
Annex to Draft Final Report

R & D Project 128

Groundwater Storage in British Aquifers: Chalk

British Geological Survey Hydrogeology Group July 1992 R & D 128/5/A

APPENDIX A VOLUME OF WATER STORED IN A MULTILAYERED AQUIFER: Definition and mathematical formulae.

A.1 Introduction

The volume of water in an aquifer can be roughly estimated as the product of the saturated volume and an average storage coefficient. To improve such an estimate the heterogeneity of the rock and the accompanying variations in storage coefficient need to be taken into account. Another complication is that of the elastic storage. The amount of water that a given volume of rock can give up from elastic storage, unlike drainable porosity, is not an intrinsic function of the rock but depends on the initial and final pressures that pertain in the rock. Elastic storage is important under confined conditions but becomes relatively unimportant if conditions change from confined to unconfined.

Because of such complexities a well-founded theory of storage that can be interpreted in a consistent manner for computational purposes must be established, and that is the aim of this appendix. The starting point must be a clear definition of the amount of water stored in a saturated volume of rock.

A.2 Definition of Stored Volume

The following, somewhat restrictive, definition of storage has been adopted:

The amount of water stored in an aquifer is the volume of water that would have to be removed in order to reduce the pressure to atmospheric pressure throughout.

For an unconfined aquifer, the definition corresponds to the water table being lowered to the base of the aquifer. For confined aquifers, however, the removal of water can in reality reduce the pressure below atmospheric pressure, and the definition is *restrictive* in the sense that such a condition is not permitted; a more general definition does not seem possible because of the complexities of the drainage process.

Implicit in the definition is the assumption that the aquifer can drain - otherwise hydrostatic pressures would not allow a uniform atmospheric pressure. For an initially confined aquifer, air must be able to enter at atmospheric pressure once the potentiometric surface drops to the upper surface of the aquifer.

If the base of the aquifer is permeable and the underlying rock has some storage capacity then the definition is incorrect in the sense that elastic storage from that underlying layer will be included. Therefore the definition must assume an impermeable base to the aquifer or, equivalently, that the aquifer must be taken to extend to such a base.

In the same way both elastic storage and drainable porosity (specific yield) of any overlying rock will contribute if the potentiometric surface is initially in that rock. However, the definition implies that regions above the potentiometric surface cannot contribute extractable water. Because of delayed drainage, it must therefore be envisaged that the lowering of the potentiometric surface - implied in the definition - occurs very slowly.

R&D 128/5/A

The storage between any two levels (for example, maximum and minimum water levels) is, on the basis of the above definition, simply the difference in total aquifer storage between the two cases with the potentiometric surface at those levels.

Since water is compressible, the volume removed will depend on the pressure at which the volume is measured. It is natural to take that pressure to be atmospheric pressure.

A.3 Formulae for the Stored Volume

Consider a system with N horizontal layers with different storage parameters for each layer (Figure A1). The total volume of water stored when the potentiometric surface is at elevation z is given by

$$V = A \sum_{i=1}^{N} (\lambda_i S_{yi} + \alpha_i S_{si})$$
(1)

where

V = volume of water stored [L³],

 $A = \text{area of the system } [L^2],$

 S_{yi} = specific yield of layer *i* [-],

 S_{si} = specific storage of layer *i* [L⁴],

 $\lambda_i = \text{length coefficient [L]},$

and

 α_i = area coefficient [L²].

The two coefficients, λ_i and α_i , are functions of the layer elevations, z_1 to z_N , and the elevation of the potentiometric surface, z:

$$\lambda_{i} = P(z - z_{i}) - P(z - z_{i+1})$$
(2)

$$\alpha_{i} = \frac{1}{2} [P^{2}(z - z_{i}) - P^{2}(z - z_{i+1})]$$
(3)

where P(x) = (|x|+x)/2 is the 'positive-value' function. It is assumed in (2) and (3) that $z_i \le z_{i+1}$ and $z_1 \le z < z_{N+1}$: the potentiometric surface is no higher than the upper layer.

R&D 128/5/A

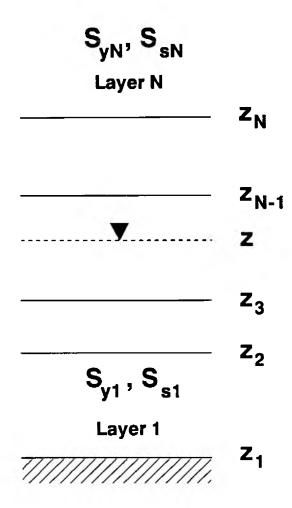


Figure A1. Notation for the calculation of storage in a multilayered system.

A.4 Mathematical Derivation

Given here is an outline derivation of the above formulae.

We start by considering the more general case where the storage properties vary continuously with elevation, ξ . When the potentiometric surface is at elevation ξ the storage coefficient, including both drainable and elastic storage, is given by

$$S(\zeta) = S_{y}(\zeta) + \int_{z_{1}}^{\zeta} S_{s}(u) du$$
(4)

where the integral is taken from the base of the aquifer. It is implicit in this equation that there is no contribution of water from above the potentiometric surface.

R&D 128/5/A

A-3

That means that if the potentiometric surface were to drop from $\zeta + \Delta \zeta$ (where $\Delta \zeta$ is small) to ζ , the volume, ΔV , released over area A would be $AS(\zeta)\Delta \zeta$. Therefore, according to the operational definition given earlier, the total volume stored between elevations z_1 and z must be given by

$$V(z) = A \int_{z_1}^{z} S(\zeta) d\zeta$$
(5)

For the multilayered system depicted in Figure A1, the continuous storage parameters can be expressed in terms of piecewise constant functions:

$$S_{y}(\zeta) = \sum_{i=1}^{N} H(z_{i}, z_{i+1}, \zeta) S_{yi}$$
(6)

$$S_{s}(\xi) = \sum_{i=1}^{N} H(z_{i}, z_{i+1}, \xi) S_{si}$$
(7)

where H(a, b, x) is the 'top-hat' function which has value unity for $a \le x \le b$ and value zero otherwise. Inserting these expressions into (4) and performing the integral gives

$$S(\zeta) = \sum_{i=1}^{N} \{H(z_i, z_{i+1}, \zeta) S_{yi} + [P(z - z_i) - P(z - z_{i+1})] S_{si}\}$$
(8)

where P(x) is the positive-value function (defined earlier).

Inserting this storage coefficient into (5) and performing the integral gives the required result of (1) with the coefficients given by (2) and (3).

A.5 Notes

a. Generally, the layer elevations and the water table will vary across a region; then, in order to find the total stored volume, V^{tot} , Equation (1) needs to be integrated across the region. Normally that will involve sub-dividing the region into, M, small regions (probably on a grid) within each of which the elevations are assumed constant. Then the stored volume is the sum of volumes of the individual sub-regions:

$$V^{tot} = A^{tot} \sum_{i=1}^{N} \left(\lambda_i^{tot} S_{yi} + \alpha_i^{tot} S_{si} \right)$$
(9)

where

R&D 128/5/A

$$\lambda_i^{tot} = \sum_{j=1}^{M} \frac{A_j \lambda_{ij}}{A^{tot}}$$
(10)

$$\alpha_i^{tot} = \sum_{j=1}^M \frac{A_j \alpha_{ij}}{A_{tot}} \tag{11}$$

b. In the actual Chalk computations, the results recorded were the total coefficients in (9) applying to each storage coefficient:

 $A^{tot}\lambda_i^{tot} = A\sum_{j=1}^M \lambda_{ij} \qquad [L^3]$ (12)

and

$$A^{tot}\alpha_i^{tot} = A\sum_{j=1}^M \alpha_{ij} \qquad [L^4]$$
(13)

where the areas of the grid squares, $A = A_{i}$, were identical.

c. Artesian conditions with the potentiometric surface above ground level could be included in the above analysis by assigning z_N to the ground surface and zero storage parameters to the upper layer.

d. A non-draining confining layer can be included by setting the specific storage to zero but equating the specific yield to the product of the layer thickness and the (actual) specific storage. However, note the previously mentioned assumption of free air entry, implicit in (4) and (8), which stops any water being obtained from a given layer once the water table (or potentiometric surface) has dropped into the layer below.

e. Specific yields are often derived from pumping tests. Rarely in the analysis of such tests is an attempt made to separate elastic storage from drainable porosity, so the derived *specific yield* will include the specific storage, and therefore represents the storage coefficient - as expressed in (4).

R&D 128/5/A

APPENDIX B CONDITIONS AND CONSTRAINTS ON VOLUME CALCULATIONS

Details of surfaces used in volume calculations appear in Section 4. In this appendix conditions and constraints on these and other surfaces that are written into the volume calculation code are listed. These are not always realistic but were included to ensure that no errors in interpolation had occurred. Checks are given in the order they appear in the code.

Α		В
Base of Middle Chalk	<	Top of Chalk
Base of Lower Chalk	<	Top of Chalk
Base of Middle Chalk	>	Base of Lower Chalk
Top of Chalk - 10 metres	>	Base of Lower Chalk
Top of Chalk - 30 metres	>	Base of Lower Chalk
Base of Middle Chalk + 40 metres	<	Top of Chalk
Maximum groundwater level	<	Top of Chalk#
Minimum groundwater level	<	Top of Chalk#
Lower constraining plane*	<	Top of Chalk
Maximum groundwater level	>	Base of Lower Chalk
Minimum groundwater level	>	Base of Lower Chalk
Lower constraining plane*	>	Base of Lower Chalk
Maximum groundwater level	>	Lower constraining plane*
Minimum groundwater level	>	Lower constraining plane*

- Refers to the gauging station level for the Itchen and Kennet catchments and * to Ordnance Datum when that is a constraint in volume calculations for the whole of the Chalk.
- Applies in unconfined Chalk. #

Where any of the above conditions or constraints are broken the value on the grid node of the surface in Column A will be set to that of the surface in Column B.

R&D 128/5/A

APPENDIX C COMPUTING PROBLEMS

C.1 Introduction

This Appendix discusses problems specific to the computing requirements of the project. The majority of complications resulted from the very large data sets required to produce the interpolated Chalk and groundwater surfaces for the volume calculations.

C.2 Production of Top of Chalk contours

The top of Chalk surface at outcrop was created using digitised Ordnance Survey topographic contours. The pseudo-scattered data was input along with the borehole data for the covered Chalk into the interpolation package. The size of the files containing the topographic data were initially too large for the software to handle. One possible approach to avoid the problem was to divide the Chalk into sub-areas that could be processed individually; however this would result in mismatching at the boundaries between the sub-areas. Therefore it was decided to invest a substantial amount of time in reducing the data files to a manageable size.

C.3 Transfer of files and execution of code

The contouring packages used (SURFER and ISM) did not have the capability to produce the volumes of saturated chalk required, as to identify the storage values used in the calculations on each node conditional statements were needed. The only practical way of including these conditions was the use of a FORTRAN code. The code required, as input, grid files in ASCII rather than the compact binary format used by the packages.

For such a large grid with its relatively small spacing the size of each ASCII file for the whole of the Chalk was over 3.5 megabytes. The smaller files for the Itchen and Kennet catchments were over 1 megabyte in size; the files totalling over 60 in number. The transfer of these files between a PC and remote mainframe computer was a time-consuming exercise, but was necessary as the catchment interpolation work was carried out on PCs which did not have sufficient memory to run the volume calculation code. Therefore the code had to be run on the IBM mainframe at Wallingford.

After the code was debugged, compiled and running there was reticence, due to its complexity, to repeat the exercise on the mainframe VAX at Keyworth where the work on the whole Chalk had been carried out. Therefore the grid files for the whole of the Chalk had to be transferred down to Wallingford.

C.4 Output data management and error checks

The output from the IBM was large due to the range of storage values and the number of catchments involved. Management of the resulting calculations and the error checks produced was also a time and space-consuming process.

R&D 128/5/A

C.1

APPENDIX D TABLES OF GROUNDWATER VOLUMES

D.1 Introduction

The tables presented in this appendix contain the volumes of water calculated from the rock volumes between various levels and the values of specific yield and specific storage given in Table 6.3 of the main report. Each table presents volumes of water stored between the base of chalk and two water levels and between the base of chalk and a datum or gauge level; also presented are the differences between these three storages.

A summary of the most important results is given in Table 8.2 of the main report.

D.2 Explanation of the Tables

- 1. Volumes are given to only two significant figures.
- 2. 'Catchment numbers' were used during computation and are of no general interest.
- 3. Kennet 1989 results are not presented because of a particular data processing problem yet to be dealt with.
- 4. NRA regions were defined for current purposes of consisting of the following catchment numbers:-

Yorks = 26 + 27Anglian = 29 + 30 + 33 + 34 + 35 + 36 + 37Thames = 38 + 39Southern = 40 + 41 + 42Wessex = 43 + 44 + 53

5. There is some repetition and redundancy in the tables, reflecting the order and groupings of computations.

D.3 Index to Tables

The groundwater volume tables are presented in a somewhat arbitrary order, therefore the following four tables of table numbers are provided as an aid to finding any particular set of results quickly.

R&D 128/5/A

Hydrometric Area	1975max- 1976min	1976min- 1976min-10m.	1988 max- 1990min	1990min- 1990min-10m
Total	1	24	47	70
26	2	25	. 48	71
27	3	26	49	72
29	4	27	50	73
30	5	28	51	74
33	6	29	52	75
34	7	30	53	76
35	8	31	54	77
36	9	32	55	78
37	10	33	56	89
38	11	34	57	80
39	12	35	58	81
40	13	36	59	82
41	14	37	60	83
42	15	38	61	84
43	16	39	62	85
44	17	40	63	86
53	18	41	64	87

TABLE 0.1 Table numbers: UK Hydrometric Areas

TABLE 0.2 Table numbers: NRA Regions

NRA Region	1975max- 1976min	1976min- 1976min-10m.	1988max- 1990min	1990min- 1990min-10m
Yorks	19	42	65	88
Anglian	20	43	66	89
Thames	21	44	67	90
Southern	22	45	68	91
Wessex	23	46	69	92

•

٢

-

•

•

•

Sub- Catchment	1975	1976.	1988	1989
Candover	93	97	101	105
Alre	94	98	102	106
Cheriton	95	99	103	107
Highbridge	96	100	104	108

TABLE 0.3 Table numbers: Itchen (Gauging stations)

TABLE 0.4 Table numbers: Kennet (Gauging stations)

Sub- Catchment	1975	1976.	1988	1989
Lambourn	109	113	116	_
Dun	110	114	118	_
Knighton	111	115	119	_
Theale	112	116	120	-

R&D 128/5/A

....

Ċ.

•

-

•

D-3

TABLE 1.VOLUMES OF GROUNDWATERYears: 1975-76.UK Total

UK Hydrometric Areas. Control WL = 1975max. Start = 1975 max. End = 1976 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 0

				ег	Cov	lk	Cha	tal	To
	Storage Interval		Vmax	Vanin	Vmax	Vmin	Vmax	Vmin	
Chall	Base of	-	Start WL	69000	7600	33000	24000	100000	31000
Chall	Base of	-	End WL	67000	7300	32000	23000	99000	30000
Chalk	Base of	-	Datum	0	0	0	0	0	0
	Datum	-	Start WL	69000	7600	33000	24000	100000	31000
	Datum	-	End WL	67000	7300	32000	23000	99000	30000
	End WL	-	Start WL	2400	270	1100	620	3500	890

TABLE 2.VOLUMES OF GROUNDWATERYears: 1975-76.Hydrometric Area: 26

UK Hydrometric Areas. Control WL = 1975max. Start = 1975 max. End = 1976 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 1

				er	Cove	lk	Cha	al	Tot	
	erval	Storage Interval		Vmax	Vmín	Vmax	Vmin	Vmax	Vmin	
Chall	Base of	-	Start WL	1400	250	2200	1800	3700	2000	
Chall	Base of	-	End WL	1400	240	2200	1700	3600	2000	
Chali	Base of	-	Datum	0	0	0	0	0	0	
	Datum	-	Start WL	1400	250	-2200	1800	3700	2000	
	Datum	-	End WL	1400	240	2200	1700	3600	2000	
	End WL	-	Start WL	53	9.6	38	20	91	30	

.

Contribution to total 'Start-End' from elastic storage: 45% (min.) and 25% (max.).

TABLE 3. VOLUMES OF GROUNDWATER Years: 1975-76. Hydrometric Area: 27

.

Total		Chall	k	Cov	er			
Vmin	Vmax	Vmin	Vmax	Vmin	in Vmax	Storage Interval		erval
25	32	25	32	0	0	Start WL	-	Base of Chali
24	31	24	31	0	0	End WL	-	Base of Chall
0	0	0	0	0	0	Datum	-	Base of Chall
25	32	25	32	0	0	Start WL	-	Datum
24	31	24	31	0	0	End VL	-	Datum
.70	.88	.70	.88	0	0	Start WL		End WL

TABLE 4.VOLUMES OF GROUNDWATERYears: 1975-76.Hydrometric Area: 29

UK Hydrometric Areas. Control WL = 1975max. Start = 1975 max. End = 1976 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 3

				er	Cov	k	Chal	el	Tot
	Storage Interval		Vmax	Vmin	Vmax	Vmin	Vmax	Vmin	
of Chalk	- Base of		Start WL	800	150	410	220	1200	370
of Chalk	- Base of	-	End VL	700	130	390	220	1100	340
of Chall	- Base of	-	Datum	0	0	0	0	0	0
•	- Datum	-	Start WL	800	150	410	220	1200	370
1	- Datum	-	End VL	700	130	390	220	1100	340
L	End WL		Start WL	99	17	19	8.7	120	26
		79 /	min.) and 231	218 /			'Start-End		

TABLE 5.VOLUMES OF GROUNDWATERYears: 1975-76.Hydrometric Area: 30

UK Hydrometric Areas. Control WL = 1975max. Start = 1975 max. End = 1976 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 4

Total		Chalk	:	Cover				
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storage Interval		erval
.59	4.0	.36	.58	.23	3.4	Start WL		Base of Chalk
.12	2.1	.01	.01	.11	2.1	End WL		Base of Chall
0	0	0	0	0	0	Datum	-	Base of Chall
.59	4.0	.36	.58	.23	3.4	Start WL		Datum
.12	2.1	.01	.01	.11	2.1	End WL	•	Datum
.48	1.9	.36	.57	.12	1.3	Start WL	•	End WL
ontribution	to total	'Start-End'	from elas	tic storage	: 3% (n	in.) and 469	(max	.).

TABLE 6. VOLUMES OF GROUNDWATER Years: 1975-76. Hydrometric Area: 33

				er	Cov	l k	Cha	əl	🗌 Tot
	Storage Interval		Vmin Vmax	Vmin	Vmax	Vmin	Vmax	Vmin	
Chall	Base of	-	Start WL	340	65	2000	1200	2300	1200
Chali	Base of	-	End WL	270	53	1800	1100	2100	1100
Chal	Base of	-	Datum	0	0	0	0	0	0
	Datum	-	Start WL	340	65	2000	1200	2300	1200
	Datum	-	End WL	270	53	1800	1100	2100	1100
	End WL	-	Start WL	61	12	170	83	230	9 5

TABLE 7.VOLUMES OF GROUNDWATERYears: 1975-76.Hydrometric Area: 34

UK Hydrometric Areas. Control WL = 1975max. Start = 1975 max. End = 1976 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 6

			er	Cov	lk	Cha	ы	Tota
nterval	Storage Interval		Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
- Base of Chalk	-	Start WL	4300	650	5300	4000	9500	4700
 Base of Chalk 	•	End VL	3900	610	5200	4000	9200	4600
 Base of Chalk 	•	Datum	0	0	0	0	0	0
- Datum	-	Start WL	4300	650	5300	4000	9500	4700
- Datum	-	End WL	3900	610	5200	4000	9200	4600
- End VL	-	Start WL	310	44	75	47	380	91

TABLE 8. VOLUMES OF GROUNDWATER Years: 1975-76. Hydrometric Area: 35

UK Hydrometric Areas. Control WL = 1975max. Start = 1975 max. End = 1976 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 7

				Cover		Chalk		Total	
ι	Inte	Storage	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin	
se of Chalk	-	Start WL	1400	220	1700	1300	3100	1500	
se of Chalk	-	End WL	1300	210	1700	1300	3000	1500	
se of Chalk	-	Datum	0	0	0	0	0	0	
tum	-	Start WL	1400	220	1700	1300 -	3100	1500	
tum	-	End WL	1300	210	1700	1300	3000	1500	
d WL	-	Start WL	52	8.1	23	14	75	22	

Contribution to total 'Start-End' from elastic storage: 24% (min.) and 24% (max.).

TABLE 9.VOLUMES OF GROUNDWATERYears: 1975-76.Hydrometric Area: 36

UK Hydrometric Areas. Control WL = 1975max. Start = 1975 max. End = 1976 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 8

Tota	al	Cha	lk	Cov	er			
min	Vmax	Vmin	Vmax	Vmin	Vmax	Storag	erval	
910	2000	770	1100	140	830	Start WL		Base of Chalk
880	1800	760	1100	120	720	End WL	-	Base of Chall
0	0	0	0	0	0	Datum		Base of Chall
910	2000	770	1100	140	830	Start WL		Datum
880	1800	760	1100	120	720	End WL	-	Datum
33	130	16	24	17	110	Start WL		End VL

R&D 128/5/A

.

TABLE 10.VOLUMES OF GROUNDWATERYears: 1975-76.Hydrometric Area: 37

UK Hydrometric Areas. Control WL = 1975max. Start = 1975 max. End = 1976 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 9

		Cover		lk	Cha	al	Tota
e Interval	Storage In	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
- Base of Chal	Start WL -	5700	630	2400	1700	8100	2300
 Base of Chal 	End WL -	5400	600	2400	1700	7700	2200
 Base of Chal 	Datum -	0	0	0	0	0	0
- Datum	Start WL -	5700	630	2400	1700	8100	2300
- Datum	End WL -	5400	600	2400	1700	7700	2200
- End WL	Start WL -	350	37	16	14	370	52

TABLE 11.VOLUMES OF GROUNDWATERYears: 1975-76.Hydrometric Area: 38

UK Hydrometric Areas. Control WL = 1975max. Start = 1975 max. End = 1976 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 10

				Cover		Chalk		Total	
	rval	je Inte	Storag	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
Chalk	Base of	-	Start WL	1500	110	1300	760	2800	870
Chalk	Base of	-	End WL	1400	95	1200	720	2500	810
Chalk	Base of	-	Datum	0	0	0	0	0	0
	Datum		Start WL	1500	110	1300	760	2800	870
	Datum	-	End WL	1400	95	1200	720	2500	810
	End WL	-	Start WL	190	11	94	46	280	57

Contribution to total 'Start-End' from elastic storage: 24% (min.) and 65% (max.).

TABLE 12.VOLUMES OF GROUNDWATERYears: 1975-76.Hydrometric Area: 39

UK Hydrometric Areas. Control WL = 1975max. Start = 1975 max. End = 1976 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 11

Vmin	tal Vmax	Chalk Vmin Vmax		Cov Vmin	Vmax	Stora	arval	
VILLI	AURY	A14111	Alling V	Attracti	A PHA	acoraș	je mu	C1 VQ L
4300	16000	3200	4800	1100	11000	Start WL	-	Base of Chall
4100	15000	3100	4500	1000	10000	End WL	-	Base of Chall
0	0	0	0	0	0	Datum	-	Base of Chall
4300	16000	3200	4800	1100	11000	Start WL	-	Datum
4100	15000	3100	4500	1000	10000	End VL	-	Datum
280	1300	180	310	97	97 0	Start WL	-	End WL

D-7

TABLE 13.VOLUMES OF GROUNDWATERYears: 1975-76.Hydrometric Area: 40

UK Hydrometric Areas. Control WL = 1975max. Start = 1975 max. End = 1976 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 12

Tot	al	Cha	lk	Cover					
Vmin	Vmax	Vmin	Vmax	Vmin	Vmin Vmax		Storage Interv		
950	2000	810	1200	130	800	Start WL		Base of Chalk	
910	2000	790	1200	130	770	End VL	•	Base of Chalk	
0	0	Ð	0	0	0	Datum	-	Base of Chalk	
950	2000	810	1200	130	800	Start WL	-	Datum	
910	2000	790	1200	130	770	End WL	-	Datum	
33	82	27	45	6.0	38	Start WL	-	End WL	
ontributi	<u></u>	(Stast-Fr	di from al	estic storag	- /37 /	min.) and 443	V (may	<u></u>	

TABLE 14. VOLUMES OF GROUNDWATER Years: 1975-76. Hydrometric Area: 41

UK Hydrometric Areas. Control WL = 1975max. Start = 1975 max. End = 1976 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 13

					Caver		Chalk		Total	
		Storage Interval			Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
Chall	e of	8ase	-	Start WL	180	18	1200	900	1400	920
Chall	e of	Base	•	End WL	160	16	1200	860	1300	880
Chall	e of	Base	-	Datum	0	0	0	Û	0	0
	um	Datu	-	Start WL	180	18	1200	, 900	1400	920
	um	Datu	-	End WL	160	16	1200	860	1300	880
	WL	End 1	-	Start WL	17	1.7	53	35	70	37

Contribution to total 'Start-End' from elastic storage: 57% (min.) and 51% (max.).

TABLE 15.VOLUMES OF GROUNDWATERYears: 1975-76.Hydrometric Area: 42

To	tal	Cha	ilk	Co	ver			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storag	Storage Inte	
7300	37000	4100	5100	3200	32000	Start WL	20	Base of Chall
7200	37000	3900	4900	3200	32000	End WL	-	Base of Chall
0	0	0	0	0	0	Datum		Base of Chall
7300	37000	4100	5100	3200	32000	Start WL		Datum
7200	37000	3900	4900	3200	32000	End WL		Datum
110	290	100	190	10	100	Start WL		End WL

TABLE 16.VOLUMES OF GROUNDWATERYears: 1975-76.Hydrometric Area: 43

UK Hydrometric Areas. Control WL = 1975max. Start = 1975 max. End = 1976 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 15

			Г	Cover	lk	Cha	al	Tot
nterval	age inte	Stora	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
Base of Chal		Start WL	6900	690	2700	2100	9600	2800
 Base of Chal 		End VL	6900	690	2700	Z100	9600	2800
Base of Chal		Datum	0	0	0	0	0	0
• Datum		Start WL	6900	690	2700	2100	9600	2800
- Datum		End WL	6900	690	2700	2100	9600	2800
- End WL		Start WL	-8.0	80	47	23	39	23

TABLE 17.VOLUMES OF GROUNDWATERYears: 1975-76.Hydrometric Area: 44

UK Hydrometric Areas. Control WL = 1975max. Start = 1975 max. End = 1976 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 16

			•	Cover	ζ	Chali	L	Total
al	e Inte	Storage	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
ase of Chal		Start WL	1900	190	1100	850	3000	1000
ase of Chal		End WL	1900	190	1100	850	3000	1000
ase of Chal	-	Datum	0	0	0	0	0	0
atum	-	Start WL	1900	190	1100	850	3000	1000
atum	-	End WL	1900	190	1100	850	3000	1000
nd VL	-	Start WL	8.7	.87	. 17	05	8.9	.82

Contribution to total 'Start-End' from elastic storage: 5% (min.) and 85% (max.).

TABLE 18.VOLUMES OF GROUNDWATERYears: 1975-76.Hydrometric Area: 53

Tota	l	Chall	¢	Cov	er			
min	Vmax	Vmin	Vmax	Vmin	Vmax	Storag	je Int	erval
2.4	2.4	2.4	2.4	0	0	Start WL		Base of Chalk
2.0	2.1	2.0	2.1	0	0	End WL	•	Base of Chall
0	0	0	0	Ó	0	Datum	•	Base of Chalk
2.4	2.4	2.4	2.4	0	0	Start WL	-	Datum
2.0	2.1	2.0	2.1	0	0	End WL	-	Datum
.38	.39	.38	.39	0	0	Start WL	-	End WL

TABLE 19.VOLUMES OF GROUNDWATERYears: 1975-76.NRA Region: Yorks

UK Hydrometric Areas. Control WL = 1975max. Start = 1975 max. End = 1976 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 20

Tot	al	Cha	lk	Cove	Cover			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storage Inter		erval
2000	3700	1800	2300	250	1400	Start WL	-	Base of Chalk
2000	3600	1800	2200	240	1400	End WL	-	Base of Chalk
0	0	0	0	0	0	Datum	-	Base of Chalk
2000	3700	1800	2300	250	1400	Start WL	•	Datum
2000	3600	1800	2200	240	1400	End WL	-	Datum
30	92	21	39	9.6	53	Start WL		End WL
		IStort-E-	dt from al	astic storag	A. (58 (min) and 259	(max	•

TABLE 20.VOLUMES OF GROUNDWATERYears: 1975-76.NRA Region: Anglia

UK Hydrometric Areas. Control WL = 1975max. Start = 1975 max. End = 1976 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 21

				/er	Cov	lk	Cha	al	Tot
	erval	je inte	Storag	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
Chalk	Base of	-	Start WL	13000	1900	13000	9200	26000	11000
Chalk	Base of	-	End WL	12000	1700	13000	9000	25000	11000
Chalk	Base of	-	Datum	0	0	0	0	0	0
	Datum	-	Start WL	13000	1900	13000	9200	26000	11000
	Datum	-	End WL	12000	1700	13000	9000	25000	11000
	End WL	-	Start WL	980	130	330	180	1300	320

Contribution to total 'Start-End' from elastic storage: 34% (min.) and 45% (max.).

TABLE 21.VOLUMES OF GROUNDWATERYears: 1975-76.NRA Region: Thames

			rer	Cov	lk	Cha	al	Tot
e interval	je inte	Storag	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
- Base of Chal	•	Start WL	13000	1200	6100	4000	19000	5200
 Base of Chal 	•	End WL	11000	1100	5700	3800	17000	4900
- Base of Chal		Datum	0	0	0	0	0	0
• Datum		Start WL	13000	1200	6100	4000	19000	5200
- Datum	-	End WL	11000	1100	5700	3800	17000	4900
· End WL		Start WL	1200	110	400	220	1600	330

TABLE 22.VOLUMES OF GROUNDWATERYears:1975-76.NRA Region:Southern

UK Hydrometric Areas. Control WL = 1975max. Start = 1975 max. End = 1976 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 23

			/er	Cov	lk	Cha	al	Tot
nterval	e Inte	Storag	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
- Base of Chal		Start WL	33000	3400	7500	5800	41000	9200
Base of Chal		End WL	33000	3400	7200	5600	40000	9000
 Base of Chal 		Datum	0	Ð	0	Ð	0	0
- Datum		Start WL	33000	3400	7500	5800	41000	9200
- Datum		End WL	33000	3400	7200	5600	40000	9000
End VL		Start WL	160	18	280	170	440	180

TABLE 23.VOLUMES OF GROUNDWATERYears: 1975-76.NRA Region: Wessex

UK Hydrometric Areas. Control WL = 1975max. Start = 1975 max. End = 1976 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 24

				r	Cove	lk	Cha	al	Tot
	rval	e inte	Storag	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
f Chalk	Base of	-	Start WL	8800	880	3800	2900	13000	3800
f Chall	Base of		End WL	8800	880	3700	2900	13000	3800
f Chall	Base of	-	Datum	0	0	0	0	0	0
	Datum		Start WL	8800	880	3800	2900	13000	3800
	Datum		End WL	8800	880	3700	2900	13000	3800
	End WL	-	Start WL	.73	.07	48	24	49	24

Contribution to total 'Start-End' from elastic storage: 30% (min.) and 16% (max.).

TABLE 24.VOLUMES OF GROUNDWATERYear: 1976.UK Total

				/er	Cov	lk	Cha	tal	To
	rval	e inte	Storag	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
Chalk	Base of	-	Start WL	69000	7500	32000	23000	100000	31000
Chalk	Base of	-	End WL	63000	6700	29000	22000	92000	29000
Chalk	Base of	-	Datum	57000	6000	25000	19000	82000	25000
	Datum		Start WL	13000	1500	6700	3800	19000	5400
	Datum		End WL	6100	730	450 0	2600	11000	3300
	End WL		Start WL	6500	790	2200	1200	8700	2000

TABLE 25.VOLUMES OF GROUNDWATERYear: 1976.Hydrometric Area: 26

```
UK Hydrometric Areas. Control WL = 1975max.
Start = 1976 min. End = 1976 min. - 10m. Datum = 0.D.
Units: millions of cubic metres
Catchment Number: 1
```

Tota	ι	Chal	k	Cove	Г			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storag	je Int	erval
2000	3600	1700	2200	240	1400	Start WL	-	Base of Chalk
1900	3400	1700	2100	220	1300	End WL	•	Base of Chalk
1900	3400	1700	2100	220	1300	Oatum		Base of Chalk
91	240	69	120	22	120	Start WL	-	Datum
31	50	31	47	.48	2.5	End WL	-	Datum
6 0	19 0	38	70	21	120	Start WL	-	End WL
ontribution	n to total	'Start-End	from el	astic storage	e: 45% (m	in.) and 277	(max	.).

TABLE 26.VOLUMES OF GROUNDWATERYear: 1976.Hydrometric Area: 27

UK Hydrometric Areas. Control WL = 1975max. Start = 1976 min. End = 1976 min. - 10m. Datum = 0.0. Units: millions of cubic metres Catchment Number: 2

Tota	al	Chal	.k	Cov	r			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Stora	ge Inte	erval
24	31	24	31	0	0	Start WL		Base of Chalk
22	28	22	28	0	0	End VL		Base of Chalk
15	19	15	19	0	0	Datum	-	Base of Chalk
9.2	12	9.2	12	0	0	Start WL		Datum
7.0	8.6	7.0	8.6	D	0	End WL		Datum
2.3	3.2	2.3	3.2	0	0	Start WL		End WL
				-	-			

Contribution to total 'Start-End' from elastic storage: 46% (min.) and 35% (max.).

TABLE 27.VOLUMES OF GROUNDWATERYear: 1976.Hydrometric Area: 29

Tota	it	Chal	k	Cove	er				
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storag	age Interval		
350	1100	220	390	130	730	Start WL	•	Base of (Chalk
330	1000	210	380	120	630	End WL		Base of (Chalk
320	1000	210	380	110	620	Datum	-	Base of (Chalk
27	120	7.6	15	19	110	Start WL	-	Datum	
4.1	15	2.1	3.8	2.0	11	End VL	-	Datum	
23	110	5.5	11	17	97	Start VL		End WL	

TABLE 28.VOLUMES OF GROUNDWATERYear: 1976.Hydrometric Area: 30

UK Hydrometric Areas. Control WL = 1975max. Start = 1976 min. End = 1976 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 4

Total		Chalk	:	Cover					
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storag	e Int	erval	
.12	2.1	.01	.01	.11	2.1	Start WL	-	Base of	Chalk
.05	.62	0	0	. 05	.62	End WL	-	Base of	Chalk
.05	.62	0	0	.05	.62	Datum	•	Base of	Chaik
.06	1.4	.01	.01	.06	1.4	Start WL	-	Datum	
0	0	0	0	0	0	End WL	-	Datum	
.06	1.4	.01	.01	.06	1.4	Start WL	-	End WL	<u>_</u>
ontribution	to total	'Start-End'	from elas	tic storage	: 19% (m	in.) and 87%	(max	.).	

TABLE 29.VOLUMES OF GROUNDWATERYear: 1976.Hydrometric Area: 33

UK Hydrometric Areas. Control WL = 1975max. Start = 1976 min. End = 1976 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 5

				-	Cover	lk	Cha	ลเ	Tot
	erval	Inte	Storage	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
Chalk	Base of	-	Start WL	270	53	1800	1100	2100	1100
Chalk	Base of	-	End WL	120	25	1400	890	1500	920
Chalk	Base of	-	Datum	1.6	.31	880	630	880	630
	Datum	-	Start WL	270	53	930	450	1200	500
	Datum	-	End WL	120	24	530	260	650	280
	End WL	-	Start WL	150	29	400	190	560	220

Contribution to total 'Start-End' from elastic storage: 26% (min.) and 21% (max.).

TABLE 30.VOLUMES OF GROUNDWATERYear: 1976.Hydrometric Area: 34

```
UK Hydrometric Areas. Control WL = 1975max.
Start = 1976 min. End = 1976 min. - 10m. Datum = 0.D.
Units: millions of cubic metres
Catchment Number: 6
```

		_	_		Cov		Cha		Tot
	rval	e Inte	Storag	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
Chalk	Base of	+	Start WL	4000	610	5200	4000	9200	4600
Chall	Base of	•	End WL	2400	380	4900	3800	7300	4200
Chall	Base of	•	Datum	1200	180	4200	3400	5300	3600
	Datum	-	Start WL	2800	430	1100	560	3800	1000
	Datum	-	End WL	1200	200	760	370	2000	570
	End WL		Start WL	1600	230	290	190	1900	420

.

TABLE 31.VOLUMES OF GROUNDWATERYear: 1976.Hydrometric Area: 35

UK Hydrometric Areas. Control WL = 1975max. Start = 1976 min. End = 1976 min. • 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 7

				er	Cov	lk	Cha	ы	Tot
	erval	Inte	Storage	Vmax	Vanin	Vmax	Vmin	Vmax	Vmin
Chalk	Base of	-	Start WL	1300	210	1700	1300	3000	1500
Chalk	Base of	-	End WL	850	140	1600	1200	2500	1300
Chalk	Base of	-	Datum	590	95	1400	1100	2000	1200
	Datum	-	Start WL	740	110	270	140	1000	260
	Datum	-	End WL	260	42	170	79	430	120
	End WL	-	Start WL	480	72	110	64	580	140

TABLE 32.VOLUMES OF GROUNDWATERYear: 1976.Kydrometric Area: 36

UK Hydrometric Areas. Control WL = 1975max. Start = 1976 min. End = 1976 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 8

				er	Cover		Chalk		Total	
	erval	Storage Inte		Vmin Vmax		Vmax	Vmin	Vmax	Vmin	
f Chal	Base of	•	Start WL	730	120	1100	760	1800	880	
f Chal	Base of	•	End WL	350	61	1000	.700	1300	760	
f Chal	Base of	-	Datum	140	24	680	550	820	570	
	Datum	-	Start WL	590	98	430	210	1000	310 、	
	Datum	-	End WL	210	37	320	150	530	190	
	End WL	-	Start WL	380	61	110	61	490	120	

Contribution to total 'Start-End' from elastic storage: 25% (min.) and 22% (max.).

TABLE 33.VOLUMES OF GROUNDWATERYear: 1976.Hydrometric Area: 37

Tot	al	Cha	lk	Cov	er			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storage Inte		erval
2300	7900	1700	2400	620	5600	Start WL	-	Base of Chalk
2200	7100	1600	2300	540	4800	End VL		Base of Chalk
2000	6300	1500	2100	470	4300	Datum		Base of Chalk
310	1600	170	280	140	1300	Start WL		Datum
190	780	120	220	63	560	End WL	-	Datum
130	800	46	61	80	740	Start WL	.*	End WL
	on to tota		dt fann al		95¥ (min.) and 907	(max	<u></u>

TABLE 34.VOLUMES OF GROUNDWATERYear: 1976.Hydrometric Area: 38

UK Hydrometric Areas. Control WL = 1975max. Start = 1976 min. End = 1976 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 10

Tot	al	Cha	lk	Cover					
Vmin	Vmax	Vmin	Vmin Vmax		Vmin Vmax		Storage Inte		
870	3300	740	1200	130	2100	Start WL	-	Base of Chalk	
770	2500	660	1000	100	1500	End WL	-	Base of Chalk	
550	1700	490	700	67	1000	Datum	-	Base of Chalk	
320	1500	250	480	66	1000	Start WL	-	Datum	
210	800	180	320	35	480	End WL	-	Datum	
100	730	74	160	31	560	Start WL	-	End WL	
ontributi	on to total	'Start-En	d'from el	astic stora	ge: 32% ((min.) and 747	(max	.).	

TABLE 35.VOLUMES OF GROUNDWATERYear: 1976.Hydrometric Area: 39

UK Hydrometric Areas. Control WL = 1975max. Start = 1976 min. End = 1976 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 11

				Cover		lk	Cha	Total		
	erval	Inte	Storage	Vmin Vmax		Vmax	Vmin	Vmax	Vmin	
Chalk	Base of	-	Start WL	11000	1100	4700	3200	16000	4300	
Chalk	Base of	-	End WL	9700	9 70	4300	2900	14000	3900	
Chalk	Base of	-	Datum	6900	690	3200	2300	10000	3000	
	Datum	-	Start WL	4100	410	1400	870	5500	1300	
	Datum	-	End WL	2800	280	1000	650	3900	930	
	End WL	-	Start WL	1300	130	400	220	1700	350	

Contribution to total 'Start-End' from elastic storage: 66% (min.) and 78% (max.).

TABLE 36.VOLUMES OF GROUNDWATERYear: 1976.Kydrometric Area: 40

	•	Storage Interval		Cover		Chalk		Total	
	Interval			Vmin Vmax		Vmin	Vmax	Vmin	
e of Chal	- Base	art WL	890	140	1200	790	2100	940	
e of Chal	- Base	d WL	830	130	1100	740	1900	870	
e of Chal	- Base	tum	800	130	980	660	1800	790	
un i	- Datu	art WL	93	17	210	130	300	150	
	- Datu	d WL	29	5.6	120	81	150	87	
WL	- End	art WL	64	11	87	51	150	62	
	 max.).	and 38% (41% (m	stic storage	/ from ela	/Start-Eng	to total		

TABLE 37.VOLUMES OF GROUNDWATERYear: 1976.Hydrometric Area: 41

UK Hydrometric Areas. Control WL = 1975max. Start = 1976 min. End = 1976 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 13

				Cover	lk	Cha	al	Tota
terval	Storage Inte		Vmin Vmax		Vmax	Vmin	Vmax	Vmin
Base of Chal		Start WL	160	16	1200	860	1300	880
Base of Chal	-	End WL	150	15	1100	830	1300	850
Base of Chal	-	Datum	150	15	1100	800	1200	810
Datum	-	Start WL	19	1.9	93	68	110	70
Datum	-	End WL	1.0	.10	43	34	44	34
End VL		Start WL	18	1.8	50	34	68	35
	1			- i -				

TABLE 38.VDLUMES OF GROUNDWATERYear: 1976.Hydrometric Area: 42

UK Hydrometric Areas. Control WL = 1975max. Start = 1976 min. End = 1976 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 14

		Cover		Chalk		Total	
e Interval	Storag	Vmin Vmax		Vmax	Vmin	Vmax	Vmin
- Base of Chal	Start WL	32000	3200	4900	4000	37000	7200
- Base of Chal	End WL	32000	3200	4700	3800	37000	7000
 Base of Chal 	Datum	32000	3200	4300	3500	36000	6700
- Datum	Start WL	690	69	620	410	1300	480
- Datum	End WL	150	15	420	290	570	310
- End WL	Start WL	540	54	200	120	750	170

Contribution to total 'Start-End' from elastic storage: 73% (min.) and 81% (max.).

TABLE 39.VOLUMES OF GROUNDWATERYear: 1976.Hydrometric Area: 43

Tot	al	Cha	alk	Cov	er			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storage Int		erval
2800	9600	2100	2700	690	6900	Start WL	•	Base of Chalk
2600	8900	2000	2500	650	6500	End WL	-	Base of Chalk
2300	8300	1700	2100	630	6300	Datum		Base of Chalk
450	1300	390	610	65	650	Start WL		Datum
290	630	270	410	22	220	End WL		Datum
160	630	120	200	43	430	Start WL		End WL

TABLE 40.VOLUMES OF GROUNDWATERYear: 1976.Hydrometric Area: 44

UK Hydrometric Areas. Control WL = 1975max. Start = 1976 min. End = 1976 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 16

		•	Cove	1.6	Cha	at	Tot
ge inte	Storag	Vmax	Vmin Vmax		Vmin	Vmax	Vmin
-	Start WL	1900	190	1100	850	3000	1000
-	End WL	1800	180	1000	820	2800	1000
-	Datum	1800	180	930	760	2700	940
-	Start WL	. 94	9.4	140	87	240	97
-	End WL	9.7	.97	82	55.	92	- 56
-	Start WL	84	8.4	60	32	140	41
- - -		Start WL End WL Datum Start WL End WL	1900 Start WL 1800 End WL 1800 Datum 94 Start WL 9.7 End WL	190 1900 Start WL 180 1800 End WL 180 1800 Datum 9.4 94 Start WL .97 9.7 End WL	1100 190 1900 Start WL 1000 180 1800 End WL 930 180 1800 Datum 140 9.4 94 Start WL 82 .97 9.7 End WL	850 1100 190 1900 Start WL 820 1000 180 1800 End WL 760 930 180 1800 Datum 87 140 9.4 94 Start WL 55 82 .97 9.7 End WL	3000 850 1100 190 1900 Start WL 2800 820 1000 180 1800 End WL 2700 760 930 180 1800 Datum 240 87 140 9.4 94 Start WL 92 55 82 .97 9.7 End WL

Contribution to total 'Start-End' from elastic storage: 62% (min.) and 68% (max.).

TABLE 41.VDLUMES OF GROUNDWATERYear: 1976.Hydrometric Area: 53

.1

.

UK Hydrometric Areas. Control WL = 1975max. Start = 1976 min. End = 1976 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 19

•	Total		Chalk		Co	over				
	Vmin	Vmax	Vmin	Vmax	Vmin	+	max	Store	ige Inte	erval
	2.0	2.1	2.0	2.1	0	1.1	· 0	Start WL		Base of Chalk
	1.3	1.3	1.3	1.3	0		0	End WL	•	Base of Chalk
	0	0	• 0	0	0		0	Datum	•	Base of Chalk
	2.0	2.1	2.0	2.1	0		0	Start WL	-	Datum
	1.3	1.3	. 1.3	1.3	0		0	End WL	•	Datum
	.72	.72	.72	.72	0		0	Start WL	-	End WL

Contribution to total 'Start-End' from elastic storage: 7% (min.) and 7% (max.).

.....

TABLE 42.VOLUMES OF GROUNDWATERYear: 1976.NRA Region: Yorks

. ...

.

UK Hydrometric Areas. Control WL = 1975max. Start = 1976 min. End = 1976 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 20

...

T.	ota	ι	Cł	nalk	Cove	r			1.4
Vmin		Vmax	Vmin	Vmax	Vmin	Vmax	Storag	e Int	erval
2000	_	3600	1800	2200	240	1400	Start WL		Base of Chall
1900		3400	1700	2200	220	1300	End WL		Base of Chall
1900		3400	1700	2100	220	1300	Datum		Base of Chal
100		250	79	130	22	120	Start WL		Datum
38		59	38	. 56	.48	2.5	End WL		Datum
62		190	41	73	21	120	Start WL		End WL

. .

.

••

TABLE 43.VOLUMES OF GROUNDWATERYear: 1976.NRA Region: Anglia

UK Hydrometric Areas. Control WL = 1975max. Start = 1976 min. End = 1976 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 21

Tot	al	Cha	alk	Co	ver			
Vmin	Vmax	Vmin	Vmax	Vain	Vmin Vmax		Storage inte	
11000	25000	9000	13000	1700	13000	Start WL	-	Base of Chall
9700	21000	8400	12000	1300	9200	End WL	-	Base of Chall
8300	16000	7400	9600	890	6800	Datum	-	Base of Chall
2400	8800	1500	3000	860	5800	Start WL	-	Datum
1400	4400	990	2000	370	2400	End WL	-	Datum
1100	4400	560	990	490	3400	Start WL	-	End WL
							1.1	
Contributi	ion to total	'Start-Ei	nd' from el	astic stor	age: 35% (min.) and 38	X (max	.).

TABLE 44.VOLUMES OF GROUNDWATERYear: 1976.NRA Region: Thames

UK Hydrometric Areas. Control WL = 1975max. Start = 1976 min. End = 1976 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 22

Tot	al	Cha	lk	Co	ver			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storage Interval		erval
5100	19000	3900	5800	1200	13000	Start WL		Base of Chalk
4700	16000	3600	5300	1100	11000	End WL	-	Base of Chalk
3500	12000	2800	3900	750	7900	Datum		Base of Chalk
1600	7000	1100	1900	480	5200	Start WL	-	Datum
1100	4700	830	1300	320	3300	End WL		Datum
450	2400	290	560	160	1800	Start WL		End WL

Contribution to total 'Start-End' from elastic storage: 58% (min.) and 77% (max.).

 TABLE 45.
 VOLUMES OF GROUNDWATER

 Year: 1976.
 NRA Region: Southern

UK Hydrometric Areas. Control WL = 1975max. Start = 1976 min. End = 1976 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 23

Tot	tal	Cha	itk	Cov	/er			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storag	je Int	erval
9000	41000	5600	7200	3400	33000	Start WL	-	Base of Chalk
8700	40000	5400	6900	3300	33000	End WL	-	Base of Chalk
8300	39000	5000	6300	3300	33000	Datum	-	Base of Chalk
700	1700	610	920	88	810	Start WL	-	Datum
430	770	410	580	21	180	End WL	-	Datum
270	960	210	340	67	620	Start WL	-	End WL
ntributi	ion to total	'Start-Er	d'from el	astic store	age: 63% (min.) and 727	(max	.).

-

TABLE 46.VOLUMES OF GROUNDWATERYear: 1976.NRA Region: Wessex

UK Hydrometric Areas. Control WL = 1975max. Start = 1976 min. End = 1976 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 24

Tot	al	Cha	ilk	Cov	er			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storag	Storage Interv	
3800	13000	2900	3700	880	8800	Start WL	-	Base of Chalk
3600	12000	2800	3500	830	8300	End WL	-	Base of Chalk
3300	11000	2400	3000	810	8100	Datum	-	Base of Chalk
550	1500	480	750	74	740	Start WL	•	Datum
350	720	330	490	23	230	End WL	-	Datum
200	780	150	260	52	520	Start WL	-	End VL
ontribut	ion to total	/Start-Fr	d'from el	astic store	ne. 61% (min.) and 749	(max	3.

TABLE 47. VOLUMES OF GROUNDWATER Years: 1988-90. UK Total

UK Hydrometric Areas. Control WL = 1975max. Start = 1988 max. End = 1990 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: O

			Cover		alk	Ché	tal	To	
	rval	Storage Interval		Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
Chall	Base of	-	Start WL	71000	7700	33000	24000	100000	32000
Chall	Base of	-	End WL	70000	7600	32000	23000	100000	31000
Chall	Base of	•	Datum	0	0	0	0	0	0
	Datum	-	Start WL	71000	7700	33000	24000	100000	32000
	Datum	-	End WL	70000	7600	32000	23000	100000	31000
	End WL	•	Start WL	1100	150	1000	560	2100	710

Contribution to total 'Start-End' from elastic storage: 36% (min.) and 36% (max.).

TABLE 48.VOLUMES OF GROUNDWATERYears: 1988-90.Hydrometric Area: 26

Total		Chalk		Cove	er 👘			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storage	Inte	erval
2000	3700	1800	2200	250	1500	Start WL		Base of Chalk
2000	3600	1700	2200	250	1400	End WL	-	Base of Chalk
0	0	0	0	0	0	Datum	-	Base of Chalk
2000	3700	1800	2200	250	1500	Start WL	-	Datum
2000	3600	1700	2200	250	1400	End WL	-	Datum
38	110	29	56	9.0	50	Start WL	•	End WL
	to total	(Stact-End	I from al	astic storag		(min.) and 28%	(may	1

TABLE 49.VOLUMES OF GROUNDWATERYears: 1988-90.Hydrometric Area: 27

UK Hydrometric Areas. Control VL = 1975max. Start = 1988 max. End = 1990 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 2

Total		Chalk		Cover				
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storag	erval	
25	32	25	32	0	0	Start WL		Base of Chalk
24	31	24	31	0	0	End WL	-	Base of Chalk
0	0	0	0	0	0	Datum	-	Base of Chalk
25	32	25	32	0	0	Start WL	-	Datum
24	31	24	31	0	0	End WL	-	Datum
.93	1.2	.93	1.2	0	0	Start WL	-	End WL
				140				
Contribution	to total	'Start-End'	from ela:	stic storage:	· 75% ((min.) and 62%	(max.	.).

TABLE 50.VOLUMES OF GROUNDWATERYears: 1988-90.Kydrometric Area: 29

UK Hydrometric Areas. Control WL = 1975max. Start = 1988 max. End = 1990 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 3

				Cover		lk	Chalk		Total	
	erval	Storage Interval		Vmax Storage Interval		Vmin	Vmax	Vmin	Vmax	Vmin
Chalk	Base of	-	Start WL	870	160	410	230	1300	380	
Chalk	Base of	-	End WL	730	130	390	210	1100	350	
Chalk	Base of	-	Datum	0	0	0	0	0	0	
	Datum	-	Start WL	870	160	410	230	1300	380	
	Datum	-	End WL	730	130	390	210	1100	350	
	End VL		Start WL	130	23	23	11	160	34	

Contribution to total 'Start-End' from elastic storage: 22% (min.) and 25% (max.).

TABLE 51.VOLUMES OF GROUNDWATERYears: 1988-90.Hydrometric Area: 30

Vmin Vr	max			Cover				
	ind A	Vmin	Vmax	Vmin	Vmax	Storag	e Inte	erval
.38	2.6	.20	.31	.17	2.2	Start WL		Base of Chalk
.08	1.3	0	0	.08	1.3	End WL		Base of Chalk
0	0	0	0	0	0	Datum	-	Base of Chalk
.38	2.6	.20	.31	. 17	2.2	Start WL		Datum
.08	1.3	0	O	.08	1.3	End WL		Datum
. 29	1.2	.20	.31	.09	.90	Start WL		End WL

TABLE 52.VOLUMES OF GROUNDWATERYears: 1988-90.Hydrometric Area: 33

```
UK Hydrometric Areas. Control WL = 1975max.
Start = 1988 max. End = 1990 min. Datum = Base of chalk.
Units: millions of cubic metres
Catchment Number: 5
```

Tot	al	Cha	lk	Cov	rer			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storag	Storage Int	
1200	2300	1200	2000	61	310	Start WL	16	Base of Chalk
1100	2000	1100	1800	49	250	End VL	-	Base of Chalk
0	0	0	0	0	0	Datum	-	Base of Chalk
1200	2300	1200	2000	61	310	Start WL	-	Datum
1100	2000	1100	1800	49	250	End WL	-	Datum
120	290	110	230	12	63	Start WL	-	End VL
ontributi	on to total	'Start-En	d'from el	astic stora	ge: 21% (min.) and 17	(max	.).

TABLE 53.VOLUMES OF GROUNDWATERYears: 1988-90.Hydrometric Area: 34

UK Hydrometric Areas. Control WL = 1975max. Start = 1988 max. End = 1990 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 6

				er	Cov	lk	Cha	al	Tot
erval		Storage Inte		Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
of Chall	Bas		Start WL	4400	680	5300	4100	9800	4700
of Chal	Bas		End WL	4200	640	5200	4000	9400	4700
of Chall	Bas	-	Datum	0	0	0	0	0	0
m	Dat		Start WL	4400	680	5300	4100	9800	4700
៣	Dat		End WL	4200	640	5200	4000	9400	4700
WL	End		Start WL	290	43	83	50	380	92

Contribution to total 'Start-End' from elastic storage: 25% (min.) and 29% (max.).

TABLE 54.VOLUMES OF GROUNDWATERYears: 1988-90.Hydrometric Area: 35

```
UK Hydrometric Areas. Control WL = 1975max.

Start = 1988 max. End = 1990 min. Datum = Base of chalk.

Units: millions of cubic metres

Catchment Number: 7
```

Tot	al	. Cha	alk	Cov	er				
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storage Inte		erval	
1500	3200	1300	1800	220	1400	Start WL		Base of Chalk	
1500	3100	1300	1700	210	1400	End WL	-	Base of Chalk	
0	0	0	0	0	0	Datum		Base of Chall	
1500	3200	1300	1800	220	1400	Start WL		Datum	
1500	3100	1300	1700	210	1400	End WL		Datum	
27	100	15	26	12	78	Start WL		End WL	

TABLE 55.VOLUMES OF GROUNDWATERYears: 1988-90.Hydrometric Area: 36

UK Hydrometric Areas. Control WL = 1975max. Start = 1988 max. End = 1990 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 8

Total		Chalk		Сочег				
Vanin	Vmax	Vmin	Vmax	Vain	Vmax	Storage	Storage Inte	
910	2000	780	1100	140	830	Start WL	-	Base of Chalk
880	1800	760	1100	120	730	End VL	-	Base of Chalk
0	0	0	0	0	0	Datum	-	Base of Chalk
910	2000	780	1100	140	830	Start WL	-	Datum
880	1800	760	1100	120	730	End WL	-	Datum
32	120	17	26	16	98	Start WL	-	End WL
ontribution	to total	'Start-End'	from el	astic storage:	21%	(min.) and 23%	(max.).

TABLE 56.VOLUMES OF GROUNDWATERYears: 1988-90.Hydrometric Area: 37

UK Hydrometric Areas. Control WL = 1975max. Start = 1988 max. End = 1990 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 9

				er.	Cove	lk	Cha	al	Tot
	rval	je Inte	Storag	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
Chalk	Base of	•	Start WL	5500	610	2400	1700	7800	2300
Chalk	Base of	-	End WL	5200	580	2300	1600	7600	2200
Chalk	Base of	-	Datum	0	0	0	O	0	0
	Datum	•	Start WL	5500	610	2400	1700	7800	2300
	Datum	•	End WL	5200	580	2300	1600	7600	2200
	End WL		Start WL	250	27	20	14	280	42

.

Contribution to total 'Start-End' from elastic storage: 84% (min.) and 90% (max.).

TABLE 57.VOLUNES OF GROUNDWATERYears: 1988-90.Hydrometric Area: 38

Total		Chalk		Cov	Cover			
n	Vmax	Vmin	Vmax	Vmin	Vmax	Storage Interval		erval
0	3100	790	1300	120	1800	Start WL	-	Base of Chalk
0	2800	760	1200	110	1600	End VL	-	Base of Chalk
0	0	0	0	0	0	Datum	-	Base of Chalk
0	3100	790	1300	120	1800	Start WL	-	Datum
0	2800	760	1200	110	1600	End WL	-	Datum
0	230	30	61	11	170	Start WL	-	End WL

TABLE 58.VOLUMES OF GROUNDWATERYears: 1988-90.Hydrometric Area: 39

UK Hydrometric Areas. Control WL = 1975max. Start = 1988 max. End = 1990 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 11

			/er	Cov	lk	Chalk		Total	
Interval		Storag	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin	
Base of Chal	-	Start WL	12000	1200	5000	3400	17000	4600	
Base of Chal	•	End WL	12000	1200	4800	3300	17000	4500	
Base of Chal	•	Datum	0	0	0	0	0	0	
Datum	-	Start WL	12000	1200	5000	3400	17000	4600	
Datum	•	End WL	12000	1200	4800	3300	17000	4500	
End WL	1.41	Start WL	-250	-25	230	120	-22	96	

Contribution to total 'Start-End' from elastic storage: 14% (min.) and 930% (max.).

TABLE 59.VOLUMES OF GROUNDWATERYears: 1988-90.Hydrometric Area: 40

UK Hydrometric Areas. Control WL = 1975max. Start = 1988 max. End = 1990 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 12

				r	Cove	lk	Cha	al	Tot
	erval	je int∈	Storag	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
Chal	Base of	•	Start WL	810	130	1200	820	2100	950
Chal	Base of	-	End WL	770	130	1200	790	2000	920
Chal	Base of	-	Datum	0	0	Û	0	0	0
	Datum	-	Start WL	810	130	1200	820	2100	9 50
	Datum	-	End WL	770	130	1200	790	2000	920
	End WL	-	Start WL	39	5.2	52	29	91	35

Contribution to total 'Start-End' from elastic storage: 45% (min.) and 48% (max.).

TABLE 60.VOLUMES OF GROUNDWATERYears: 1988-90.Hydrometric Area: 41

					Cover		Cha	вl	Tot
	Storage Interval		Vmax	Vmin	Vmax	Vmin	Vmax	Vmin	
Chalk	Base of	-	Start WL	180	18	1200	900	1400	920
Chall	Base of	-	End WL	160	16	1200	860	1300	880
Chall	Base of	-	Datum	0	0	0	Đ	0	0
	Datum	-	Start WL	180	18	1200	900	1400	920
	Datum	-	End VL	160	16	1200	860	1300	880
	End WL	-	Start WL	14	1.4	60	40	74	41

TABLE 61.VOLUMES OF GROUNDWATERYears: 1988-90.Hydrometric Area: 42

UK Hydrometric Areas. Control WL = 1975max. Start = 1988 max. End = 1990 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 14

	Storage Interval		Cover		Cha	al	Tot
e Interval			Vmin	Vmax	Vmin	Vmax	Vmin
- Base of Chal	Start WL	33000	3300	5000	4000	38000	7300
- Base of Chal	End WL	32000	3200	4900	4000	37000	7200
 Base of Chal 	Datum	0	0	0	0	Ð	0
- Datum	Start WL	33000	3300	5000	4000	38000	7300
- Datum	End WL	32000	3200	4900	4000	37000	7200
 End WL 	Start WL	130	13	130	75	260	88

TABLE 62.VOLUMES OF GROUNDWATERYears: 1988-90.Hydrometric Area: 43

UK Hydrometric Areas. Control WL = 1975max. Start = 1988 max. End = 1990 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 15

Tot	al	Cha	lk	Cove	r			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Stora	ge Inte	erval
2800	9700	2100	2700	700	7000	Start WL		Base of Chalk
2800	9700	2100	2700	700	7000	End WL		Base of Chalk
0	0	0	0	0	0	Datum	-	Base of Chalk
2800	9700	2100	2700	700	7000	Start WL		Datum
2800	9700	2100	2700	700	7000	End WL		Datum
11	25	10	24	. 13	1.3	Start WL		End WL

Contribution to total 'Start-End' from elastic storage: 43% (min.) and 23% (max.).

TABLE 63.VOLUMES OF GROUNDWATERYears: 1988-90.Hydrometric Area: 44

Tota	Total		.k	Cove	Cover			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Vmax Storag		erval
1000	3000	850	1100	190	1900	Start WL	•	Base of Chalk
1000	2900	840	1100	190	1900	End WL		Base of Chalk
0	0	0	0	0	0	Datum		Base of Chalk
1000	3000	850	1100	190	1900	Start WL	-	Datum
1000	2900	840	1100	190	1900	End WL		Datum
9.2	29	7.7	15	1.4	14	Start WL	•	End WL
Contributio	n to total	'Start-Enc	d'from el	astic storag	e: 56% (min.) and 615	C (max	.).

TABLE 64.VOLUMES OF GROUNDWATERYears: 1988-90.Hydrometric Area: 53

UK Hydrometric Areas. Control WL = 1975max. Start = 1988 max. End = 1990 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 19

				er	Cov	ĸ	Chall	t	Tota
	Storage Interval			Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
f Chall	Base of	-	Start WL	0	0	2.4	2.4	2.4	2.4
F Chall	Base of	-	End WL	0	0	2.0	2.0	2.0	2.0
f Chall	Base of	-	Datum	0	0	0	0	0	0
	Datum	-	Start WL	0	0	2.4	2.4	2.4	2.4
	Datum	-	End WL	0	0	2.0	2.0	2.0	2.0
	End WL	-	Start WL	0	0	.38	. 38	.38	.38

TABLE 65.VOLUMES OF GROUNDWATERYears: 1988-90.NRA Region: Yorks

UK Hydrometric Areas. Control WL = 1975max. Start = 1988 max. End = 1990 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 20

				г	Cove	lk	Cha	al	Tot
	rval		Storag	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
f Chalk	Base of		Start WL	1500	250	2300	1800	3700	2000
F Chalk	Base of	•	End WL	1400	250	2200	1800	3600	2000
F Chalk	Base of	•	Datum	0	0	0	0	0	0
	Datum	-	Start WL	1500	250	2300	1800	3700	2000
	Datum	•	End WL	1400	250	2200	1800	3600	2000
	End WL	-	Start WL	50	9.0	57	30	110	39

Contribution to total 'Start-End' from elastic storage: 48% (min.) and 28% (max.).

TABLE 66. VOLUMES OF GROUNDWATER Years: 1988-90. NRA Region: Anglia

		Cover		lk	Cha	al	Total	
e Interval	Storage Interval		Vmin	Vmax	Vmin	Vmax	Vmin	
- Base of Chall	Start WL	13000	1900	13000	9200	26000	11000	
 Base of Chall 	End WL	12000	1700	13000	9000	25000	11000	
 Base of Chall 	Datum	0	0	0	0	0	0	
- Datum	Start WL	13000	1900	13000	9200	26000	11000	
- Datum	End WL	12000	1700	13000	9000	25000	11000	
- End WL	Start WL	920	130	410	220	1300	350	

TABLE 67.VOLUMES OF GROUNDWATERYears: 1988-90.NRA Region: Thames

UK Hydrometric Areas. Control WL = 1975max. Start = 1988 max. End = 1990 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 22

	Storage Interval			Cover		lk	Cha	al	Tot
				Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
Chall	Base of	-	Start WL	14000	1300	6300	4200	20000	5500
Chall	Base of	-	End WL	14000	1300	6000	4000	20000	5300
Chall	Base of	-	Datum	0	0	0	0	0	0
	Datum	-	Start WL	14000	1300	6300	4200	20000	5500
	Datum	-	End ¥L	14000	1300	6000	4000	20000	5300
	End WL	-	Start WL	-80	- 14	290	150	210	140

TABLE 68.VOLUMES OF GROUNDWATERYears: 1988-90.NRA Region: Southern

UK Hydrometric Areas. Control WL = 1975max. Start = 1988 max. End = 1990 min. Datum = Base of chalk. Units: millions of cubic metres Catchment Number: 23

				Cover		lk	Cha	Total		
	Storage Interval			Vmin Vmax		Vmax	Vmin	Vmax	Vmin	
Chalk	Base of		Start WL	34000	3400	7500	5800	41000	9200	
Chalk	Base of		End WL	33000	3400	7200	5600	41000	9000	
Chalk	Base of	•	Datum	0	0	Ð	0	0	0	
	Datum		Start WL	34000	3400	7500	5800	41000	9200	
	Datum	- 14-11	End WL	33000	3400	7200	5600	41000	9000	
	End WL		Start WL	190	20	240	140	430	160	

Contribution to total 'Start-End' from elastic storage: 60% (min.) and 59% (max.).

TABLE 69.VOLUMES OF GROUNDWATERYears: 1988-90.NRA Region: Wessex

				r	Cove	lk	Cha	al	Tot	
	Storage Interval			Vmîn Vmax		Vmax	Vmin	Vmax	Vmin	
Chalk	Base of	-	Start WL	8900	890	3800	2900	13000	3800	
Chalk	Base of	-	End WL	8900	890	3700	2900	13000	3800	
Chalk	Base of	-	Datum	0	0	0	0	0	0	
	Datum	•	Start WL	8900	890	3800	2900	13000	3800	
	Datum	-	End WL	8900	890	3700	2900	13000	3800	
	End WL	•	Start WL	16	1.6	39	18	55	20	

TABLE 70.VOLUMES OF GROUNDWATERYear: 1990.UK Total

UK Hydrometric Areas. Control WL = 1975max. Start = 1990 min. End = 1990 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 0

29000 94000 22000 30000 6900 64000 End WL - Base	
29000 94000 22000 30000 6900 64000 End WL - Base	
	f Chal
	f Chall
25000 82000 19000 25000 6000 57000 Datum - Base 🤇	f Chal
5800 22000 4000 6900 1700 15000 Start WL - Datum	
3600 12000 2700 4600 890 7700 End VL - Datum	
2200 9500 1300 2300 860 7200 Start WL - End W	

TABLE 71.VOLUMES OF GROUNDWATERYear: 1990.Hydrometric Area: 26

UK Hydrometric Areas. Control WL = 1975max. Start = 1990 min. End = 1990 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 1

Tot	al	Cha	lk	Cove	r			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storag	je Inte	erval
2000	3600	1700	2200	250	1400	Start WL		Base of Chalk
1900	3400	1700	2100	220	1300	End WL		Base of Chalk
1900	3400	1700	2100	220	1300	Datum		Base of Chalk
88	240	64	100	24	130	Start WL		Datum
26	39	25	38	.23	1.2	End WL		Datum
62	200	38	66	24	130	Start WL		End WL

Contribution to total 'Start-End' from elastic storage: 46% (min.) and 29% (max.).

TABLE 72.VOLUMES OF GROUNDWATERYear: 1990.Hydrometric Area: 27

				Cove	κ	Chall		Total
	nter	Storage	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
e of Chal	- 1	Start WL	0	0	31	24	31	24
e of Chal	- 1	End WLT	0	0	27	21	27	21
e of Chal	- 1	Datum	0	0	19	15	19	15
um	- 1	Start WL	0	0	11	9.1	11	9.1
um	- 1	End WL	0	0	8.2	6.8	8.2	6.8
WL	-	Start WL	0	0	3.2	2.3	3.2	2.3

TABLE 73.VOLUMES OF GROUNDWATERYear: 1990.Hydrometric Area: 29

UK Hydrometric Areas. Control WL = 1975max. Start = 1990 min. End = 1990 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 3

Tota	l	Chall	t i i i i i i i i i i i i i i i i i i i	Cover	•			
Vmin	Vmax	Vmin	Vmax	Vmin 👘 Vmax		Storage Interval		
350	1100	210	390	140	740	Start WL	-	Base of Chalk
320	1000	210	380	120	630	End WL	-	Base of Chalk
320	1000	210	380	110	620	Datum	-	Base of Chall
26	130	5.9	10	20	120	Start WL	-	Datum
1.6	5.9	.76	1.3	.82	4.5	End WL	-	Datum
25	120	5.1	8.9	19	110	Start WL	-	End WL
ntributio	n to total	'Start-End	from elas	stic storage	- 20% (п	nin.) and 257	(max	· · · · · · · · · · · · · · · · · · ·

TABLE 74.VOLUMES OF GROUNDWATERYear: 1990.Hydrometric Area: 30

UK Hydrometric Areas. Control WL = 1975max. Start = 1990 min. End = 1990 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 4

Total		Chalk		Cover				
min	Vmax	Vmin	Vmax	Vmin	Vmax	Storag	e Inte	erval
.08	1.3	0	0	.08	1.3	Start WL		Base of Chalk
.05	.62	0	0	.05	.62	End WL	-	Base of Chall
.05	.62	0	0	.05	.62	Datum		Base of Chalk
.03	.73	0	0	.03	.73	Start WL	-	Datum
0	0	0	0	Û	0	End WL	-	Datum
.03	.73	0	0	.03	.73	Start WL	-	End WL

Contribution to total 'Start-End' from elastic storage: 19% (min.) and 86% (max.).

TABLE 75.VOLUMES OF GROUNDWATERYear: 1990.Hydrometric Area: 33

UK Hydrometric Areas. Control WL = 1975max. Start = 1990 min. End = 1990 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 5

Tot	al	Cha	lk	Cove	r			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storag	erval	
1100	2000	1100	1800	49	250	Start WL		Base of Chall
900	1500	870	1400	21	110	End WL		Base of Chall
630	880	630	880	.31	1.6	Datum		Base of Chali
470	1100	420	870	49	250	Start WL		Datum
260	590	240	490	21	100	End WL		Datum
210	530	180	380	28	150	Start WL		End WL

. .

TABLE 76.VOLUMES OF GROUNDWATERYear: 1990.Hydrometric Area: 34

UK Hydrometric Areas. Control WL = 1975max. Start = 1990 min. End = 1990 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 6

Toti	al	Cha	lk	Cov	/er			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storag	ge Int	erval
4700	9400	4000	5200	640	4200	Start WL		Base of Chalk
4200	7500	3800	4900	400	2500	End VL		Base of Chalk
3600	5300	3400	4200	180	1200	Datum		Base of Chalk
1000	4100	580	1100	460	3000	Start WL	-	Datum
610	2200	390	780	220	1400	End WL		Datum
430	1900	190	300	240	1600	Start WL	•	End WL
Contributi	on to tota	l 'Start-Er	d'from el	astic stora	age: 31% (min.) and 317	K (max	.).

TABLE 77.VOLUMES OF GROUNDWATERYear: 1990.Hydrometric Area: 35

UK Hydrometric Areas. Control WL = 1975max. Start = 1990 min. End = 1990 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 7

				er	Cov	lk	Cha	al	Tot
	erval	e Inte	Storag	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
Chal	Base of		Start WL	1400	210	1700	1300	3100	1500
Chal	Base of		End WL	850	140	1600	1200	2500	1400
Chal	Base of	-	Datum	590	95	1400	1100	2000	1200
	Datum	-	Start WL	760	120	300	160	1100	28 0
	Datum		End WL	260	42	200	93	460	130
	End WL		Start WL	500	76	100	66	610	140

Contribution to total 'Start-End' from elastic storage: 29% (min.) and 29% (max.).

TABLE 78.VOLUMES OF GROUNDWATERYear: 1990.Hydrometric Area: 36

UK Hydrometric Areas. Control WL = 1975max. Start = 1990 min. End = 1990 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 8

			er	Cov	lk	Cha	al	Tota
e Interval	e Inte	Storag	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
- Base of Cha		Start WL	730	120	1100	760	1800	880
- Base of Cha		End WL	360	62	1000	700	1400	760
- Base of Cha	-	Datum	140	24	680	550	820	570
- Datum	-	Start WL	600	99	430	210	1000	310
- Datum	-	End WL	220	38	320	150	540	190
- End WL	-	Start WL	380	61	110	59	480	120

.

TABLE 79.VOLUMES OF GROUNDWATERYear: 1990.Hydrometric Area: 37

UK Hydrometric Areas. Control WL = 1975max. Start = 1990 min. End = 1990 min. - 10m. Datum = O.D. Units: millions of cubic metres Catchment Number: 9

		er	Cove	lk	Cha	al	Tot
e Interval	Storage Int	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
- Base of Chall	Start WL -	5600	620	2400	1700	7900	2300
 Base of Chall 	End WL -	4900	540	2300	1600	7200	2200
 Base of Chall 	Datum -	4300	470	2100	1500	6300	2000
- Datum	Start WL -	1300	140	280	170	1600	310
- Datum	End VL -	610	68	200	120	810	190
- End WL	Start WL -	700	76	74	51	770	130

TABLE 80.VOLUMES OF GROUNDWATERYear: 1990.Hydrometric Area: 38

UK Hydrometric Areas. Control WL = 1975max. Start = 1990 min. End = 1990 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 10

			er	Cov	lk	Cha	al	Tot
Interval	ge Inte	Storag	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
- Base of Chal		Start WL	2200	140	1200	770	3500	910
- Base of Chal	-	End WL	1600	110	1100	680	2600	790
- Base of Chal	-	Datum	1000	67	700	49 0	1700	550
• Datum	•	Start WL	1200	76	540	290	1700	360
• Datum	•	End WL	540	39	360	200	900	240
 End WL 	-	Start WL	650	37	180	86	830	120

TABLE 81.VOLUMES OF GROUNDWATERYear: 1990.Hydrometric Area: 39

.....

UK Hydrometric Areas. Control WL = 1975max. Start = 1990 min. End = 1990 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 11

Tota	t	Chal	k	Cov	ver			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Stora	ge Int	erval
4500	17000	3300	4800	1200	12000	Start WL	•	Base of Chalk
4100	15000	3000	4400	1100	11000	End WL	-	Base of Chalk
3000	10000	2300	3200	690	6900	Datum	-	Base of Chalk
1600	7200	99 0	1600	560	5600	Start WL	-	Datum
1100	5100	730	1100	390	3900	End WL	•	Datum
430	2100	260	450	170	1700	Start WL	-	End WL
	n to total	'Start-End	/ from el	astic stor	age: 65% (min.) and 80	K (max	.).

TABLE 82.VOLUMES OF GROUNDWATERYear: 1990.Hydrometric Area: 40

UK Hydrometric Areas. Control WL = 1975max. Start = 1990 min. End = 1990 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 12

Tot	al	Cha	lk	Cove	9 r			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Stora	ge Inte	erval
940	2100	790	1200	140	880	Start WL	-	Base of Chalk
870	1900	740	1100	130	820	End WL	-	Base of Chalk
790	1800	660	980	130	800	Datum	-	Base of Chalk
150	290	140	210	14	77	Start WL	-	Datum
85	140	81	120	4.3	22	End WL		Datum
64	150	55	93	9.6	55	Start WL	•	End WL
	on to total	'Start-En	d' from ela	astic stora	ie: 40% (min.) and 35	X (max.).

TABLE 83.VOLUMES OF GROUNDWATERYear: 1990.Hydrometric Area: 41

UK Hydrometric Areas. Control WL = 1975max. Start = 1990 min. End = 1990 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 13

Tot	al	Çha	lk	Cover	•			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storag	je Inte	erval
880	1300	870	1200	16	160	Start WL	09.0	Base of Chalk
850	1300	840	1100	15	150	End WL		Base of Chalk
810	1200	800	1100	15	150	Datum	-	Base of Chalk
71	110	69	91	1.9	19	Start WL		Datum
40	50	40	50	.02	. 16	End WL		Datum
31	60	29	42	1.8	18	Start WL		End WL

Contribution to total 'Start-End' from elastic storage: 60% (min.) and 57% (max.).

TABLE 84.VOLUMES OF GROUNDWATERYear: 1990.Hydrometric Area: 42

UK Hydrometric Areas. Control WL = 1975max. Start = 1990 min. End = 1990 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 14

			Cov		Cha	cal	Tot
Storage Interval	Storag	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
rt WL - Base of Chall	Start WL	33000	3300	4900	4000	38000	7200
WL - Base of Chall	End WL	32000	3200	4700	3800	3700 0	7000
um - Base of Chall	Datum	32000	3200	4300	3500	36000	6700
rtWL - Datum	Start WL	900	90	630	430	1500	520
VL - Datum	End VL	250	25	430	300	680	330
rt WL - End WL	Start WL	650	65	210	120	850	190
0.52						-	

R&D 128/5/A

.

..

· · · · · ·

TABLE 85.VOLUMES OF GROUNDWATERYear: 1990.Hydrometric Area: 43

```
UK Hydrometric Areas. Control WL = 1975max.
Start = 1990 min. End = 1990 min. - 10m. Datum = 0.D.
Units: millions of cubic metres
Catchment Number: 15
```

			ег	Cov	lk	Cha	ai	Tota
Interval	rage inte	Stora	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
- Base of Chal		Start WL	7100	710	2700	2100	9700	2800
- Base of Chal	-	End WL	6600	660	2500	2000	9100	2600
- Base of Chal	-	Datum	6300	630	2100	1700	8300	2300
- Datum	-	Start WL	790	79	610	390	1400	470
- Datum	•	End WL	330	33	410	270	740	310
- End VL	-	Start WL	460	46	200	120	660	160

TABLE	86.	VOLUMES OF GROUNDWATER	
Year:	1990.	Hydrometric Area:	44

UK Hydrometric Areas. Control WL = 1975max. Start = 1990 min. End = 1990 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 16

				•	Cover	lk	Cha	al	Tot
	erval	e Inte	Storag	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
Chall	Base of	-	Start WL	1900	190	1100	840	3000	1000
Chalk	Base of		End WL	1800	180	1000	810	2800	990
Chalk	Base of		Datum	1800	180	930	760	2700	940
	Datum		Start WL	89	8.9	130	80	220	89
	Datum		End WL	7.7	.77	75	51	83	51
	End WL		Start WL	81	8.1	54	30	140	38

Contribution to total 'Start-End' from elastic storage: 64% (min.) and 70% (max.).

TABLE 87.VOLUMES OF GROUNDWATERYear: 1990.Hydrometric Area: 53

```
UK Hydrometric Areas. Control WL = 1975max.

Start = 1990 min. End = 1990 min. - 10m. Datum = 0.D.

Units: millions of cubic metres

Catchment Number: 19
```

-

Total nin Vmax Vmi		Chalk		er			
Vmax	Vmin	Vmax	Vmin	Vmax	Storag	age Interval	
2.0	2.0	2.0	0	0	Start WL		Base of Chalk
1.2	1.2	1.2	0	0	End WL		Base of Chalk
0	0	0	0	0	Datum		Base of Chalk
2.0	2.0	2.0	0	0	Start WL		Datum
1.2	1.2	1.2	0	0	End WL		Datum
.81	.81	.81	0	0	Start WL		End WL
				C		1	
-	2.0 1.2 0 2.0 1.2 .81	2.0 2.0 1.2 1.2 0 0 2.0 2.0 1.2 1.2 .81 .81	2.0 2.0 2.0 2.0 1.2 1.2 1.2 1.2 0 0 0 0 2.0 2.0 2.0 2.0 1.2 1.2 1.2 1.2 .81 .81 .81	2.0 2.0 2.0 0 1.2 1.2 1.2 0 0 0 0 0 2.0 2.0 2.0 0 1.2 1.2 1.2 0 1.2 1.2 1.2 0 1.2 1.2 1.2 0 .81 .81 .81 0	2.0 2.0 2.0 0 0 1.2 1.2 1.2 0 0 0 0 0 0 0 2.0 2.0 2.0 0 0 2.0 2.0 2.0 0 0 1.2 1.2 1.2 0 0 1.2 1.2 1.2 0 0 .81 .81 .81 0 0	2.0 2.0 2.0 0 0 Start WL 1.2 1.2 1.2 0 0 End WL 0 0 0 0 0 Datum 2.0 2.0 2.0 0 Datum 1.2 1.2 1.2 0 Datum 1.2 1.2 1.2 0 Start WL 1.2 1.2 1.2 0 O End WL .81 .81 .81 0 Start WL	2.0 2.0 2.0 0 0 Start WL - 1.2 1.2 1.2 0 0 End WL - 0 0 0 0 0 Datum - 2.0 2.0 2.0 0 0 Datum - 1.2 1.2 1.2 0 0 Start WL - 1.2 1.2 1.2 0 0 End WL - 1.2 1.2 1.2 0 0 End WL - .81 .81 .81 0 0 Start WL -

TABLE 88.VOLUMES OF GROUNDWATERYear: 1990.NRA Region: Yorks

UK Hydrometric Areas. Control WL = 1975max. Start = 1990 min. End = 1990 min. - 10m. Datum = O.D. Units: millions of cubic metres Catchment Number: 20

Tot	al	Cha	lk	Cove	r			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storag	ge Into	erval
2000	3600	1800	2200	250	1400	Start WL		Base of Chalk
1900	3400	1700	2200	220	1300	End WL	-	Base of Chalk
1900	3400	1700	2100	220	1300	Datum	-	Base of Chalk
97	250	73	120	24	130	Start WL	-	Datum
33	48	32	46	.23	1.2	End WL	-	Datum
64	200	41	70	24	130	Start WL	•	End WL
ontributi	on to total	/Start-En	d/ from el	astic storag	e- 467 (m	in.) and 29	(max)

TABLE 89.VOLUMES OF GROUNDWATERYear: 1990.NRA Region: Anglia

UK Hydrometric Areas. Control WL = 1975max. Start = 1990 min. End = 1990 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 21

				rer	Cov	Chalk		Total Chi	
	rval	e inte	Storag	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
Chalk	Base of		Start WL	13000	1800	13000	9000	25000	11000
Chalk	Base of	•	End WL	9400	1300	12000	8400	21000	9700
Chalk	8ase of		Datum	6800	890	9600	7400	16000	8300
	Datum		Start WL	6000	890	3000	1600	9000	2400
	Datum	-	End WL	2600	390	2000	1000	4600	1400
	End WL		Start WL	3400	500	980	560	4400	1100

Contribution to total 'Start-End' from elastic storage: 35% (min.) and 38% (max.).

TABLE 90.VOLUMES OF GROUNDWATERYear: 1990.NRA Region: Thames

```
UK Hydrometric Areas. Control WL = 1975max.
Start = 1990 min. End = 1990 min. - 10m. Datum = 0.D.
Units: millions of cubic metres
Catchment Number: 22
```

2

Total		Chelk		Cov	ver			
Vmin	Vmax	Vmin	Vmax	Vmin Vmax		Storag	orage Interval	
5400	21000	4100	6100	1400	15000	Start WL	-	Base of Chalk
4900	18000	3700	5500	1200	12000	End WL	•	Base of Chalk
3500	12000	2800	3900	750	7900	Datum	•	Base of Chalk
1900	9000	1300	2100	640	6800	Start WL	•	Datum
1400	6000	930	1500	430	4500	End WL	•	Datum
560	3000	350	630	210	2300	Start WL	•	End WL

TABLE 91.VOLUMES OF GROUNDWATERYear: 1990.NRA Region: Southern

UK Hydrometric Areas. Control WL = 1975max. Start = 1990 min. End = 1990 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 23

		/er	Cov	lk	Cha	al	Tot
e Interval	Storag	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
- Base of Chal	Start WL	34000	3400	7300	5600	41000	9000
 Base of Chall 	End WL	33000	3300	6900	5400	40000	8800
 Base of Chall 	Datum	33000	3300	6300	5000	39000	8300
- Datum	Start WL	1000	110	940	630	1900	740
- Datum	End WL	270	29	600	420	870	450
- End WL	Start WL	720	76	340	210	1100	280

Contribution to total 'Start-End' from elastic storage: 65% (min.) and 75% (max.).

TABLE 92.VOLUMES OF GROUNDWATERYear: 1990.NRA Region: Wessex

UK Hydrometric Areas. Control WL = 1975max. Start = 1990 min. End = 1990 min. - 10m. Datum = 0.D. Units: millions of cubic metres Catchment Number: 24

			er	Cov	1 k	Cha	al	Tot
erval	e Inte	Storag	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
Base of Chall	-	Start WL	9000	900	3700	2900	13000	3800
Base of Chalk	-	End WL	8400	840	3500	2800	12000	3600
Base of Chall	-	Datum	8100	810	3000	2400	11000	3300
Datum	-	Start WL	880	88	740	470	1600	560
Datum		End WL	340	34	480	320	820	360
End WL		Start WL	540	54	250	150	800	200

Contribution to total 'Start-End' from elastic storage: 63% (min.) and 75% (max.).

 TABLE 93.
 VOLUMES OF GROUNDWATER

 Year: 1975
 Gauge: 42009 Candover

Itchen Catchment. Control WL = 1975max. Fixed catchment = 1975min. Start = 12/3/75 End = 31/8/75 Units: millions of cubic metres Catchment Number: 2

Tota	l l	Chal	k	Cov	er				
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storage	Inte	Interval	
33	50	33	50	0	0	Start WL	-	Base of Chalk	
32	49	32	49	0	0	End WL	•	Base of Chalk	
22	33	22	33	0	0	Gauge level	•	Base of Chalk	
12	18	12	18	0	0	Start WL	•	Gauge level	
11	16	11	16	0	0	End WL	-	Gauge level	
1.1	1.8	1.1	1.8	0	0	Start WL	•	End WL	

TABLE 94.VOLUMES OF GROUNDWATERYear: 1975Gauge: 42007 Alre

Itchen Catchment. Control WL = 1975max. Fixed catchment = 1975min. Start = 12/3/75 End = 31/8/75 Units: millions of cubic metres Catchment Number: 3

Total		Chalk		Cover				
Vmin	Vmax	Vmin	Vmax	Vmin Vmax		Storage	Int	erval
36	55	36	55	0	0	Start WL	-	Base of Chalk
34	52	34	52	0	0	End WL	-	Base of Chalk
24	36	24	36	0	0	Gauge level	-	Base of Chalk
13	19	13	19	0	0	Start WL	-	Gauge level
11	16	11	16	0	Q	End VL	+	Gauge level
2.0	3.0	2.0	3.0	0	0	Start WL	•	End WL
Contribution	to total	'Start-End'	from ela	stic storage:	51% (min.) and 35%	(max	.).

TABLE 95.VOLUMES OF GROUNDWATERYear: 1975Gauge: 42008 Cheriton

Itchen Catchment. Control WL = 1975max. Fixed catchment = 1975min. Start = 12/3/75 End = 31/8/75 Units: millions of cubic metres Catchment Number: 4

				ег	Cov	¢	Chall	L	Total
	erval	Inte	Storage	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
of Chal	Base	-	Start WL	0	0	33	20	33	20
of Chal	Base	-	End WL	0	0	31	19	31	19
of Chal	Base	-	Gauge level	0	0	24	15	24	15
level	Gauge	-	Start WL	0	0	9.6	5.1	9.6	5.1
e level	Gauge	•	End WL	0	0	7.6	4.1	7.6	4.1
	EndW		Start WL	0	0	2.0	.97	2.0	.97

Contribution to total 'Start-End' from elastic storage: 48% (min.) and 24% (max.).

TABLE 96.VOLUMES OF GROUNDWATERYear: 1975Gauge: 42010 Itchen (Highbridge)

Itchen Catchment. Control WL = 1975max. Fixed catchment = 1975min. Start = 12/3/75 End = 31/8/75 Units: millions of cubic metres Catchment Number: 0

					Cover		Chai	L	Total	
	erval	Inte	Storage	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin	
Chal	Base of	-	Start WL	.02	.00	260	170	260	170	
Chall	Base of	•	End WL	.02	.00	250	160	250	160	
Chall	Base of	-	Gauge level	.01	.00	130	88	130	88	
evel	Gauge l	-	Start WL	.01	.00	130	81	130	81	
evel	Gauge l	-	End WL	.01	.00	120	75	120	75	
	End WL	•	Start WL	.00	.00	11	5.9	11	5.9	

TABLE 97.VOLUMES OF GROUNDWATERYear: 1976Gauge: 42009 Candover

Itchen Catchment. Control WL = 1975max. Fixed catchment = 1976min. Start = 2/4/76 End = 31/7/76 Units: millions of cubic metres Catchment Number: 2

Total		Chall	k	Cov	er			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storage Interval		
35	53	35	53	0	0	Start WL	-	Base of Chal
34	51	34	51	0	0	End WL	-	Base of Chal
23	35	23	35	0	Û	Gauge level	-	Base of Chall
11	17	11	17	0	0	Start WL	•	Gauge level
11	16	11	16	0	0	End WL	-	Gauge level
.72	1.5	.72	1.5	0	0	Start WL	-	End WL

TABLE 98.VOLUMES OF GROUNDWATERYear: 1976Gauge: 42007 Alre

Itchen Catchment. Control WL = 1975max. Fixed catchment = 1976min. Start = 2/4/76 End = 31/7/76 Units: millions of cubic metres Catchment Number: 3

		ег	Cov	k	Chal	ι	Total
Interval	Storage	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
- Base of Chal	Start WL	0	0	49	32	49	32
- Base of Chal	End WL	0	0	48	31	48	31
- Base of Chal	Gauge level	0	0	35	22	35	22
- Gauge level	Start WL	0	0	14	9.5	14	9.5
- Gauge level	End WL	0	0	13	8.9	13	8.9
- End WL	Start WL	0	0	1.1	.59	1.1	.59

Contribution to total 'Start-End' from elastic storage: 61% (min.) and 36% (max.).

TABLE 99.VOLUMES OF GROUNDWATERYear: 1976Gauge: 42008 Cheriton

Itchen Catchment. Control WL = 1975max. Fixed catchment = 1976min. Start = 2/4/76 End = 31/7/76 Units: millions of cubic metres Catchment Number: 4

Total		Chall	4	Cov	er			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storage	Int	erval
18	30	18	30	0	0	Start WL	-	Base of Chalk
18	29	18	29	0	0	End WL	•	Base of Chalk
15	22	15	22	0	0	Gauge level	-	Base of Chalk
3.9	7.3	3.9	7.3	0	0	Start WL	•	Gauge level
3.7	6.8	3.7	6.8	0	0	End WL	•	Gauge level
.23	.48	.23	.48	0	0	Start WL	-	End WL
	to total	(Stort Fod)		tio storn		min.) and 24%	(<u> </u>

TABLE 100.VOLUMES OF GROUNDWATERYear: 1976Gauge: 42010 Itchen (Highbridge)

Itchen Catchment. Control WL = 1975max. Fixed catchment = 1976min. Start = 2/4/76 End = 31/7/76 Units: millions of cubic metres Catchment Number: 0

Total		Chalk		Cover				
Vmin	Vmax	Vmin	Vmax	Vmin Vmax		Storage	Inte	erval
160	250	160	250	0	0	Start WL	-	Base of Chalk
160	240	160	240	0	0	End WL	•	Base of Chalk
88	130	88	130	0	0	Gauge level	•	Base of Chalk
75	120	75	120	0	0	Start WL	-	Gauge level
72	110	72	110	0	0	End WL	-	Gauge level
2.3	4.6	2.3	4.6	0	0	Start WL	•	End VL
ontribution	to total	'Start-End'	from ela	stic storage:	57% (min.) and 30%	(max.	2.

TABLE 101.VOLUMES OF GROUNDWATERYear:1988Gauge:42009 Candover

Itchen Eatchment. Control WL = 1975max. Fixed catchment = 1988min. Start = 17/3/88 End = 31/8/88 Units: millions of cubic metres Eatchment Number: 2

				er	Cov	k	Chal	l	Tota
	rval	Inte	Storage	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin
of Chall	Base	•	Start WL	0	0	54	35	54	35
of Chall	Base		End WL	0	0	53	35	53	35
of Chall	Base	•	Gauge level	0	0	35	23	35	23
level	Gauge	+	Start WL	0	0	19	12	19	12
level	Gauge		End WL	0	0	18	12	18	12
IL	End V		Start WL	0	0	1.0	.47	1.0	.47

Contribution to total 'Start-End' from elastic storage: 50% (min.) and 25% (max.).

TABLE 102.VOLUMES OF GROUNDWATERYear: 1988Gauge: 42007 Alre

Itchen Catchment. Control WL = 1975max. Fixed catchment = 1988min. Start = 17/3/88 End = 31/8/88 Units: millions of cubic metres Catchment Number: 3

Total	L	Chal	k	Cov	er			
Vmin	Vmax	Vmin	Vmax	Vmîn Vmax Stora		Storage In		erval
33	51	33	- 51	0.	0	Start WL		Base of Chalk
31	48	31	48	0	0	End WL	-	Base of Chalk
21	33	21	33	0	0	Gauge level		Base of Chalk
12	18	12	18	0	0	Start WL		Gauge level
9.9	15	9.9	15	0	0	End WL		Gauge level
1.8	2.9	1.8	2.9	0	0	Start WL	-	End WL

TABLE 103.VOLUMES OF GROUNDWATERYear: 1988Gauge: 42008 Cheriton

Itchen Catchment. Control WL = 1975max. Fixed catchment = 1988min. Start = 17/3/88 End = 31/8/88 Units: millions of cubic metres Catchment Number: 4

Total		Chalk		Cov	er			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storage	Inte	rval
23	37	23	37	0	0	Start WL	-	Base of Chalk
22	34	22	34	0	0	End WL	-	Base of Chalk
17	26	17	26	0	0	Gauge level	-	Base of Chalk
5.7	10	5.7	10	0	0	Start WL	-	Gauge level
4.3	7.6	4.3	7.6	0	0	End WL	•	Gauge level
1.4	2.8	1.4	2.8	0	0	Start WL	1	End WL
Contribution	to total	'Start-End'	from ela:	stic stora	ge: 47% (min.) and 25%	(max.).

TABLE 104.VOLUMES OF GROUNDWATERYear: 1988Gauge: 42010 1tchen (Highbridge)

Itchen Catchment. Control WL = 1975max. Fixed catchment = 1988min. Start = 17/3/88 End = 31/8/88 Units: millions of cubic metres Catchment Number: D

				Cover	k	Chalk		Total	
	interva	Storage Interva		Vmin	Vmax	Vmin	Vmax	Vmin	
of Chal	- Ba	Start WL	.02	.00	260	170	260	170	
of Chal	- 8a:	End WL	.02	.00	250	160	250	160	
e of Chal	- 6a:	Gauge level	.01	.00	130	88	130	88	
e level	- Ga	Start WL	.01	.00	130	81	130	81	
e level	- Ga	End WL	.01	.00	120	76	120	76	
WL	- En	Start WL	.00	.00	9.4	4.9	9.4	4.9	

Contribution to total 'Start-End' from elastic storage: 50% (min.) and 28% (max.).

TABLE 105. VOLUMES OF GROUNDWATER Year: 1989 Gauge: 42009 Candover

Itchen Catchment. Control WL = 1975max. Fixed catchment = 1989min. Start = 24/4/89 End = 31/7/89 Units: millions of cubic metres Catchment Number: 2

Vmax Storage Interval	• • • • • • • •	Cover		Chalk		Total	
-	Vmîn Vmax		Vmax	Vmin	Vmax	Vmin	
0 Start WL - Base of Chall	0	0	53	35	53	35	
0 End WL 💮 Base of Chall	0	0	52	35	52	35	
0 Gauge level - Base of Chall	0	0	36	23	36	23	
0 Start WL - Gauge Level	0	0	18	12	18	12	
0 End WL - Gauge level	0	0	17	11	17	11	
0 Start WL - End WL	0	0	1.3	.79	1.3	.79	

TABLE 106.VOLUMES OF GROUNDWATERYear: 1989Gauge: 42007 Alre

Itchen Catchment. Control WL = 1975max. Fixed catchment = 1989min. Start = 24/4/89 End = 31/7/89 Units: millions of cubic metres Catchment Number: 3

Total	L	Chall	k	Cov	er				
Vanin	Vmax	Vmin	Vmax	Vmin	Vmax	Storage	Storage Interval		
32	50	32	50	0	0	Start WL	•	Base of Chalk	
31	47	31	47	0	0	End WL	-	Base of Chalk	
22	34	22	34	0	0	Gauge level	-	Base of Chalk	
11	16	11	16	0	0	Start WL	-	Gauge level	
8.7	13	8.7	13	0	0	End WL	-	Gauge level	
1.8	3.1	1.8	3.1	0	0	Start WL	-	EndWL	

TABLE 107.VOLUMES OF GROUNDWATERYear: 1989Gauge: 42008 Cheriton

Itchen Catchment. Control WL = 1975max. Fixed catchment = 1989min. Start = 24/4/89 End = 31/7/89 Units: millions of cubic metres Catchment Number: 4

			Cover		k	Chalk		Total	
rval	Storage Interval		Vmax	Vmin	Vmax	Vmin	Vmax	Vmin	
Base of Chall	•	Start WL	0	0	33	20	33	20	
Base of Chall		End WL	0	0	31	20	31	20	
Base of Chall		Gauge level	0	0	24	16	24	16	
Gauge level		Start WL	0	0	8.5	4.6	8.5	4.6	
Gauge level		End WL	0	0	7.0	3.9	7.0	3.9	
End WL	-	Start WL	0	0	1.5	.75	1.5	.75	

Contribution to total 'Start-End' from elastic storage: 50% (min.) and 26% (max.).

.

 TABLE 108.
 VOLUMES OF GROUNDWATER

 Year:
 1989
 Gauge: 42010 Itchen (Highbridge)

Itchen Catchment. Control WL = 1975max. Fixed catchment = 1989min. Start = 24/4/89 End = 31/7/89 Units: millions of cubic metres Catchment Number: 0

Total		Chalk		Cover	r			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storage	age Interval	
170	270	170	270	.00	.04	Start WL		Base of Chalk
170	260	170	260	.00	.03	End WL	-	Base of Chalk
92	140	92	140	.00	.02	Gauge level	•	Base of Chalk
82	130	82	130	.00	.02	Start WL	-	Gauge level
77	120	77	120	.00	.02	End WL	•	Gauge level
4.7	8.6	4.7	8.6	.00	.00	Start WL	•	End WL

.

TABLE 109.VOLUMES OF GROUNDWATERYear: 1975Gauge: 39019 Lambourn

Kennet Catchment. Control WL = 1975max. Fixed catchment = 1975min. Start = 1/4/75 End = 31/8/75 Units: millions of cubic metres Catchment Number: 2

Total		Chalk		Cover	r			
Vmin	Vmax	Vmin	Vmax	Vmin Vmax		Storage	Int	erval
48	74	48	74	0	0	Start WL	÷	Base of Chalk
46	69	46	69	0	0	End VL	-	Base of Chalk
30	46	30	46	0	0	Gauge level	-	Base of Chalk
18	28	18	28	0	0	Start WL	-	Gauge level
15	23	15	23	0	0	End VL	-	Gauge level
2.5	5.0	2.5	5.0	0	0	Start WL	-	End WL
Contribution	to total	'Start-End'	from ela	stic storage	e: 45% (min.) and 23%	(max	.).

TABLE 110.VOLUMES OF GROUNDWATERYear: 1975Gauge: 39028 Dun

Kennet Catchment. Control WL = 1975max. Fixed catchment = 1975min. Start = 1/4/75 End = 31/8/75 Units: millions of cubic metres Catchment Number: 3

	Interval		er	Cov	k	Chalk	ι	Total	
erval	Inte	Storage	Vmin Vmax		Vmax	Vmin	Vmax	Vmin	
Base of Chalk	-	Start WL	0	0	14	8.1	14	8.1	
Base of Chalk	-	End WL	0	0	13	7.7	13	7.7	
Base of Chalk	-	Gauge level	0	0	9.0	5.6	9.0	5.6	
Gauge level	-	Start WL	0	0	5.2	2.4	5.2	2.4	
Gauge level	-	End WL	0	0	4.4	2.1	4.4	2.1	
End WL	-	Start WL	0	0	.83	.37	.83	.37	

Contribution to total 'Start-End' from elastic storage: 30% (min.) and 14% (max.).

TABLE 111.VOLUNES OF GROUNDWATERYear: 1975Gauge: 39043 Kennet (Knighton)

Kennet Catchment. Control WL = 1975max. Fixed catchment = 1975min. Start = 1/4/75 End = 31/8/75 Units: millions of cubic metres Catchment Number: 4

Total		Chalk		Cover					
Vmin	Vmax	Vmin	Vmax	Vmin Vmax		Storage Interval			
34	45	34	45	0	0	Start WL	-	Base of Chalk	
30	40	30	40	0	0	End WL	-	Base of Chalk	
19	25	19	25	0	0	Gauge level	-	Base of Chalk	
15	19	15	19	0	0	Start WL	-	Gauge level	
11	14	11	14	0	0	End WL	-	Gauge level	
3.9	5.2	3.9	5.2	D	0	Start WL	-	End WL	

TABLE 112.VOLUMES OF GROUNDWATERYear: 1975Gauge: 39016 Kennet (Theale)

Kennet Catchment. Control WL = 1975max. Fixed catchment = 1975min. Start = 1/4/75 End = 31/8/75 Units: millions of cubic metres Catchment Number: 0

		Cover		lk	Cha	Total	
Interval	Storage Interval			Vmax	Vmin	Vmax	Vmin
- Base of Chall	Start WL -	170	17	430	270	600	290
 Base of Chall 	End WL	160	16	410	260	570	280
- Base of Chall	Gauge tevel -	31	3.1	210	140	240	140
 Gauge level 	Start WL	140	14	230	140	370	150
- Gauge level	End WL	130	13	200	120	330	140
- End WL	Start WL -	11	1.1	22	13	. 34	14

TABLE 113.VOLUMES OF GROUNDWATERYear: 1976Gauge: 39019 Lambourn

Kennet Catchment. Control WL = 1975max. Fixed catchment 1976min. Start = 15/3/76 End = 15/8/76 Units: millions of cubic metres Catchment Number: 2

			Cover		k	Chal	it	Total	
terval	Inte	Storage	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin	
Base of Chalk	-	Start WL	0		62	41	62	41	
Base of Chalk	-	End WL	0	0	60	40	60	40	
Base of Chalk	-	Gauge level	0	0	43	28	43	28	
Gauge level	-	Start WL	0	0	19	13	19	13	
Gauge level	-	End WL	Û	0	17	12	17	12	
End WL	-	Start WL	0	0	2.1	1.3	2.1	1.3	

Contribution to total 'Start-End' from elastic storage: 51% (min.) and 33% (max.).

TABLE 114.VOLUMES OF GROUNDWATERYear: 1976Gauge: 39028 Dun

Kennet Catchment. Control WL = 1975max. Fixed catchment 1976min. Start = 15/3/76 End = 15/8/76 Units: millions of cubic metres Catchment Number: 3

Total		Chalk		Cover				
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storage	Int	erval
5.8	11	5.8	11	0	0	Start WL	-	Base of Chalk
5.6	10	5.6	10	0	0	End WL	-	Base of Chalk
4.2	6.7	4.2	6.7	0	0	Gauge l ev el	-	Base of Chalk
1.6	3.9	1.6	3.9	0	0	Start WL	-	Gauge level
1.4	3.4	1.4	3.4	0	0	End WL	i ÷ i	Gauge level
.17	.54	. 17	.54	0	0	Start WL	•	End WL
			_				_	
ontribution	n to total	'Start-End	from elas	itic store	ige: 28% (min.) and 9%	(max	.).

TABLE 115.VOLUMES OF GROUNDWATERYear: 1976Gauge: 39043 Kennet (Knighton)

Kennet Catchment. Control WL = 1975max. Fixed catchment 1976min. Start = 15/3/76 End = 15/8/76 Units: millions of cubic metres Catchment Number: 4

Total Chalk Cover Vmax Vmax Vmin Vmax Vmin Vmin Storage Interval 27 36 27 36 0 0 Start WL Base of Chalk Base of Chalk 27 36 27 36 0 End VL 0 24 24 18 18 0 0 Gauge level **Base of Chalk** 9.2 12 9.2 12 0 Start WL 0 Gauge level End VL 9.1 9.1 0 Gauge level 12 12 0 .01 .27 .01 .27 0 0 Start WL End WL

Contribution to total 'Start-End' from elastic storage: 276% (min.) and 9% (max.).

TABLE 116.VOLUMES OF GROUNDWATERYear: 1976Gauge: 39016 Kennet (Theale)

Kennet Catchment. Control WL = 1975max. Fixed catchment 1976min. Start = 15/3/76 End = 15/8/76 Units: millions of cubic metres Catchment Number: 0

	Total		Chalk		Cover				
	Vmin	Vmax	Vmin.	Vmax	Vmin	Vmax	Storage Interval		
-	260	490	250	390	- 10	100	Start WL	-	Base of Chalk
	250	470	240	380	8.9	89	Endi WL	-	Base of Chalk
	140	210	140	200	1.2	12	Gauge level		Base of Chalk
	120	280	110	190	9.0	90	Start WL	-	Gauge level
	120	250	110	180	7.7	77	Endi WL	-	Gauge level
	6.6	23	5.2	10	1.3	13	Start WL	-	End VL

Contribution to total 'Start-End' from elastic storage: 50% (min.) and 53% (max.).

 TABLE 117.
 VOLUMES OF GROUNDWATER

 Year:
 1988
 Gauge:
 39019
 Lambourn

Kennet Catchment. Control WL = 1975max. Fixed catchment 1988min. Start = 15/4/88 End = 31/8/88 Units: millions of cubic metres Catchment Number: 2

Total		Chalk		Cover				
Vmin	Vmax	Vmin	Vmax	Vmin .	Vmax	Storage	Inte	erval
44	67	44	67	0	0	Start WL		Base of Chalk
41	62	41	62	0	0	End WL		Base of Chalk
32	49	32	49	0	0	 Gauge level 		Base of Chall
12	18	12	18	0	0	Start WL	-	Gauge level
	13	9.1	13	0	0	End WL	5 - 1	Gauge level
- 2.5	5.0	2.5	5.0	0	0	Start WL	•	End WL
otributic	n to total	'Start-End'	from elas	tic storage	· 672 ((min.) and 25%	(max.	1.

TABLE 118.VOLUMES OF GROUNDWATERYear: 1988Gauge: 39028 Dun

Kennet Catchment. Control WL = 1975max. Fixed catchment 1988min. Start = 15/4/88 End = 31/8/88 Units: millions of cubic metres Catchment Number: 3

	Chalk		Cover						
x Vm	Vmax	K VI	in V	max	Storage Interval				
4	14	4	0	0	Start WL	-	Base of Chalk		
5	15	5	0	0	End VL	-	Base of Chalk		
9.0	9.0	9.0	0	0	Gauge level	-	Base of Chalk		
4.8	4.8	4.8	0	0	Start WL	-	Gauge level		
5.7	5.7	5.7	0	0	End VL	-	Gauge level		
89	8	89	0	0	Start WL	-	End WL		

TABLE 119.VOLUMES OF GROUNDWATERYear: 1988Gauge: 39043 Kennet (Knighton)

Kennet Catchment. Control WL = 1975max. Fixed catchment 1988min. Start = 15/4/88 End = 31/8/88 Units: millions of cubic metres Catchment Number: 4

		er	Cov	k	Chalk		Total	
Interval	Storage	Vmax	Vmin	Vmax	Vmin	Vmax	Vmin	
- Base of Chalk	Start WL	0	0	44	33	44	33	
- Base of Chalk	End WL	0	0	41	31	41	31	
 Base of Chalk 	Gauge level	0	0	26	19	26	19	
- Gauge level	Start WL	0	0	18	14	18	14	
- Gauge level	End WL	0	0	15	12	15	12	
- End WL	Start WL	0	0	2.6	2.1	2.6	2.1	

Contribution to total 'Start-End' from elastic storage: 25% (min.) and 21% (max.).

TABLE 120.VOLUMES OF GROUNDWATERYear: 1988Gauge: 39016 Kennet (Theale)

Kennet Catchment. Control WL = 1975max. Fixed catchment 1988min. Start = 15/4/88 End = 31/8/88 Units: millions of cubic metres Catchment Number: 0

Tota	Total		Chalk		er -			
Vmin	Vmax	Vmin	Vmax	Vmin	Vmax	Storage Interval		
320	670	300	470	19	190	Start WL	-	Base of Chalk
300	620	290	450	16	160	End WL	-	Base of Chalk
180	350	170	250	9.5	95	Gauge level	-	Base of Chalk
140	320	130	220	9.8	98	Start WL	•	Gauge level
130	270	120	200	6.8	68	End WL		Gauge level
15	50	12	21	2.9	29	Start WL	1	End WL
Contributio	on to total	'Start-En	d'from el	astic storag	je: 48% (min.) and 54%	(max	.).

APPENDIX E ANNUAL HYDROGRAPHS OF DAILY FLOWS FOR THE SELECTED YEARS

E.1 Introduction

Below, hydrographs of daily flow during a calendar year are presented for the catchments and years that were analyzed: 1975, 1976, 1988 and 1989. The maximum of the discharge scale is the same for all years for one station, and determined by the maximum flow on record for that station. Apart from the time plot of daily flows, the graphs also display the base flow line which was separated from the daily flows by a standard Institute of Hydrology algorithm (Section 7). On the graphs the period of analysis is indicated by two bold vertical lines. The graphs are grouped by year to facilitate the comparison of runoff patterns in the catchments. Some features of the presented graphs are commented on below.

E.2 Comments

River Kennet (catchments 39016, 39019, 39028, 39043)

General: The flows recorded in the Kennet at Theale (39016) are not solely derived from Chalk; approximately 10% of the catchment, i.e. the Enbourne catchment, has a predominantly impervious geology of Eocene clays. The responsiveness of the Enbourne catchment results in some high runoff peaks at Theale, higher than expected from a pure Chalk catchment. The different response to precipitation is also reflected in a lower BFI, 0.54 instead of 0.95 in the upstream Chalk catchments (39019, 39028 and 39043), indicating that baseflow comprises a lower fraction of the total runoff than in the other catchments.

A groundwater augmentation scheme has been in operation, pumping water into the River Lambourn when flows were low. This discharge into the river is easily recognisable on the hydrographs, but dates may be verified with the following list of dates when the scheme was operated (provided by Thames NRA):

1 September - 5 December 1975 23 August - 17 November 1976 5 September - 27 September 1989 18 October - 24 November 1990

Apart from groundwater abstraction, there are artificial influences on river flows by mills (in the upper Kennet, 39043) and flows in and out of the Kennet and Avon Canal (in the Dun, 39028). These practises influence more the distribution during a day or week than the total volume of water, and will therefore not have much influence on the volume of base flow which has been calculated.

1975: The hydrograph of the Kennet at Knighton shows some prolonged and relatively high peaks (two to three times the flow recorded during the rest of the summer, and lasting several weeks). These peaks do not occur at the upstream gauging station at Marlborough (39037). Furthermore, the station description mentions occurrences of drowning due to weed growth and a very flat gradient. It was therefore assumed that drowning took place. These peaks do not influence the total volume of base flow to a sufficiently large extent to reject the data for analysis, because the over-estimation balances out the under-estimation.

1976: The only remarkable feature of the 1976 hydrographs, apart from the very low flows, is the sudden increase in flows towards the end of August in the Lambourn at Shaw (39019). This is a result of the operation of the Lambourn groundwater augmentation scheme. The period of analysis therefore has an end date of 15 August.

1988: The hydrographs of this year present a good example of the general statement made above, with short, high runoff peaks in the Kennet at Theale (39016) which are hardly repeated in the other catchments. The sudden dip in the flow record of the Lambourn at Shaw (39019) at the beginning of May is not a data error and probably due to a large but short-term abstraction upstream of the gauging station. The resulting loss in baseflow volume was measured and amounts to 2% of total baseflow during the period that was analysed.

1989: Although the natural recession as derived from the hydrographs continued until October, the operation of the groundwater augmentation scheme from the beginning of September, with a marked impact on the flows in the Lambourn, resulted in a shorter season of analysis. The recession did not start until mid-April.

River Itchen (42007, 42008, 42009, 42010)

General: The irregularity of daily flows as they appear on the hydrographs, is mainly a result of the water management performed for the benefit of the extensive watercress beds and fish farms in the upstream part of the Itchen catchment. The irregularity does not significantly affect the calculated base flow volume.

The operation of the Candover and Aire groundwater augmentation schemes do have an impact on the calculated volume of base flow. The Candover scheme affects riverflow mainly in the Candover Stream and to a small extent in the other rivers in the Itchen catchment (Southern Water Authority, 1979, p.84). The Aire scheme affects flows mainly in the River Aire and to a lesser extend the flow gauged in the other rivers in the Itchen catchment (Southern Science, 1991, p.18). When the schemes were operated, only the directly affected catchments were not analysed. The relevant operational dates are:

Candover scheme 8 May - 10 November 1975 (a few short pumping tests) 3 May - 22 December 1976 9 August - 8 December 1989

Alre scheme 8 May 1989 - 8 February 1990 (severe test pumping)

1975: The flow in all catchments is in recession from the beginning of April until the end of July, when the gauged flows start to increase. The test pumping in the Candover catchment has taken place for 15 days from 8 May, for 10 days from 1 August and for 5 days from 17 August. The total volume pumped was estimated at 0.9×10^6 m³ (Southern Water Authority, 1979, p.34-35), which is 10% of the estimated total baseflow runoff volume from the Candover catchment. The pumping tests have not visibly altered the hydrographs in the Candover, and the flow data have not been rejected for analysis. However, caution has to be taken in interpreting the resulting baseflow volume. Because of the limited impact on Candover flows itself, the baseflow from peripheral catchments may be assumed unaltered by the pumping tests.

R&D 128/5/A

1976: The Candover groundwater augmentation scheme was in operation for most of the summer (from the beginning of May until the end of August), which meant that the measured flows in the Candover catchment were unsuitable for analysis. The depletion of Alre streamflow was estimated at 0.1×10^6 m³, which is 1% of the calculated baseflow runoff and therefore negligible. The depletion of Itchen flows was estimated at 0.2×10^6 m³, less than 1% of the calculated baseflow volume, and this can therefore also be ignored (after Southern Water Authority, 1979, p.83).

1988: The flows in all but one catchment were in recession from mid-February, whereas the recession started one month later in the Alre. This difference could be attributed to a difference in the physical characteristics of the Chalk that underlies the catchments. A sustained peak in groundwater levels has been observed in the Northern boundary of the catchment, probably due to the extremely impermeable nature of the Chalk (Southern Science, 1991, p.3). This phenomenon would explain a slow release of the stored water and a delayed start of the recession. Towards the end of August flows start to increase again.

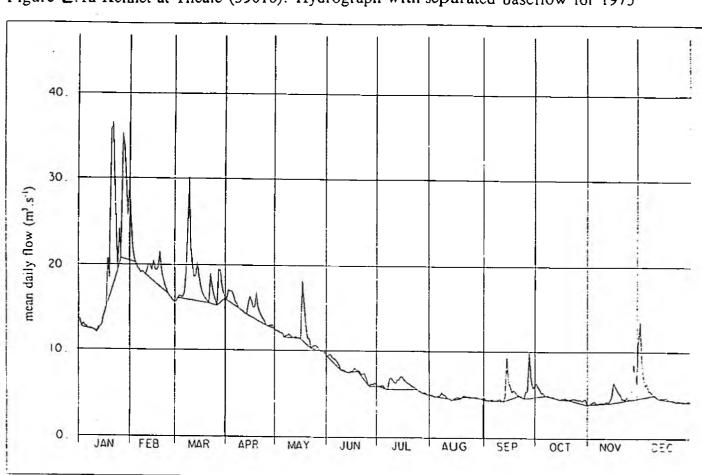
1989: Flows are very irregular in the Alre due to the operation of the groundwater augmentation scheme. The effect of the pumping has been analysed elsewhere (Southern Science, 1991). As a result the 1989 data for the Alre catchment have not been analysed. The groundwater augmentation scheme in the Candover catchment was in operation from the beginning of August, which limited the period that was analysed.

Figure E.1a	Kennet at Theale (39016): Hydrograph with separated baseflow for 1975	
Figure E.1b	Lambourn at Shaw (39019): Hydrograph with separated baseflow for 1975	
Figure E.1c	Dun at Hungerford (39028): Hydrograph with separated baseflow for 1975	
Figure E.1d	Kennet at Knighton (39043): Hydrograph with separated baseflow for 1975	
Figure E.2a	Kennet at Theale (39016): Hydrograph with separated baseflow for 1976	
Figure E.2b	Lambourn at Shaw (39019): Hydrograph with separated baseflow for 1976	
Figure E.2c	Dun at Hungerford (39028): Hydrograph with separated baseflow for 1976	
Figure E.2d	Kennet at Knighton (39043): Hydrograph with separated baseflow for 1976	
Figure E.3a	Kennet at Theale (39016): Hydrograph with separated baseflow for 1988	
Figure E.3b	Lambourn at Shaw (39019): Hydrograph with separated baseflow for 1988	
Figure E.3c	Dun at Hungerford (39028): Hydrograph with separated baseflow for 1988	
Figure E.3d	Kennet at Knighton (39043): Hydrograph with separated baseflow for 1988	· .
Figure E.4a	Kennet at Theale (39016): Hydrograph with separated baseflow for 1989	
Figure E.4b	Lambourn at Shaw (39019): Hydrograph with separated baseflow for 1989	
Figure E.4c	Dun at Hungerford (39028): Hydrograph with separated baseflow for 1989	
Figure E.4d	Kennet at Knighton (39043): Hydrograph with separated baseflow for 1989	
Figure E.5a	Alre at Drove Lane, Alresford (42007): Hydrograph with separated baseflow for 1975	

R&D 128/5/A

•

•

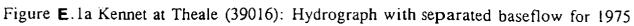
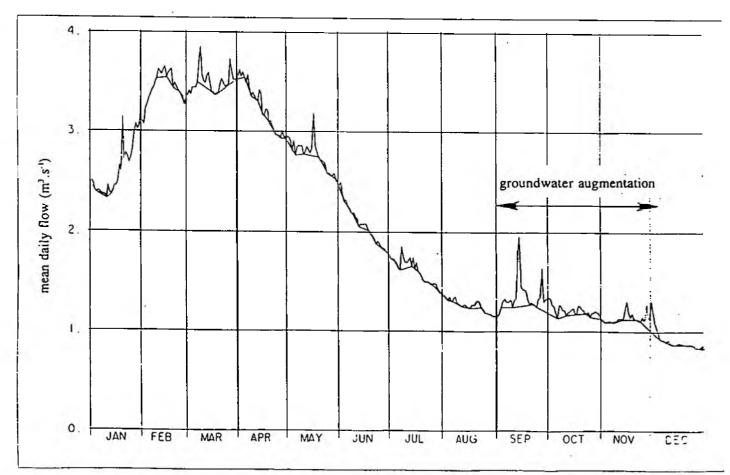
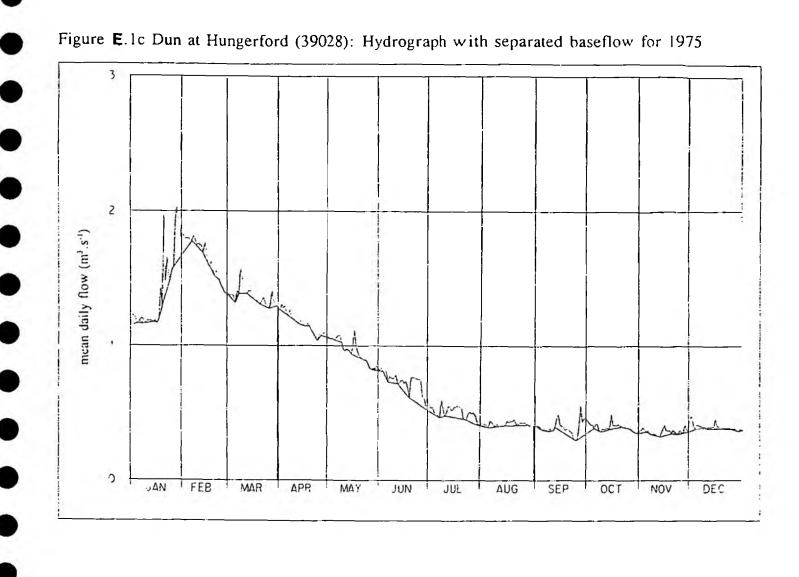
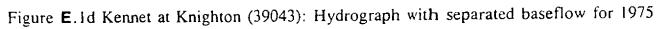
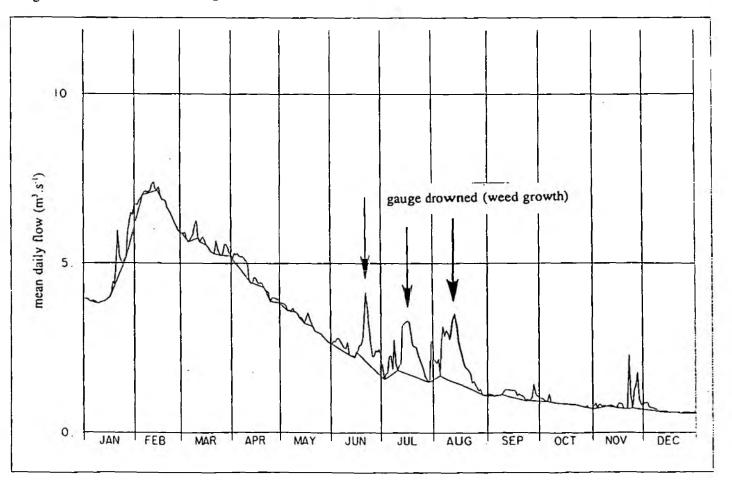

•

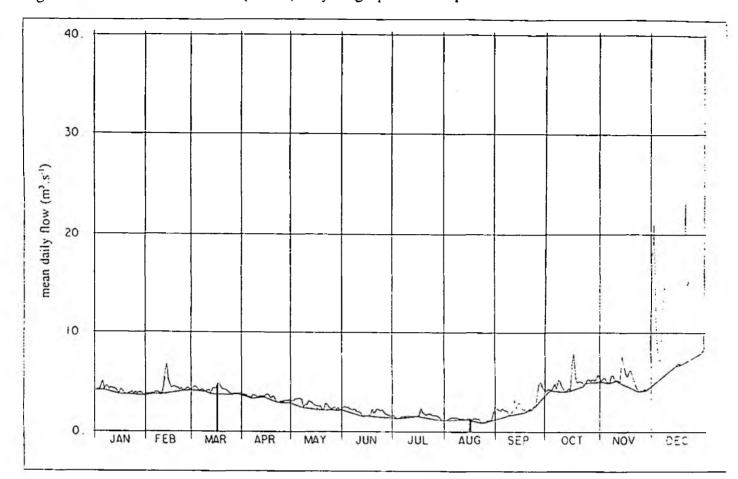
•••••

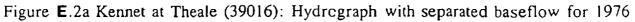
•

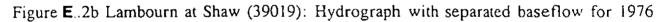
E.4

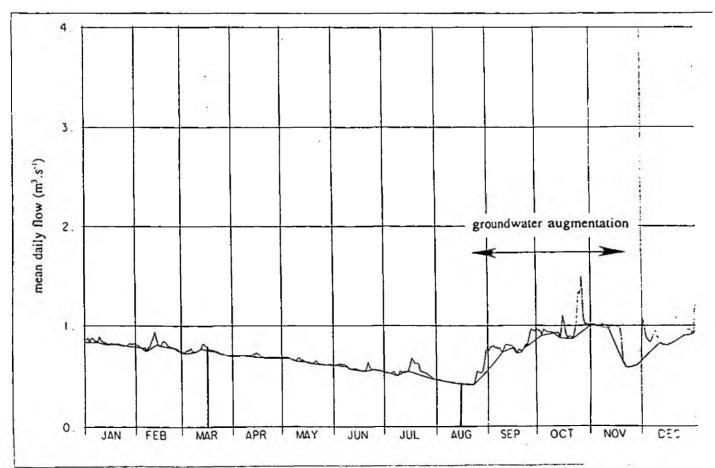
Figure E.5b	Cheriton Stream at Sewards Bridge (42008): Hydrograph with separated baseflow for 1975
Figure E.5c	Candover Stream at Borough Bridge (42009): Hydrograph with separated baseflow for 1975
Figure E.5d	Itchen at Highbridge + Allbrook (42010): Hydrograph with separated baseflow for 1975
Figure E.6a	Alre at Drove Lane, Alresford (42007): Hydrograph with separated baseflow for 1976
Figure E.6b	Cheriton Stream at Sewards Bridge (42008): Hydrograph with separated baseflow for 1976
Figure E.6c	Candover Stream at Borough Bridge (42009): Hydrograph with separated baseflow for 1976
Figure E.6d	Itchen at Highbridge + Allbrook (42010): Hydrograph with separated baseflow for 1976
Figure E.7a	Alre at Drove Lane, Alresford (42007): Hydrograph with separated baseflow for 1988
Figure E.7b	Cheriton Stream at Sewards Bridge (42008): Hydrograph with separated baseflow for 1988
Figure E.7c	Candover Stream at Borough Bridge (42009): Hydrograph with separated baseflow for 1988
Figure E.7d	Itchen at Highbridge + Allbrook (42010): Hydrograph with separated baseflow for 1988
Figure E.8a	Alre at Drove Lane, Alresford (42007): Hydrograph with separated baseflow for 1989
Figure E.8b	Cheriton Stream at Sewards Bridge (42008): Hydrograph with separated baseflow for 1989
Figure E.8c	Candover Stream at Borough Bridge (42009): Hydrograph with separated baseflow for 1989
Figure E.8d	Itchen at Highbridge + Allbrook (42010): Hydrograph with separated baseflow for 1989

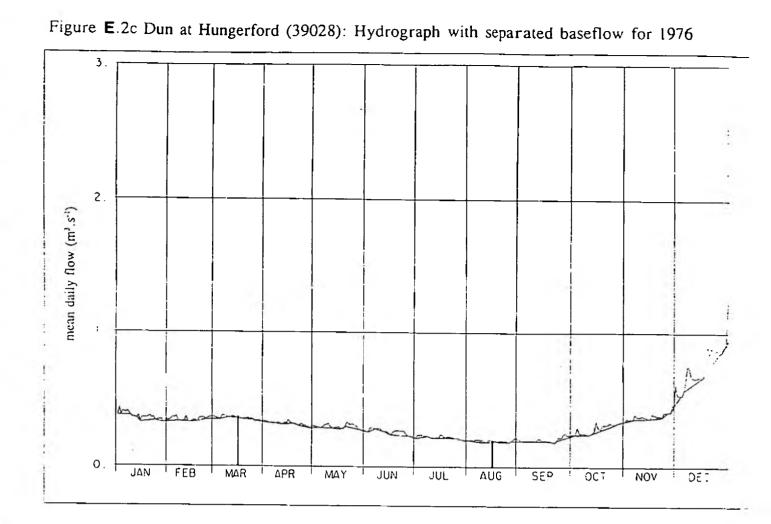






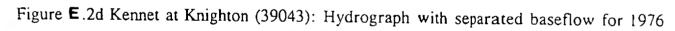

Figure E.1b Lambourn at Shaw (39019): Hydrograph with separated baseflow for 1975

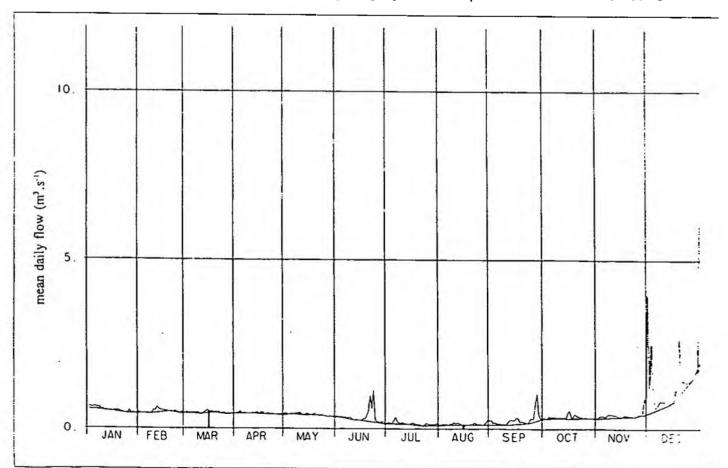


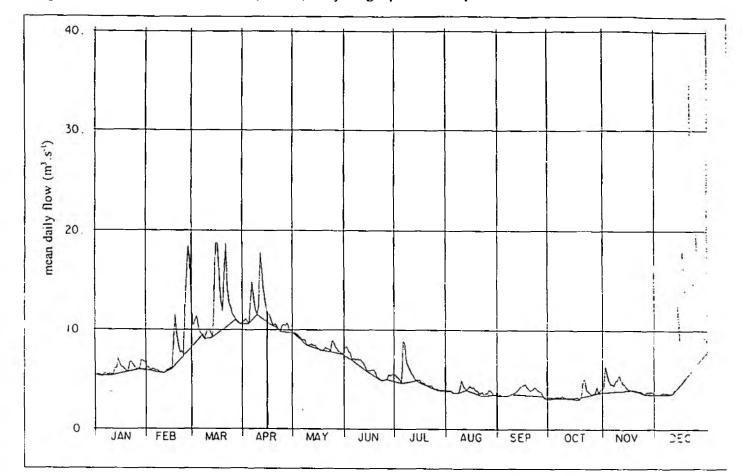


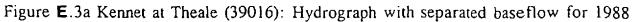


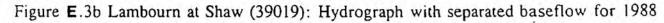


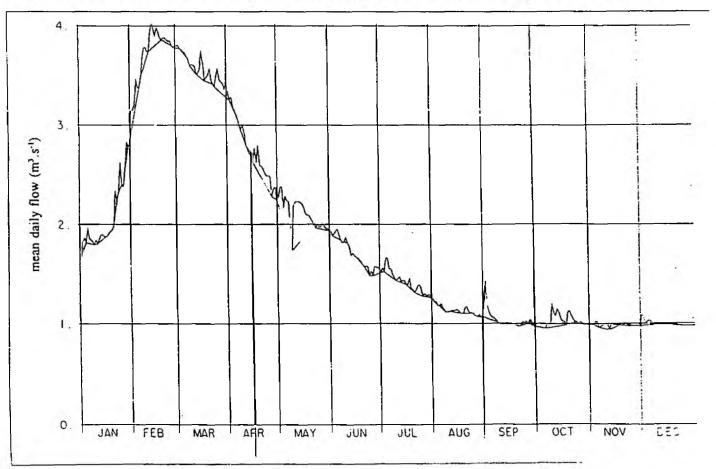


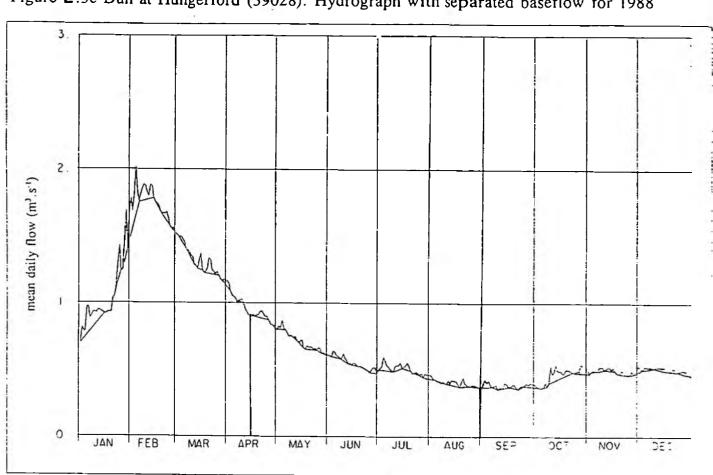


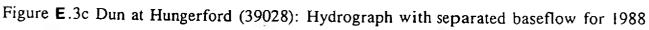


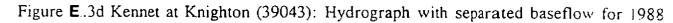


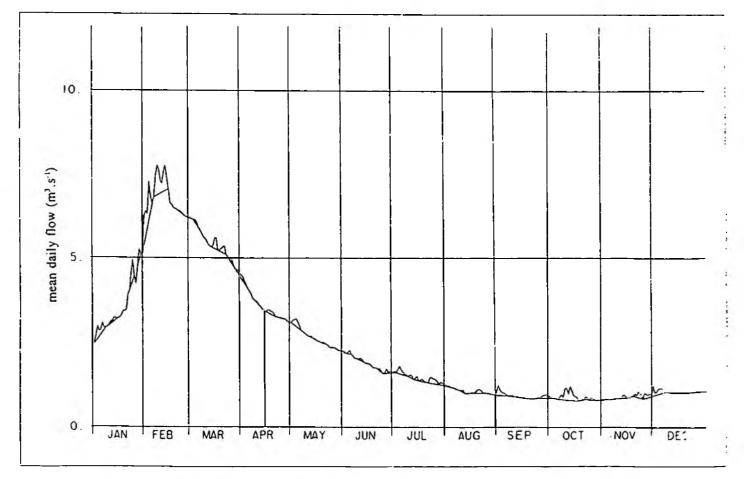


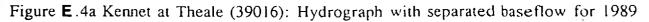


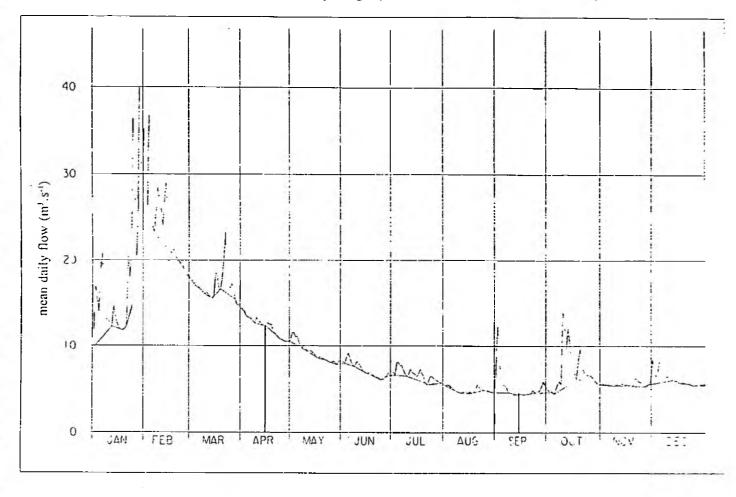


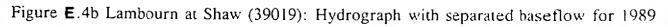


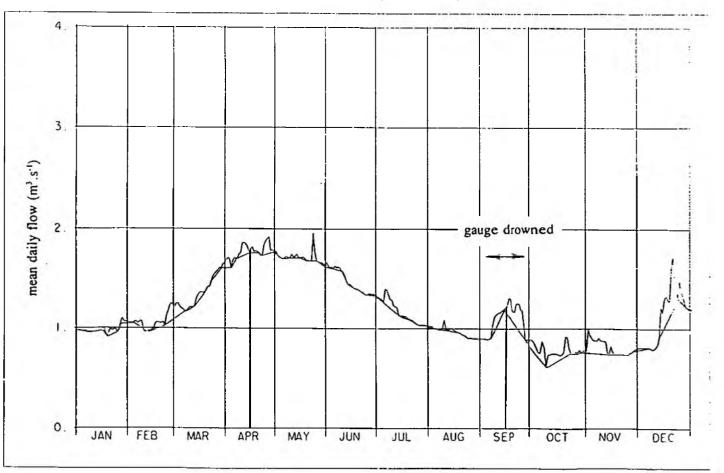


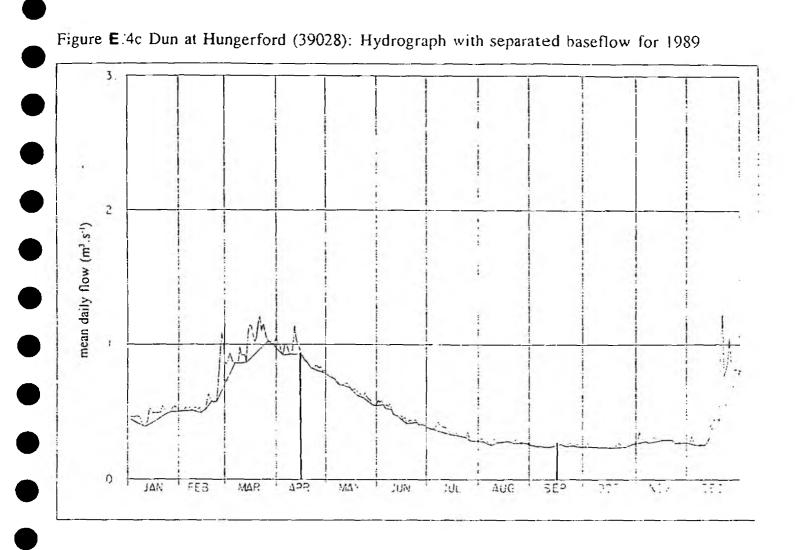


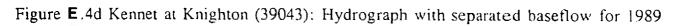


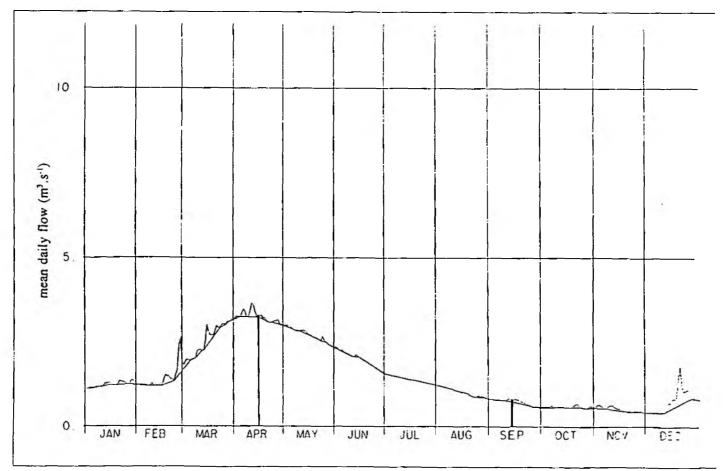


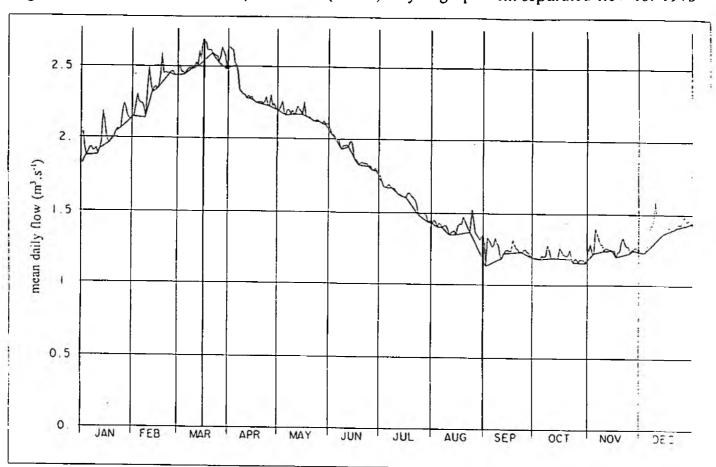


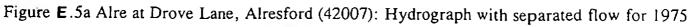


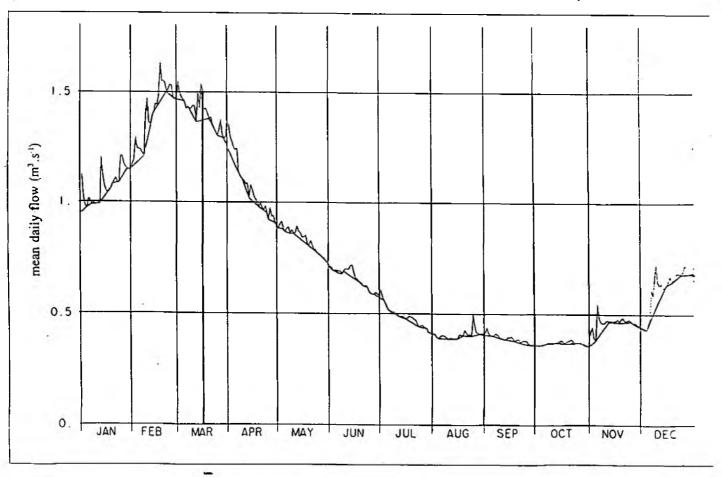


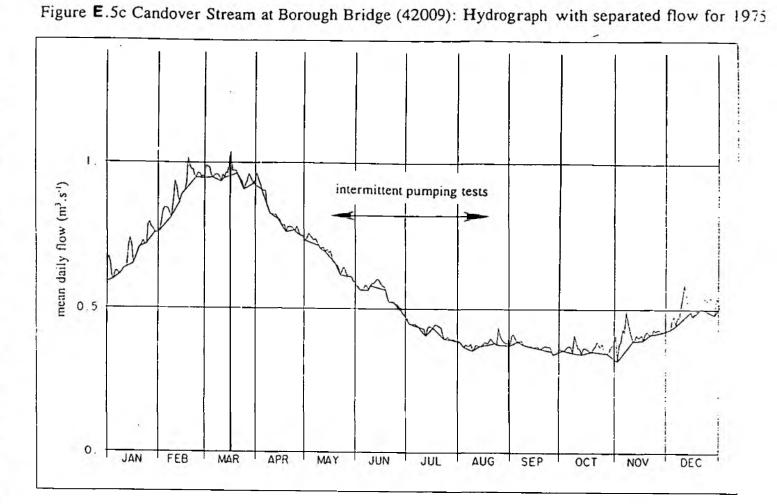


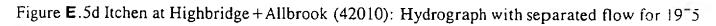


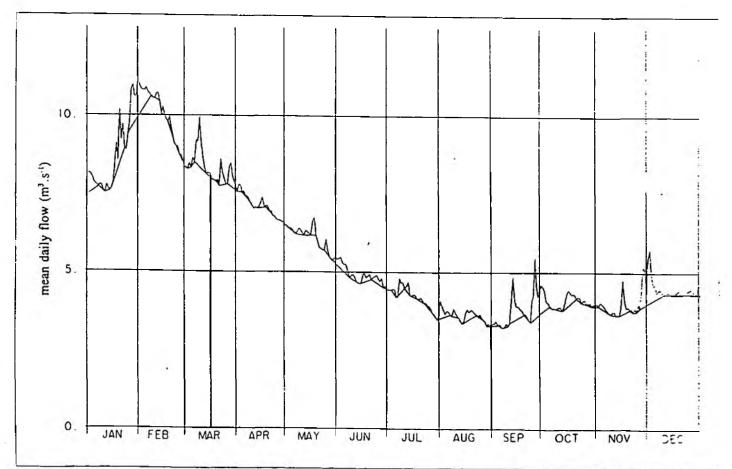


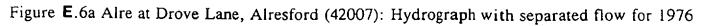


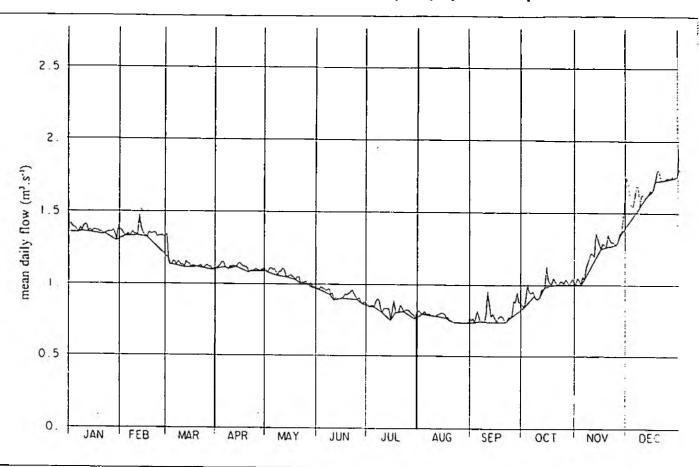


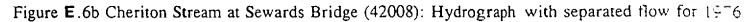

· · ·

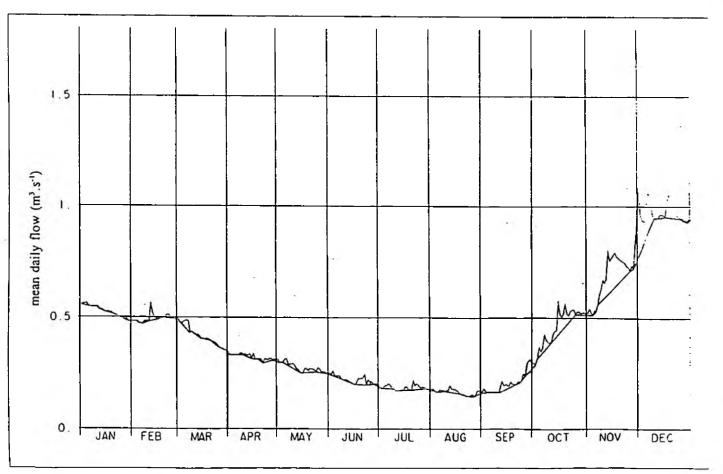


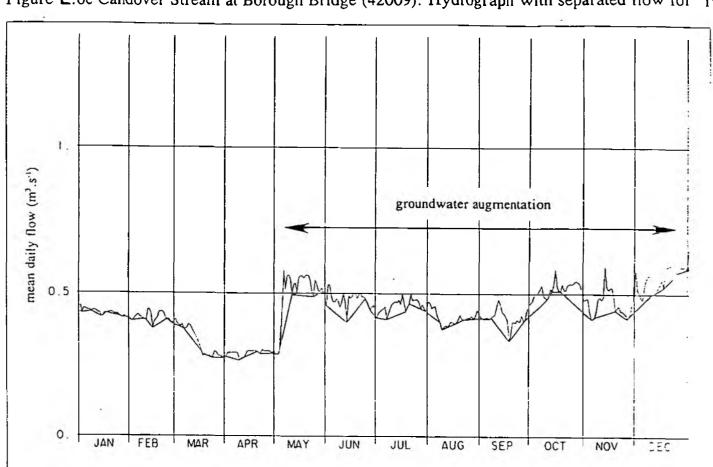


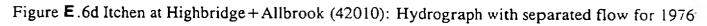












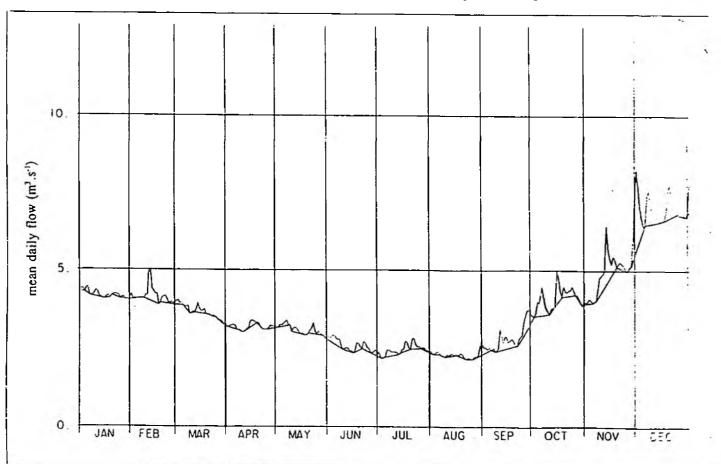


Figure E.6c Candover Stream at Borough Bridge (42009): Hydrograph with separated flow for 19-

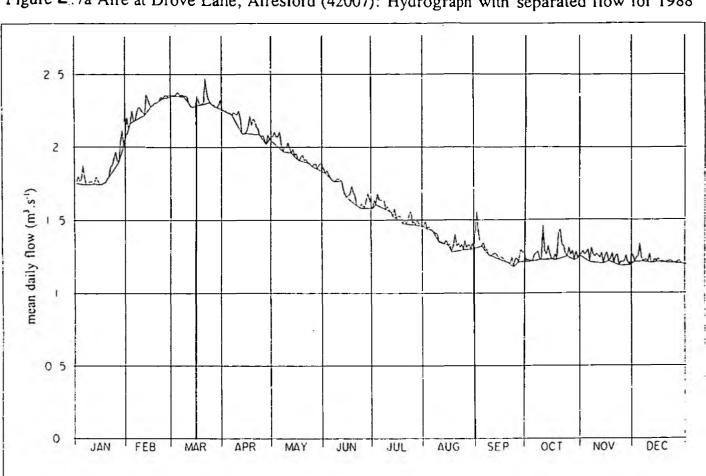
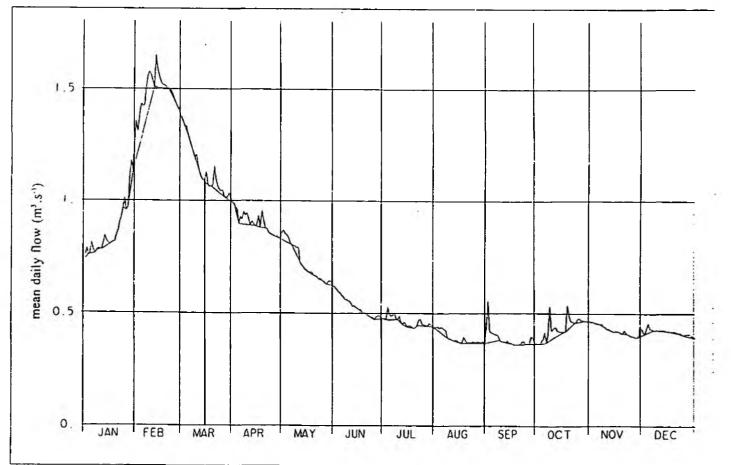
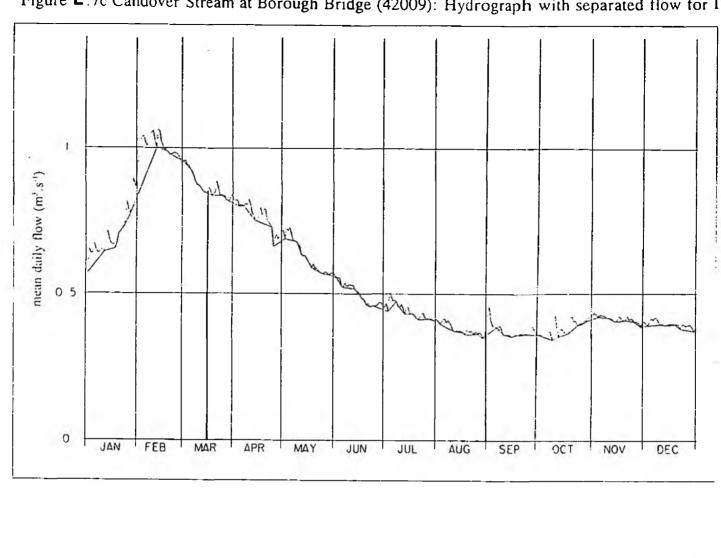
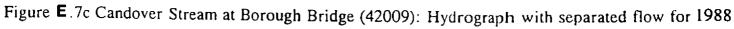
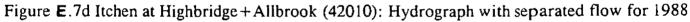
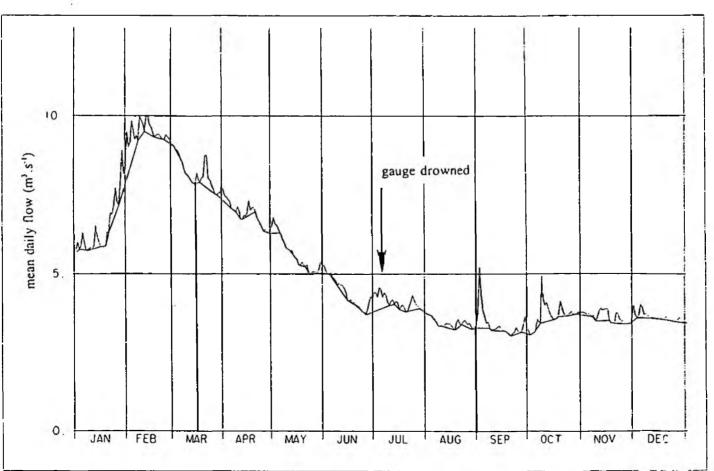
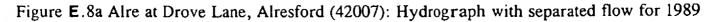
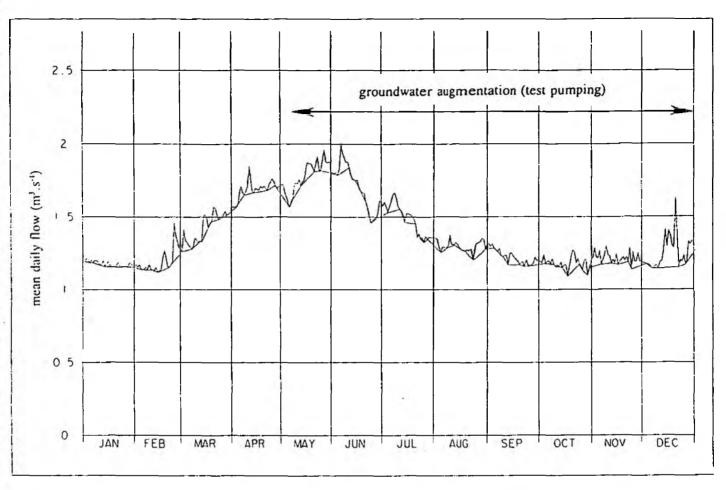
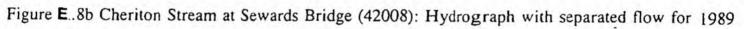


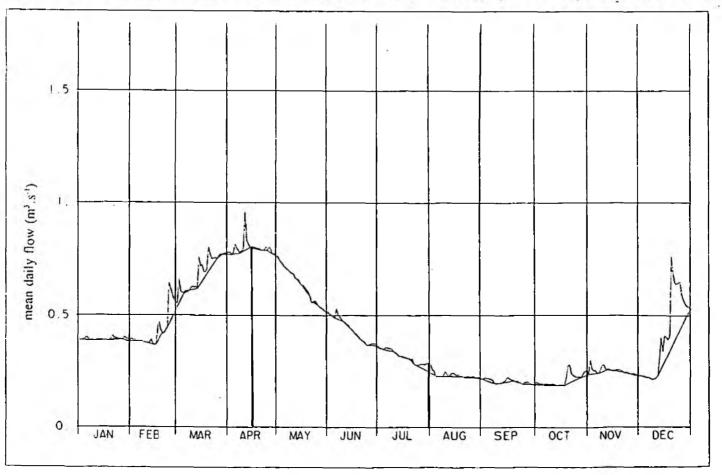
Figure E.7b Cheriton Stream at Sewards Bridge (42008): Hydrograph with separated flow for 1938

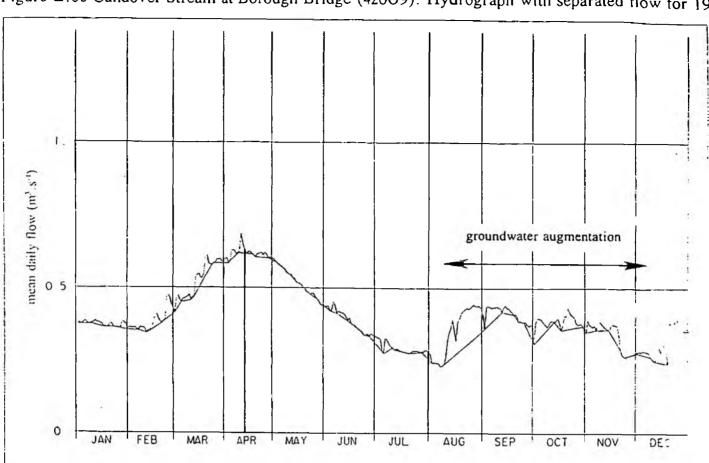






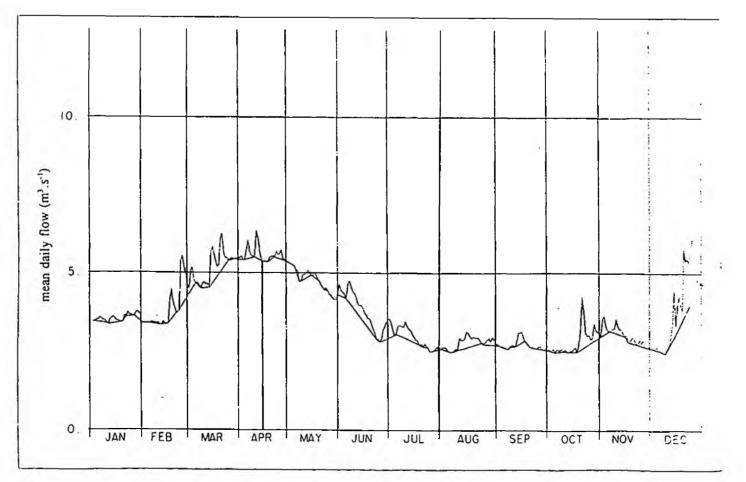
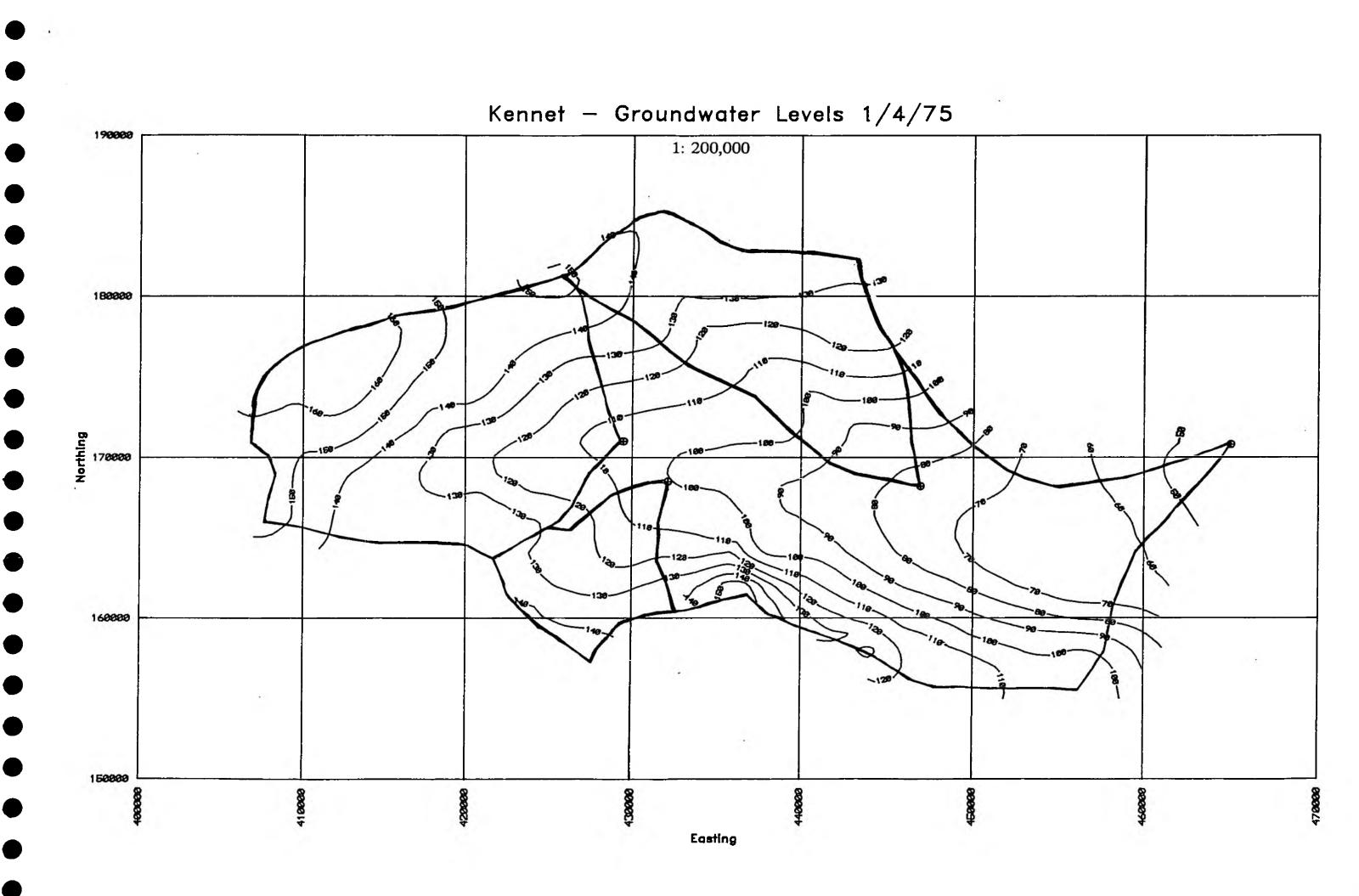
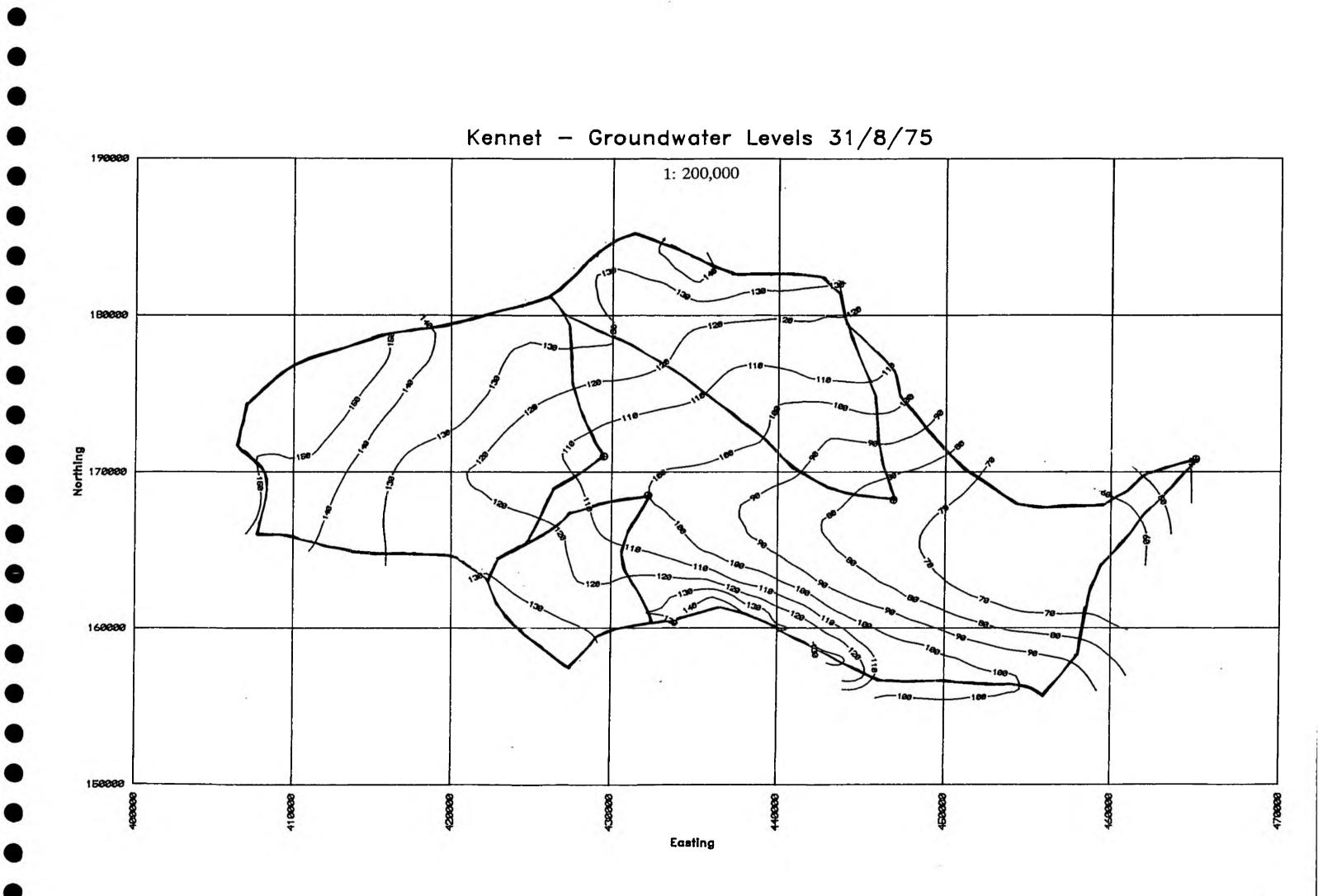

Figure E. 7a Alre at Drove Lane, Alresford (42007): Hydrograph with separated flow for 1988

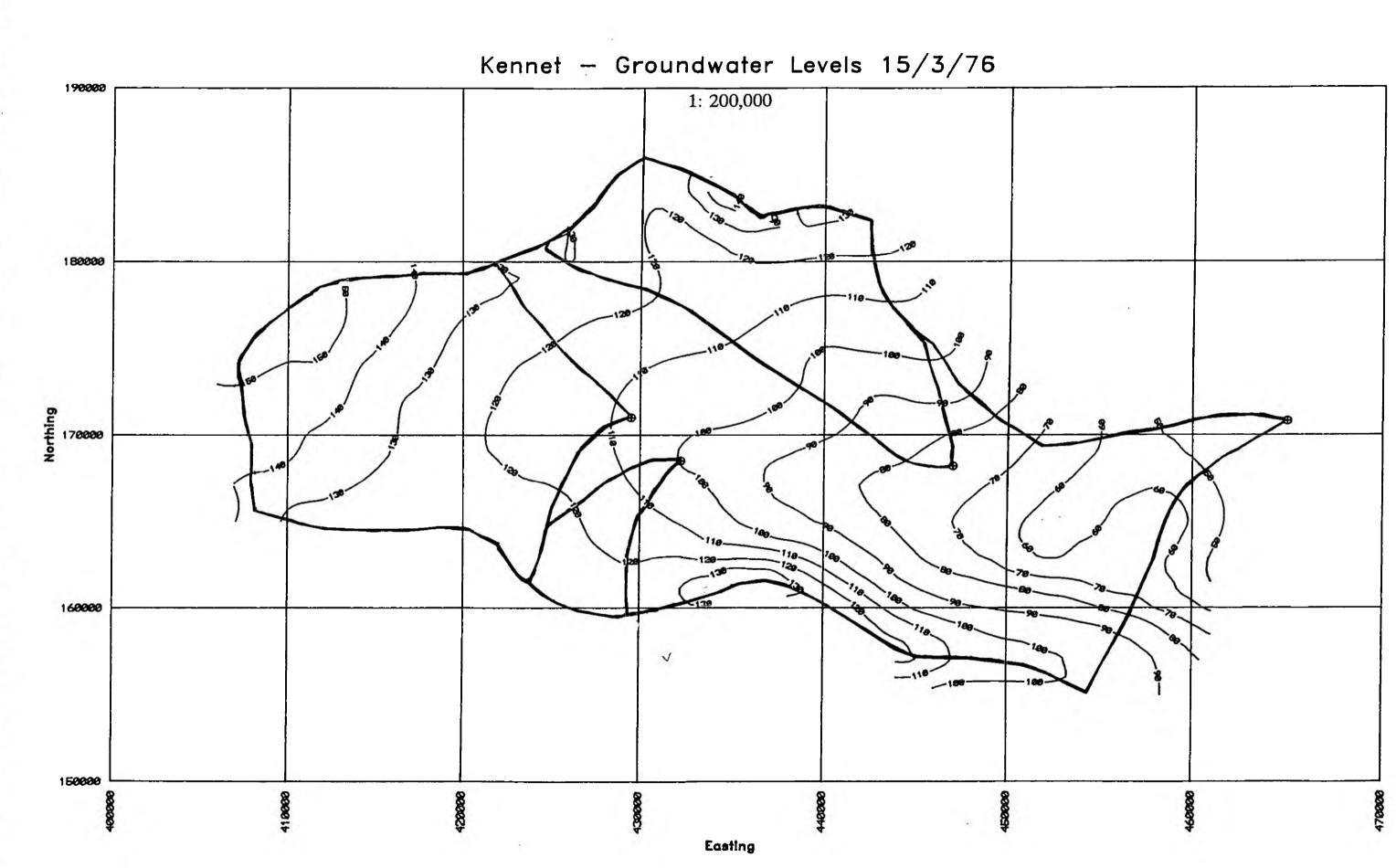






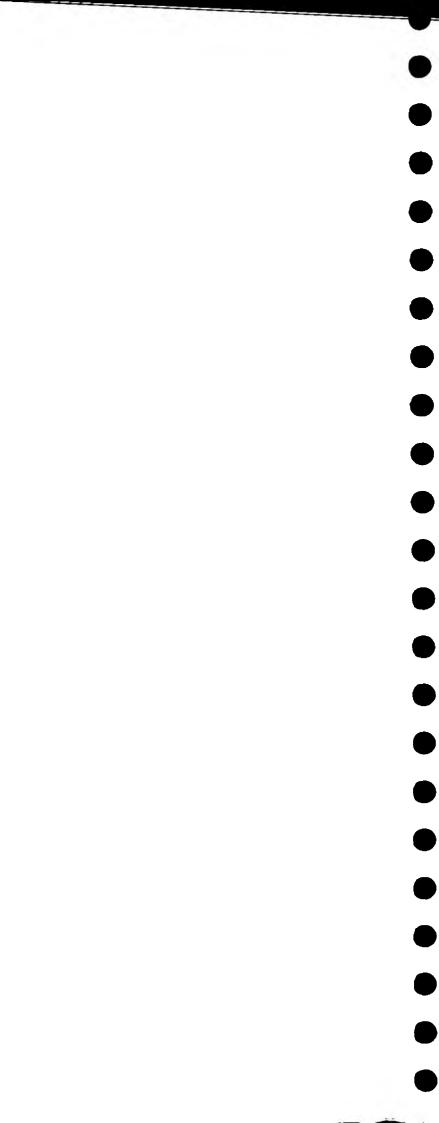


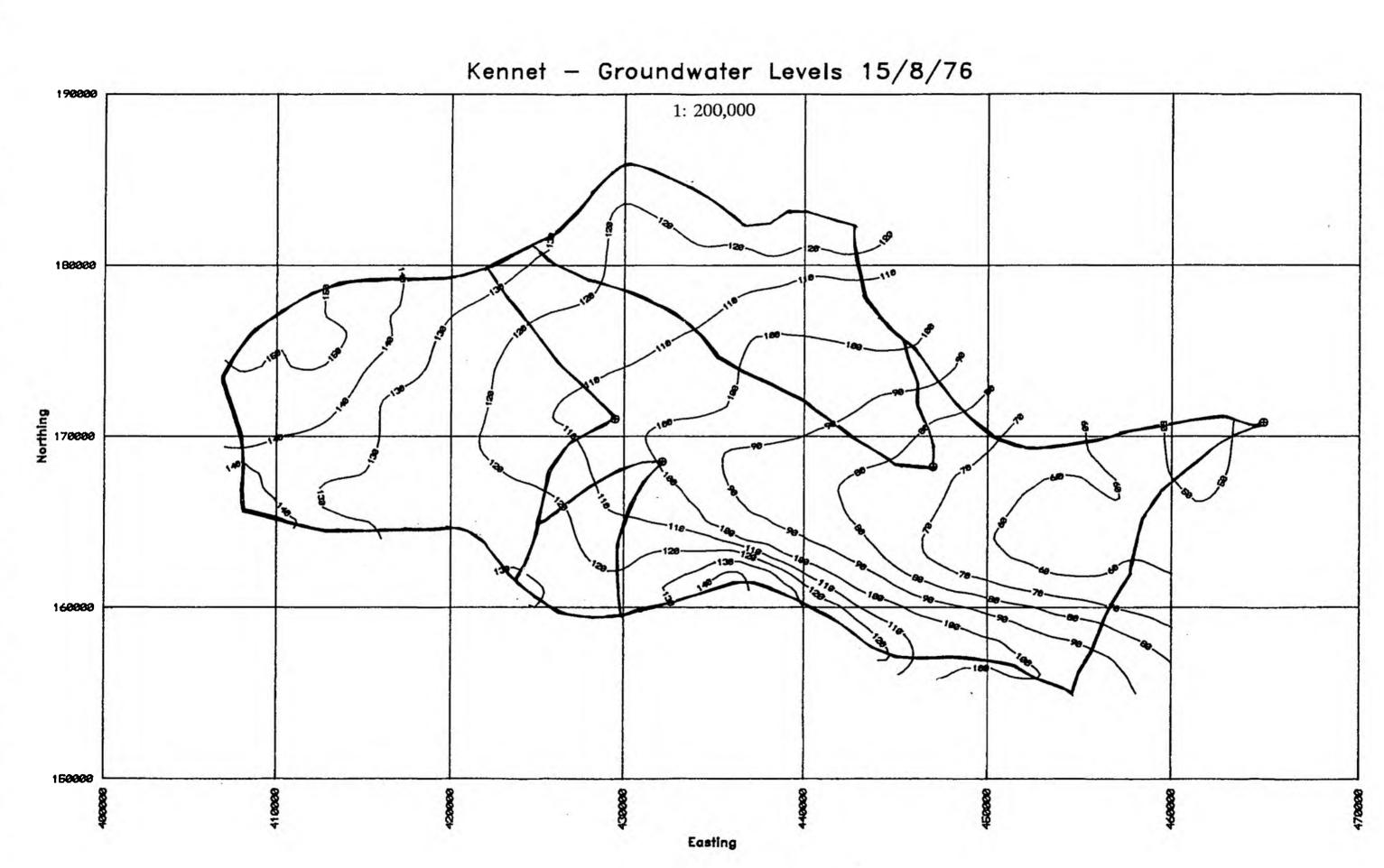




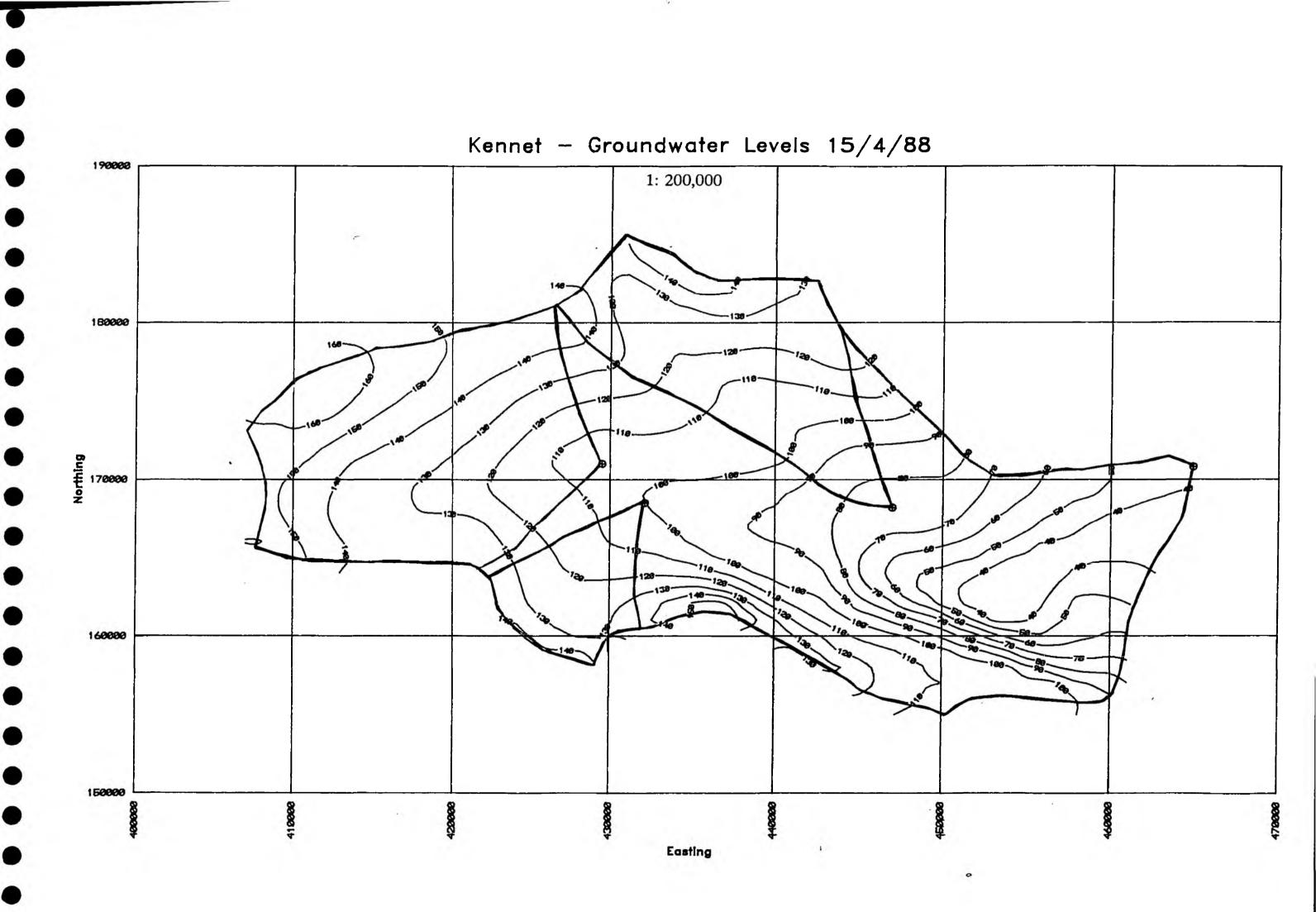

Figure E.8c Candover Stream at Borough Bridge (42009): Hydrograph with separated flow for 1989

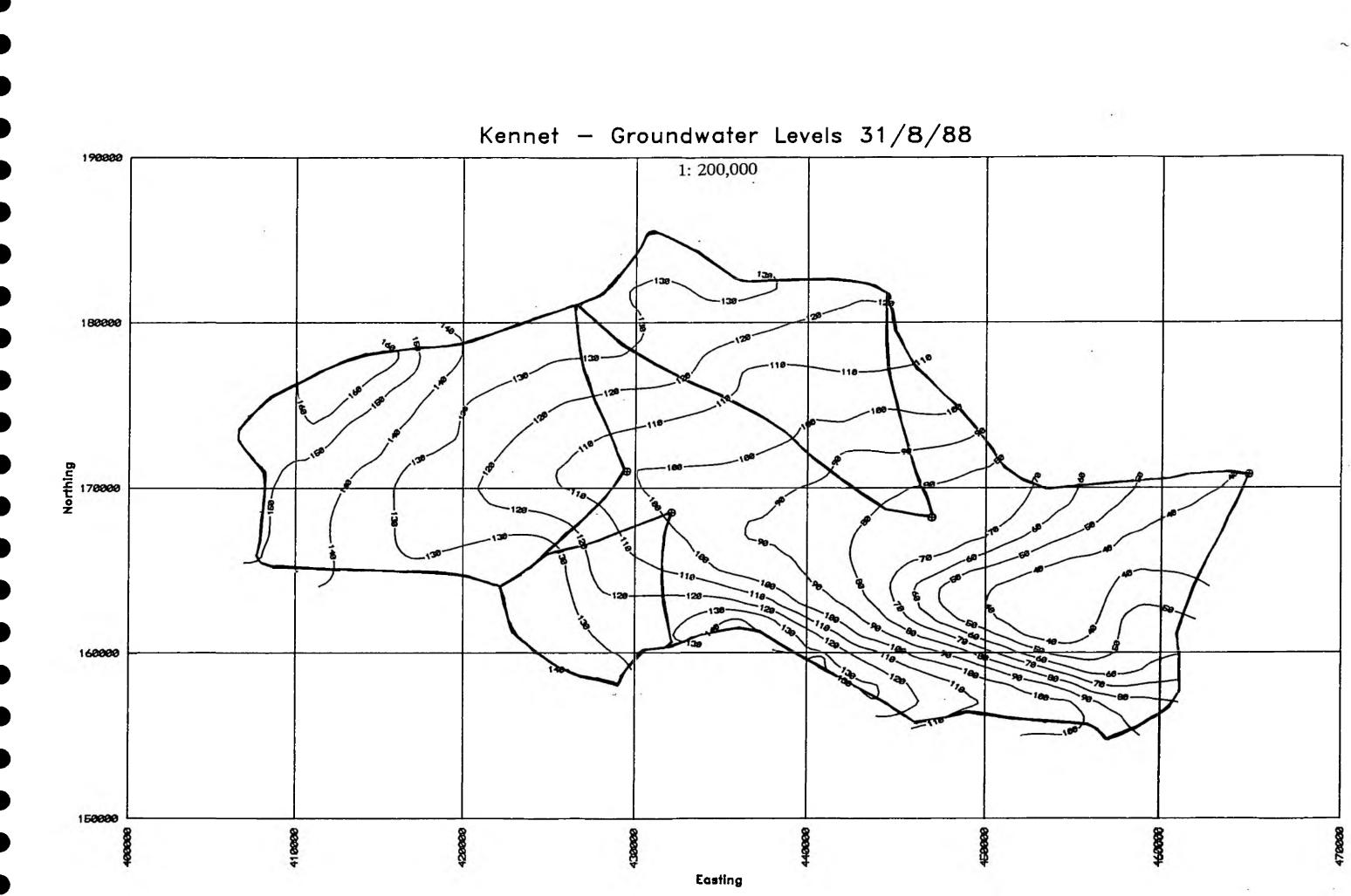
APPENDIX F

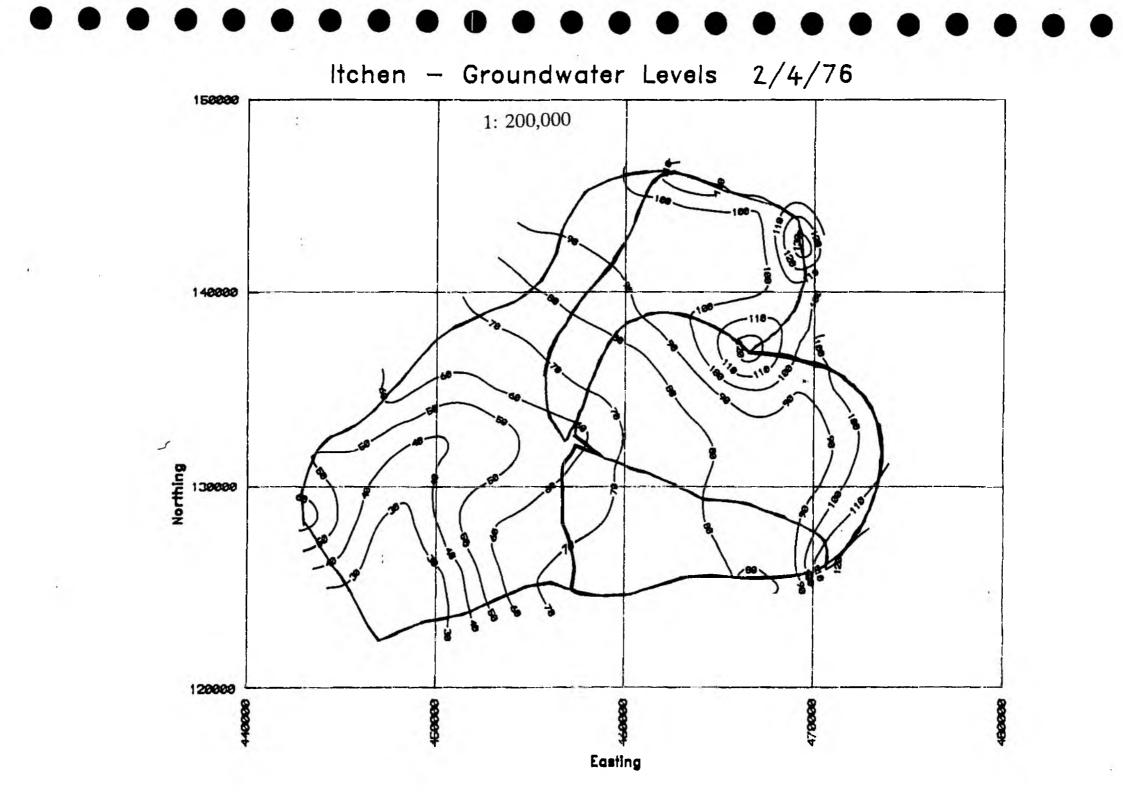
CONTOURED GROUNDWATER LEVEL PLOTS FOR THE KENNET AND ITCHEN CATCHMENTS

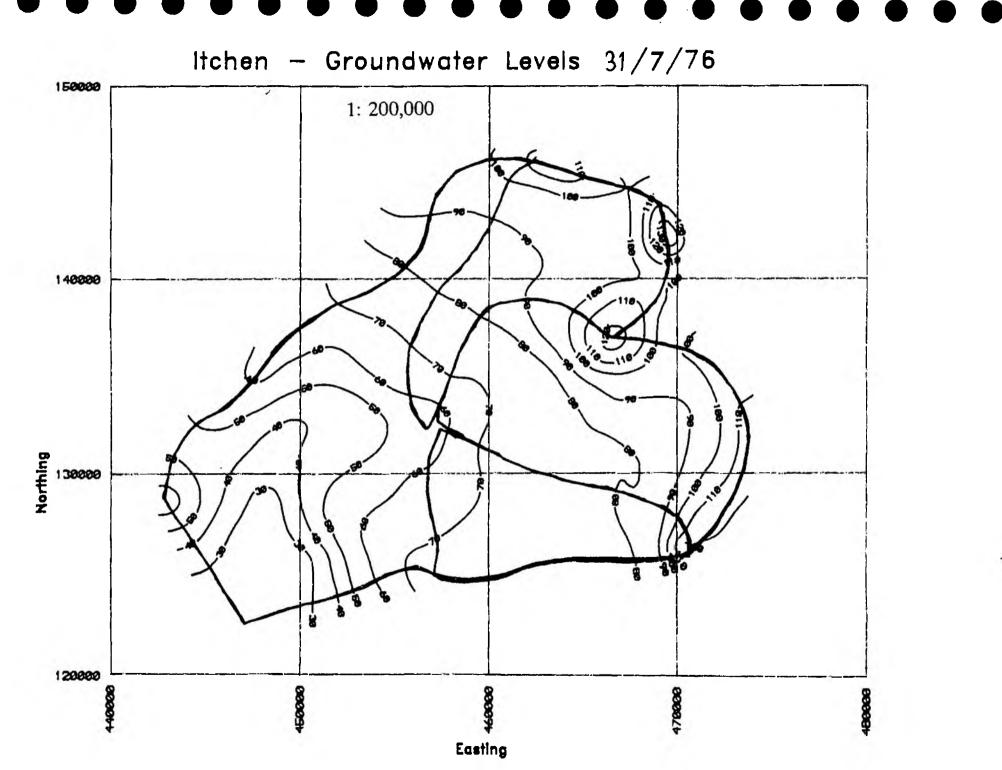


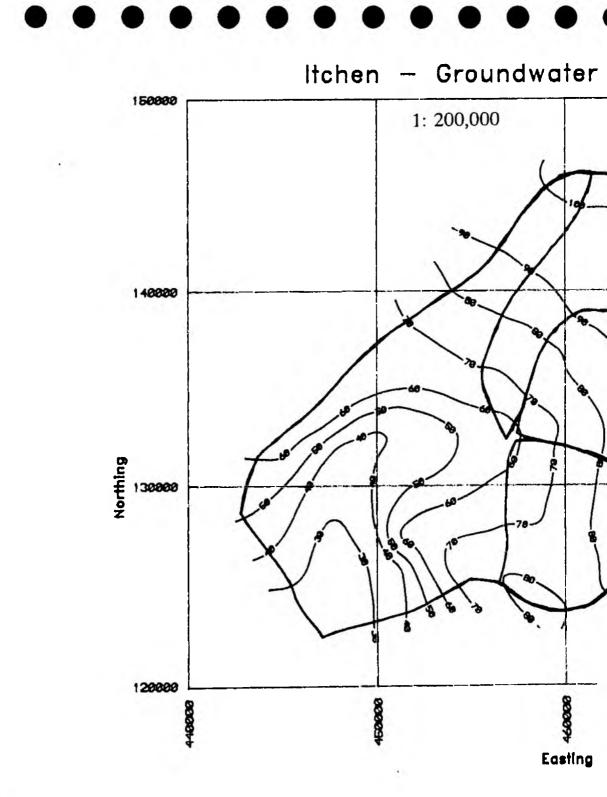


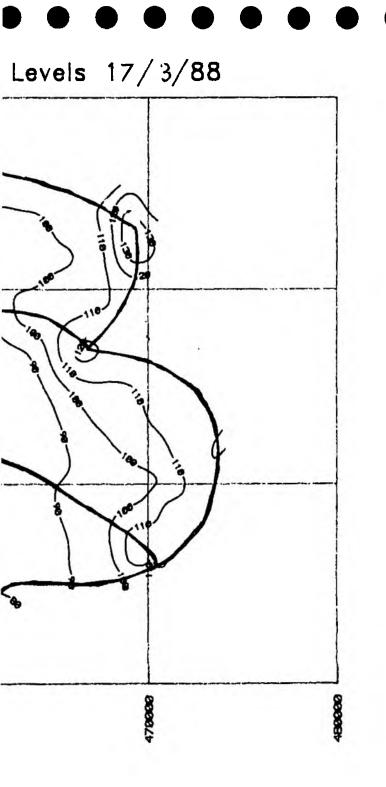


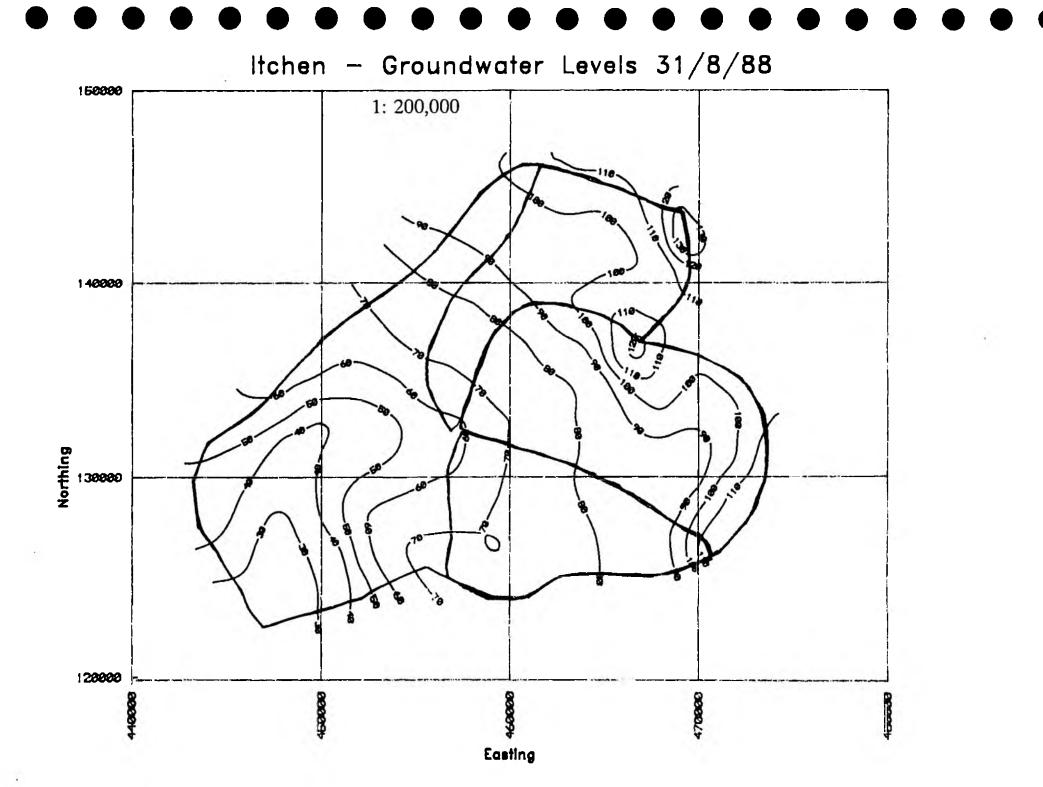

1.1

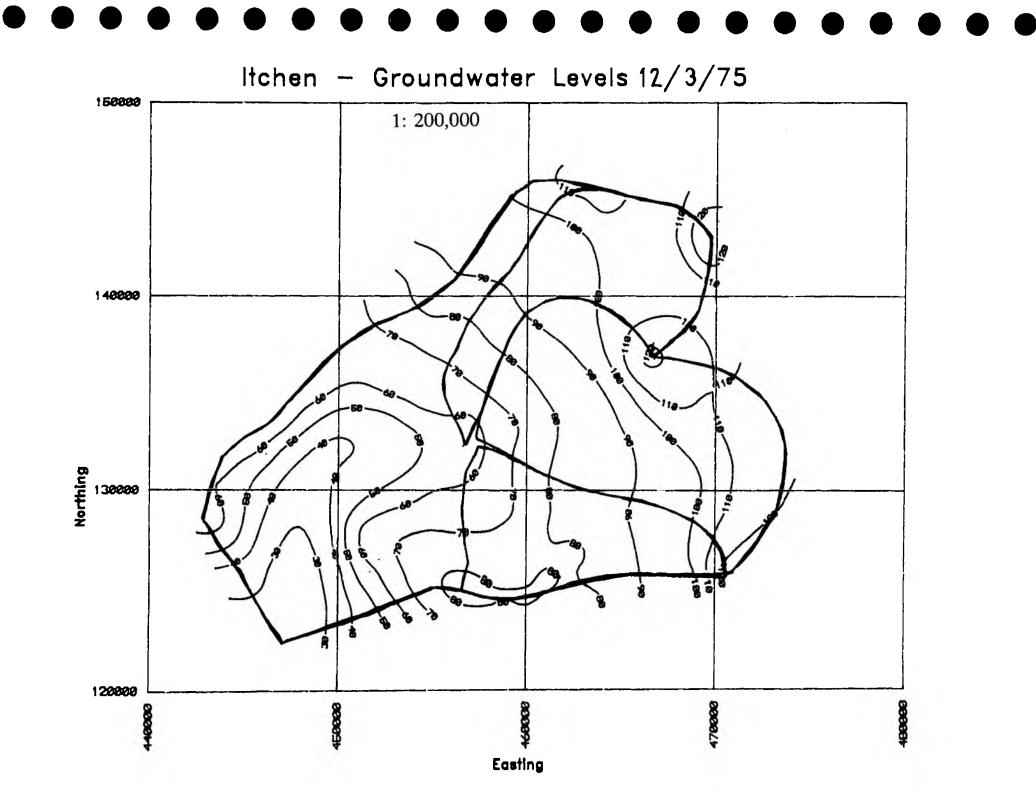

÷



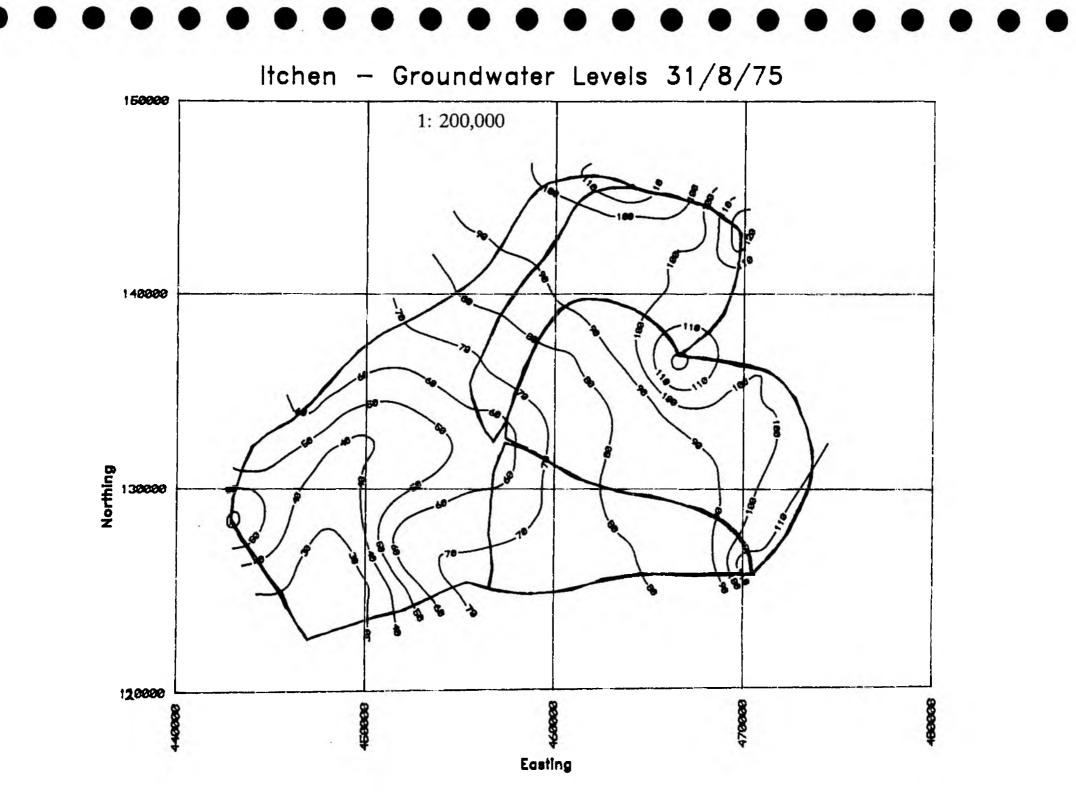


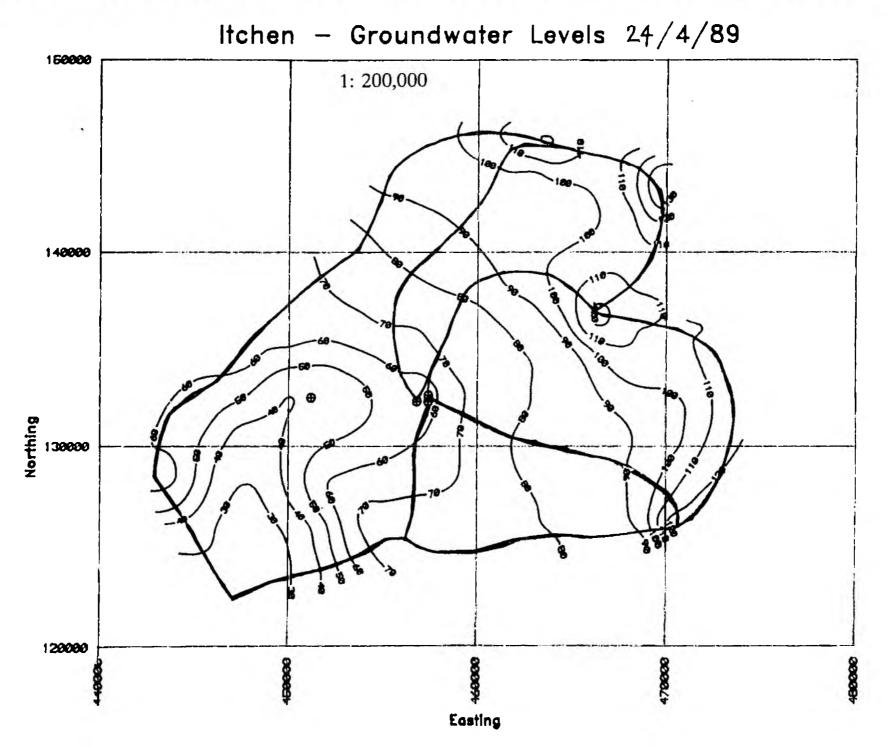


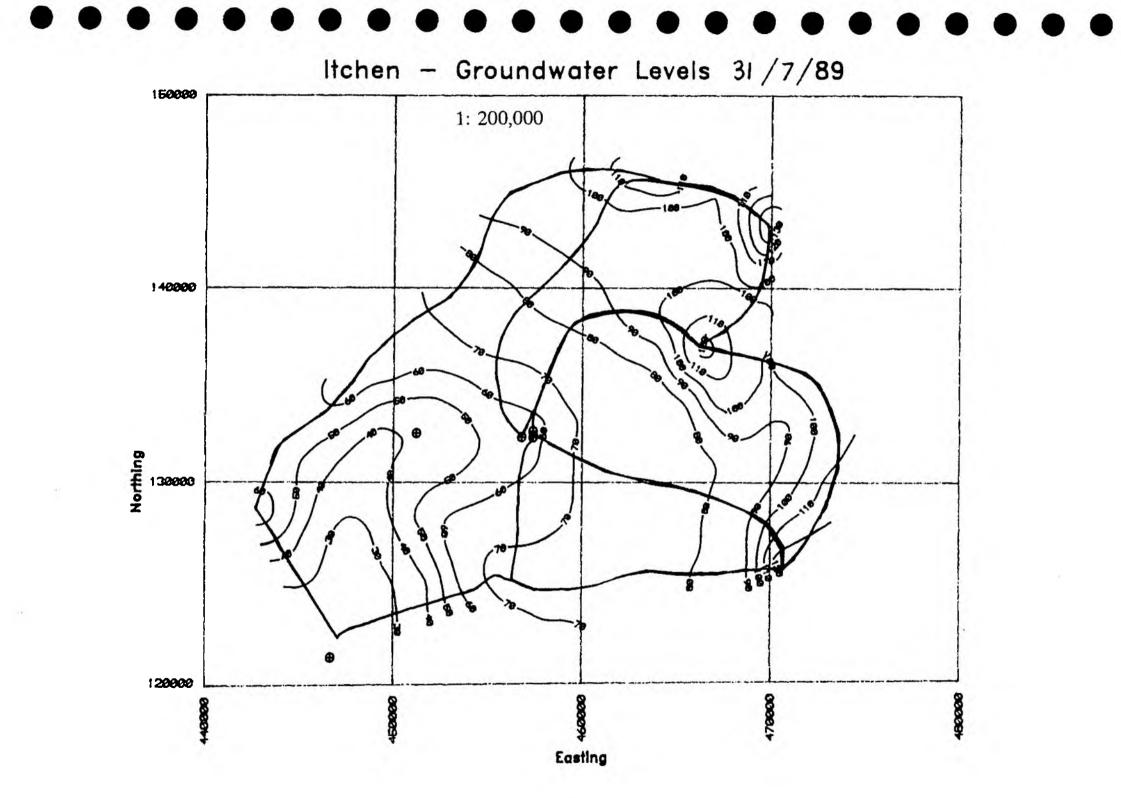




.







.....

MAPS

- 1. Top of Chalk (m AOD).
- 2. Base of Middle Chalk (m AOD).
- 3. Base of Lower Chalk (m AOD).
- 4. Groundwater levels (m AOD) April 1975.
- 5. Groundwater levels (m AOD) September 1976.
- 6. Groundwater levels (m AOD) March 1988.
- 7. Groundwater levels (m AOD) December 1990.

-

Top of Chalk (m AOD)

.

~

Base of Middle Chalk (m AOD)

•

Base of Lower Chalk (m AOD)

1

Groundwater levels (m AOD) - April 1975

Groundwater levels (m AOD) - September 1976

. . .

Groundwater levels (m AOD) - March 1988

Groundwater levels (m OAD) - December 1990