ENVIRONMENTAL PROTECTION

National Rivers Authority South West Region

Lizard Peninsular Streams and Helford River Catchment River Water Quality Classification 1990

> NOVEMBER 1991 WQP/91/021 B L MILFORD

> > GORDON H BIELBY BSc Regional General Manager

C V M Davies Environmental Protection Manager

ACKNOWLEDGEMENTS

The Water Quality Planner acknowledges the substantial contributions made by the following staff:

- R. Broome Co-ordinator and Editor
- A. Burrows Production of Maps and editorial support
- P. Grigorey Production of Maps and editorial support
- B. Steele Production of Forepage
- C. McCarthy Administration and report compilation

Special thanks are extended to A. Burghes of Moonsoft, Exeter for computer support and the production of statistical schedules.

The following NRA sections also made valuable contributions:

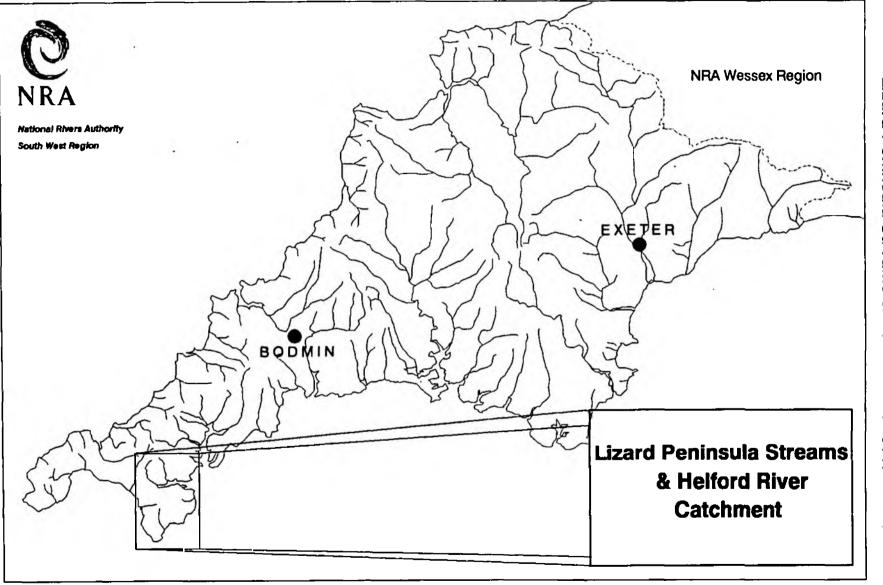
Pollution Control Field Control and Wardens Water Resources

Thanks also to R. Hamilton and J. Murray-Bligh for their contributions.

Suggestions for improvements that could be incorporated in the production of the next Classification report would be welcomed.

Further enquiries regarding the content of these reports should be addressed to:

Freshwater Scientist, National Rivers Authority, Manley House, Kestrel Way, EXETER, Devon EX2 7LQ



RIVER WATER QUALITY IN THE LIZARD PENINSULA AND HELFORD RIVER CATCHMENT

LIST OF CONTENTS

Page No. 1 1 Introduction 2 Lizard Peninsula and River Helford Catchment 1 2 3 National Water Council's River Classification System 4 1990 River Water Quality Survey 3 5 1990 River Water Quality Classification 4 6 Non-compliance with Quality Objectives A 7 Causes of Non-compliance 5 8 Glossary of Terms 6 9 References 6 10 Appendices: River Quality Objectives including Monitoring points 10.1 10.2 Basic Determinand Analytical Suite 10.3 National Water Council (NWC) River Classification System NWC Criteria for Non-Metallic Determinands - Regional 10.4 Variation 10.4.1 NWC Criteria for Metallic Determinands - Regional Variation 1990 River Water Quality Classification - tabular 10.5 format 1990 River Water Quality Classification - map format 10.6 10.7 Calculated Determinand Statistics used for Quality Assessment Compliant/Non-Compliant River Reaches 10.8 10.9 Number of Samples Results exceeding quality standards 10.10 Percentage Exceedance of Determinand Statistics from Quality Standard 10.11 Identification of Possible Causes of Non-Compliance with River Quality Objectives

1. INTRODUCTION

Monitoring to assess the quality of river waters is undertaken in thirtytwo catchments within the region. As part of this monitoring programme samples are collected routinely from selected monitoring points at a predetermined frequency per year, usually twelve spaced at monthly intervals. Each monitoring point provides data for the water quality of a river reach (in kilometres) upstream of the monitoring point.

River lengths have been re-measured and variations exist over those recorded previously.

Each water sample collected from each monitoring point is analysed for a range of chemical and physical constituents or properties known as determinands. The analytical results for each sample are entered into a computer database called the Water Quality Archive.

Selected data are accessed from the Archive so that the quality of each river reach can be determined based on a River Classification System developed by the National Water Council (NWC), (9.1).

This report presents the river water quality classification for 1990 for monitored river reaches in the Lizard Peninsula Streams and Helford River catchment.

2. LIZARD PENINSULAR STREAMS AND HELFORD RIVER CATCHMENT

The Porth Navas Stream and Trewince Stream flow over a distance of 3.8 km and 1.4 km respectively from their source to the tidal limit, (Appendix 10.1). Water quality was monitored at one location on each stream at approximately monthly intervals.

The Lestraines River flows over a distance of 7.4 km from its source to the tidal limit, (Appendix 10.1) and was monitored at two sites. The site at Eathorne Bridge was sampled on fifteen occasions during 1990 because of no recent water quality data and the site at Polwheveral Bridge was sampled at approximately monthly intervals.

The Rosevear (6.2 km), Porthallow Stream (4 km), St. Keverne Stream (3.1 km), Poltesco Stream (6.4 km) Mullion Stream (4.4 km) and Cury Stream (7.1 km) were monitored at approximately monthly intervals at one site between their source and the tidal limits, (Appendix 10.1).

Church Cove Stream and Gunwalloe Stream flow over a distance of 0.8 km and 4.6 km respectively from their source to the tidal limits, (Appendix 10.1) and were both monitored at one site on twenty occasions during 1990 because of no recent water quality data.

1

The Helford River and the Manaccan flow over a distance of 5.9 km and 7.8 km from their source to the tidal limits, (Appendix 10.1) and were monitored at two sites at approximately monthly intervals.

The Gweek River flows over a distance of 8 km from its source to the tidal limit, (Appendix 10.1) and was monitored at two sites. The site at Mether-Uny Mill Bridge was sampled on fifteen occasions because of no recent water quality data and the site at Gweek Bridge was sampled at approximately monthly intervals.

The Trelowarren Stream flows over a distance of 4.6 km from its source to the tidal limit, (Appendix 10.1) and was monitored at one location on fifteen occasions during 1990 because of no recent water quality data.

Throughout the Lizard Peninsular catchment one secondary tributary of the Lestraines River was monitored.

2.1 SECONDARY TRIBUTARY

The Carvedras Stream flows over a distance of 3.6 km from its source to the confluence with the Lestraines River, (Appendix 10.1) and was monitored at one location on fifteen occasions during 1990 because of no recent water quality data.

Each sample was analysed for a minimum number of determinands (Appendix 10.2) plus additional determinands based on local knowledge of the catchment. In addition, at selected sites, certain metal analyses were carried out.

The analytical results from all of these samples have been entered into the Water Quality Archive and can be accessed through the Water Act Register, (9.2).

3. NATIONAL WATER COUNCIL'S RIVER CLASSIFICATION SYSTEM

3.1 River Quality Objectives

In 1978 river quality objectives (RQOs) were assigned to all river lengths that were part of the routine monitoring network and to those additional watercourses, which were not part of the routine network, but which received discharges of effluents.

For the majority of watercourses long term objectives were identified based on existing and assumed adequate quality for the long term protection of the watercourse. In a few instances short term objectives were identified but no timetable for the achievement of the associated long term objective was set.

The RQOs currently in use in the Lizard Peninsula Streams and Helford River catchment are identified in Appendix 10.1.

3.2 River Quality Classification

River water quality is classified using the National Water Council's (NWC) River Classification System (see Appendix 10.3), which identifies river water quality as being one of five quality classes as shown in Table 1 below:

Table 1 - National Water Council - River Classification System

<u>Class</u>	Description
1A	Good quality
1B	Lesser good quality
2	Fair quality
3	Poor quality
4	Bad quality

Using the NWC system, the classification of river water quality is based on the values of certain determinands as arithmetic means or as 95 percentiles (5 percentiles are used for pH and dissolved oxygen) as indicated in Appendices 10.4.1 and 10.4.2.

The quality classification system incorporates some of the European Inland Fisheries Advisory Commission (EIFAC) criteria (Appendix 10.3) recommended for use by the NWC system.

4. 1990 RIVER WATER QUALITY SURVEY

The 1990 regional classification of river water quality also includes the requirements of the Department of the Environment quinquennial national river quality survey. The objectives for the Department of the Environment 1990 River Quality Survey are given below:

- To carry out a National Classification Survey based on procedures used in the 1985 National Classification Survey, including all regional differences.
- 2) To classify all rivers and canals included in the 1985 National Classification Survey.
- 3) To compare the 1990 Classification with those obtained in 1985.

In addition, those watercourses, which were not part of the 1985 Survey and have been monitored since that date, are included in the 1990 regional classification of river water quality.

5. 1990 RIVER WATER QUALITY CLASSIFICATION

Analytical data collected from monitoring during 1988, 1989 and 1990 were processed through a computerised river water quality classification programme. This resulted in a quality class being assigned to each monitored river reach as indicated in Appendix 10.5.

The quality class for 1990 can be compared against the appropriate River Quality Objective and previous annual quality classes (1985-1989) also based on three years combined data, for each river reach in Appendix 10.5.

The river water classification system used to classify each river length is identical to the system used in 1985 for the Department of the Environment's 1985 River Quality Survey. The determinand classification criteria used to determine the annual quality classes in 1985, subsequent years and for 1990 are indicated in Appendices 10.4 and 10.4.1.

Improvements to this classification system could have been made, particularly in the use of a different suspended solids standard for Class 2 waters. As the National Rivers Authority will be proposing new classification systems to the Secretary of State in the near future, it was decided to classify river lengths in 1990 with the classification used for the 1985-1989 classification period.

The adoption of the revised criteria for suspended solids in Class 2 waters would not have affected the classification of river reaches.

The river quality classes for 1990 of monitored river reaches in the catchment are shown in map form in Appendix 10.6.

The calculated determinand statistics for pH, temperature, dissolved oxygen, biochemical oxygen demand (BOD), total ammonia, un-ionised ammonia, suspended solids, copper and zinc from which the quality class was determined for each river reach, are indicated in Appendix 10.7.

6. NON-COMPLIANCE WITH QUALITY OBJECTIVES

Those monitored river reaches within the catchment, which do not comply with their assigned (RQO), are shown in map form in Appendix 10.8.

Appendix 10.9 indicates the number of samples analysed for each determinand over the period 1988 to 1990 and the number of sample results per determinand, which exceed the determinand quality standard.

For those non-compliant river reaches in the catchment, the extent of exceedance of the calculated determinand statistic with relevant quality standard (represented as a percentage), is indicated in Appendix 10.10.

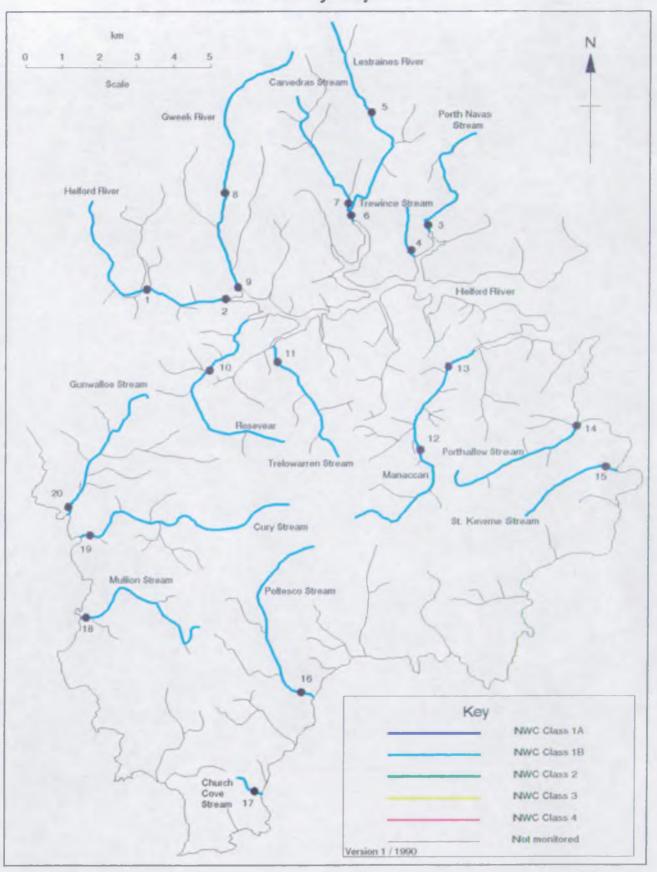
4

7. CAUSES OF NON-COMPLIANCE

For those river reaches, which did not comply with their assigned RQOs, the cause of non-compliance (where possible to identify) is indicated in Appendix 10.11.

.

8. GLOSSARY OF TERMS


RIVER REACH	A segment of water, upstream from sampling point to the next sampling point.
RIVER LENGTH	River distance in kilometres.
RIVER QUALITY OBJECTIVE	That NWC class, which protects the most sensitive use of the water.
95 percentiles	Maximum limits, which must be met for at least 95% of the time.
5 percentiles	Minimum limits, which must be met for at least 95% of the time.
	A standard test measuring the microbial uptake of oxygen - an estimate of organic pollution.
рн	A scale of acid to alkali.
UN-IONISED AMMONIA	Fraction of ammonia poisonous to fish, NH ³ .
SUSPENDED SOLIDS	Solids removed by filtration or centrifuge under specific conditions.
USER REFERENCE NUMBER	Reference number allocated to a sampling point.
INFERRED STRETCH	Segment of water, which is not monitored and whose water quality classification is assigned from the monitored reach upstream.

9. REFERENCES

Reference

- 9.1 National Water Council (1977). River Water Quality: The Next Stage. Review of Discharge Consent Conditions. London.
- 9.2 Water Act 1989 Section 117
- 9.3 Alabaster J. S. and Lloyd R. Water Quality Criteria for Freshwater Fish, 2nd edition, 1982. Butterworths.

6

Lizard Peninsula Streams & Helford Catchment River Quality Objectives

BASIC DETERMINAND ANALYTICAL SUITE FOR ALL CLASSIFIED RIVER SITES

pH as pH Units Conductivity at 20 C as uS/cm Water temperature (Cel) Oxygen dissolved % saturation Oxygen dissolved as mg/1 O Biochemical oxygen demand (5 day total ATU) as mg/1 O Total organic carbon as mg/1 C Nitrogen ammoniacal as mg/l NAmmonia un-ionised as mg/1 N Nitrate as mg/l N Nitrite as mg/l N Suspended solids at 105 C as mg/l Total hardness as mg/l CaCO3 Chloride as mg/l Cl Orthophosphate (total) as mg/1 P Silicate reactive dissolved as mg/l SiO2 Sulphate (dissolved) as mg/1 SO4 Sodium (total) as mg/l Na Potassium (total) as mg/1 K Magnesium (total) as mg/l Mg Calcium (total) as mg/l Ca Alkalinity as pH 4.5 as mg/l CaCO3

APPENDIX 10.

NWC RIVER QU	JALITY C	CLASSIFICATION SYSTEM				
River Class		Quality criteria		Remarks	Curren	nt potential uses
		Class limiting criteria (95 percenti	ile)			
IA Good Quality	<pre>(i) (ii) (iii) (iv) {v)</pre>	Dissolved oxygen saturation greater than 80% Biochemical oxygen demand not greater than 3 mg/l Ammonia not greater than 0.4 mg/l Where the water is abstracted for drinking water, it complies with requirements for A2* water Non-toxic to fish in EIFAC terms	(i) (ii)	Average BOD probably not greater than 1.5 mg/l Visible evidence of pollution should be absent	(i) (ii) (iii)	Water of high quality suitable for potable supply abstractions and for all abstractions Game or other high class fisheries High amenity value
18 Good Quality	(i) (ii) (iii) (iv) (v)	(or best estimates if EIFAC figures not available) DO greater than 60% saturation BOD not greater than 5 mg/1	(i) (ii) (iii) (iv)	greater than 0.5 mg/1 Visible evidence of pollution should be absent	nt	Water of less high quality than Class 1A but usable for substantially the same purposes
2 Fair Quality	(i) (ii) (iii)	DO greater than 40% saturation BOD not greater than 9 mg/l Where water is abstracted for drinking water it complies with	(i) (ii) (iii)	Average BOD probably not greater than 5 mg/l Similar to Class 2 of RPS Water not showing physical	(i) (ii)	Waters suitable for potable supply after advanced treatment Supporting reasonably good

- (111) where water is abstracted for drinking water it complies with the requirements for A3* water
- (iv) Non-toxic to fish in EIFAC terms (or best estimates if EIFAC figures not available)
- Similar to Class 2 of RPS
- (iii) Water not showing physical signs of pollution other than humic colouration and a little (iii) Koderate amenity value foaming below weirs
- treatment (ii) Supporting reasonably good
 - coarse fisheries

oor lity	(i) (ii) (iii)	DO greater than 10% saturation Not likely to be anaerobic BOD not greater than 17 mg/l.	Similar to Class 3 of RPS	Waters which are polluted to an extent that fish are absent only sporadically present.
		This may not apply if there is a high degree of re-aeration		May be used for low grade industrial abstraction purposes. Considerable potential for further use
				if cleaned up
Bad Dity		Waters which are inferior to Class 3 in terms of dissolved oxygen and likely to be anaerobic at times	Similar to Class 4 of RPS	Waters which are grossly polluted and are likely to cause nuisance
		DO greater than 10% saturation		Insignificant watercourses and ditches not usable, where
				the objective is simply to prevent nuisance developing

- (a) Under extreme weather conditions (eg flood, drought, freeze-up), or when dominated by plant growth, or by aquatic plant decay, rivers usually in Class 1, 2, and 3 may have BODs and dissolved oxygen levels, or ammonia content outside the stated levels for those Classes. When this occurs the cause should be stated along with analytical results. (b) The BOD determinations refer to 5 day carbonaceous BOD (ATU). Ammonia figures are expressed as NH4. **
- (c) In most instances the chemical classification given above will be suitable. However, the basis of the classification is restricted to a finite number of chemical determinands and there may be a few cases where the presence of a chemical substance other than those used in the classification markedly reduces the quality of the water. In such cases, the quality classification of the water should be down-graded on the basis of biota actually present, and the reasons stated. (d) EIFAC (European Inland Fisheries Advisory Commission) limits should be expressed as 95 percentile limits.

EC category A2 and A3 requirements are those specified in the EEC Council directive of 16 June 1975 concerning the Quality of Surface Water intended for Abstraction of Drinking Water in the Member State.

Ammonia Conversion Factors

(mg $NH_4/1$ to mg N/1)

Class	18	0.4 m	3 NH4/1	÷	0.31	ng	N/1
Class	1B	0.9 m	g NHe/1	=	0.70	ng	N/1
		0.5 B	NHe/T	:	0.39	89	N/1

NWC RIVER CLASSIFICATION SYSTEM

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR NON-METALLIC DETERMINANDS

River Quality Criteria

Class

1A Dissolved oxygen % saturation greater than 80% BOD (ATU) not greater than 3 mg/l O Total ammonia not greater than 0.31 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l

- 1B Dissolved oxygen % saturation greater than 60% BOD (ATU) not greater than 5 mg/l O Total ammonia not greater than 0.70 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 21.5 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
 - Dissolved oxygen & saturation greater than 40% BOD (ATU) not greater than 9 mg/l O Total ammonia not greater than 1.56 mg/l N Non-ionised ammonia not greater than 0.021 mg/l N Temperature not greater than 28 C pH greater than 5.0 and less than 9.0 Suspended solids not greater than 25 mg/l
 - 3 Dissolved oxygen % saturation greater than 10% BOD (ATU) not greater than 17 mg/l 0

Determinand

4 Dissolved oxygen % saturation not greater than 10% BOD (ATU) greater than 17 mg/1 0

STATISTICS USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION

5 percentile
95 percentile
95 percentile
95 percentile
95 percentile
5 percentile
95 percentile
, arithmetic mean

Statistic

NWC RIVER CLASSIFICATION SYSTEM

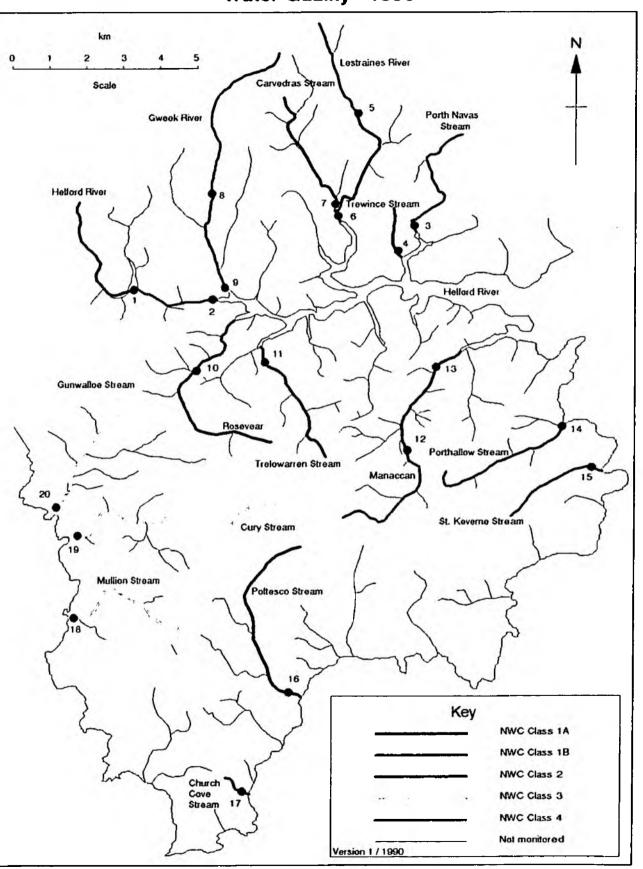
+

CRITERIA USED BY NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION FOR METALLIC DETERMINANDS

SOLUBLE COPPER

Total Hardness (mean) mg/l CaCO3	Statistic	Soluble Copper* ug/l Cu Class 1 Class 2
0 - 10	95 percentile	$\langle = 5 \rangle S$
10 - 50	95 percentile	<pre>< = 22 > 22</pre>
50 - 100	95 percentile	< = 40 > 40
100 - 300	95 percentile	<pre>< = 112 > 112</pre>

* Total copper is used for classification until sufficient data on soluble copper can be obtained.


TOTAL ZINC

Total Hardness (mean) mg/l CaCO3	Statistic	Total Zinc ug/l Zn Class 1 Class 2 Class 3
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 percentile 95 percentile 95 percentile 95 percentile	<pre>< = 30 < = 300 > 300 < = 200 < = 700 > 700 < = 300 < = 1000 > 1000 < = 500 < = 2000 > 2000</pre>

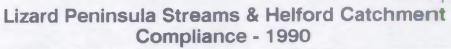
NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION CATCHMENT: HELFORD (21)

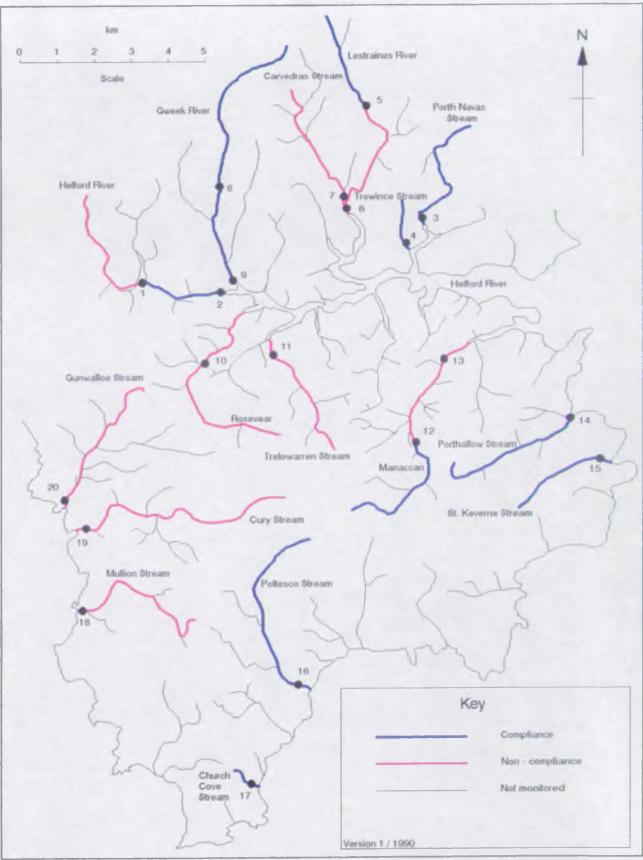
1990 Map	River	Reach upstream of	User	National	Reach	Distance	River	85	86	87	88	89	90
Position	1		Reference	Grid	Length	from	Quality	NWC	NWC	NHC	NWC	NHC	INKC
Number	i	i	Number	Reference	(km.)	source	Objective	Class	Class	Class	Class	Class	Class
	i	i	i	i		(km)	İ	İ	İ	i	i	İ	İ
	ļ			1		!			ļ	1	1		!
	1			1					1	 	r 	1 	i
1	HELPORD RIVER	MELLANGOOSE		SW 6835 2679		3.7	18	18	18	3	2	13	1 2
2	HELFORD RIVER	UPSTREAM OF GWEEK MILL	R19A005	SW 7039 2649	2.2	5.9	18	18	1B	3	3	3	18
3	PORTH NAVAS STREAM	ROSKELLAN BRIDGE	R19A001	SW 7575 2826	3.8	3.8	18	18	2	18	<u> 18</u>	<u>1</u> B	1B
4	TREWINCE STREAM	PORTH NAVAS BRIDGE	 R19A002	SW 7524 2775	1.4	1.4	18	2		2	18	18	1
5	LESTRAINES RIVER	EATHORNE BRIDGE		 SW 7418 3120	3.0	3.0	<u> </u>	<u> </u>	2	2	2	2	 1B
6	LESTRAINES RIVER	POLIHIEVERAL BRIDGE	•	SW 7369 2845	3.6	6.6	18	18	2	2	2	2	2
v	LESTRAINES RIVER	NORMAL TIDAL LIMIT (INPERRED STRETCH)			0.8	7.4	1B	18	2	2	2	2	2
	CARVEDRAS STREAM	PRIOR TO LESTRAINES RIVER		 SW 7374 2910	3.6	3.6	18				2	2	2
	Í		_ <u>i</u>	II		i	İ			!			<u></u>
	GWEEK RIVER	MERTHER-UNY MILL BRIDGE		SW 7041 2911	5.3	5.3	1B	18	18	3	2	3	18
9	GWEEK RIVER	GWEEK BRIDGE	R19A004	SW 7063 2675	2.7	8.0 	18	1B	1	2	18	2	18
10	ROSEVEAR RIVER	ROSEVEAR	R19A006	SW 6970 2451	4.2	4.2	18	<u>1</u> B	18	2	2	2	2
	ROSEVEAR RIVER	NORMAL TIDAL LIMIT (INFERRED STRETCH)			2.0	6.2	18	18	18	2	2	2	2
11	TRELOMARREN STREAM	TRELOWARREN MILL	R19A030	SW 7173 2483	4.5	4.5		i	i	- <u>1</u> B	3	3	2
	TRELOMARREN STREAM	NORMAL TIDAL LIMIT (INFERRED STRETCH)			0.1	4.6	1B			1B	3	3	2
12	MANACCAN RIVER	POLKANOGGO	R19A031	SW 7560 2224	4.0	4.0	18	2	2	3	3	3	18
13	MANACCAN RIVER	MANACCAN ROAD BRIDGE	R19A021	SW 7640 2468	3.0	j 7.0 j	1B	2	2	3	3	3	2
	MANACCAN RIVER	NORMAL TIDAL LIMIT (INPERRED STRETCH)			0.8	7.8	1B	2	2	3	3	3 [2
14	PORTHALLOW STREAM	PORTHALLOW	R19A032	SW 7970 2318	3.9	3.9		——¦	¦	- <u>2</u>	-2-1	2	18
	PORTHALLOW STREAM	MEAN HIGH WATER (INFERRED STRETCH)			0.1	4.0	18	ļ		2	2	2	18
15	ST REVERNE STREAM	PORTHOUSTOCK	R19A017	SW 8058 2181	2.9	2.9			<u> 1</u> B	2	2	18	18
	ST KEVERNE STREAM	(MEAN HIGH WATER (INFERRED STRETCH)	Ì		0.2	3.1	1B	18	1B	2	2	19	18
	POLTESCO RIVER	POLTESCO BRIDGE	R19A016	SW 7244 1568	5.9	5.9	<u> </u>	18	<u>–1</u> 8	¦	—i	ᅭ	18
4	POLTESCO RIVER	MEAN HIGH WATER (INFERRED STRETCH)			0.5	6.4	18	18	18			IN	18
	CHURCH COVE STREAM	UPSTREAM OF CHURCH COVE	R19A018	SW 7136 1285	0.7	0.7	<u> </u>	¦	¦	¦			18
i	CHURCH COVE STREAM	MEAN HIGH WATER (INFERRED STRETCH)			0.1	0.8	1B		ł	1			18
18	MULLION STREAM	UPSTREAM OF HARBOUR PORTH MELLIN	R19A012	SW 6679 1789	4.3	4.3	18	1B	18	¦	¦	3	3
	MULLION STREAM	MEAN HIGH WATER (INPERRED STRETCH)	Ì		0.1	4.4	18	1B	18	į	i	3	3
	CURY RIVER	UPSTREAM OF POLDHU BEACH	R19A011	SW 6668 2002	6.9	6.9		- <u>1</u> B	18	¦	——¦	3	3
l	CURY RIVER	MEAN HIGH WATER (INPERRED STRETCH)			0.2	7.1	18	1B j	18	i	İ	3	3
	GUNWALLOE STREAM	WINNLANTON PARM	R19A040	5W 6609 2070	4.3	4.3	18	18		¦:	¦	—-¦	3
	GUNWALLOE STREAM	MEAN HIGH WATER (INFERRED STRETCH)	1 1	i I	0.3	4.6	1B	18	1	Ì	Í	Í	3

Appendix 10.5

Lizard Peninsula Streams & Helford Catchment Water Quality - 1990

NOTIONAL RIVERS AUTHORITY - SOUTH WEST RELIEN 1990 RIVER WRIER QUALITY CLASSIFICATION CALCULATED DETERMINAND STRUISTICS USED FOR QUALITY ASSESSMENT CRICHMENT: HELFORD (21)


River	Reach upstreem of	User	90			Calcul	ated Det	econicar	d Statis	tics us	ed for Q	unlity i	loon of the	nt									
		Pef. Number	•	• -	Lower Skile		upper 95kile		erature 95kile	•	(%) 5%ile	•					Annonia 3 95kile	•	alids Meen		i Copper i 95kile	•	al Zinc s 95kile
HELFORD REVER	PELLANDOSE	R194029	2	IA I	6.8	Í IA	7.6	<u> </u>	15.6	<u>I</u> A	82.0	<u>1</u> A	2.9	2	1.345	<u> 1</u> A	0.010	14	11.3	I IA	34.8	14	42.8
HELFORD RIVER	LUPSIDREAM OF GREEK MILL	R19005	1B	AL	6 .9	AL	7.6	1A	16.2	118	79.8	18	4.8	118	0.438	17	0.010	17	19.4	AL I	16.5	1 1	41.5
PORTH NEWAS STREAM	ROSKELLAN BRIDGE	R190001	118	AL	6.8	AL	7.5	1	17.7	A I	83.2	118	3.4	1	0.273	A L	0.010	13	7.7	AL	8.5	1 1	18.5
THEMING STREAM	Rordh Navas Bridge	12194002	<u> </u>	<u> </u>	6.9	1A.	7.5	18	17.2	A L	82.4	7	2.6	1	0.1%	1 IA	0.010	17	6.0	AL	9.0	AL	69.5
LESURAINES RIVER	ERCHERNE BRODGE	TR190026	118	<u> </u>	6.7	IA I	7.5	1	17.3	18	78.4	1	2.2	1 1	0.258	1	0.010	1	7.9	1	5.0	1	54.1
LESTRAINES RIVER	RODNEVERAL ERIDOR	17194003	2	אנ ן	6.6	אנ ן	7.4	1A	16.3	113	73.1	118	3.1	2	1.144	I IA	0.010	1	8.1	2	50.4	17	18.8
CHRVEIRAS SINEAM	PRIOR TO LESIBAINES RIVER	F199027	2	1.	6. 9	1	7.7	AL	15.9	17	89.2	1	2.1	<u></u>	0.146	AL	0.010	14	4.9	2	70.7	A	13.0
GNEEK RIVER	MERGIER-UNY MILL BRIDGE	R194028	10	 	6.6	1 IA	7.4	1	15.1	18	80.0	1.	2.2	1	0.138	14	0.010	1.	5.4		15.7		66.7
GHEEK RIVER	GNEEK BRIDGE	R19A004		• - ·	6.7	18	7.3	AL I	15.2	1	81.6	18	3.4	μ.	0.301		0.010	14	12.1	14	11.8	JA.	59.0
ROSEVEAR RIVER	ROSEMEAR	7194006	2	11	7.0	IA	8.1	1	16.5	118	75.0	2	6.3	18	0.510	11	0.010	1	14.8	A L	9.0	<u></u>	35.5
TRELOWNER STREAM	TREACHANGEN MILL	0004601	2	AL	7.4	14	8.5	AL	16.7	(1A	82.2	2	8.2	118	0.391	1.	0.010	1	19.0	AL	8.7	14	16.0
MANACCAN RIVER	FOLIONO330	R198031	18	1A	7.6	1	8.2	1	16.2	1	85.0	18	3.7	18	0.457	1	0.020		11.7	1	5.0		13.0
MINICON RIVER	PRINCERN REND BRIDGE	pr194021	2	j 1A I	7.5	11	8.2	, 1A	16.7	j 1A	83.5	2	5.4	118	0.560	1	0.010	1X	13.5	AL I	8.8	1	18.2
FORTHALLON STREAM	FORDERLICON	18199032	18	1	7.0	<u> </u>]]) 	8.2	14	16.8	j 1A	85.4	118	3.9	18	0.354	AL	0.010	1 A	10.0	1A	23.0	14	23.6
ST REJERVE STORAM	FORMELERICK	7	118	17	6.7	AL	8.2	1.	16.8	118	74.0	18	3.3	118	0.383	1 14	0.010	AL	9.5	1	34.8	14	59.8
RULTESCO RIVER	FOLDESCO BRIDER	1199016	AL	AL	7.4	<u>i</u> la	8.4	1	16.6	1	80.8	17	2.3	AL	0.123	λί	0.010	λί	5.4	AL	11.3	14	37.5
CHURCH COVE STOREYM	UPSTREAM OF CHURCH COVE	R199018	18	11	7.7	AL	8.9	<u>م</u> ل	19.4		6 9.5	18	3.5	1	0.180	14	0.010	AL	24.9	<u>, 17</u>	. 4.0		71.0
MILLION STREM	UPSINERM OF HARBOUR FORTH MELLIN	17134012	3	AL I	7.8	<u> </u>	8.7	1A	15.9	<u> </u>	76.5	2	8.7	2	1.322	3	0.040	AL	6.6	41	40.3	18	48.0
oury river	UPSTREAM OF FOLLIN HEACH	18134011	3	1A	7.2	AL	8.3	<u>م</u> ر	17.6	3	13.2	1 138	3.7	2	0.931	14	0.018	18	3.7	<u></u>	8.0	1	42.8
GINNNILCE STREAM	MINUARICH FARM	1719040	3	1A	6.9	1A	7.6	4	17.8	3	13.1	 1B	4.0	1	0.179	1	0.010		9.3	<u>1</u> A	6.0	1 A	84.0


.

Appendix 10.7

....

Appendix 10.8

NRITORAL RIVERS ANTHORITY - SOUTH WEST REGION 1990 RIVER WHER QUALITY CLASSIFICATION NUMBER OF SAMPLES (N) AND NUMBER OF SAMPLES EXCERING QUALITY SUMOND (F) CRIGMENT: HELFORD (21)

River	Reach upstreem of	User Ref.	th r	CMEX	prH∪ 	tper	Temper	ature		(\$)	BCD (ATU)	Total .	anonia	Union.	Ameria	5.90	lids	Total	Opper	Total	l Zinc
		Number 	N	r	N 	F	N	r	N 	r	11 	۲	N 	r	N	r	N	r	N	r	N.,	۲
HELFORD RIVER	MELLANGCOSE	R19#029	20	_	20	_	20		20	_	20		20	1	20	-	20	2	20		20	-
HELFORD RIVER	(nezhezh) or, gnezk mitt 	R0.9A005	28	-	28 	-	27	-	27 	-	28	1	28	-	27	-	28	3	24	-	24	1
PORTH NEWAS STREAM	ROSKELLAN BRIDE	R194001	28	-	28	-	27	-	27	-	28	-	28	-	27 		28	2	24	-	24	-
TREMINCE STREAM	PORTH NEEDER	R194002	28	-	, 28	-	27	_	27	-	28	-	28	-	27	-	28	1	24	-	24	-
LESIDRAINES RIVER	EROLINE HOLE	100000	23	-	23		23	_	23	_	23	_	23	-	20	-	23	2	20	-	20	-
LESIRAINES RIVER	RIDHEVERAL BRIDGE	R194003		-	27	-	26	-	25	-	27	-	27	2	26	-	Z 1	1	23	7	23	-
CARVELROS STREAM	FRICE TO LESIDEALINES RIVER	R19027	23	-	23	-	22	-	22	-	23	-	23	-	20	-	23	1	20	10	20	-
GAEZK RIVER	MERCHER-UNY MILL BRIDGE	R19A028	23	-	23		23	_	23	_	23	-	23	-	23	-	23	1	20	-	20	-
GWEEK RIVER	(CHEEX BRIDGE	R19004		-	28	-	77	-	27	-	28	-	28	-	27	÷22	28	2	24	-	24	-
ROSEVEAR RIVER	ROSEVEAR	(R19006)	28	_	28		27	-	27	_	28	2	28	-	27	-	28	2	24	-	24	-
TRELOWNER STREPP	THEICHNEREN MILL.	[R199030]	25	-	25	-	25	-	25	-	25	1	1 25	-	24		25	3	22	-	22	-
MANACCAN RIVER	POLINICICO	R194031	20	-	20	-	19	-	20		20	-	20	_	19	-	20	2	19	_	19	_
MANACCAN RIVER	MANACCAN ROAD BRIDDE	F19021		-	29	-	28	-	28	-	29	2	1 29	1	27	-	29	3	1 25	-	25	-
FORTHALLOW STREAM	FORTHALLOW	[R19032]	27	-	27	•	27	-	27	-	27	-	27	-	26		27	2			27	
ST REMERKE SUBRIM	FORTHOUSIDOCK	pri 90017	28	-	28	-	1 28 1	-	28	-	28	-	28	-	28	1.21	28	3	27		27	-
FOLTESID RIVER	POLIZESCO HRIDOR	18198016	34	-	34	-	34	-	34	-	34	-	34	-	3 4		34	1	33	•	33	
CHERCH COVE STREAM	UPSEREZHI OF CHERCH COVE	[R199018]	20	2.4	20	. 7	20	-	20	-	19	-	20	-	20	-	20	3	12	-	12	-
MILLION STOREN	UPSINERM OF INVECTOR FORTH MELLIN	R19012	24	-	24	-	24	-	24	-	24	2	24	2	23	2	24	1	24	-	24	-
CLEY RIVER	UPSTREAM OP FOLDHU BEACH	R199011	25	-	25	-	25	-	1 25	18	2	-	25	2	1 24	101	25	-	23	-	23	-
GUNNALCE STREAM	MINNIARIEN FARM	R192040	20	-	20	-	20	-	20	16	19	-	20	-	20	-	20	2	12	-	12	-

÷

.

Appendix 10.9

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION 1990 RIVER WATER QUALITY CLASSIFICATION PERCENTAGE EXCEEDENCE OF DETERMINAND STATISTICS FROM QUALITY STANDARDS CATCHMENT: HELFORD (21)

River	Reach upstream of	USOT PERCENTAGE EXCEEDENCE OF STATISTIC FROM QUALITY STANDARD													
			pH Lower	 pH Upper 	 Temperature 	DO (%)	BOD (ATU) 	Total Ammonia	 Un-ionised Ammonia 	 Suspended Solids 	Total Copper	Total Zinc			
	i i											i 1•			
HELFORD RIVER	MELLANGOOSE	R19A029		-	i - i		-	92	i	-		-			
HELFORD RIVER	UPSTREAM OF GWEEK MILL	R19AD05	-	-		-	-	-	-	-	- ê	-			
PORTH NAVAS STREAM	ROSKELLAN BRIDGE	R19A001		i -	-	-	i - i	-	-	-	18-1 1	i –			
TREWINCE STREAM	PORTH NAVAS BRIDGE	R19A002	(2 11)	-	-	- ÷	-	-	-	-	•	-			
LESTRAINES RIVER	EATHORNE BRIDGE	R19A026	-	-	¦¦	-						-			
LESTRAINES RIVER	POLMHEVERAL BRIDGE	R19A003	-	i -	-	-	-	63	-	<->	129	-			
CARVEDRAS STREAM	PRIOR TO LESTRAINES RIVER	R19A027		i –			- 1			-	77	-			
GWEEK RIVER	MERTHER-UNY MILL BRIDGE	R19A028	-	· — ·	·¦¦	-			ii	-		-			
GWEEK RIVER	GWEEK BRIDGE	R19A004	_	-	-	· · · ·	-	-	-	-	-	-			
ROSEVEAR RIVER	ROSEVEAR	R19A006		-	-	-	26		-	-		-			
TRELOWARREN STREAM	TRELOWARREN MILL	R19A030				_	64	-	-		-				
MANACCAN RIVER	POLKANOGGO	R19A031													
MANACCAN RIVER	MANACCAN ROAD BRIDGE	R19A021		-	-	-	7	-	-	-	-	1.00			
PORTHALLOW STREAM	PORTHALLOW	R19A032	-		-	-	- 1		-	-	-	-			
ST KEVERNE STREAM	PORTHOUSTOCK	R19A017	-	-	-	-		-							
POLTESCO RIVER	POLTESCO BRIDGE	R19A016	-	-	-	-	-		-	-	-	-			
CHURCH COVE STREAM	UPSTREAM OF CHURCH COVE	R19A018							-						
ULLION STREAM	UPSTREAM OF HARBOUR PORTH MELLIN	R19A012			-	-	73	89	90	-					
URY RIVER	UPSTREAM OF POLDHU BEACH	R19A011	-	-		78	-	33							
SUNWALLOE STREAM	WINNIANTON FARM	R19A040	-			78				<u> </u>	<u> </u>				

NATIONAL RIVERS AUTHORITY - SOUTH WEST REGION IDENTIFICATION OF POSSIBLE CAUSES OF NON-COMPLIANCE WITH RQO CATCHMENT: HELFORD (21)

.

990 Map	River	Reach upstream of	User	Reach	Possible causes of non-compliance
osition.		I	Reference	Length	i -
Number		ļ	Number	(kaa)	1
			!		
			!		
			! [1
1	HELFORD RIVER	MELLANGOOSE	R19A029	3.7	LAND RUN-OFF, FARMING ACTIVITIES
			II		l
6	LESTRAINES RIVER	POLMHEVERAL BRIDGE	R19A003	3.6	LAND RUN-OFF, UP-STREAM TRIBUTARY OF POOR QUALITY, MINING
	CARVEDRAS STREAM	PRIOR TO LESTRAINES RIVER	 	3.6	MINING, CATCHMENT GEOLOGY
•				3.0	
10	ROSEVEAR RIVER	ROSEVEAR	R19A006	4.2	LAND RUN-OFF, FARMING ACTIVITIES
		!	JI		l
11	TRELOMARREN STREAM	TRELOWARREN MILL	R19A030	4.5	LAND RUN-OFF, FARMING ACTIVITIES, WASTE DISPOSAL SITE
13	MANACCAN RIVER	MANACCAN ROAD BRIDGE	R19A021	3.0	LAND RUN-OFF, FARMING ACTIVITIES
				5.0	
18	MULLION STREAM	UPSTREAM OF HARBOUR PORTH MELL	R19A012	4.3	LAND RUN-OFF, SEWAGE TREATMENT WORKS
			ii		
19	CURY RIVER	UPSTREAM OF POLDHU BEACH	R19A011	6.9	LAND RUN-OFF, EUTROPHICATION
20	GUNWALLOE STREAM	WIRNLANTON FARM	R19A040	4.3	EUTROPHICATION