0452 6586 2516 R258040 1 1990 7 servence Stream Jummere SX 0452 6586 2517 R258040 1 1990 7 servence Stream Jummere SX 0452 6792 2516 R258048 1 1990 7 <td>n Knightamill Bridge Kellygreen Bridge Sladesbridge SX 0715 8067 X 0455 7591 SX 0455 7591 SX 0106 7145 2524 2523 R250002 R250002 R250002 1 1 1990 1 1990 7 1990 7 7 42 38 bole Stream Newhall Green SX 0701 8221 Grogley Dows Bridge ern SX 0701 8221 Grogley Dows Bridge SX 0157 6777 2512 2554 R258028 1 1990 1 1990 7 7 39 32 ern Withiel Bridge Grogley Dows Bridge SX 0157 6777 SX 0157 6777 2512 R258027 R258028 2 1 1990 7 1 990 7 7 39 vet Stream Vet Stream Lanivet Hoopers Bridge Wet Stream SX 0158 6456 SX 0358 6456 2513 R258016 R258014 1 1990 7 1 1990 7 1 30 swrence Stream Prior to River Camel SX 0456 6586 SX 0456 6680 SX 0456 679 SX 0456 679 Z514 R258015 1 1 1990 7 3 4 30 swrence Stream Prior to River Camel SX 0475 6779 Z517 R258026 1 1990 7 7 30 and Stream Dummere SX 0455 6790 Z514 R258018 1 1990 7 7 30 3 4 and Stream Lavethen H11s SX 0905 7301 Z550 1 1990 7 1 1990 7 7 30 and Stream Bredford Bridge Keybridge SX 0107 790 Z518 2 519 R25002 1 1990 7 7 30 and Kriver Keybridge Jordan SX 0978 8053</td>	n Knightamill Bridge Kellygreen Bridge Sladesbridge SX 0715 8067 X 0455 7591 SX 0455 7591 SX 0106 7145 2524 2523 R250002 R250002 R250002 1 1 1990 1 1990 7 1990 7 7 42 38 bole Stream Newhall Green SX 0701 8221 Grogley Dows Bridge ern SX 0701 8221 Grogley Dows Bridge SX 0157 6777 2512 2554 R258028 1 1990 1 1990 7 7 39 32 ern Withiel Bridge Grogley Dows Bridge SX 0157 6777 SX 0157 6777 2512 R258027 R258028 2 1 1990 7 1 990 7 7 39 vet Stream Vet Stream Lanivet Hoopers Bridge Wet Stream SX 0158 6456 SX 0358 6456 2513 R258016 R258014 1 1990 7 1 1990 7 1 30 swrence Stream Prior to River Camel SX 0456 6586 SX 0456 6680 SX 0456 679 SX 0456 679 Z514 R258015 1 1 1990 7 3 4 30 swrence Stream Prior to River Camel SX 0475 6779 Z517 R258026 1 1990 7 7 30 and Stream Dummere SX 0455 6790 Z514 R258018 1 1990 7 7 30 3 4 and Stream Lavethen H11s SX 0905 7301 Z550 1 1990 7 1 1990 7 7 30 and Stream Bredford Bridge Keybridge SX 0107 790 Z518 2 519 R25002 1 1990 7 7 30 and Kriver Keybridge Jordan SX 0978 8053	n Knightsmill Bridge SX 0715 8067 2523 R250001 1 1990 7 41 6.90 n Stadesbridge SX 0455 7591 2553 R25002 1 1991 7 42 6.60 bole Stream Newhall Green SX 0701 8221 2554 R25009 1 1991 7 32 6.40 ern Withial Bridge SW 9971 6590 2547 R258027 2 1991 7 39 6.50 vet Stream Lanivet SK 0358 6456 2513 R258014 1 1990 7 30 5.90 vet Stream Hanstallon SX 0525 6586 2514 R258015 1 1990 7 30 5.90 awrence Stream A389 Bridge SX 0456 6590 2516 R258040 1 1990 7 31 5.90 awrence Stream A389 Bridge SV 0456 6690 2516 R258040 1 1990 7 31 5.90 awrence Stream Clarkenmater SX 0456 679 2517 R258048 1	n Knightsmill Bridge SX 0715 8067 2523 R25D001 1 1990 7 41 6.90 264 n Stadesbridge SX 0455 7511 2533 R25D002 1 1991 7 42 6.60 264 n Stadesbridge SX 0106 7145 2524 R25D003 1 1991 7 32 6.40 264 bole Stream Newhall Green SX 0701 8221 2554 R25D009 1 1991 7 32 6.40 206 ern Withiel Bridge SX 0715 8057 2547 R25B027 2 1991 7 39 6.50 253 ern Greglsy Downs Bridge SX 0156 6456 2513 R25B015 1 1990 7 39 6.50 253 vet Stream Hanstilen SX 0356 6456 2513 R25B015 1 1990 7 39 5.90 171 vet Stream Hanstilen SX 0356 6456 2515 R25B015 1 1990 7 31 5.90 184 awre	n Knightsmill Bridge SX 0715 8067 2523 R250001 1 1990 7 41 6.00 284 1.23 n Kellygreen Bridge SX 0455 7591 2553 R250002 1 1991 7 42 6.00 284 1.23 n Stadesbridge SX 0106 7145 2524 R250002 1 1991 7 42 6.00 284 1.23 bole Stream Newhall Green SX 0701 8221 2554 R250009 1 1991 7 32 6.40 206 0.95 ern Withial Bridge SV 0971 6590 2547 R258027 2 1991 7 39 6.50 253 1.17 ern Mithial Bridge SX 0156 7035 2547 R258027 2 1991 7 30 6.50 253 1.17 ern Mithial Bridge SX 0158 6456 2513 R258016 1 1990 7 30 5.00 171 0.89 5.00 171 0.89 5.00 178 0.86 6.00	n Knightsmill Bridge SX 0715 8067 2523 R250001 1 1990 7 41 6.90 264 1.23 1.08 n Sladsbridge SX 0455 7591 2553 R250003 1 1990 7 42 6.90 264 1.23 1.08 bole Stream Newhall Green SX 0106 7165 2524 R250003 1 1990 7 32 6.40 266 0.95 1.01 arn Withiel Bridge SX 0715 677 Z512 R250027 2 1991 7 39 6.50 253 1.10 1.07 vet Stream Lanivat SX 0380 6465 2514 R25014 1 1990 7 39 6.50 253 1.10 1.07 vet Stream Lanivat SX 0380 6465 2514 R25015 1 1990 7 39 6.50 254 1.08 0.92 1.08 0.92 1.07 0.92 5.90 171 0.69 72 1.08 0.92 1.07 0.92 5.90 171 0.650	n Knightsmill Bridge SX 0715 8067 2523 R250001 1 1990 7 44 6.90 264 1.23 1.06 1.33 n Sladesbridge SX 0165 7591 2533 R250003 1 1991 7 42 6.40 204 1.08 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.06 1.33 1.01 1.07 1.07 1.03 1.11 1.02 1.19 1.03 1.11 1.00 1.19 1.03 1.11 1.02 1.19 1.07 1.03 1.01 1.07 1.17 1.02 1.19 1.07 0.39 6.50 255 <	An Knightsmill Bridge Kellygreen Bridge SX 0715 8067 SX 0455 7591 2523 2553 R250001 2503 1 1990 1990 7 41 6.90 6.02 264 1.23 1.06 1.06 1.33 1.06 A n. Sidesbridge SX 0455 7591 2533 2534 R250003 1 1990 7 42 6.60 264 1.23 1.06 1.30 A A bole Stream Mewhall Green SX 0701 8221 2554 R250009 1 1991 7 32 6.40 266 0.95 1.01 0.46 ern Grogley Downs Bridge SX 0157 6777 2512 R258027 2 1991 7 39 6.50 253 1.10 1.07 1.17 A vet Stream Hoopers Bridge SX 0386 6546 2513 R258014 1 1990 7 39 6.50 250 171 0.96 0.92 0.82 A vet Stream Hoopers Bridge SX 0386 6546 2513 R258015 1 1990 7 30 6.50 10.01 0.87	Nn Knightsmill Bridge Kellygreen Bridge SX 0715 8067 SX 0455 7591 2523 2553 R250002 1 1 1990 7 44 44 6.60 6.60 264 26 26 26 1.23 21 1.06 1.03 1.33 A A A A A A A A A A A A A A A B nn Sidesbridge SX 0715 8067 SX 0105 7145 2524 2554 R250002 1 1 1990 1991 7 42 42 6.60 264 26 1.02 1.06 1.03 1.04 A A A bole Stream Mewhall Green SX 0701 R221 2547 2554 R250007 2512 2 1991 1990 7 32 6.60 265 1.10 1.02 1.19 A A A ern Grogley Downs Bridge SX 0176 777 SX 0138 6546 2511 2512 R258027 R258028 1 1990 1 7 39 6.60 265 1.10 1.02 1.19 A A A A vet Stream wet Stream Lantet Moopers Bridge SX 0138 6546 2511 SX 0138 6546 1 1990 1990 7 34 6.50 220 0.97 1.02 1.02 0.40 A A <tr< td=""><td>Nn Knightsmill Bridge Kellygreen Bridge SX 0715 5067 SX 0455 7511 SX 0455 7511 1 1990 1 7 41 6.90 S.60 244 264 S.60 244 1.00 1.13 A A A bole Stream Mewhall Green SX 0701 8221 Gregley Downs Bridge SX 0701 8221 SY 0157 6777 Z512 2547 R258027 R258027 R258028 1 1991 SY 7 32 6.60 S.60 265 1.10 1.00 1.11 A A A arm Mithial Bridge Gregley Downs Bridge SX 0156 2531 S 0157 S 0158 2531 R258016 1 1990 Sy 0 7 23 6.50 250 1.10 1.00 1.11 A A A arm Lanivat Weit Stream Happer Lanivat SX 0356 5515 R258017 R258015 1 1990 Sy 0 7 23 5.00 171 0.92 0.92 0.6</td></tr<>	Nn Knightsmill Bridge Kellygreen Bridge SX 0715 5067 SX 0455 7511 SX 0455 7511 1 1990 1 7 41 6.90 S.60 244 264 S.60 244 1.00 1.13 A A A bole Stream Mewhall Green SX 0701 8221 Gregley Downs Bridge SX 0701 8221 SY 0157 6777 Z512 2547 R258027 R258027 R258028 1 1991 SY 7 32 6.60 S.60 265 1.10 1.00 1.11 A A A arm Mithial Bridge Gregley Downs Bridge SX 0156 2531 S 0157 S 0158 2531 R258016 1 1990 Sy 0 7 23 6.50 250 1.10 1.00 1.11 A A A arm Lanivat Weit Stream Happer Lanivat SX 0356 5515 R258017 R258015 1 1990 Sy 0 7 23 5.00 171 0.92 0.92 0.6

Kay to Biol. Class	: A = Good. / = Site	B = Moderate, C = Poor, D = Very Poor, * = Canal - Unsuitable for c regularly dries up - cannot be classified, $\$ = Site was not sampled i$	lessification, $+ = Lacustrine site - also unsuitable, = New site for 1992/1993 due to location difficulty or other error,$
Ver: 91.3	June 1993	NRA South West Region, Manley House, Exeter.	Index compiled by Russ Dallen. Freshwater Biology. Ext 2472.

130

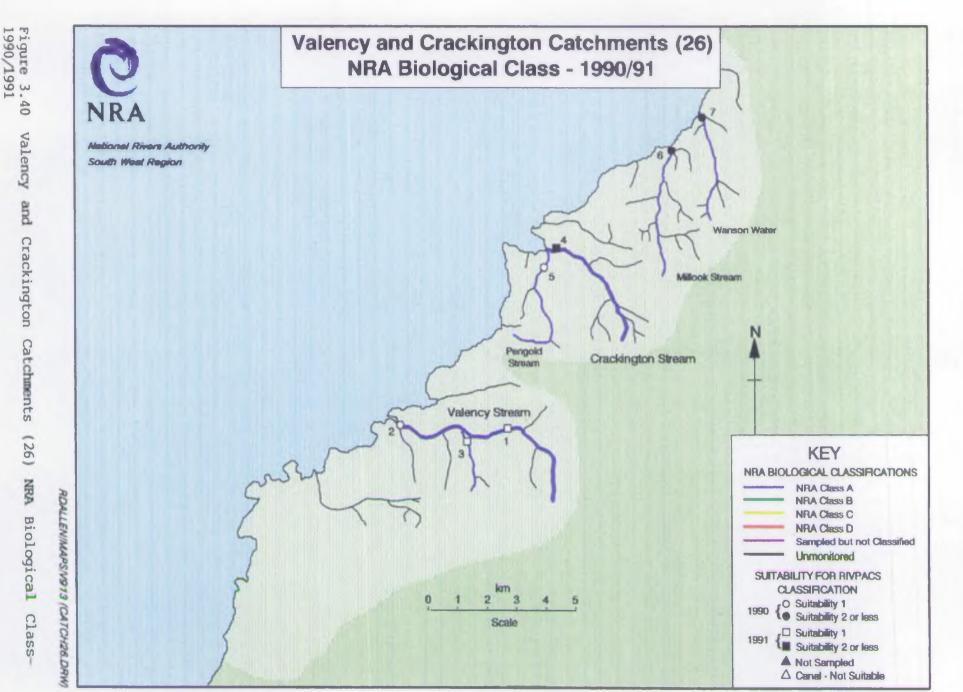
* * *

3.2.30 Valency and Crackington Streams Catchments Catchment-26

Summary

All 31 km of watercourses monitored by 7 sites in the Valency and Crackington Streams catchments were good quality, according to the NRA Biological Classification.

Likely reasons for poorer biological quality


N/A

ωN

No. on Map	Watercourse Name	Site Location Name		Site Ref.	Chem. URN	RIVPACS Suitability	Year	Season Code		ASPT		0/ N-Fams	E Rat ASPT	10 DHMP	O/E Ref N-Fams	tto Ci ASPT	BMMP	Bial Clas
1 2	Valency Valency	Anderton Ford Boscastle Bridge	SX 1377 9128 SX 0988 9128		R26Ã006 R26Ã003	1 1	1991 1990	?	37 30	6.80 6.80	252 205	1.16 0.90	1.06 1.07	1.23 0,96	Â	A ,	Â	Â
3	Lesnewth Streem	Halamiling	SX 1244 9070	2606		1	1991	7	35	7.10	248	1.05	1.10	1.18	A	A		A
4	Crackington Stream	Creckington Haven Bridge East	5X 1432 9677	2607	R26A001	3	1991	?	36	6.50	233	1.10	1.00	1.10	A	A		
5	Pengold Stream	Crackington Havan Bridge West	SX 1432 9647	2602	R26A002	1	1990	7	36	6.80	244	1.07	1.06	1.13	A	A	A	•
6	Millook Stream	Hillook	55 1849 0000	2603	R26A004	2	1990	7	37	6.60	244	1.10	1.03	1.13	•	•	•	•
7	Wenson Water	Wanson	55 1962 0099	2604	R26A005	2	1990	7	31	6.10	188	0.90	0.95	0.85	A	A	· A	A

Key to Biol. Cless	: A = Good,	B = Moderate, C = Poor, D = Very Poor. * = Canal - Unsuitable for classific	ation, + = Lacustrine site - also unsuitable, ; = New site for 1992/1993
	# = Site r	egularly dries up - cannot be classified, \$ = Site was not sampled due to 1	location difficulty or other error,
Ver: 91.3	June 1993	NRA South West Region, Manley House, Exeter.	Index compiled by Russ Dallen. Freshwater Biology. Ext 2472.

. .

3.2.31 Rivers Strat and Neet Catchments Catchment-27

Summary

All 57 km of running watercourses monitored by 12 sites in the Rivers Strat and Neet catchments were classed as good quality according to the NRA Biological classification.

Likely reasons for poorer biological quality

N/A

Biological quality of canals

The invertebrate fauna in the Bude Canal at Falcon's Bridge, and to a lesser extent at Rodd's Bridge, was probably not of good quality because of the moderately heavy boating and angling use, and its intensively managed banks. The reach represented by the site 200 m upstream from Rodd's Bridge was of much better biological quality, because it was physically cut-off from the rest of the canal by a permanent concrete barrier, and was subjected to much less maintenance and use. This reach, unlike the more downstream reaches, had a profuse emergent flora along its banks. This reach became almost totally dry in the drought of 1990. Bude Canal could not be classified because RIVPACS II and the NRA Biological Classification apply to rivers and streams only.

Notes

The monitoring site on the Tidna was in a Nature Reserve.

atchme	nt: Rivers Strat & Neet	Correspo	nding Freelance map	filen	ame(s):CATO	H27 . DRW							÷.,		•			0
No. on Map	Watercourse Name	Site Location Name	NGR	Site Ref.	Chem. URN	RIVPACS Suitability	Year	Season Code		ASPT		0/ N-Fams	E Rat ASPT	Io BHMP	O/E Ri N-Fam	ASPT	Iass BMMP	Biol. Class
23	Strat Strat Strat Strat	Bush Stratton Hele Bridge Rodd's Bridge	SS 2291 0645	2710 2711 2702 2703	R27A015 R27A001 R27A002 R27A003	1 1 1 1	1991 1991 1991 1991	7 7 7 7	36 38	6.20 6.30 6.00 5.90	226 229	1.02	0.99 0.95		Â	A A A A	A A A A	A A A
6	Bude Canal Bude Canal Bude Canal	200m u/s Rodd's Bridge Rodd's Bridge Falcon Bridge	SS 2111 0479	2713 2712 2704	R27A009 R27A010		1991 1991 1990	7777	20	4.40 4.10 4.50	81		0.00					E
8	Grinscott Stream	Cross Lanes	SS 2472 0640	2714]	1	1991	• 7	34	6.30	213	1.00	0.99	0.99	A	A	A	1 ^
	Neet	Langford Bridge Hele Bridge	SS 2353 0086 SS 2183 0330	2705 2706	R27A007 R27A008	1	1990 1991	?		6.40 6.10				1.07 1.07		Â	Â	Â
11	Jacob Stream	Neumill Bridge	SX 2153 9873	2707	R27A006	1	1991	7	35	6.60	230	1.00	1.03	1.03	A	•	•	A
12	South Week Stream	Kitsham	SS 2315 0027	2701	R27A005	1	1990	7	32	6.20	199	0.89	0.98	0.87	A	A	A	A
13	Coombevalley Stream	Duckpool Cottage	SS 2025 1165	2708	R27A011	1	1990	7	37	6.40	238	1.10	1.01	1.10	A	A		A
14	Tidna	Tidne Bridge	SS 2060 1482	2715		2	1991	7	32	6.00	\$19	0.96	1.07	1.05	A	A	A	A
15	Marsland Water	Gooseham H111	55 2324 1725	2709	R27A016	1	1990	7	34	6.70	228	1.04	1.05	1.09	A	A		^
_						I								برسيها				<u></u>

Ver: 91.3 June 1993 NRA South West Region, Manley House, Exeter. Index compiled by Russ Dellen. Freshweter Biology. Ext 2472	Key to Biol. Class	: A = Good, ∉ = Site	B = Moderste, C = Poor, D = Very Poor. $\ ^{\circ}$ = Canel - Unsuitable for classification, + = Lacustr regularly dries up - cannot be classified, $\ ^{\circ}$ = Site was not sampled due to location difficulty	ine site - elso unsuitable, j = New site for 1992/1993 or other error,
	Ver: 91.3	June 1993	NRA South West Region, Manley House, Exeter.	Index compiled by Russ Dallen. Freshwater Biology. Ext 247

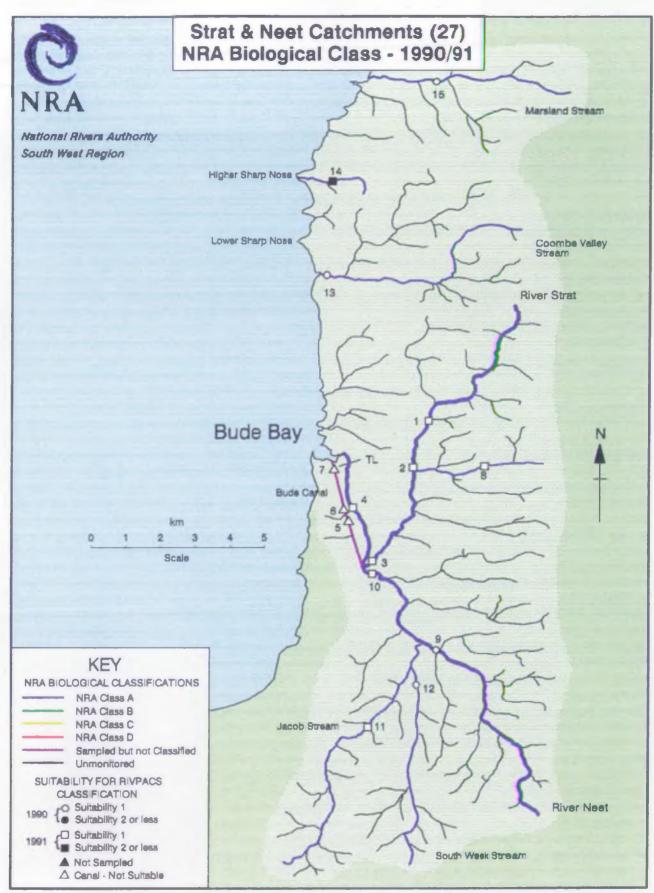
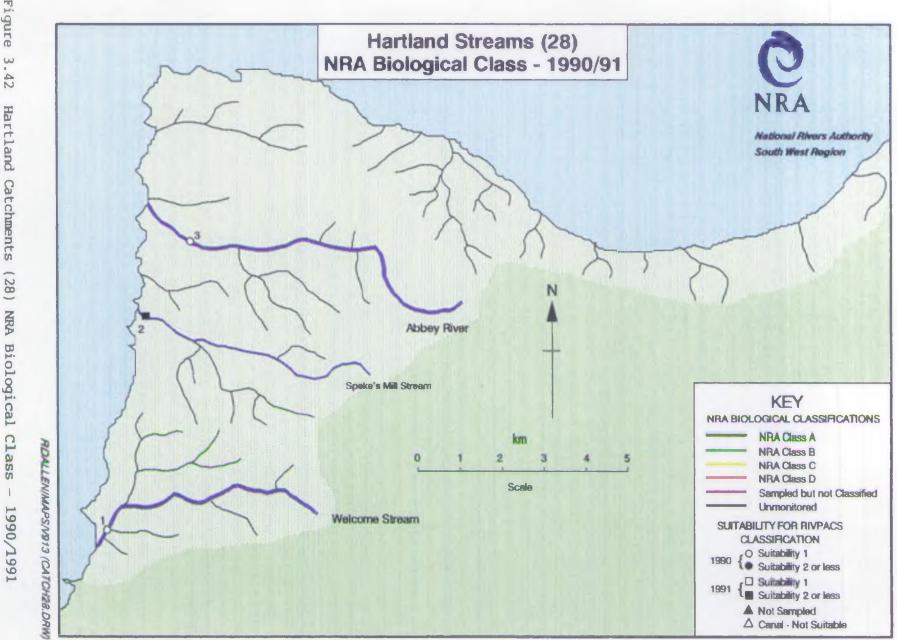


Figure 3.41 Strat and Neet Catchments (27) NRA Biological Class - 1990/1991

RDALLEN/MAPS/V913 (CATCH27.DRW)

3.2.32 Bartland Streams Catchments Catchment-28

Summary


All of the 21 km of watercourses monitored by 3 sites in the Hartland Streams catchments were classed as good quality according to the NRA Biological classification.

Likely reasons for poorer biological quality

N/A

t: Hartland Streams	Corresp	onding Freelance map	filen	eme(s):CATC	H2B.DAW												
Watercourse Name	Site Location Name	NGR	Site Ref.	Chiem. URN	RIVPACS Suitebility	Year	Season Code	Ob N-Fams	ASPT	BAN P	0/ N-Fems	E Rat ASPT	10 BHMP	O/E Re N-Fami	tio C ASPT	BHMP	Biol. Class
Welcombe Stream	30m d/s footbr The Hermitage	SS 2160 1830	2801	R28A005	1	1990	7	34	6.80	231	1.04	1.06	1.11	A	A .	A	1
Lyme Brook	15m u/s waterfell	55 2258 2353	2803		5	1991	7	33	6.30	207	1.05	1.10	1.15		A	A	•
Abbey River	Hartland Abbey 50m u/s br	SS 2383 2488	2802	R28A003	1	1990	7	36	6.60	237	1.10	1.03	1.13	A	A	^	A -
	Watercourse Name Welcombe Stream Lyme Brook	Watercourse Name Site Location Name Welcombe Stream 30m d/s footbr The Hermitage Lyme Brook 15m u/s waterfell	Watercourse Name Site Location Name NGR Weicombe Stream 30m d/s footbr The Hermitege SS 2160 1830 Lyme Brook 15m u/s waterfell SS 2258 2353	Watercourse NameSite Location NameNGRSite Ref.Weicombe Stream30m d/s footbr The HermitageSS 2160 1830 2801Lyme Brook15m u/s waterfellSS 2258 2353 2803	Watercourse Name Site Location Name NGR Site Ref. Chem. URN Weicombe Stream 30m d/s footbr The Hermitage SS 2160 1830 2801 R28A005 Lyme Brook 15m u/s waterfell SS 2258 2353 2803	Watercourse Name Site Location Name NGR Site Ref. Cham. RivPACS Watercourse Name 30m d/s footbr The Hermitage SS 2160 1830 2801 R28A005 1 Lyme Brook 15m u/s waterfell SS 2258 2353 2803 5	Watercourse NameSite Location NameNGRSite Ref.Chem. URNRiVPACS Suitability YearWeicombe Stream30m d/s footbr The HermitageSS 2160 18302801R28A00511990Lyme Brook15m u/s waterfellSS 2258 2353280351991	Watercourse NameSite Location NameNGRSite Ref.Cham. Ref.RIVPACS URNSuitability VearSeason CodeWeicombe Stream30m d/s footbr The HermitageSS 2160 18302801R28A005119907Lyme Brook15m u/s waterfellSS 2258 23532803519917	Watercourse NameSite Location NameNGRSite Ref.Chem. Ref.RIVPACS SuitabilitySeason CodeOb H-FamsWeicombe Stream30m d/s footbr The HermitageSS 2160 18302801R28A00511990734Lyme Brook15m u/s waterfellSS 2258 2353280351991733	Watercourse Name Site Location Name NGR Site Ref. Chem. URN RIVPACS Suitability Season Code Observer N-Fams ASPT weicombe Stream 30m d/s footbr The Hermitage SS 2160 1830 2801 R28A005 1 1990 7 34 6.80 Lyme Brook 15m u/s waterfell SS 2258 2353 2803 5 1991 7 33 6.30	Watercourse Name Site Location Name NGR Site Ref. Site URN RIVPACS Suitability Season Code Observed N-Fams ASPT BM/P weicombe Stream 30m d/s footbr The Hermitage SS 2160 1830 2801 R28A005 1 1990 7 34 6.80 231 Lyme Brook 15m u/s waterfell SS 2258 2353 2803 5 1991 7 33 6.30 207	Watercourse Name Site Location Name NGR Site Ref. Chem. URN RIVPACS Suitability Season Code Observed N-Fams ASPT BM/P O/ N-Fams weicombe Stream 30m d/s footbr The Hermitage SS 2160 1830 2801 R28A005 1 1990 7 34 6.80 231 1.04 Lyme Brook 15m u/s waterfell SS 2258 2353 2803 5 1991 7 33 6.30 207 1.05	Watercourse Name Site Location Name NGR Site Ref. Chem. URN RIVPACS Suitebility Season Code Observed N-Fams ASPT O/E Rat N-Fams ASPT weicombe Stream 30m d/s footbr The Hermitage SS 2160 1830 2801 R28A005 1 1990 7 34 6.80 231 1.04 1.06 Lyme Brook 15m u/s waterfell SS 2258 2353 2803 5 1991 7 33 6.30 207 1.05 1.10	Watercourse Name Site Location Name NGR Site Ref. Ref. Cham. URN RIVPACS Suitability Season Code Observed H-Fams ASPT O/E Ratio H-Fams ASPT weicombe Stream 30m d/s footbr The Hermitage SS 2160 1830 2801 R28A005 1 1990 7 34 6.80 231 1.04 1.05 1.11 Lyme Brook 15m u/s waterfell SS 2258 2353 2803 5 1991 7 33 6.30 207 1.05 1.10 1.15	Watercourse Name Site Location Name NGR Site Ref. Chem. Watercourse Name RIVPACS Suitability Season Code Observed N-Fams ASPT O/E Ratio N-Fams ASPT O/E Ratio N-Fams ASPT O/E Ratio N-Fams ASPT O/E Ratio N-Fams ASPT O/E Ratio N-Fams ASPT O/E Ratio N-Fams ASPT O/E Ratio O/E Ratio	Watercourse Name Site Location Name NGR Site Ref. Cham. URN RIVPACS Suitability Season Code Observed N-Fams ASPT O/E Ratio N-Fams ASPT weicombe Stream 30m d/s footbr The Hermitage SS 2160 1830 2801 R28A005 1 1990 7 34 6.80 231 1.04 1.06 1.11 A A Lyme Brook 15m u/s waterfell SS 2258 2353 2803 5 1991 7 33 6.30 207 1.05 1.10 1.15 A A	Watercourse Name Site Location Name NGR Site Ref. Cham. Ref. RIVPACS Suitability Season Code Observed N-Fams O/E Ratio ASPT O/E Ratio DM //Fams O/E Ratio ASPT O/E Ratio DM //Fams O/E Ratio ASPT O/E Ratio DM //Fams O/E Ratio ASPT DM/P DM/P weicombe Stream 30m d/s footbr The Hermitage SS 2160 1830 2801 R28A005 1 1990 7 34 6.80 231 1.04 1.06 1.11 A A A Lyme Brook 15m u/s waterfell SS 2258 2353 2803 5 1991 7 33 6.30 207 1.05 1.10 1.15 A A

Key to Biol. Class	I: A = Good ₹ = Site	. B = Moderate, C = Poor, D regularly dries up - cannot	Vary Poor. * = Canal - Unsuitable for classification, + = Lacustr be classified. \$ = Site was not sampled due to location difficulty	ine site - also unsuitable, = New site for 1992/1993 or other error,
Ver: 91.3	June 1993	NRA South West Region.	Manlay House, Exeter.	Index compiled by Russ Dallen. ² Freshwatar Biology. Ext 2472.

3.2.33 River Torridge Catchment Catchment-29

Summary

Of the 337 km of watercourses monitored by 72 sites in the River Torridge Catchment, 95% (68 sites) were good, and 5% (4 sites) were moderate quality, according to the NRA Biological classification. None were classed as poor or very poor quality.

Likely reasons for poorer biological quality

Common Lake was of only moderate quality because of organic enrichment. This was thought to be the result of effluent from an abattoir.

The most upstream reach of Mere Stream, although of good quality according to its overall NRA Biological Classification, had moderately poorer than expected N-taxa. This stream was affected by discharges from ball clay mines.

The uppermost reach of the West Okement that was monitored, just downstream from Meldon Dam was of moderate quality owing to poorer than expected N-taxa. This probably resulted from the proximity of the dam, which would prevent colonisation by downstream drift of invertebrates. The dam also affected the chemical quality of the water, which was moderately acidic and had a high concentration of metals. The stream bed was covered by a thick slime of algae and precipitated iron and manganese oxides, which would also have affected its taxonomic richness. The West Okement near Meldon Quarry Bridge was of moderate overall quality because of poorer than expected N-taxa. This was ascribed to the effects of acidic conditions and metal contamination, as was the moderately poorer than expected N-taxa at the reach monitored at Although classed as good quality by the overall NRA Meldon Viaduct. Biological Classification, the most downstream reach of the West Okement, monitored near Okehampton Hospital, had a moderately poorer than expected Ntaxa which is consistent with the toxic effects of acidic metal-rich waters. The stream bed was covered by ochre and fine sediment. All the monitoring sites on the West Okement were difficult to sample because of the bouldery river bed and the rapid flow.

Brightley Stream was classed as good according to the overall NRA Biological Classification, as well as by its EQIs for ASPT and N-taxa. This was surprising as it was known to have been affected by acidic metal pollution in 1990, particularly in its upper reaches (National Rivers Authority, 1991d).

Pulworthy Brook was of moderate quality because of its moderately poorer than expected N-taxa. It was of good quality according to its EQI ASPT. This suggests toxic pollution or habitat degradation. This stream was slow flowing, and the biologists recorded considerable amounts of 'trash' in it. The high loading of suspended solids was attributed to forestry activities. Poor chemical water quality in this stream was thought to have been because of the drought or farming activities.

Catchment: River Torridge

Corresponding Freelence map filename(s):CATCH29.DRW

1 Torridge 30m u/s rd br Fordmill Farm 2 Torridge 220m u/s bodford Bridge 4 Torridge 200m u/s bodford Bridge 7 Torridge 50m d/s Coham Br u/s Kingsley Hill 6 Torridge 50m d/s Bridge 7 Torridge 200m u/s Hels Bridge 9 Torridge 220m u/s Hels Bridge 10 Torridge 220m u/s Beaford Bridge 11 Torridge 300m d/s Town Hills Torrington 10 Torridge 300m d/s Town Hills Torrington 11 Torridge 300m d/s Town Hills Torrington 12 Torridge 100m u/s Basm Bridge 13 Torridge 100m u/s Hopers Bridge 14 Torridge 300m u/s Hopers Bridge 15 Yeo Bideford 30m u/s Hopers Bridge 16 Yeo Bideford 30m u/s Henbury rd br 20 Duntz 30m u/s Tortinge 10m u/s Hopers Bridge 21 Lydelend Water 30m u/s Som Bridge 10m u/s Hopers 22 Huntshew Water 30m u/s Tortinge 10m u/s Mass 23	SS 3246 1777 SS 3638 1613 SS 3978 1268 SS 4220 0941 SS 4865 0574 SS 5060 0699 SS 5385 0613 SS 5489 1112 SS 5428 1426 SS 5178 1652	13 2944 58 2916 51 2945 52 2917 74 2946 58 2918	R29C001 R29C032 R29C002 R29C033 R29C003 R29C003	1 1 1 1	1990 1991 1991	7 7 7		6.70 6.90	241	1.07	1.05	1.12				
13 Torridge 100m d/s Rothern Bridge 14 Torridge 100m d/s Rothern Bridge 15 Yeo [Bideford] 75m u/s br Foxdown 16 Yeo [Bideford] 30m u/s Henbury rd br 19 Duntz 30m u/s Hembury rd br 20 Duriz 30m u/s Hembury rd br 20 Duriz 30m u/s Hembury rd br 20 Duriz 30m u/s Tythecott Hill Bridge 21 Lydelend Water 30m u/s br Weare Gifford 22 Huntshew Water 30m u/s br Servis Farm 23 Common Lake 10m u/s Tantons Plain 24 Langtree Lake 30m u/s Ab8 br S0m u/s pylons 25 Woolleigh Brook 25m d/s B3220 road br 26 Mere 30m u/s Ab8 br S0m u/s pylons 25 Moolleigh Brook 25m u/s track br Wooledon Moor 26 Mere 300m u/s Ab8 br S0m u/s pylons 27 Mere 300m u/s Ab8 br S0m u/s pylons 28 Mere 300m u/s Ab8 br S0m u/s pylons 29 Little Mere River 20m u/s Fatherford reil br 31 Dolton Stream 20m u/s R	100 4003 1034	2 2907 6 2937 7 2938	R29C004 R29C005 R29B001 R29B002 R29B038		1991 1990 1991 1990 1990 1990 1991 1991	777777777777777777777777777777777777777	35 37 32 35 32 26 32	6.70 6.50 6.40 6.40 6.60 6.60 6.60 6.90 6.60	261 229 240 238 205 231 212 180 211	1.04 1.09 1.80 0.96 1.06 0.92 0.82 1.00	1.08 1.05 1.03 1.02 1.04 1.02 1.05 1.04 1.12 1.06	1.10 1.23 1.06 1.11 1.24 0.98 1.12 0.95 0.92 1.06		~~~~~~		
16 Yeo [Bideford] 30m u/s Tuckingmill Bridge 17 Yeo [Bideford] 25m u/s Hoopers Bridge 19 Duntz 30m u/s Hembury rd br 20 Duntz 30m u/s Hembury rd br 20 Duntz 30m u/s Veo confluence (Orleigh) 21 Lydelend Water 30m u/s br Waere Gifford 22 Huntshew Water 30m u/s br Waere Gifford 23 Common Lake 10m u/s Tentons Plain 24 Langtree Lake 30m u/s br Servis Farm 25 Moolleigh Brook 25m d/s B3220 road br 26 Mare 300m u/s A386 br S0m u/s pylons 27 More 300m u/s As86 br S0m u/s pylons 28 Mere 25m u/s track br Wooladon Moor 29 Little Here River 25m u/s track br u/s Torridge confl 31 Dolton Stream 25m d/s track br u/s Torridge confl 32 East Okament River 300m u/s Red-e-Ven d/s Meldon Dam 33 Botto Stream River 300m u/s Red-e-Ven d/s Meldon Dam 34 West Okament River 30m u/s Meldon Viaduct 34 West Okament River 300m u/s Meldon Viaduct	SS 4987 1870 SS 4780 1976 SS 4731 2089	76 2908 19 2940	R298003 R298004 R298034	i.	1991 1991 1991	777	33 35	6.60 6.10 6.60	200 231	1.02	1.06 0.98 1.07	1.00 1.15	Â	Â	Â	
20 Duritz SOm u/s Yee confluence (Orleigh) 21 Lydeland Water SOm u/s Tythecott Hill Bridge 22 Huntshew Water 30m u/s br Weare Gifford 23 Common Lake 10m u/s Tentons Plain 24 Langtree Lake 30m u/s br Servis Farm 25 Woolleigh Brook 25m d/s 83220 road br 26 Mare SOm u/s Coleford Bridge 27 Mere 300m u/s A386 br Som u/s pylons 28 Mare SOm u/s A386 br Som u/s pylons 29 Little Mere River 25m u/s track br Wooladon Moor 29 Little Mere River 25m u/s track br u/s Torridge confl 31 Dolton Stream 25m d/s track br u/s Torridge confl 32 East Okement River 300m u/s Red-e-Ven dra Meldon Dam 33 Hest Okement River 30m u/s Meldon Viaduct 34 West Okement River 30m u/s Bidon Viaduct 35 West Okement River 30m u/s Meldon Viaduct 36 West Okement River 30m u/s Knowle Bridge 35 West Okement River 30m u/s Meldon Viaduct 36 West Okement River 30m u/s	55 3809 2217 55 4015 2245 55 4273 2317 55 4491 2293	15 2901 7 2902 1	R29A001 R29A002 R29A015 R29A003		1991 1990 1990 1990	7 7 7 7	35 34 36 39	6.40 6.50 6.60 6.77	222 237	1.00	1.00 1.02 1.03 1.07	1.06		A` A A	~ ~ ~	
22 Huntshaw Watar 30m u/s br Waare Gifford 23 Common Lake 10m u/s Tantons Plain 24 Langtree Lake 30m u/s br Servis Farm 25 Woolleigh Brook 25m d/s 83220 road br 26 Mare 30m u/s Coleford Bridge 27 More 300m u/s A386 br 50m u/s pylons 28 Mare 300m u/s A386 br 50m u/s pylons 29 Little Mare Rivar 25m u/s track br Wooladon Moor 29 Little Mare Rivar 25m u/s track br Wooladon Moor 30 Little Mare Rivar 25m d/s track br u/s Torridge confl 31 Dolton Stream 25m d/s track br u/s Torridge confl 32 East Okement River 300m u/s Red-e-Ven d/a Meldon Dam 33 East Okement River 30m u/s footbr d/s Red-e-Ven 34 West Okement River 30m u/s Heldon Viaduct 35 West Okement River 30m u/s Heldon Viaduct 36 West Okement River 30m u/s Knowle Bridge 37 West Okement River 30m u/s Knowle Bridge 38 West Okement River 30m u/s Meldon Querry br 39 Okement 20m u/s A3072 br Jacobstowe 39 Okement 20m u/s Moltokehampton 42 Okement 20m u/s Montokehampt	SS 4293 1777 SS 4395 2242		R29A004 R29A005	1	1990 1990	7		6.70 5.40			1.06 1.01		Â	\$	\$	
23 Common Lake 10m u/s Tantons Plain 24 Langtree Lake 30m u/s br Servis Farm 25 Woolleigh Brook 25m d/s 83220 road br 26 Mare 50m u/s Coleford Bridge 27 Mare 300m u/s A385 br 50m u/s pylons 26 Mare 300m u/s A385 br 50m u/s pylons 27 Mare 300m u/s fm br Greatwood 29 Little Mare River 25m u/s track br Wooladon Moor 20 Little Mare River 20m u/s Burymoor Bridge 31 Dolton Stream 25m d/s track br u/s Torridge confl 32 East Okement River 300m u/s A30 rd br at car park 34 West Okement River 30m u/s footbr d/s Red-e-Ven d/s Meldon Dam 36 West Okement River 30m u/s Heldon Vladuct 37 West Okement River 30m u/s Heldon Vladuct 38 Vest Okement River 30m u/s Knowle Bridge 39 Okement 25m d/s Brightley Bridge 40 Okement 25m d/s Modhall Bridge 41 DOm u/s Knowle Bridge 25m d/s Modhall Bridge 42 Okement 25m d/s Moochell Bridge	SS 4190 1B38	8 2906	R29A006	1	1990	7	33	6.50	215	1.00	1.02	1.02	A	A	A	L
24 Langtree Lake 30m u/s br Servis Farm 25 Woolleigh Brook 25m d/s 83220 road br 26 Mare 300m u/s A385 br 50m u/s pylons 26 Mare 300m u/s A385 br 50m u/s pylons 27 Mare 300m u/s A385 br 50m u/s pylons 28 Mare 150m u/s track br Wooladon Moor 29 Little Mare River 20m u/s track br Wooladon Moor 20 Little Mare River 20m u/s fatherford rail br 31 Dolton Stream 25m d/s track br u/s Torridge confl 32 East Okement River 300m u/s A30 rd br et car park 34 West Okement River 30m u/s footbr d/s Red-a-Ven 35 West Okement River 30m u/s Heldon Querry br 36 Wast Okement River 30m u/s Heldon Viaduct 37 West Okement River 30m u/s Knowle Bridge 38 West Okement River 30m u/s Knowle Bridge 39 Otement 75m d/s Brightley Bridge 40 Okement 25m d/s Modell Bridge 41 Obum u/s Iddesleigh Bridge 25m d/s Modell Bridge 42 Okement 25m d/s Modell Bridge </td <td>SS 4794 2144</td> <td>4 2943</td> <td>R29A026</td> <td>1</td> <td>1991</td> <td>7</td> <td>- 38</td> <td>6.60</td> <td>249</td> <td>1.11</td> <td>1.02</td> <td>1.14</td> <td>A</td> <td>Α.</td> <td>A</td> <td></td>	SS 4794 2144	4 2943	R29A026	1	1991	7	- 38	6.60	249	1.11	1.02	1.14	A	Α.	A	
15 Woolleigh Brook 25m d/s B3220 road br 15 Woolleigh Brook 25m d/s B3220 road br 15 Mare 50m u/s Coleford Bridge 27 Mere 300m u/s A385 br 50m u/s pylons 15 Mare 150m u/s fm br Greatwood 15 Little Mare River 25m u/s fm br Greatwood 16 Little Mare River 25m u/s fmrmoor Bridge 11 Dolton Stream 25m d/s track br u/s Torridge confl 12 East Okement River 200m u/s Red-e-Ven d/s Meldon Dam 13 East Okement River 100m u/s Red-e-Ven d/s Meldon Dam 14 West Okement River 30m u/s Meldon Viaduct 15 West Okement River 30m u/s Meldon Viaduct 16 West Okement River 30m u/s Meldon Querry br 18 West Okement River 30m u/s Meldon Querry br 19 Okement 25m d/s Brightley Bridge 100 d/s Knowle Bridge 25m d/s Modhell Bridge 100 u/s A3072 br Jacobstowe 25m d/s Woothell Bridge 10 Usement 25m d/s Monkołemspton 13 Okement 25m d/s Monkołemspton	SS 4940 1982	2 2910	R298039	1	1990	7	24	5.40	130	0.72	0.85	0.61	8	8	B	Γ
36 Mare SOm u/s Coleford Bridge 300m u/s A366 br SOm u/s pylons 300m u/s A366 br SOm u/s pylons 37 Mere 300m u/s A366 br SOm u/s pylons 38 Mere 150m u/s fm br Greatwood 39 Little Mere River 25m u/s track br Woolsdon Moor 20 Little Mere River 20m u/s Burymoor Bridge 30 Dolton Stream 25m d/s track br u/s Torridge confl 21 Dolton Stream 20m u/s Fatherford reil br 32 East Okement River 200m u/s Red-e-Ven d/s Meldon Dam 30 West Okement River 30m u/s Red-e-Ven d/s Meldon Dam 30m u/s Rober d/s Red-a-Ven 30m u/s Red-a-Ven 6 West Okement River 30m u/s Meldon Querry br 6 West Okement River 30m u/s Meldon Querry br 8 West Okement River 30m u/s Meldon Querry br 9 Okement River 30m u/s Bridge 0 Okement River 30m u/s Meldon Querry br 9 Okement River 30m u/s Meldon Querry br 9 Okement River 30m u/s Meldon Querry br 9 Okement Stouth Dorneford 30m u/s A3072 br Jacobst	55 4774 1919	9 2936	R29A016	1	1991	7	37	6.90	254	1.06	1.08	1.14	A	A	A	Γ
77 Mere 300m ú/s A386 br S0m ú/s pylons 18 Mere 150m ú/s fm br Greatwood 19 Little Mere River 25m ú/s treck br Mooledon Moor 10 Little Mere River 20m ú/s Burymoor Bridge 11 Dolton Stream 25m d/s treck br u/s Torridge confl 12 East Okement River 200m u/s Fatherford reil br 300m u/s Rad-e-Ven d/s Meldon Dam 300m u/s Rad-e-Ven d/s Meldon Dam 4 West Okement River 300m u/s Rad-e-Ven d/s Meldon Dam 5 West Okement River 30m u/s Heldon Viaduct 6 Wast Okement River 30m u/s Heldon Viaduct 7 Mest Okement River 30m u/s Baldon Querry br 6 West Okement River 30m u/s Baldon Querry br 7 Mest Okement River 30m u/s Meldon Querry br 8 Vest Okement River 0kehampton Hosp d/s Castle car park 9 Ohement 100m d/s Knowle Bridge 0 Ohement 25m d/s Wodell Bridge 3 Ohement 25m d/s Modell Bridge 3 Ohement 25m d/s Woodell Bridge 3 Ohement 30m u/s Meldeslesmpton	SS 5219 1714	4 2909	R298037	1	1990	,	39	6.50	252	1.11	1.02	1.13	A	A	~	Γ
30 Little Mare River 20m u/s Burymoor Bridge 31 Dolton Stream 25m d/s track br u/s Torridge confl 32 East Okement River 200m u/s Fatherford reil br 33 East Okement River 300m u/s A30 rd br at car park 34 West Okement River 300m u/s footbr d/s Red-a-Ven 34 West Okement River 30m u/s footbr d/s Red-a-Ven 35 West Okement River 30m u/s Meldon Viaduct 36 West Okement River 30m u/s Meldon Viaduct 37 West Okement River 30m u/s Meldon Viaduct 38 West Okement River 30m u/s Meldon Viaduct 39 Okement 75m d/s Brightley Bridge 94 Okement 75m d/s Brightley Bridge 95 Okement 25m d/s Woodhell Bridge 96 Okement 25m d/s Woodhell Bridge 97 Molt All South Dornaford 15m u/s A3072 br Jacobstowe 98 Okement 25m d/s Woodhell Bridge 98 Som u/s Monkokehampton 146 98 Brook 50m u/s Monkokehampton 99 Beckemoor Brook 75m u/s Terris Bridge <td>SS 5017 1325 SS 5238 1130 SS 5480 1285</td> <td>0 2912</td> <td>R298007 R298008 R298009</td> <td>1 1 1</td> <td>1990 1990 1990</td> <td>7 7 7</td> <td></td> <td>6.30 6.20 6.50</td> <td>217</td> <td></td> <td>0.99 0.98 1.02</td> <td>0.95</td> <td>B A A</td> <td></td> <td>Â</td> <td></td>	SS 5017 1325 SS 5238 1130 SS 5480 1285	0 2912	R298007 R298008 R298009	1 1 1	1990 1990 1990	7 7 7		6.30 6.20 6.50	217		0.99 0.98 1.02	0.95	B A A		Â	
32 East Okamant River 200m u/s Fatherford reil br 33 East Okamant River 300m u/s A30 rd br at car park 34 Wast Okamant River 100m u/s Red-a-Ven d/s Maldon Dam 35 West Okamant River 30m u/s Maldon Viaduct 36 Wast Okamant River 30m u/s Maldon Quarry br 36 Wast Okamant River 30m u/s Maldon Quarry br 36 Wast Okamant River 30m u/s Maldon Quarry br 37 Wast Okamant River 30m u/s Maldon Quarry br 38 Wast Okamant River 30m u/s Maldon Quarry br 39 Okamant 100m d/s Knowle Bridge 30 Okamant 75m d/s Brightlay Bridge 30 Okamant 15m u/s A3072 br Jacobstowe 30 Okamant 25m d/s Woothell Bridge 30 Okamant 25m d/s Modhell Bridge 39 Okamant 25m d/s Monkokehampton 30 Kamant 30m u/s Terris Bridge 35 Hole Brook 50m u/s Terris Bridge	SS 5336 0841 SS 5257 1105		R298005 R298006	2 1	1991 1990	7 7	26 32	5.80 6.60			0.97		Â	Â	2	
33 East Okement River 300m u/s A30 rd br at car park 44 West Okement River 100m u/s Red-a-Ven d/a Maldon Dam 5 West Okement River 30m u/s footbr d/s Red-a-Ven 6 West Okement River 30m u/s Maldon Viaduct 7 West Okement River 30m u/s Maldon Viaduct 8 West Okement River 30m u/s Maldon Querry br 9 Okement 100m d/s Knowle Bridge 0 Okement 75m d/s Brightlay Bridge 0 Okement 15m u/s A3072 br Jacobstowe 2 Okement 25m d/s Mooklesleigh Bridge 3 Okement 20m u/s Iddesleigh Bridge 5 Hole Brook 50m u/s Terris Bridge	55 5531 1154	4 2942	1	1	1991	7	33	6.30	208	0.99	0.99	0.99	A	A	~	Γ
15 West Okement River 30m u/s footbr d/s Red-a-Ven 16 Wast Okement River 30m u/s Meldon Viaduct 17 West Okement River 30m u/s Meldon Querry br 18 West Okement River 30m u/s Meldon Querry br 19 Okement 100m d/s Knowle Bridge 10 Okement 75m d/s Brightley Bridge 10 Okement 15m u/s A3072 br Jacobstowe 13 Okement 25m d/s Woodhell Bridge 14 Dkement 100m u/s Iddesleigh Bridge 15 Hole Brook 50m u/s Monkokehampton	SX 6048 9460 SX 5898 9510		R290031 R290001	4	1991 1990	7	27 29	7.10 6.70	191 195	1.02 1.30	1.10	1.13 1.37	1	1	2	Ĩ
40 Okement 75m d/s Brightley Bridge 41 Okement South Dornaford 42 Okement 15m u/s A3072 br Jacobstowe 43 Okement 25m d/s Moodhell Bridge 43 Okement 100m u/s Iddesleigh Bridge 44 Okement 100m u/s Iddesleigh Bridge 45 Hole Brook 50m u/s Terris Bridge	SX 5641 9190 SX 5640 9205 SX 5649 9230 SX 5649 9230 SX 5664 9331 SX 5850 9435	5 2970 0 2971 1 2972	R29D027 R290109 R290032 R290030 R290030 R290002	3 4 1 1	1991 1991 1991 1991 1991 1990	7 7 7 7 7	24 20 18	6.10 6.70 6.30 6.60 6.40	160 126 119	0.82	0.94 1.03 0.98 1.03 1.00	0.84	C A B C B		B A 6 A	
46 Beckampor Brook 75m u/s Terris Bridge	SX .5930 9639 SX 5987 9750 SS 5999 0002 SS 5920 0169 SS 5845 0343 SS 5690 0590	0 2925 2 2926 9 2965 3 2927	R29D026 R29D003 R29D004 R29D008 R29D005 R29D005 R29D005		1991 1990 1990 1991 1991 1991	777777777777777777777777777777777777777	24 31 37 31	6.40 6.70 6.50 6.60 6.60 6.40	161 200 243 204	1.13 0.96 1.13 0.94	1.01 1.05 1.01 1.03 1.03 1.01	1.19 0.97 1.16 0.97	****	*****	*****	
	SS 5836 0545	5 2933	R29D007	1	1990	7	35	6.20	216	99.98	0.98	0.95	A	A	Α	ĺ
47 Jecobstowe Stream 20m u/s Okement confl	SS 5818 0328	8 2928	R29D052	5	1991	4	30	6.60	198	0.87	1.06	0.92	A	۸	Α.	
	55 5913 0161	1 2967		1 -	1991	7	35	6.60	230	1.04	1.03	1.07	A	A	A	ſ
8 Brightley Stream 25m u/s rd br Brightley Hill	SX 5970 9703	3 2930	R290025	2	1990 i	7	19	5.70	108	0.89	0.89	0.79	A	•	A	Ĺ
19 Red-A-Ven Brook . 75m u/s West Okement confluence	SX 5647 9200	0 2934	R29D028	4	1990	7	26	6.80	176	1.22	1.06	1.30	A	A	A	ſ
0 Lew 50m u/s Hole Stock Bridge	SS 4885 0005	5 2923	R29C006	1	1990	7	38	6,40	245	1.10	1.01	1.11	A	A	A [ſ
y to Biol. Class: A = Good, B = Moderate, C = Poor, D - Very Poor. # = Site regularly dries up - cennot be classifi	- Canal - Unsul	itable fo not sampl	r classifi ed due to	cation, + = 1 location diff	acustr	ine site or othe	- also	unsu ',	iteb14	• • •	New S	ite f	or 1 99 2	/1993		

No. on Map	Watercourse Name	Site Location Name	NGR	Site Ref.	Chem. URN	RIVPACS Suitebility	Year	Seeson Code		ASPT			E Rat ASPT		O/E Rei N-Fems			
51 52 53 54	Lew Lew Lew Lew Lew	Bloomaford 3rd field from rd 15m u/s br Great Rutleigh 200m u/s Hatherleigh Bridge 130m u/s Lewer Bridge	SS 5140 0079 SS 5198 0400	2950 2951 2924 2952	R29C025 R29C007 R29C008 R29C009	1111	1991 1991 1991 1991 1991	7 7 7 7	37 37	6.60 6.40 6.60 6.50	223 236 244 200	1.07	1.00			* * *		Â
55	Pulworthy Brook	30m u/s hadge Furzehill	55 5258 0415	2953	R29C021	1	1991	7	25	5.60	141	0.68	0.90	0.61	8	•		8
56	Medland Brook	10m u/s br Waterhouse-	SS 5481 0131	2954	R29C022	1	1991	7	28	6.50	182	0.83	1.02	0.85	A	•	٨	A
57	Hookmoor Brook	15m u/s br Marracott	SS 5310 0070	2955	R29C023	1	1991	?	35	6.80	237	1.03	1.06	1.09	A	A	A	A
50	Wageford Water	75m d/s Wagaford Bridge	SS 4890 0168	2956	R29C024	1	1991	7	31	6.60	205	0.87	1.04	0.91	A	•		^
59	Northlew Streem	Northlaw 55m u/s br	SX 5075 9910	2957	R29C026	1	1991	7	38	6.20	235	1.12	0.97	1.09	A	•		
60	Stoney Stream	30m u/s ford Coombe	SX 5044 9700	2950	R29C029	2	1991	7	28	6.60	189	0.65	1.06	0.90	•	•	A	-
61	Mussel Brook	125m u/a br Westovar	SS 4786 0654	2960	R29C038	1	1991	7	33	6.20	203	0.92	0.97	0.89	A			
62	Whiteleigh Water	40m u/s br Dipper Hill	SS 4385 0638	2961	R29C039	1	1991	7	34	6.60	223	0.99	1.03	1.02	A.		•	
63 64 65 66 67	Walidon Walidon Walidon Walidon Walidon	50m u/s br Berridon Cottage 200m u/s Sutcombe Bridge 10m u/s Weldon Bridge 200m u/s br Berry Farm 250m u/s br Berry Farm 250m u/s Henscott Bridge	SS 3465 1100 SS 3682 1042 SS 3910 0988	2947 2921 2948 2949 2922	R29C010 R29C030 R29C011 R29C042 R29C012		1991 1990 1991 1991 1991 1990	777777777777777777777777777777777777777	38 35 32	6.30 6.40 6.60 6.40 6.40	230 205	1.12 1.02 0.91	1.01 1.03 1.01	0.96 1.13 1.05 0.92 1.02	A	***	~ ~ ~	
68	Cookbury Stream	125m u/s br Beson Cross	S\$ 4118 0795	2959	R29C043	1	1991	7	31	6.40	196	0.88	1.00	0.68	A	•	•	•
69	Dipple Water	150m u/s Dipple Bridge	SS 3492 1787	2920	R29C013	1	1990	7	36	6.30	226	1.05	0:99	1.03	A	•	•	^
70	Cranford Water	d/s rubbish and earth tip	SS 3407 2105	2935	R29C044	1	1991	7	35	6.80	\$39	1.07	1.07	1.14	A		•	^
71	Clifford Weter	15m u/s br Biteford	SS 3020 1896	2962	R29C040	1	1991	7	34	6.40	216	1.01	1.00	1.00	4	•		A
72	Sackington Water	75m u/s br Gorvin 1.	SS 2977 2006	2963	R29C041	2	1991	7	36	6.30	225	1.08	0.98	1.07	A '	A	A	A

142

Key to Biol. Class		, $B = Moderate$, $C = Poor$, $D = Vary Poor$, $* = Canal - Unsuitable for classingularly dries up - cannot be classified, S = Site was not sampled due to$	<pre>/ication, + = Lacustrine sita = also unsuitable, = New site for 1992/1993 > location difficulty or other error,</pre>
Ver: 91.3	June 1993	NRA South West Region, Manley House, Exater.	Index compiled by Russ Dallen. Freshwater Biology. Ext 2472.

- .

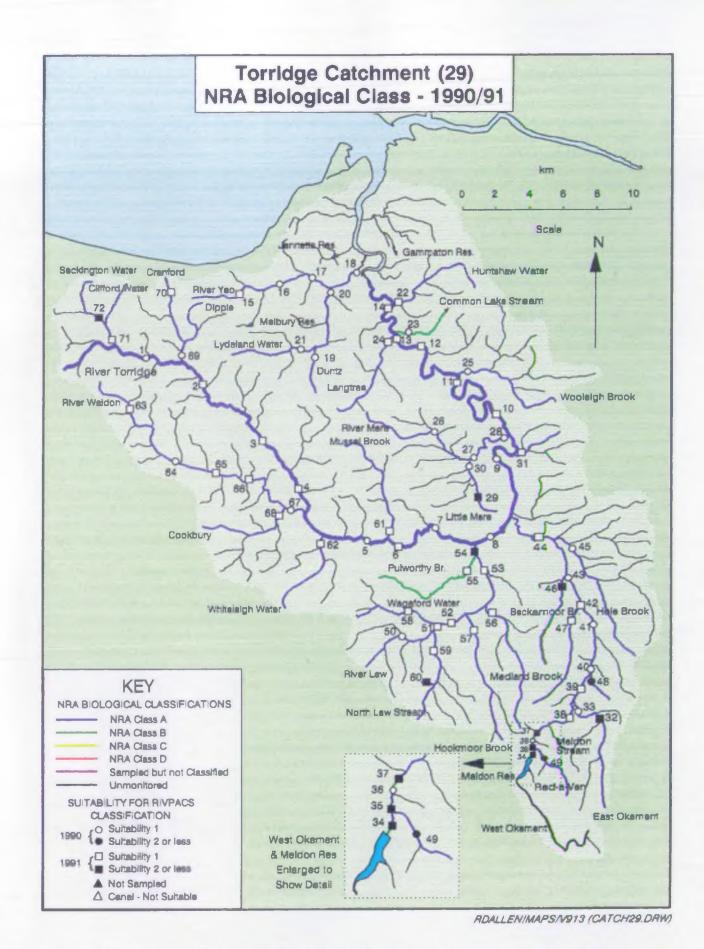


Figure 3.43 Torridge Catchment (29) NRA Biological Class - 1990/1991

3.2.34 River Taw Catchment Catchment-30

Summary

Of the 442 km of watercourses monitored by 74 sites in the River Taw catchment, 97% (70 sites) were good, and 3% (4 sites) were moderate quality, according to the NRA Biological Classification. None were classed as poor or very poor quality.

Likely reasons for poorer biological quality

Knighty Brook was of moderate overall quality, solely because of its moderately poorer than expected N-taxa. The stream was deep and difficult to sample with the dredge. There was negligible flow. The difficulty of sampling may have caused the moderate class. No causes of poor water quality were known.

Spires Lake was of moderate quality owing to a moderately poorer than expected ASPT, but it had a good EQI N-taxa: this indicates organic pollution. The stream was very overgrown during the Summer and Autumn, and had a low flow in the Autumn. This stream has a history of problems from pesticides: it drains intensively farmed arable land.

Croyde Stream was classed as moderate quality because of its moderately poorer than expected ASPT and N-taxa, which is usually an indication of organic pollution. This small stream had consistently poor biological quality throughout the year. It became overgrown with emergent plants in Autumn. A farm upstream from the site was reported to pollute the stream periodically.

The Forda was of moderate overall quality because of its moderately poorer than expected ASPT and N-taxa, implying that it was organically polluted. The monitoring site was downstream from the confluence of the Croyde Stream, and was channelised through the village. All these factors may have contributed to is moderately poor overall class.

note that there are local differences in the names given to Croyde Stream and The Forda.

Corresponding Freelance map filename(s):CATCH30.DRM

P 🔪	Watarcourse Name	Site Location Name	NGR	Site Ref.	Chera. URN	RIVPACS Suitebility	Year	Season Code	N-Fams	ASPT			E Rat ASPT					81a C1a
1 2	Taw Taw	300m u/s old A30.br Sticklepath 50m u/s East Rowden Bridge	SX 6417 9393 SX 6550 9951	3012 3013	R30C001 R30C002	4	1990 1990	7	34	6.90 6.70	185 229	1.03	1.05	1.08	A	Â	Â	
3	Taw Taw	50m u/s br Yeo Farm Bondleigh 10m u/s bridge	SS 6511 0292 SS 6578 0451	3048	R30C003 R30C004		1991 1991	17		6.00	187 198		0.95				12	
ŝ	Taw	100m u/s Taw bridge	SS 6727 0649	3050	R30C005	i	1991	7	26	6.30	165	0.76	1.00	0.76	8	A .	A	1 1
6	Tew Taw	25m u/s Park Mill Bridge 200m d/s br Chanson	SS 6963 0860 SS 7000 0953	3014	R30CD06 R308001		1990 1991	7	30 39	6.60 6.10	198 239	0.87	1.05					
ŝ	Taw	30m u/s Kersham Bridge	55 6621 1353	3042	R308002	i	1991	1 7	39	6.30	247		1.01		Â	A I	A I	
9	Taw	350m u/s Newnham Bridge	SS 6599 1701	3005	R308003	1 1	1990	<u>7</u>		6.60	250		1.05		A	۱ ۸	I A .	
10	Taw Taw	150m u/s rd br Kingford 250m u/s rd br Umberleigh	SS 6253 1926 SS 6075 2345	3043 3044	R308004 R308015		1991 1991	77	43	6.50	279 191		1.04					
12	Taw	Chapelton 200m u/s footbridge	SS 5830 2592	3006	R308014	i	1990	7	- 34	6.10	206	1.04	0.98	1.02	A	A .	A .	
3	Tew -	75m u/s New Bridge	S\$ 5700 2825	3007	R30B005	1	1990	7	38	6.20	236		1.01		A	A	A	┡
4	Caen	opp vicerage 75m u/s br	55 4887 3720	3001	R30A002	1	1990	7	33	6.00	199	1.00	0.95					┡
5	Knowl Water	20m u/s Wrafton Bridge	55 4903 3560	3002	R30A006	1	1990	7	35	5.90	207	0.99	0.97		A	A		╞
5 	Bradiford Water	25m d/s Bradiford Bridge	55 5503 3427	3003	R304001	1	1990	,7	37	6.40	236 217	1.06	1.01	1.00			A	ł
17 18	Yeo (Barnstaple) Yeo (Barnstaple)	100m u/s'Brockham Bridge 50m u/s Riversmeed Bridge	SS 6035 4087 SS 5958 3570	3034	R30H006		1990 1990	777	36	6.60 6.60	245	1.10	1.07		~ <	Â	Â	
9	Chelfham Stream	10m d/s br Chelfham Hill School	SS 6089 3565	3070	,	1	1991	7	36	7.00	253	1.10	1.09	1.20	A	A	A	L
0	Hakeford Stream	50m u/s rd br	SS 6133 3551	3071		1	1991	7	33	6.60	217	1.00	1.03	1.03	A	A.,	A	Î
1	Rya Stream Rye Stream	10m u/s footbr Bratton Fleming 25m u/s Loxhore Cross Bridge	SS 6320 3773 SS 6120 3658	3072 3035	R30H009 R30H004	1	1991 1990 -	?	35 36	6.90 6.90	242 247	1.08	1.08		Â	Â	Â	Ĭ.
3	Kentisbury Brook	15m d/s hedgeline Patchole Farm	SS 6120 4220	3074		1	1991	7	29	6.40	186	0.90	1.00	0.90	A	A	A	
4	Clifton Brook	30m u/s br The Old Rectory	55 6032 4105	3073		1	1991	7	32	6.30	201	0.98	0.98	0.96	٨	•	A	
5	Venn Venn	100m u/s rd br Landkey 100m u/s Venn Bridge	SS 5915 3104 SS 5853 3075	3037 3004	R30A003 R30A004	1	1991 1990	7		6.20 6.50	197 227		0.97 1.02		Å	Å	Â	
7	Langham Lake Langham Lake	15m u/s B3227 rd br Langridgeford 100m u/s Langham Bridge	SS 5717 2235 SS 5795 2608	3045 3008	R308016 R308006	1	1991 1990	777		6.50 6.10	226 207	1.03 0.95	1.02 0.96	1.04 0.91	A	A	Â	
9	Hewkridge Brook	75m u/s Hawkridge Bridge	SS 5950 2537	3011	R308012	1	1990	7	- 34	6.10	207	0.95	0.97	0.9Ż	A	A	A .	8
10 12 13	Mole Mole Mole Mole Mole	50m d/s North Molton Bridge 50m u/s br Part House drive 5m u/s crossing point d/s fence 50m u/s Now Bridge 40m u/s Mole br Mache Barton	SS 7440 2980 SS 7204 2653 SS 7274 2460 SS 7250 2257 SS 6771 2294	3022 3058 3059 3023 3060	R30F001 R30F002 R30F003 R30F004 R30F005	1 1 1 2 1	1990 1991 1991 1990 1990	7 7 7 7 7	31 30	6.40 6.10 6.20 6.40 6.10	225 176 191 192 178	0.97 0.92	1.01 0.95 0.97 1.01 0.99	0.94 0.93		****	****	
5	Mole	75m u/s Head Barton	55 6667 1833	3024	R30F006	ī	1990	,	32	6.50	207	0.97	1.03	1.00	A	•	A	L
16 17	Bray Bray	10m d/s rd br Challaconbe 150m u/s Leeham Ford Bridge	SS 6930 4104 SS 6785 4007	3065	R30G001 R30G011		1991 1990	3		6.60	219 232	1.02 1.05	1.04	1.06	1 -	1	1	
8	Bray	75m u/s rd br Breyford	SS 6880 3478	3066	R30G002	i i	1991	1 7 1	31	6.80	210	0.96	1.06	1.01	Â.	Â.	Â.	1
	Bray Bray	125m u/s Brayley Bridge 40m u/s Bray Bridge	SS 6910 3043 SS 6757 2562	3036 3067	R30G003 R30G012		1990 1991	7		6.30	196 192		0.99		Â			
. 1	Bray	SOm u/s Meethe Barton Bridge	SS 6757 2303	3031	R30G004	i	1990	;	33	6.70	220		1.06		Â	Ā	Â	
2	Nadrid. Water	150m u/s nd br Clapworthy	55 6765 2408	3069	R30G013	1	1991	7	35	6.10	212	0.98	0.96	0.94	A	A	A	L
3	Filleigh Stream	50m u/s rd br	SS 6735 2790	3068		1 (3)	1991	7	30	5.70	170	0.90	0.89	0.80	<u> </u>	A	A	L
	Holewater Stream	100m u/s Linkleyham Bridga	55 6967 3265	3032	R30G005	1	1990	7	33	7.00	230		1.09		A	A	A	┢
	Little Silver Stream Little Silver Stream	30m u/s Odham Bridge 300m u/s Alswear rd br	SS 7423 2058 SS 7232 2204	3061 3025	R30F010 R30F011		1993 1990	77	32 36	6.40 6.40	206 231		1.01 1.01		Â	Â	Â	
	Crooked Oak	15m d/s br Ashmill 75m d/s Yeo Barton Bridga	SS 7833 2338 SS 7573 2307	3062 3026	R30F023 R30F007	· 1	1991 1990	7	37 38	6.50 6.50	241 246		1.02 1.01		A	Â	Â	1
9	Yeo [Holland]	125m u/s Bottreaux Mill Bridge	SS 8222 2634	3027	R30F008	1	1990	7	37	6.90	254	1.11	1.07	1.19	A	A	A	I
to	Biol. Class: A = Good,	B = Moderate, C = Poor, O = Vary Poor. * egularly dries up - cannot be classified,	- Canal - Unsult	ble fo	r classifi	cation, + =	Acustr	ine site	- also	-	ftab1	•, 1 •	New 1	ite f	or 199	2/199	3	

o. on ap	Watercourse Mame	Site Location Name	NGR	Site Ref.	Chem. URN	RIVPACS Suitebility	Year	Season Code	Ob: N-Fams	ASPT			ASPT		O/E Re N-Fams			
50 51	Yeo [Molland] Yeo [Molland]	20m d/s rd br Mornacott Moors 25m u/s Bish Mill Bridge	55 7663 2634 55 7403 2535	3063 3028	R30F024 R30F009	1	1991 1990	77		6.60 6.70	190 202	0.86	1.03	0.89 0.94		1	2	Â
52	Sheepwash Stream	20m u/s bridge	55 7902 2666	3064	R30F0ZZ	1	1991	7	39	6.90	271	1.19	1.09	1.30	A	•	A	•
53	North Radworthy Stream	25m d/s Barham Bridge	SS 7463 3355	3029	R30G010*	1	1990	7	29	7.00	202	0.88	1.09	0.97	A	A	A	
54	Mully Brook	300m u/s Hansford Bridge	S\$ 6575 1560	3009	R308007	1	1990	7	40	6.50	259	1.13	1.02	1.16	A	A		
55 56	Hollocombe Water Hollocombe Water	20m u/s bridge Woodroberts 100m u/s Bridge Reeve Bridge	55 6278 1077 55 6608 1340	3046 3010	R308008 R308009	1 1	1991 1990	;		6.30 6.60	214 218	1.06 0.94	0.97			Â	Â	7
57 58 59	Little Dert River Little Dert River Little Dert River	30m u/s New Bridge 30m u/s Stone Hill Bridge 200m u/s Dert Bridge	55 7199 1307	3019 3056 3020	R30E001 R30E002 R30E003	1 1 1 1	1990 1991 1990	7777	35	6.50 6.30 6.70	254 222 227	1.14 1.04 1.01	0.99	1.17 1.03 1.06		Â		
60	Huntacott Water	60m u/s Chulmleigh road bridge	55 6957 1387	3021	R30E005	1	1990	7	37	6.40	238	1.11	1.01	1.11	A	A	A	
61	Sturcombe River	Bradford Tracy	55 8127 1624	3057	R30E006	1	1991	7	36	6.60	236	1.07	1.03	1.10	•	•	A	
62	Labdon Stream	50m u/s_Taw confluence	55 6788 1283	3047		1	1991	7	35	6.20	Z16	1.05	0.96	1.00	A	•	A	Γ
63 64 65 66	Yeo Lapford Yeo Lapford Yao Lapford Yao Lapford	20m u/s Bow Bridge 60m u/s br Down St Mary vineyard 25m u/s Bury Barton Bridge 30m d/s Mymet Bridge	SS 7174 0170 SS 7311 0448 SS 7373 0728 SS 7142 0929	3015 3052 3016 3053	R30D004 R30D012 R30D005 R30D006	1 1 1 1	1990 1991 1990 1991	777777	37 35 39 37	5.90 5.90 6.40 6.20	217 208 249 231	0.99 1.12	0.92 0.93 1.01 0.99	0.92	A		A A A A	
67 68 69	Dalch Dalch Dalch	75m u/s Hill Berton Bridge 10m d/s Cann's Hill Bridge 125m u/s Calves Bridge	SS 8143 1243 SS 7859 1053 SS 7502 0877	3017 3054 3018	R30D001 R30D011 R30D003	1 1 1	1990 1991 1990	77777	39	8.00 6.00 6.20	179 235 216	1.11	0.94 0.95 0.98	1.05		Â	Â	ſ
70	Knighty Brook	400m u/s Yeo confl	55 7385 0647	3055	8300013	3	1991	7	23	5.30	123	0.66	0.89	0.59	B	A	0	
71	Spires Lake	15m u/s track br u/s Tawton Dairy	SS 6545 0090	3051	R30C009	1	1991	7	26	5.30	137	0.91	0.68	0.81	A	8	A	
72	Croyde Stream	4m u/s footbr u/s Brookfield House gard	55 4488 3925	3038		1	1991	7	26	5.00	129	0.77	0.81	0.63		•	8	
73	Forda	15m u/s rd br Croyde	55 4443 3918	3039	R30A028	1 1	1991	7	22	5.00	109	0.66	0.79	0.52	•		8	
74	Woolecombe Stream	10m u/s bridge	SS 4577 4357	3040	R30A005	3	1991	7	31	6.10	189	0.92	0.96	0.89	A .	A	A	

41	Key to Biol. Class	: A = Good # = Site	. B = Moderate, C = Poor, D = Very Poor. * = Canal - Unsuitable for classification, $+$ = Lacustr regularly dries up - cennot be classified, $\$$ = Site was not sampled due to location difficulty	the site - also unsuitable, ; = New site for 1992/1993 or other error,
	Ver: 91.3	June 1993	NRA South West Region, Manley House, Exeter.	Index compiled by Russ Dallen. Freshwater Biology. Ext 2472.

.

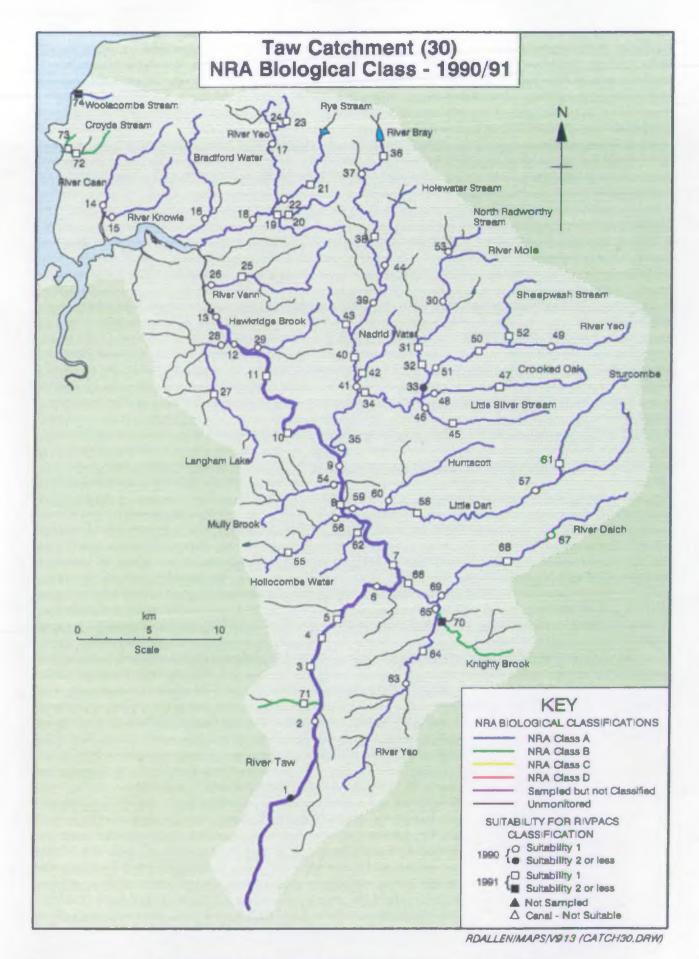


Figure 3.44 Taw Catchment (30) NRA Biological Class - 1990/1991

3.2.35 North Devon Coastal and Lyn Catchments Catchments 31 & 32

Summary

All 96 km of the watercourses monitored by 15 sites in the North Devon coastal and River Lyn catchments were classed as good quality, according to the NRA Biological classification.

Likely reasons for poorer biological quality

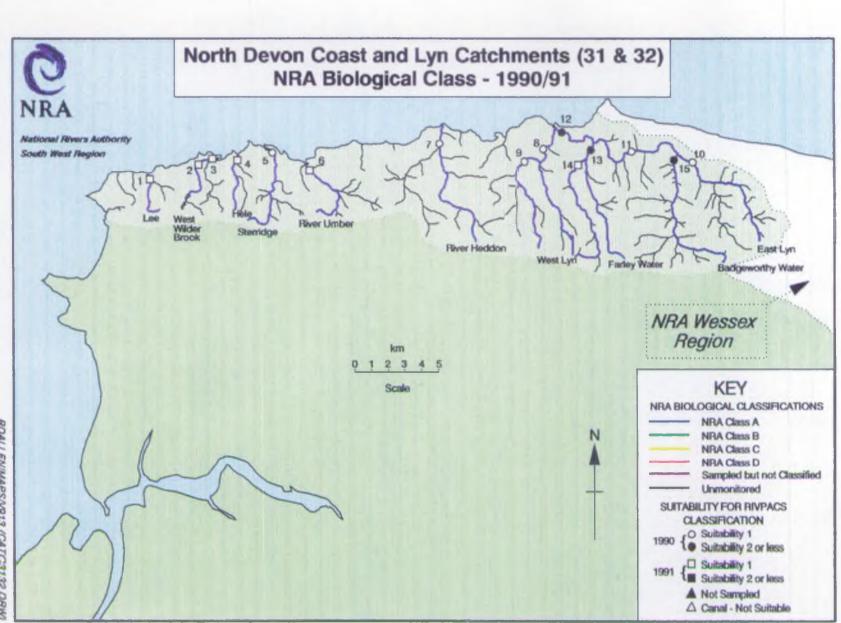
N/A

io. on Imp	Watercourse Name	Site Location Name	NGR	Site Ref.	Chem. URN (RIVPACS Suitability	Year	Season Code	Obi N-Fams	ASPT			E Rat ASPT		O/E Ra N-Fams	ASPT	ass BMMP	Biol Class
1	Lee Stream	Immediately d/s funce Lee Bay Hotel	SS 4798 4650	3103	R31A001	1	1991	7	31	6.50	202	D.92	1.04	0.95	A	A	•	A .
2	West Wilder	u/s Langleigh Country House Hotel opp f	SS 5115 4692	3107	R31ADO2	1	1991	7	33	6.10	200	0.98	0.96	0.94	A	A	A	
3	East Wilder	fimmediately u/s of island The Vicerage	SS 5162 4700	3104	R31A002	1	1991	7	32	6.10	196	0.96	0.97	0.93	A	A	A	A
4	Hele Stream	24m d/s bridge Hele Mill	SS 5352 4758	3105	RJIAOOJ	1	1991	7	32	5.90	189	0.96	0.93	0.90	A	A	A	-
5	Sterridge	Old Sawmill Inn 50m u/s rd br	SS 5585 4743	3101	R31A004	1	1990	7	29	6.10	178	0.68	0.97	0.85	A	A		-
6	Under	22m d/s bridge	SS 5798 4692	3106	R31A005	1	1991	7	31	6.50	200	0.93	1.03	0.96	A	A	A	-
7	Heddon	Hunters Inn 150m u/s br	SS 6546 4817	3102	R31A006	1	1990	7	28	7.00	195	0.86	1.09	0.94	A	A	A	•
8	West Lyn	Sunny Lyn Carsvan Park	SS 7185 4843	3201	R32A003	1	1990	7	29	7.00	204	0.90	1.10	0.99	A	A	A	A
9	Berbrook	100m d/s pumping stn Dean	SS 7085 4762	3202	R32A006	1	1990	7	31	7.30	225	0.96	1.14	1.08	A		A	•
10	East Lyn (Oare Water	150m u/s Oare Bridge	SS 8030 4743	3205		. 1-	1990	7	33	6.80	223	1.03	1.06	1.09	A	A	A	A
11 12	Eest Lyn River Eest Lyn River	opposite Hall Ferm ú/s Leeford Lynmouth Oakleigh u/s footbridge	SS 7725 4825 SS 7258 4933	3206 3203	R32A001 R32A002	1 3	1990 1990	777				0.93 0.92				A	A A	1
13	Farley Water -	100m d/s Hillsford Bridge	SS 7412 4785	3207	R32A004	2	1990	7	30	7.10	213	0.93	1.11	1.03	A	•	A .	A
14	Hoeroek	15m u/s bridge	SS 7402 4772	3208	•	1	1991	7	27	6.60	179	0.84	1.04	0.87	A	A	A	-
15	Badgworthy Water	200m d/s Badgworthy House	SS 7930 4728	3204	R32A005	2	1990	7	33	6.50	216	1.02	1.02	1.04	A	A	A	A

Cetchment: North Devon Coastel Streams & River I

Corresponding Freelance map filename(s):CATC3132.0

149


 Key to Biol. Class: A = Good, B = Moderate, C = Poor, D = Very Poor. * = Canal - Unsuitable for classification, + = Lacustrine site - also unsuitable, j = New site for 1992/1993

 # = Site regularly dries up - cannot be classified, S = Site was not sampled due to location difficulty or other error,

 Ver: 91.3
 June 1993

 NRA South West Region, Manley House, Exeter.
 Index compiled by Russ Dallen. Freshwater Biology. Ext 2472.

REFERENCES

Department of the Environment for Northern Ireland (1993) River and estuary quality in Northern Ireland: report of the 1991 survey. Belfast: Her Majesty's Stationary Office.

Ellis, J. (1989) Handbook on the design and interpretation of monitoring programmes. NS 29. Medmenham: Water Research Centre.

Furse, M.T., Wright, J.F., Armitage, P.D. and Moss, D. (1986) A practical manual for the classification and prediction of macro-invertebrate communities in running water in Great Britain. Preliminary version. Wareham: Freshwater Biological Association.

Gunn, R.J.M., Wright, J.F., Blackburn, J.H., and Furse, M.T. (1991) Quality audit of biological samples for the 1990 River Quality Survey NRA South West Region. Wareham: Institute of Freshwater Ecology. In: JAD Murray-Bligh (1992) Quality audit of biological samples for the 1990 River Quality Survey NRA South West Region by RJM Gunn, JF Wright, JH Blackburn, and MT Furse. Internal Report FWS/92/016; NRA South West Region.

Gunn, R.J.M., Wright, J.F., Winder, J.M. and Blackburn, J.H. (1991) An audit of performance in the processing of macro-invertebrate samples in 1991: NRA South West Region. Wareham: Institute of Freshwater Ecology. In: JAD Murray-Bligh (1992) Quality audit of biological samples for the 1991 River Quality Survey NRA South West Region by RJM Gunn, JF Wright, JM Winder and JH Blackburn. Internal Report FWS/92/021; NRA South West Region.

Institute of Freshwater Ecology (1991) Testing and further development of RIVPACS. NRA R&D Project 243 Interim Report. (IFE Report Ref: RL/T04053R5/3); NRA R&D Report 243/1/Y.

Kinley, R.D., and Ellis, J.C. (1991) The application of statistical quality control methods to macroinvertebrate sampling. Medmenham: Water Research Centre.

Nature Conservancy Council (1985, undated) Surveys of wildlife on river corridors. Draft methodology. Peterborough: Nature Conservancy Council.

National Rivers Authority (1990) RIVPACS field sampling Pond net sampling. Video recording. Birmingham: Spectrum Communications.

National Rivers Authority (1990b) Biological impact assessment of Avon Water Treatment Works discharge into Bala Brook 13 June 1990. Exeter: National Rivers Authority.

National Rivers Authority (1991a) The quality of rivers, canals and estuaries in England and Wales. Report of the 1990 survey. National Rivers Authority Water Quality Series No. 4.

National Rivers Authority (1991b) Proposals for Statutory Water Quality Objectives. National Rivers Authority Water Quality Series No. 5.

National Rivers Authority (1991c) An assessment of river water quality in the river Kenn. Internal Report FWI/91/018. Exeter: National Rivers Authority.

National Rivers Authority (1991d) Biological investigation of the Brightley Stream catchment to assess the control of acidic and metalliferous flushes during August and December 1990. Internal Report FWI/91/012. Exeter: National Rivers Authority.

National Rivers Authority (1991e) River Quality Classification 1985 - 1990 Identification of possible causes of non-compliance with River Quality Objectives. Internal Report. Exeter: National Rivers Authority.

National Rivers Authority (1992a) Water pollution incidents in England and Wales 1990. National Rivers Authority Water Quality Series No. 7.

National Rivers Authority (1992b) River corridor surveys in the NRA. Conservation Technical Handbook No. 1. Bristol: National Rivers Authority.

National Rivers Authority (1992c) Water pollution incidents in England and Wales 1991. National Rivers Authority Water Quality Series No. 9.

National Rivers Authority (1992d) Annual classification of river quality 1991: identification of possible causes of non-compliance with River Quality Objectives. Internal Report FWS/92/015. Exeter: National Rivers Authority.

National Rivers Authority (1992e) Luckett unsewered area report. Internal report. Exeter: National Rivers Authority.

National Rivers Authority (1993) An assessment of water quality in the Aller Brook catchment. Final Draft Report. Exeter: National Rivers Authority.

National Rivers Authority (in prep.) Quality of rivers and canals in England and Wales (1990 to 1992) as assessed by a new general quality assessment scheme. National Rivers Authority Water Quality Series No.?

Scottish Office (1992) Water Quality Survey of Scotland 1990. Edinburgh: HMSO.

South West Water Authority (1989) South West Water Asset Management Plan, Environmental Protection, Current Objectives and Standards. Report CO 1907-M/1/EV 8748. Medmenham: WRc Environment.

Standing Committee of Analysts (1987) Methods for the use of aquatic macrophytes for assessing water quality 1985-86. Methods for the Examination of Waters and Associated Materials. London: HMSO.

Sweeting, R.A., Lowson, D., Hale, P., and Wright, J.F. (1992) 1990 biological assessment of rivers in the UK. In: Newman, P.J., Piavaux, M.A. and Sweeting, R.A. (Eds) River Water Quality Assessment and control. EUR 14606 EN-FR. Bruxelles: Commission of the European Communities.

Wright, J.F., Armitage, P.D., Furse, M.T., Moss, D., and Gunn, RJM. (1988) Analysis of natural and polluted river communities in Great Britain. Report for the period April 1984 - March 1988. A report to the Department of the Environment, Scottish Development Department and the Welsh Office: pp. 233. Cited in: Institute of Freshwater Ecology (1991) g.v.

APPENDIX 1 Changes in the definitions of class bands for BMWP-score

The NRA Biological Classification used in this report differs very slightly from that used in the interim report of the results from sites sampled in 1990 only (FWS/92/014), and published in Scottish Office (1992) and Sweeting et al. (1992).

The class bands for BMWP-score were originally determined independently from those of ASPT and N-taxa. For N-taxa and BMWP-score, the boundary between Class A and Class B was the EQI differentiating the lowest 10% from the remaining 90% of ratios for the samples in the original data-set on which RIVPACS II was based. The band widths for classes B, and C were equal to the band between EQI = 1 and the boundary between classes A and B. The EQI class bands for ASPT were determined in the same way, except that classes B, C and D represented the lowest 5% in the data set.

In this report, the class bands for BMWP-score were calculated from the class bands for ASPT and N-taxa. Each class limit of the EQI BMWP-score was the product of the corresponding limit for O/E ASPT and O/E N-taxa, since:

$ASPT = \frac{BMWP-score}{N-taxa}$

and therefore ·

$BMWP-score = ASPT \times N-taxa.$

Table Al

Bands of EQIs for EMWP-score defining the NRA Biological Classes as originally defined independently, and as currently defined arithmetically, from the corresponding bands for the EQI ASPT and EQI N-taxa

	Biological class	single season's data	two seasons' pooled data	three seasons
a	(original defin:	ition)	÷ .	
	A	>0.62	≥0.72	≥0.75
	В	0.24-0.61	0.44-0.71	0.50-0.74
	С	<0.23	0.16-0.43	0.25-0.49
	D	no band	<0.15	≤0.24
b	(current definit	tion)		
	A	≥0.56	≥0.67	0.70
	В	0.23-0.55	0.41-0.66	0.45-0.69
	C	0.01-0.22	0.20-0.40	0.24-0.44
	D	0.00	<0.19 ·	<0.23

A consequence of this is that the band widths of classes B, C, and D for EQI BMWP-score are no longer equal.

APPENDIX 2 The National Water Council river classification system

Criteria used by the National rivers Authority, South West Region.

Non-metallic determinands

River	Class	Quality criteria	
18		Dissolved oxygen saturation greater than 80% BOD (ATU) not greater than 3 mg/1 0 Total ammonia not greater than 0.31 mg/1 N Non-ionized ammonia not greater than 0.021 mg/1 N Temperature not greater than 21.5 °C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1	
18		Dissolved oxygen saturation greater than 60% BOD (ATU) not greater than 5 mg/l 0 Total ammonia not greater than 0.70 mg/l N Non-ionized ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 °C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l	
2	÷	Dissolved oxygen saturation greater than 40% BOD (ATU) not greater than 9 mg/1 0 Total ammonia not greater than 1.56 mg/1 N Non-ionized ammonia not greater than 0.021 mg/1 N Temperature not greater than 28 °C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/1	
3		Dissolved oxygen saturation greater than 10% BOD (ATU) not greater than 17 mg/l O	

Dissolved oxygen saturation not greater than 10% BOD (ATU) greater than 9 mg/l O

Statistics

Δ

Determinand		 •	Statistic
Dissolved oxygen			5 percentile
BOD (ATU)			95 percentile
Total ammonia			95 percentile
Non-ionized ammon:	ia		95 percentile
Temperature			95 percentile
pH			5 percentile
pH			95 percentile
Suspended solids	1 a .		95 percentile
-		÷ .	-

Metallic determinands

Total Copper

Note that total copper was used for classification purposes pending sufficient data on soluble copper being obtained. It is anticipated that this will be available for the 1994 classification.

Total hardness (mean)	Total copper (µg/1 Cu)							
mg/1 CaCO ₃	Class 1	Class 2						
0-10	≤ 5	> 5						
10-50	< 22	> 22						
50-100	<u><</u> 40	> 40						
100-300	≤ 112	> 112						

Total Zinc

Tot	al hardness (m	mean)	. •	Total	zinc ($\mu g/1$		
π	$10^{1} CaCO_{3}$			Class 1	Class 2	Class 3	<u> </u>
	0–10	4		< 30	< 30,0	> 300	
•	10-50 50-100			< 200 < 300	< 700 < 1000	> 700 > 1000	
	100-300	$\langle \alpha \rangle$	·	≤ 500	≤ 2000	≤ 2000	

Statistics

Determinand	Statistic
Total copper	95 percentile
Total zinc	95 percentile

APPENDIX 3 Biological sites not classified in 1990/1991

Reason Code Watercourse Site Canals, sampled but not classified 0501 Exeter Canal 30 m u/s A38 br Countess Weir 0529 Grand Western Canal 30 m u/s Fenacre Bridge 0541 Grand Western Canal The Basin, Tiverton 2713 Bude Canal 200 m u/s Rodd's Bridge 2712 Bude Canal Rodd's Bridge Falcon Bridge 2704 Bude Canal Problem re-locating site, not sampled 0520 Culm d/s Columbjohn 0823 Gara Woodford Bridge prior to River Teign. 0651 Scotley Brook Site added to programme in 1992/1993, not included in the 1990/91 survey 1982 Coombe Stream Coombe 2555 Harlyn Water Trenearne Bridge

Lacustrine/ maritime site, sampled but not classified 2003 Loe Pool Loe Pool at Bar outfall

Ephemeral streams which regularly dry-up 0102 Harcombe Stream 5 m u/s br prior to STW 2325 Perranporth Stream Silverwell

Poor RIVPACS suitability, code greater than 5 none

Survey summary statistics

957 Sites listed in the report for 1990/1991 954 sites included in the 1990/1991 survey 951 sites surveyed in 1990/1991 945 river sites included in the 1990/1991 survey 943 river sites surveyed in 1990/1991 940 river sites classified in 1990/1991 6 canal sites included in the 1990/1991 survey

SUMMARY OF NUMBERS OF SITES IN EACH CLASS

No of sites in Class A	768.00	No of sites in O/E Ratio (N-Texa) Class A	783.00
No of sites in Class B	94.00	No of sites in O/E Ratio (N-Taxa) Class B	94.00
No of sites in Class C	45.00	No of sites in O/E Ratio (N-Taxa) Class C	44.00
No of sites in Class D	.13.00	No of sites in O/E Ratio (N-Taxa) Class D	19.00

					1		1		
No	of	sites	1n	0/E	Ratio	(ASPT)	Class	1	828.00
No	01	sites	1n	٥/٤	Ratio	(ASPT)	Class		- 80.00
No	01	11105	in	0/E	Retio	(ASPT)	Class	c	26.00
No	01	sites	In	0/E	Ratio	(ASPT)	Class	٥	4.00