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GLOSSARY

The following list gives brief definitions of the technical terms and acronyms that are used 
throughout the report.

A Autumn.
AI Artificial Intelligence.
AMTN Ammoniacal nitrogen, mg/1.
ASPT Average score per taxon.
a40Pyx Code name of an autumn (a) MIR-max model with an input vector of 40

variables, including Presence-only (P) biological data. They input data were 
divided into two equal sets (x - used for testing, y -  used for training).

BBN • Bayesian Belief Network.
BMWP Biological Monitoring Working Party score system.
BOD Biochemical Oxygen Demand.
CIES Centre for Intelligent Environmental Systems at Staffordshire University.
DO Dissolved Oxygen (% saturation).
EBBN Eutrophication Bayesian Belief Network.
GQA class The biological General Quality Assessment class - river quality assessment 

scheme used by the Environment Agency.
M2R A validated database of biological GQA survey data consisting of 6039 sites that

were surveyed in the spring and autumn of 1995.
MIR-max Software for the development of models based on pattern recognition.
MLR Multiple linear regression.
NFAM Number of BMWP families (See Table 1.2) found in the sample.
NN Neural Network
N2R A validated database of matched biological and chemical GQA survey data

consisting of 3615 sites, which are a subset of the M2 R sites.
N2Rplus N2R database plus additional data on up to 34 chemical variables.
psab0516 Typical code names for neural network models of TRP (p) and TON (n) for 
naabl016 spring (s) and autumn (a) based on GQA classes ‘a’ and ‘b’ (ab), using threshold 

concentrations of 0.5 mg/1 (05) and 10mg/I (10) for TRP and TON respectively. 
The final figure (16) is the number of hidden nodes used in the neural network.

r Correlation coefficient (Pearson).
RIVPACS River InVertebrate Prediction And Classification System (version III).
RPBBN River Pollution Bayesian Belief Network (Software developed by CIES).
RPDS River Pollution Diagnostic System (Software developed by CIES).
S Spring.
Site Type A site type classification into one of five types based on alkalinity, altitude and 

the percentage of sand /silt in the substrate. Defined by Walley et aL, 2001.
ST Site Type.



s86Axy

T
TON
TRP

Code name of a spring (s) MIR-max model with an input vector of 86 variables 
including Abundance-based (A) biological data. They input data were divided 
into two equal sets (x - used for training, y -  used for testing).
T emperature (° C).
Total Oxidised Nitrogen, mg/1.
Total Reactive Phosphorus, mg/1.
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EXECUTIVE SUMMARY

This Technical Report presents the results of a three-month research project financed by the 
Environment Agency’s National Centre for Ecotoxicology and Hazardous Substances. The 
aim of the project was to answer the following questions, primarily through the development 
and testing of Artificial Intelligence (AI) models.

• Are there relationships between the composition of the macroinvertebrate communities in 
running waters and the concentrations of TRP and TON?

• If so, is the TRP relationship stronger in ‘cleaner’ rivers?
• Are the relationships strong enough to provide reliable predictions of TRP and TON?
• Which taxa are good indicators of TRP and TON?
• Is the occurrence of Cladophora related to concentrations of TRP and TON?
• What are the seasonal and geographical distributions of TRP, TON and Cladophora'?
• Is there a relationship between recorded DO levels and concentrations of TRP and TON?

The modelling techniques used were multiple linear regression (to provide a baseline 
assessment) and three Al-based techniques, namely neural networks (using the multi-layered 
perceptron), pattern recognition (using the MIR-max system) and plausible reasoning (using 
Bayesian Belief Networks). In view of the short duration o f the project, the majority of the 
work was based upon neural network models. These offered a quick and effective means of 
developing and testing a wide range o f non-linear TRP and TON predictive models. Some 
results were derived from two existing AI models, RPDS (a MHR-max model) and RPBBN (a 
BBN model), but these were not sufficiently specific since they were based on all GQA quality 
classes. It was only possible to develop and test initial prototypes o f more specific MIR-max 
and BBN models, owing to the limitations of time. All of the TRP and TON predictive 
models used the Agency’s macroinvertebrate and environmental data as input.

The data used to develop the systems were derived from the Agency!s 1995 biological, 
environmental and chemical GQA surveys, and the 1995 survey of perceived environmental 
stresses. The project database had 6695 records, 3255 for spring and 3440 for autumn.

It was concluded that there are relationships between the composition of macroinvertebrate 
communities and the concentration of nutrients (TRP and TON), and that these are stronger in 
the ‘cleaner’ rivers (GQA classes A and B), and stronger for TON than TRP. The 
relationships with TRP were considered too weak to provide reliable predictions from 
macroinvertebrate and environmental data. Models based on present / absent data performed 
almost as well as those based on abundance data. Lists of indicator taxa for TRP and TON 
have been drawn up, but owing to poor agreement between the methods used to derive them, 
they are not considered to be definitive and further analysis is recommended. Increasing 
concentrations of TRP were found to be associated with lower DO saturation and a smaller 
number of families (NFAM). Increasing concentrations of TON were found to have no effect 
on DO, but a very noticeable effect on NFAM, first increasing it and then decreasing it. It is 
recommended that a more detailed study be carried out using macro invertebrate and 
macrophyte data, preferably with some taxa identified to species or genera level.

Keywords: eutrophication, phosphorus, TRP, nitrogen, TON, BMWP, macro invertebrates,
bioindicators, Cladophora, artificial intelligence, AI, neural networks, pattern recognition,
MIR-max, plausible reasoning, Bayesian belief networks, BBN, multiple linear regression.



1. INTRODUCTION

This Technical Report is the outcome of a three-month preliminary study into the predictability 
of river phosphorus and total oxidised nitrogen from macro invertebrate data using Artificial 
Intelligence (AI) techniques. The project was a logical extension of the work carried out by 
the Centre for Intelligent Environmental Systems (CIES) in National R&D Project E l -056 
which developed two Al-based systems for the diagnosis and prediction of river quality from 
biological and environmental data (Walley et a i ,  2002). It was not within the scope of this 
very small project to set it in the context of existing knowledge and understanding of the 
relationships between nutrients and invertebrates. Its overall aim was to determine whether 
analyses of large national databases using AI techniques could shed further light on the 
relationships. The specific aims were defined by a series of questions that had been drawn up 
by the client, the Environment Agency.

1.1 Aims

The project attempted to answer the following questions:

a) Are there relationships between the composition of the macro invertebrate communities in . 
running waters and the concentrations of phosphorus (TRP) and total oxidised nitrogen 
(TON)?

b) If so, is the TRP relationship stronger in the ‘cleaner’ rivers (e.g. <0.2 mg P/1)?
c) Are the relationships sufficiently strong to permit predictions o f TRP and TON from 

macroinvertebrate data to be made with an acceptable degree of reliability?
d) Which taxa are good indicators (positively or negatively) of TRP and TON?
e) Is there a relationship between recorded occurrences of Cladophora and concentrations of 

TRP and TON?
f) What are the seasonal and geographical distributions of TRP, TON and Cladophora'?
g) Is there a relationship between recorded dissolved oxygen (DO) levels and concentrations 

of TRP and TON?

1.2 Modifications to the stated ‘Approach to be Taken’

The approach taken differed slightly from that stated in the original tender submitted by CIES. 
The main differences were that:
a) 10 environmental variables were used to represent site type effects rather than the five Site 

Types previously defined by Walley et a l (1998);
b) extensive use was made of neural networks to help identify the key characteristics of the 

data, including the rank order of indicator taxa;
c) Bayesian belief networks have not been used to determine the rank order of taxa, since the 

neural networks provided a quicker means of doing so; and
d) although maps of recorded TRP and TON have been produced, maps of their predicted 

values have not, due to the large number o f models (and hence predictions) produced..
Items a) and b) were major improvements to the original plan.

1.3 The Data

The study was based upon the N2Rplus database that was developed for use in National R&D 
Project E l -056. This database was constructed from biological, environmental and chemical
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data recorded in the 1995 survey of rivers in England and Wales1. This involved matching the 
sites in a database o f validated biological and environmental data (M2R, with 6039 sites) with 
the chemical monitoring sites. Since only about half o f the sites matched and a few of the 
chemical sites had no data, the N2Rplus database was reduced to 3556 sites, each with spring 
and autumn biological samples (i.e. a total of 7112 records). The chemical data recorded 
alongside each biological/environmental record consisted of the concentrations of up to 34 
chemical variables, each averaged over the three months preceding the date of the biological 
sample. This database was further enhanced by the addition o f data on the occurrence of 
Cladophora at biological monitoring sites that was recorded during the 1995 Stress Survey. 
The cover o f Cladophora (a green alga) is perceived to be a useful indicator of eutrophication 
in rivers.

The biological data consisted o f the abundance levels (0 to 
families listed in Table 1.2 that were recorded in the 
spring and autumn surveys of 1995. The environmental 
data were the averages of spring and autumn values of 
the 10 variables listed in Table 1.3.

Since not all of the 34 chemical variables were recorded 
at each site, the database was compressed by removing 
sites that did not have average values for TRP and 
TON. The final project database had 6695 records, 
3255 for spring and 3440 for autumn.

Table 1.2 The 76 BMW P families used in the study.
Planariidae Gammaridae Calopterygidae Rhyacophilidae
Dendrocoelidae Astacidae Aeshnidae Philopotamidae
Neritidae Siphlonuridae Cordulegasteridae Polycentropidae
Viviparidae Baetidae Libellulidae Psychomyiidae
Valvatidae Heptageniidae Hydrometridae Hydropsychidae
Hydrobiidae Leptophlebiidae Gerridae Hydroptilidae
Lymnaeidae Ephemerellidae Nepidae Phryganeidae
Physidae Potamanthidae Naucoridae Limnephilidae
Planorbidae Ephemeridae Aphelocheiridae Molannidae
Ancylidae Caenidae Notonectidae Beraeidae
Unionidae Taeni o pterygi d ae Corixidae Odontoceridae
Sphaeriidae Nemouridae Haliplidae Leptoceridae
Oligochaeta Leuctridae Dytiscidae Goeridae
Piscicolidae Capniidae Gyrinidae Lepidostomatidae
Glossiphoniidae Perlodidae Hydrophilidae Brachycentridae
Hirudididae Perlidae Scirtidae Sericostomatidae
Erpobdellidae Chloroperlidae Dryopidae Tipulidae
Asellidae Platycnemidae Elmidae Chironomidae
Corophiidae Coenagriidae Sialidae Simuliidae

1 Although this study was carried out in 2002, it was not possible to use data from the 2000 survey, of rivers in 
England and Wales, because such data were not available at the time. Even if they had been, it would have 
taken a few months, to thoroughly validate the biological, chemical and environmental databases and integrate 
them  into a single project database of the same quality as N2Rplus.

4, see Table 1.1) of the 76 BMWP

Table 1.1 Abundance Levels

Abundance
Level

Number of 
Individuals Found

0 0
1 1 to 9
2 10 to 99
3 100 to 999
4 > 1000

2



Table 1.3 List of the 10 environmental variables used in the study.

Variable Description Variable Description
ALT Altitude (m) DISCH Discharge Category
DIST Distance from Source (km) BLDS Boulders (% of substrate)
SLOPE Slope (m/km) PBLS Pebbles (% of substrate)
WIDTH Average Width of river (m) SAND Sand (% of substrate)
DEPTH Average Depth of river (cm) SILT Silt (% of substrate)

1.4 Overview of the Analyses

The following analyses were carried out on the N2Rplus (1995) data:

Distribution Analyses
a) Basic statistical analyses of the distributions of TRP and TON concentrations, carried out 

separately for spring and autumn.
b) Derivation of the spring and autumn geographical distributions of TRP and TON.
c) Derivation of the distribution of Cladophora by geographical region and GQA class.

Relationships between nutrient concentrations and Cladophora and DO
d) Analysis of the relationship between TRP/TON and the occurrence of Cladophora.
e) Analysis of the relationship between TRP/TON and dissolved oxygen (DO % saturation).

Predictive Models
f) Construction of various multiple linear regression (MLR) models for the prediction of TRP 

and TON from biological and environmental data.
g) Construction and testing of various neural network (NN) models for the prediction of TRP 

and TON from biological and environmental data.
h) Construction and testing of Bayesian belief network (BBN) models for the prediction of 

TRP and TON from biological and environmental data.
i) Construction and testing of various MIR-max (pattern recognition) models for the 

prediction of TRP and TON from biological and environmental data.

Identification o f the Key Indicator Taxa
j) Analysis of the MLR models to identify and rank the key positive and negative indicators 

ofTRPandTON.
k) Impact analyses to determine the relative importance of each taxon in NN models.
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2. DISTRIBUTION ANALYSES

2.1 Spring and Autumn Concentrations of TRP and TON

The distribution of TRP and TON concentrations in the spring and autumn of 1995 are shown 
in Figures 2.1 and 2.2 respectively.

0% 20% 40% 60% 80% 100%
Percentage of sites with TRP > P mg/1

Figure 2.1 Distribution of Phosphorus (TRP) concentrations in spring and autumn 
1995.

Percentage of sites with TON > N mg/1 

Figure 2.2 Distribution of Nitrogen (TON) concentrations in spring and autumn 1995.



Figure 2.1 reveals that TRP concentrations were noticeably higher on average in the autumn of 
1995 than they were in the spring. In fact, the average concentration in autumn was 0.83 mg/1, 
whereas in spring it was only 0.26 mg/I. However, these high average values were partly due 
to the fact that a few sites had very high concentrations of TRP (2.0% of sites in spring and 
12.5% in autumn had concentrations > 2 .0  mg/I).

Figure 2.2 shows that the distributions of TON in the spring and autumn of 1995 were very 
similar, although in this case the concentrations in autumn were slightly lower than in spring. 
The average concentrations were 4.59 mg/1 in spring and 5.39 mg/1 in autumn.

In order to facilitate the MIR-max and BBN analyses, the TRP and TON data were banded 
into six discrete categories as indicated in Table 2.1.

Table 2.1 Discrete bands used for TRP and TON in the MIR-max and BBN models.

TRP TON

Band Range (mg/1)
No. in 
Band Band Range (mg/1)

No. in 
Band

1 0 to <0.04 1418 1 0 to <1.5 1611
2 0.04 to <0.08 1394 2 1.5 to <3.0 1159
3 0.08 to <0.20 1263 3 3.0 to <5.0 1169
4 0.20 to <0.50 1104 4 5.0 to <7.5 1163
5 0.50 to <2.00 1018 5 7.5 to <12.0 1150
6 2.00 + 498 6 12.0 + 443

2.2 Geographical Distributions of TRP and TON.

Figures A -l and A-2 in Appendix A show the spring and autumn distributions of sites in 
England and Wales which had TRP concentrations of less than 0.2 mg/1 in 1995. Both of these 
figures show high numbers of sites with low TRP concentrations in the North West, South 
West and Welsh Regions.

Figures A-3 and A-4 in Appendix A show the spring and autumn distributions of sites in 
England and Wales which had TRP concentrations equal to or exceeding 0.2 mg/1 in 1995. 
These show two main clusters of high TRP concentrations, one in Cheshire and the other in a 
band from Somerset to Cambridge. However, it is worth noting that many sites on canals, 
ditches, dykes, drains etc. in Anglian Region were deleted from the database because they were 
not considered to be running waters, hence the shortage of sites just south of the Wash. 
Figures A-3 and A-4 also show that there are many more high TRP sites in autumn than in 
spring, especially in South West, Midlands and North West Regions, and to a lesser degree in 
Anglian Region. The most noticeable changes from spring to autumn occurred in the North 
Wessex Area of South West Region and the Southern Area (mainly Cheshire) of North West 
Region.

Figure A-5 shows the combined spring and autumn distribution of sites at which the
concentration of TON was less than 5 mg/1. Figure A-6 shows the distribution of sites at
which the concentration of TON equalled or exceeded 5 mg/1. Once again, the sites with low

6



concentration are predominantly in the South West, North West and Welsh Regions, with the 
exception of the North Wessex Area and Cheshire where high concentrations are common.

2.3 Distribution of Recorded Occurrences of Cladophora.

Data from the 1995 Survey of Perceived Stresses were used to derive the distribution of 
recorded cases of Cladophora with respect to: a) biological GQA class; and b) geographical 
location. However, Technical Report E l26 (Martin and Walley, 2000) found that there were 
considerable inconsistencies in monitoring practices between Regions and even between Areas 
within Regions. In the case of Cladophora, several Areas did not record it, although other 
Areas within those same Regions did. Thus, the geographic distribution of Cladophora 
recorded by the 1995 Survey of Perceived Stresses (see Figure A-7 in Appendix A) was 
considered incomplete.

Table 2.2 gives the distribution of recorded cases of Cladophora with respect to biological 
GQA class. The national distribution of sites by biological GQA classes is also given to 
facilitate proper comparison of the relative frequencies of occurrence. The table shows that 
‘Light’ and ‘Moderate’ intensities of Cladophora were quite common at Class ‘a’ sites, but 
that no ‘Severe’ cases were found. ‘Light’ intensities were most frequent in GQA class ‘b’ 
rivers, whereas ‘Moderate’ and ‘Severe’ intensities were most frequent in GQA class ‘c’ and 
‘d’ rivers respectively.

Table 2.2 Distribution of occurrences of Cladophora by intensity level and biological 
GQA class.

Biological 
GQA Class

Intensity of Cladophora Total
Recorded

Distribution of GQA 
Sites Nationally• Light Moderate Severe

a 36 28 0 64 29.2%
b 55 88 5 148 28.9%
c 33 98 14 145 21.0%
d 9 29 26 64 10.6%
e 0 9 6 15 8.1%
f 0 0 0 0 2.2%

Total 133 252 * 51 436 100%
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3. RELATIONSHIPS BETWEEN NUTRIENT LEVELS, 
CLADOPHORA AND DISSOLVED OXYGEN

3.1 Nutrient Levels and Cladophora

Despite the fact that the recorded distribution of Cladophora in 1995 was incomplete, the 
recorded cases did provide a subset of data that could be used to investigate possible 
relationships between the intensity level of Cladophora and the concentrations o f TRP and 
TON. The results were very disappointing in that: a) only very weak correlations were found 
with TRP (r = 0.158, p < 0.00005) and TON (r = 0.145, p < 0.00005); and b) no threshold 
value for TRP or TON (i.e. below which Cladophora was absent) could be identified. Figure
2.3 (a - d) shows that Cladophora occurred over the whole range of TRP and TON 
concentrations down to 0.01 mg/1 of TRP and 0.2 mg/1 of TON. However, no ‘Severe’ cases 
occurred below 0.06 mg/1 of TRP or 1.2 mg/! of TON.

10
Cladophora (Severe)

8

ft ■-

ia, 4 * -

£
2 -

0
0

(a)

2 4 6 & 10 12 

Total Oxidised Nitrogen (mgfl)

Cladophora (Moderate)

14

Cladophora (Severe)
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02
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0 2 4 6  8 10 12 14 
Total Oxidised Nitrogpn (mg/1)

Cladophora (Moderate)

(d) 4 - •
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Figure 2.3 Graphs showing the TRP and TON concentrations at which Cladophora 
were recorded as ‘Severe intensity’ (graphs a and b) and ‘Moderate 
intensity’ (graphs c and d). Note that (a) and (b) are identical except for 
scale of their y-axes, and similarly for (c) and (d).
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3.2 Nutrient Levels and Dissolved Oxygen

Several multiple linear regression (MLR) models were developed in which mean DO (% sat) 
was the dependent variable and TRP, TON, total ammoniacal nitrogen (AMTN), biochemical 
oxygen demand (BOD), water temperature (T) and Site Type (ST) were the independent 
variables. Spring, autumn and whole year models were developed using data from all GQA 
classes and using biological GQA classes ‘a’ and ‘b’ only. Ail analyses were performed using 
forward step-wise analysis. The resulting models and their correlation coefficients are given 
below, with the variables listed in the order that they were selected by the step-wise analysis.

Spring (All GQA Classes) r = 0.4624 (p < 0.00005)

DO = 99.60 -  0.95(BOD) -  3 .16(TRP) -  1.87(ST) -  2.25(AMTN) + 0.39(TON) +0.19(T) 

Autumn (All GQA Classes) r= 0.4899 (p < 0.00005)

DO = 89.84 -  1.18(ST) -  0.95(BOD) -  1.95(AMTN) -  2.10(TRP) + 0 .71(T) + 0.24(TON) 

Whole Year (All GQA Classes) r = 0.4651 (p < 0.00005)

DO = 97.84 -  0.96(BOD) -  2.23(TRP) -  1.47(ST) -  2.13(AMTN) + 0.26(T) + 0.29(TON) 

Spring (Classes ‘a ’ & ‘b ’ only) r = 0.3970 (p < 0.00005)

DO -  103.48 -  4.59(TRP) + 1.29(BOD) -  8.62(AMTN) -  1.51 (ST) + 0.47(TON) -  0.19(T) 

Autumn (Classes ‘a’ & ‘b ’ only) r -  0.4203 (p < 0.00005)

DO = 89.5 -  1.78(TRP) + 0 .81(T) -  1.44(BOD)- 8.33(AMTN) -  0.99(ST) + 0.32(TON) 

Whole Year (Classes ‘a’ & ‘b’ only) r = 0.3798 (p < 0.00005)

DO = 9 9 .7 4 -  9.33(A M TN )- 1.32(ST)- 1.28(BOD) -  1.85(TRP)+ 0.38(TON) + 0.20(T)

In addition to these six-variable models, an equivalent set of four-variable models was 
developed, using BOD, AMTN, TRP and TON as the independent variables. The results were 
as follows:

Spring (All GQA Classes) r = 0.4192 (p < 0.00005)

DO = 98.26 -  1.18(BOD) -  2.99(TRP) -  2.39(AMTN) -  0.05(TON)

Autumn (All GQA Classes) r — 0.4372 (p < 0.00005)

DO = 98.06 -  1.06(BOD) -  2.04(AMTN) -  1.91(TRP) + 0.08(TON)

Whole Year (All GQA Classes) r = 0.4203 (p < 0.00005)

DO = 98.16 -  1.18(BOD) -  1.81(TRP) -  2.26(AMTN)

Spring (Classes ‘a1 & ‘b’ only) r = 0.3535 (p < 0.00005)

DO = 100.80 -5.71 (TRP) -  1.85(BOD) -  8.53(AMTN) + 0.07(TON)
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Autumn (Classes ‘a’ & ‘b’ only) r = 0.3397 (p < 0.00005)

DO = 100.62- 1?52(TRP) -  9.05(AMTN) -1.58(BOD)

Whole Year (Classes ‘a’ & ‘b’ only) r -  0.3346 (p < 0.00005)

DO = 100.88-10.15(AMTN)- 1.80(BOD) -  1 59(TRP)

A summary of the TRP, AMTN and TON coefficients in these equations is given in Table 3.1. 

Table 3.1 Summary of coefficients of TRP and AMTN in the M LR models of DO.

Coefficients in MLR Models
GQA Classes ‘a’ & ‘b’ All GQA Classes
TRP AMTN TON TRP AMTN TON

Six-variable models 
Spring 

Autumn 
Whole Year

-4.59
-1.78
-1.85

-8.62
-8.33
-9.33

+0.47
+0.32
+0.38

-3.16
-2.10
-2.23

-2.25
-1.95
-2.13

+0.39 
+0.24 
+0.29 •

Average -2.74 -8.76 + 0.39 -2.50 -2.11 + 0.31
Four-variable models 

Spring 
Autumn 

Whole Year

-5.71
-1.52
-1.59

-8.53
-9.05
-10.15

+0.07 -2.99
-1.91
-1.81

-2.39
-2.04
-2.26

-0.05
+0.08

Average -2.94 -9.24 - -2.24 -2.23 -

There are several points worth noting from Table 3.1, and the MLR models.
a) Although decreasing DO levels were associated with increasing TRP concentrations, no 

such relationship was found between DO and TON.
b) The inverse association between DO and TRP was stronger in spring than in autumn.
c) The models covering ail GQA classes indicated that the association between DO and TRP 

was very similar in magnitude to that between DO and AMTN (i.e. in terms of percentage 
reduction in DO per mg/1 of TRP or AMTN).

d) The models based on data from GQA classes ‘a’ and ‘b’ indicate that the association 
between DO and TRP is noticeably weaker than that between DO and AMTN. One extra 
mg/1 of TRP was associated with a 3% fall in DO(%), whereas an extra mg/1 of AMTN 
was associated with about a 9% fall in DO(%).

e) Overall, the reductions in DO varied from about 4 to 5 percent per mg/1 of TRP in spring 
to about 1.5 to 2.0 percent per mg/1 of TRP in autumn.
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4 . DEVELOPMENT AND TESTING OF TRP AND TON 
PREDICTIVE MODELS

In order to determine how predictable TRP and TON are from invertebrate and environmental 
data, various predictive models were developed, tested and evaluated. These included;
a) multiple linear regression models (MLR);
b) neural networks (multi-layered perceptrons);
c) MIR-max pattern recognition models; and
d) Bayesian Belief Networks (BBN).
The MLR models were developed to provide an initial screening of the data and a baseline 
performance against which to judge the other, non-linear, models. The following sub-sections 
give details of each model type and their test results.

4.1 Multiple Linear Regression

Multiple linear regression models were developed to predict TRP and TON from the 76 
BMWP taxa and 10 environmental variables listed in Tables 1.2 and 1.3 respectively. The first 
models were based on all of the available data (i.e. whole year and all quality classes), but then 
separate models were developed for spring and autumn. Then, in order to separate the worst 
effects of organic pollution from those of eutrophication, a range of models were developed 
using data from quality classes ‘a’ and ‘b’ only. Finally, in order to check the importance of 
the environmental variables in the above models, spring and autumn models were developed 
using the 76 BMWP families only. The results of all the tests are given in Table 4.1.

Table 4.1 Results of the Multiple Linear Regression tests.

Dependent GQA Quality Season Correlation
Variable . Classes Coefficient

Models using 76 taxa and 10 environmental variables as input

TRP (conc.mg/1) All (‘a’-’f ) Year 0.4204
TRP (conc.mg/1) All (‘a’-’f ) Spring 0.3852
TRP (conc.mg/1) All (‘a’-’f ) Autumn 0.4596
TRP (conc.mg/1) ‘a’ and ‘b’ Year 0.5029
TRP (conc.mg/1) ‘a’ and ‘b’ Spring 0.5081
TRP (conc.mg/1) ‘a* and *b’ Autumn 0.5467

TON (conc.mg/1) All (‘a’-’f ) Year 0.5381
•TON (conc.mg/1) All (‘a’-’f ) Spring 0.7019
TON (conc.mg/1) All (‘a’-’f ) Autumn 0.4452
TON (conc.mg/1) ‘a’ and ‘b* Year 0.6590
TON (conc.mg/l) ‘a’ and ‘b* Spring 0.7754
TON (conc.mg/1) ‘a’ and ‘b’ Autumn 0.6319

Models using 76 BMWP taxa as independent input variables

TRP (conc.mg/1) ‘a5 and ‘b’ Spring 0.4934
TRP (conc.mg/1) ‘a’ and ‘b* Autumn 0.5354

TON (conc.mg/I) ‘a’ and ‘b* Spring 0.7407
TON (conc.mg/1) ‘a’ and ‘b’ Autumn 0.5835
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The results clearly show that:
a) models based upon data from GQA classes ‘a’ and ‘b’ performed better than those based on 

all GQA classes;
b) models based on 76 taxa and 10 environmental variables performed better than those based 

on just 76 taxa;
c) the TON models were noticeably better than TRP models;
d) the spring TON models were better than the autumn ones, whereas the converse was the 

case for the TRP models; and
e) the best correlation coefficients achieved were 0.7754 for TON in the spring and 0.5467 for 

TRP in the autumn.
It should be noted that all o f the correlation coefficients quoted in Table 4.1 were based on 
dependent tests, and were significant at p < 0.00005, owing to the large sample sizes involved.

4.2 Neural Networks

The initial tests using multiple linear regression indicated that it might be necessary to test a 
wide range o f models in order to properly assess the predictability of TRP and TON. 
Consequently, it was decided to use a multi-layered perceptron (a neural network based on 
supervised learning), because this offered a quick means of developing and testing a large 
number of non-linear models. Two series o f tests were carried out. In the first series, the 
networks were trained and tested using the same data. Although this meant that the 
performance tests were based on dependent data, and not therefore a proper test of overall 
performance, it did enable a range of key factors to be investigated quickly in a like-for-like 
manner. In the second series, the most promising models from the first series were further 
investigated using cross-validation. That is, the data were randomly divided into two equal 
sets (y and z) so that the models could be trained on one and independently tested on the other, 
and vice versa. In all cases, the network used was a multi-layered perceptron with a single 
output variable (TRP or TON) and 87 input variables. The input variables included: the 
recorded abundance levels (absence being represented by zero) of the 76 BMWP families listed 
in Table 1.2; the number of families found (NFAM) in the sample; and the recorded values of 
the 10 environmental variables listed in Table 1.3. In .order to avoid over parameterisation, 
the networks had just one hidden layer consisting of 16 nodes in all first-series networks, and 
eight nodes (TRP models) or 10 nodes (TON models) in the second series networks. The 
number of hidden nodes used was governed by the size of the training set. The training 
schedule used in the first series of tests was Save Best (100,000/10,000/10). This means that 
during training the network was tested (i.e. on the test data, which in this case was the same as 
the training data) every 10,000 cycles, and if a test showed improved performance the network 
was saved. Training was allowed to continue until 10 successive tests showed no 
improvement in performance or the total number of training cycles reached 100,000. In this 
particular case, training was bound to reach 100,000 cycles. The final network was the last one 
to be saved by this process. The training schedule used in the second series of tests was Save 
Best (200,000/4,000/20).

Tables 4.2 and 4.3 give the results of the first series of tests for TRP and TON respectively. 
Separate models were developed for spring and autumn, first using all of the data (i.e. all 
biological GQA classes) and then by using smaller subsets of the data. The subsets were first 
confined to GQA classes ‘a5 and ‘b’, and then further confined to recorded values of TRP or 
TON lying below given threshold concentrations.
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The results of the second series of tests are given in Tables 4.4 and 4.5 for TRP and TON 
respectively. Since the models were cross-validated, there are two models for each test, one 
trained on data set cy’ and tested on data set ‘z’ (e.g. model psab05yz) and one trained on 4z ’ 
and tested on ‘y’ (e.g. model psab05zy). The main benefit of this procedure is that it ensures 
that each model is not over-trained on the training set, because the Save Best procedure stops 
the training when the network’s performance on the independent test set begins to deteriorate. 
Once trained, the networks can be tested using the test and training sets separately, thus 
providing performance figures for independent and dependent data respectively. However, it is 
the performance on independent data that is the true test of the model. Tables 4.4 and 4.5 give 
the correlation coefficients achieved using both dependent and independent data. Since these 
varied slightly between the ‘yz* and ‘zy’ models, owing to difference in the ‘y’ and ‘z’ data 
sets, the average was used as the overall measure of performance.

Table 4.2 Results of first series performance tests on neural network predictors of 
TRP. Input vector: 76 BMWP families, NFAM and 10 environmental 
variables.

Input Data Specification Correlation
Coefficient

(Dependent)
Model Concentration

Threshold
GQA quality 

classes
Taxonomic data type No. of 

cases
Spring Models

psafl6 
psabprl6 
psab16 
psabx216 
psabxll6 
psab0516 
psab0216 
psab02rl6*

None
None
None

< 2.0 mg/1
< 1.0 mg/1 
<0.5 mg/1 
<0.2 mg/l 
<0.2 mg/l

All (‘a*- ‘f ) 
‘a’ and ‘b ’ 
V  and ‘b’ 
‘a’ and ‘b* 
‘a’ and ‘b’ 
‘a’ and ‘b’ 
‘a’ and ‘b* 
‘a’ and ‘b’

Abundance
Present/Absent only
Abundance
Abundance
Abundance
Abundance
Abundance
Abundance with
Replicates*

3255
2127
2127
2119
2092
2013
1671

2887*

0.3210 
0.4755 
0.4703 
0.5620 
0.6180 
0.6630 
0.6814 

. 0.7698*

A utumn Models
paafl6
paabprl6
paabl6
paabx216
paabxl16
paab0516
paab0216

None 
None 
None 

<2.0 mg/l 
< 1.0 mg/l 
<0.5 mg/l 
<0.2 mg/l

All (‘a’- T ) 
V. and ‘b’ 
‘a’ and ‘b’ 
‘a’ and ‘b’ 
‘a’ and ‘b* 
‘a’ and ‘b’ 
‘a’ and ‘b*

Abundance
Abundance
Abundance
Abundance
Abundance
Abundance
Abundance

3440
2186
2186
2025
1817
1589
1238

0.4462
0.5751
0.5601
0.6417
0.6100
0.5866
0.5733

* In this test the input data were extended by replicating samples in data deficient areas of the 
original set. Samples in the ranges 0.2 -  0.5, 0.5 -  1.0, 1.0 -  2.0 were made to occur twice, 
four times and eight times respectively. The outcome of this test is discussed in Section 6.3.

Levels o f significance were not derived for these results, because the neural network software 
did not automatically provide them: However, as with the results of every MLR model 
developed in this study they were clearly highly significant (owing to the large sample sizes), 
and their separate derivation could not be justified given the size of the contract. This 
statement applies to all of the neural network results given in Tables 4.2 to 4.10
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Table 4.3 Results of first series performance tests on neural network predictors of
TON. Input: 76 BMWP taxa, NFAM and 10 environmental variables.

Input Data Specification Correlation
Model Concentration GQA quality Taxonomic data type No. of Coefficient

Threshold classes cases (Dependent)
Spring Mode Is

nsaf!6 None All ( V - T ) Abundance 3255 0.7110
nsabprl6 None ‘a’ and ‘b’ Present/Absent only 2127 0.8232
nsab16 None ‘a’ and ‘b’ Abundance . 2127 0.8115
nsabl516 < 15 mg/1 ‘a’ and ‘b’ Abundance 2097 0.8228
nsab!016 < 10 mg/1 ‘a’ and ‘b’ Abundance 1877 0.8052

Autumn Models
naafl6 None All ( ‘a’- T ) Abundance 3440 0.4052
naabprl6 None ‘a’ and ‘b’ Present/Absent only 2186 0.6613
naab16 None ‘a’ and ‘b’ Abundance 2186 0.6402
naab1516 < 15 mg/1 ‘a5 and ‘b’ Abundance 2171 0.6716
naabl016 < 1 0  mg/1 ‘a’ and ‘b’ Abundance 2086 0.7039

The main points to note from Tables 4.2 and 4.3 are that:
a) on a like-for-like basis the neural networks generally performed better than MLR models;
b) the performance o f the models was generally improved by the removal o f data with high 

concentrations of TRP or TON, and this resulted in the TRP models performing better in 
spring than autumn once samples with TRP > 1.0  mg/1 had been removed.

A fuller discussion of these results is given in Section 6.3

Tables 4.4 and 4.5 give the results of the second series of tests in which the models were cross­
validated to permit both independent and dependent testing o f selected models. The models 
used were those with TRP less than 0.5 mg/1 and TON less than 10 mg/1.

Table 4.4 Results of second series performance tests on neural network predictors of 
TRP. Input: 76 BMWP taxa, NFAM and 10 environmental variables.

Input Data Specification Dependent Tests Independent Tests
Model Cone.

Threshold
GQA

Classes
Taxonomic Data 
Type

Test
Cases

Correl.
Coeff.

Test
Cases

Correl.
Coeff.

Spring Models
psab05yz
psab05zy

psab05pyz
psab05pzy

< 0 .5  mg/1 
< 0 .5  mg/1

< 0.5 mg/1
< 0 .5 mg/1

‘a’ & V  
‘a’ & V

‘a5 & ‘b ’ 
‘a ’ & ‘b ’

Abundance
Abundance

Present/Absent 
Present/Absent

1007'
1006
Avg
1007
1006
Avg

0.6867
0.6542
0.6705
0.6528
0.7047
0.6788

1006
1007
Avg
1006
1007
Avg

0.5965
0.6203
0.6084
0.5852
0.6082
0.5967

Autumn Models
paab05yz
paab05zy

paab05pyz
paab05pzy

< 0.5  mg/l 
< 0 .5  mg/l

< 0.5 mg/l 
< 0 .5  mg/l

‘a’ & cb ’ 
‘a’ & ‘b ’

‘a’ & ‘b ’ 
‘a’ & ‘b ’

Abundance
Abundance

Present/Absent 
Present/Absent

794
793 
Avg
794 
793 
Avg

0.5906
0.5236
0.5571
0.6259
0.5649
0.5954

793
794 
Avg
793
794 
Avg

0.4223
0.5309
0.4776
0.3999
0.5047
0.4524
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Table 4.5 Results of second series performance tests on neural network predictors of
TON. Input: 76 BMWP taxa, NFAM and 10 environmental variables.

Input Data Specification Dependent Tests Independent Tests
Model Cone.

Threshold
GQA

Classes
Taxonomic Data 
Type

Test
Cases

Correl.
Coeff.

Test
Cases

Correl.
Coeff.

Spring Models
nsab1Oyz 
nsab 1 Ozy

nsablOpyz 
nsab 1 Opzy

< 10 mg/1
< 10 mg/1

< 10 mg/1
< 10 mg/1

‘a’ & ‘b’ 
‘a’ & ‘b’

‘a’ & ‘b’ 
‘a’ & ‘b’

Abundance
Abundance

Present/ Absent 
Present/ Absent

939
938 
Avg
939 
939 , 
Avg

0.8331
0.8258
0.8295
0.8129
0.7942
0.8036

938
939 
Avg 
939 
939 
Avg

0.7791 
0.7933 
0. 7862 
0.7620 
0.7725 
0.7673

A utumn Models
naablOyz 
naab 1 Ozy

naab 1 Opyz 
naab 1Opzy

< 10 mg/1
< 10 mg/1

< 10 mg/1
< 10 mg/1

ca’ & ‘b’ 
‘a’ & ‘b’

‘a’ & ‘b’ 
‘a’ & ‘b’

Abundance
Abundance

Present/Absent 
Present/Absent

1043
1043
Avg
1043
1043
Avg

0.7088 
0.7221 
0.7155 
0.7088 
0.7122 
0.7105

1043
1043
Avg
1043
1043
Avg

0.6812
0.6448
0.6630
0.6812
0.6199
0.6506

The main points to be drawn from these results are that:
a) once again the correlation coefficients for TON were noticeably greater than those for TRP;
b) the independent correlation coefficients are generally between 0.06 to 0.08 lower than the 

dependent values in the case of TRP, and between 0.04 and 0.06 below them in the case of 
TON;

c) the models based upon present / absent data sometimes performed better than the models 
based upon abundance data when tested dependently, but in ail cases the abundance based 
models came out on top when tested independently.

4.3 MIR-max Pattern Recognition

MIR-max is based on unsupervised learning, which means that it simply recognises patterns in 
the data without reference to any particular ‘target’ variable that it aims to predict. In this 
respect it is like a child learning to recognise the faces of its parents and other relatives without 
knowing who they are. Only later does it learn to add the labels ‘Mummy’, ‘Daddy’ etc. In the 
same way, MIR-max models identify different patterns in the data and later it is found that 
these reflect certain states or conditions of the underlying system (e.g. different states of health 
of a river as represented by the concentrations of key pollutants, like ammonia, TRP and 
TON). A detailed description of the MIR-max based River Pollution Diagnostic System 
(RPDS) was given by Walley and O’Connor (2001) and O’Connor and Walley (2001), and 
details can also be found on the CTES web site (http://www.cies.staffs.ac.ukV Readers seeking 
a more detailed explanation of MIR-max models are directed to these sources. The results of 
tests on RPDS that were carried out during National R&D Project E l-056 (Walley et a i, 
2002) are given in Table 4.6 for TRP and TON.

In this present project, separate spring and autumn MIR-max models were developed using 
two different input vectors. The first had 86 variables, consisting of the 76 BMWP taxa listed 
in Table 1.2 and 10 environmental variables listed in Table 1.3. The second had 40 variables,
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consisting of the BMWP families (NFAM) plus the 34 BMWP families and 5 environmental 
variables listed in Table 4.7. These biological and environmental variables had earlier been 
identified as the top 40 indicators of TRP, using impact analysis on one of our initial neural 
network predictors of TRP. Two sets of these models were developed, one based on the 
abundance data (absent being represented by zero) and one based on present / absent data (i.e. 
1 or 0). Since MIR-max models are based upon discrete data, the environmental input 
variables were transformed into five discrete bands. All models had: a) 100 output classes 
located in a hexagonal output space having 127 grid locations; and b) were based on data from 
biological GQA classes ‘a’ and ‘b’ sites only.

Despite the discrete nature of the inputs to MIR-max models, the predicted values are 
continuous-valued variables. The results of the performance tests carried out on the MIR-max 
models are summarised in Table 4.8. Since the models were cross-validated using two equal 
subsets of the data (‘x’ and ‘y’ in this case), there are two sets o f results for each test, one each 
for the ‘xy’ and cyx’ models. The average of the two correlation coefficients is given in bold 
type, since it represents the best measure of overall performance.

Table 4.6 Results of performance tests on RPDS for TRP and TON.

Variable Quality Class Season Site Types

Correlation
Coefficient

(Dependent*)
TRP (conc) All Spring All 0.480

All Autumn All 0.488
All Year All 0.529

TON (conc) All Spring All ' 0.742
All Autumn All 0.501
All Year All 0.615

* T he results o f  these tests are not fully dependent (in the sense o f  being developed and tested on 
the sam e targe t ou tpu ts), because M IR -m ax is based on unsupervised learning, so does not 
depend on targets. H ow ever, the same inputs were used for training and testing, so the tests were 
not independent either.

Table 4.7 List of the 40 variables used in the reduced input MIR-max model. The 
BMWP taxa are shown in normal type and the other variables in italics.

Number o f  Families
Planariidae
Dendrocoelidae
Viviparidae
Physidae
Ancylidae
Erpobdellidae
Asellidae
Siphlonuridae
Heptagenidae

Ephemeridae
Nemouridae
Capniidae
Perlodidae
Perlidae
Chloroperlidae
Coenagriidae
Calopterygidae
Cordulegasteridae
Libellulidae

Gerridae
Nepidae
Aphelocheiridae
Corixidae
Gyrinidae
Dryopidae
Elmidae
Rhyacophilidae
Polycentropidae
Hydropsychidae

Phryganeidae
Limnephilidae
Goeridae
Lepidostomatidae
Sericostomatidae
Width
Boulders
Sand
Silt
Discharge

18



Table 4.8 Results of cross-validated performance tests on MIR-max models with respect 
to continuous valued predictions of TRP & TON. The average correlation 
coefficients derived from models ‘xy’ and ‘yx’ are given in bold type.

Number Data GQA Cone. Correl. Coeff. (Independent)
Model Season of Taxa Type Classes Threshold TRP TON
s86Axy Spring 86 Abund. ‘a’ & ‘b’ None 0.5559 0.7616
s86Ayx Spring 86 Abund. ‘a’ & ‘b’ None 0.5468 0.6222

0.5514 0.6919
a86Axy Autumn 86 Abund. ‘a’ & ‘b’ None 0.3871 0.5564
a86Ayx Autumn 86 Abund. ‘a’ & ‘b’ None 0.4049 0.5564

Avg 0.3960 ' 0.5564
s86Pxy Spring 86 Pres/Abs ‘a’ & ‘b’ None 0.5496 0.7248
s86Pyx Spring 86 Pres/Abs ‘a7 & V None 0.6215 0.7303

Avg 0.5856 0.7276
a86Pxy Autumn 86 Pres/Abs ‘a’ & ‘b’ None 0.3594 0.5292
a86Pyx Autumn 86 Pres/Abs ‘a’ & V None 0.3580 0.4349

Avg 0.3587 0.4821
s40Axy Spring 40 Abund. ‘a’ & ‘b’ None 0.5201 0.6870
s40Ayx Spring 40 Abund. V  & ‘b’ None 0.5912 0.6746

Avg 0.5557 0.6808
a40Axy Autumn 40 Abund. ‘a’ & V None 0.4192 0.4956
a40Ayx Autumn 40 Abund. V  & V None 0.4041 0.5047

Avg 0.4117 0.5002
s40Pxy Spring 40 Pres/Abs V  & ‘b’ None 0.5388 0.6729
s40Pyx Spring 40 Pres/Abs ‘a7 & ‘b’ None 0.6055 0.6385

Avg 0.5722 0.6557
a40Pxy Aiitumn 40 Pres/Abs V  & ‘b’ None - 0.317-7 - 0.4635
a40Pyx Autumn 40 Pres/Abs V  & ‘b ’ None 0.3390 0.5025

Avg 0.3284 0.4830

The main points to note from these results are that:
a) despite being unsupervised models they confirm that the TON models perform better than 

the TRP models;
b) the present / absent models perform almost as well as the abundance models overall, but 

better in some cases;
c) the reduced input model based on abundance data performed better than the full model with - 

respect to TRP but not with respect to TON.
The latter was almost certainly due to the fact that the reduced input vector was designed 
specifically for the prediction of TRP. In fact it was based on the results of impact tests on one 
of the initial neural network predictors of TRP in spring, thus it is likely that the reduced input 
model was biased towards predictions of this variable. This could also account for the 
relatively poor correlation coefficients produced by the reduced-input model for both TRP and 
TON in autumn.

It should be noted that the results of the independent tests (Table 4.8) cannot be compared on 
a like-for-like basis with those of the neural networks (Tables 4.4 and 4.5), because the latter 
were developed and tested using data with TRP <0.5 mg/l and TON < 10 mg/l, whereas the 
former had no restrictions on these variables. However, if these independent test results are



compared with the dependent test results derived from the equivalent neural networks (Tables
4.2 and 4.3), it is apparent that the TRP results for spring (0.5514) are extremely good, since 
they are better than the dependent test results (0.4703) from the neural network. This too 
reflects the bias of the input vector towards the prediction of TRP in spring. Unfortunately, the 
MIR-max models were developed at a relatively early stage in the project, and it was not 
possible in the time available to repeat these tests using a more balanced input vector for the 
reduced model. In fact, the task of deriving the best indicator taxa for TRP and TON, which is 
key to the optimisation of these models, proved to be more challenging than anticipated, as will 
be explained in Section 5.

4.4 Bayesian Belief Networks

The River Pollution Bayesian Belief Network (RPBBN) that was developed in R&D Project 
EI-056 (Walley et a l., 2002) was capable of predicting five key water quality variables, namely 
AMTN (total ammoniacal nitrogen), pH, DO(%), TRP and TON. The structure of the 
RPBBN model is shown in Figure B-l in Appendix B. Table 4.9 gives the results of 
performance tests carried out on RPBBN with respect to its predictions of TRP and TON. 
The input data used to produce these results were the abundance levels of the 76 BMWP 
families, plus the season in which the sample was taken (spring or autumn) and the Site Type 
(as defined by Walley et al., 2002)

Table 4.9 Results of dependent tests on RPBBN in terms of its ability to predict TRP 
and TON from biological samples (i.e. abundancies of 76 BMWP taxa), Site 
Type and season. The results are given for the year as a whole (i.e. spring 
and autumn results combined). Note: RPBBN used smoothed probabilities.

Variable GQA
Classes

Site
Types

Threshold Season Dependent 
Corr. Coeff.

TRP (mg/1) All All None Whole Year 0.638
TON (mg/1) All All None Whole Year 0.803

For the purpose o f this project, a dedicated Eutrophication Bayesian Belief Network (EBBN) 
was developed using cross validation to permit independent testing of the model. That is, the 
data were randomly divided into two equal subsets, SI and S2, so that one each could be used 
to develop a model, leaving the other one free for use as an independent test set. The structure 
o f the EBBN model is shown in Figure B-2 in Appendix B. The conditional probability 
matrices were based upon the raw conditional probabilities derived from each of the data 
subsets. Ideally, the raw conditional probability distributions should have been smoothed to 
remove the lumpiness that invariably occurs in such distributions, but time did not permit this. 
Past experience has shown that the smoothing of the distributions results in an increase in the 
correlation coefficients between the predicted and actual values of between 6 to 15 percent 
(Walley et a l., 2002). The results of the performance tests on EBBN are given in Table 4.10

20



Table 4.10 Results of dependent and independent tests on the dedicated Eutrophication 
BBN (EBBN) in terms of its ability to predict TRP and TON from biological 
samples (i.e. abundancies of 76 BMWP), Site Type and season. The results 
are given for the year as a whole (i.e. spring and autumn results combined). 
Note: EBBN used raw probabilities, not smoothed ones.

Variable Model GQA
Classes

Site
Types

Threshold Season Dependent 
Corr. Coeff.

Independent 
Corr. Ceoff.

TRP (mg/l) 
TRP (mg/l)

S1/S2
S2/S1

‘a’ & ‘b’ 
‘a’ & ‘b’

All
All

<0.5 mg/l 
<0.5 mg/l

Spring
Spring

Average

0.8518
0.8249
0,8384

0.5506
0.5834
0.5670

TRP (mg/l) 
TRP (mg/1)

S1/S2
S2/S1

‘a’ & ‘b’ 
‘a’ & ‘b’

Ail
All

<0.5 mg/l 
<0.5 mg/l

Autumn
Autumn
Average

0.7631 
0.8053 
0. 7842

0.3287
0.3526
0.3407

TON (mg/l) 
TON (mg/l)

S1/S2
S2/S1

‘a’ & ‘b’ 
V  & V

All
Ail

<10 mg/l 
< ] 0 mg/l

Spring
Spring

Average

0.9156
0.9050
0.9103

0.7236 
0.7325 
0.7281

TON (mg/l) 
TON (mg/l)

S1/S2
S2/S1

‘a’ & ‘b* 
V  & ‘b’

All
All

< 10 mg/l 
<10 mg/I

Autumn
Autumn
Average

0.9243
0.9191
0.9217

0.5933
0.5827
0.5880

The main points to note from these results are that:
a) the dependent correlation coefficients are easily the highest achieved by any model; and
b) the independent correlation coefficients are very noticeably lower than the corresponding 

dependent values, and between 6.8 and 11.3 percent lower that the like-for-like values 
achieved by the neural network (Tables 4.4 and 4.5)

These two effects were only to be expected, since the conditional probability matrices were not 
smoothed but based on raw probabilities derived from the data. Smoothing would have 
reduced the dependent correlation coefficients and increased the independent ones by 6 to 15 
percent. It is, therefore, anticipated that had smoothing been applied, the overall performance 
of EBBN would have at least matched that of the corresponding neural networks.
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5. IDENTIFICATION OF INDICATOR TAXA

Attempts were made to identify the principal indicator taxa for TRP and TON using the results 
from the MLR and neural network models. The effects of site type were removed by including 
the 10 environmental variables in the input vectors of the TRP and TON models, then the taxa 
were ranked in order of their impacts on the predictions. However, the resulting lists displayed 
considerable differences, both between models and between seasons.

5.1 Results from MLR Models

The results derived from the MLR models are given in Tables 5.1 and 5.2. The taxa listed are 
ranked in order of the absolute magnitude of the standardised regression coefficient (Beta). 
They have been separated into positive and negative indicators based on the sign (+ve or -ve) 

f of their beta coefficients. All of those listed were significant at the p < 0.005 level. Some taxa 
contributed to both the spring and autumn models, but others only contributed to one of them. 
Where a taxon occurred in both the spring and autumn models its beta value in the table is 
based on the average of the two, but where it only occurred in one of the two models its beta 
value is based on that one alone. The table indicates which of the models (spring or autumn or 
both) each taxon occurred in.

Table 5.1 TRP Indicator Taxa derived from the spring (S) and autumn (A) MLR 
models based on 76 BMWP taxa and 10 environmental variables.

Positive Indicators olfTRP Negative Indicators o fTRP
Taxon Season Avg. Beta Taxon Season Avg. Beta
Aseliidae S & A 0.1259 Baetidae S -0.1089
Calopterygidae S & A 0.1239 Physidae S & A -0.0733
Coenagriidae S & A 0.1141 Naucoridae S -0.0726
Aeshnidae S 0.1030 Corixidae A -0.0653
Glossiphoniidae S & A 0.0848 Polycentropidae A -0.0653
Ancylidae S 0.0784 Rhyacophilidae S -0.0638
Hydropsychidae S & A 0.0726 Goeridae A -0.0635
Platycnemidae A 0.0644 Beraeidae A -0.0635
Oligochaeta S 0.0615 Leuctridae S -0.0615
Sphaeriidae A 0.0586 Valvatidae S & A -0.0609
Libellulidae A 0.0564 Sericostomatidae S & A -0.0603
Lymnaeidae S 0.0504 Haliplidae S -0.0596
Simuliidae S 0.0411 Elmidae A -0.0577
Dendrocoelidae s 0.0407 Sialidae S -0.0554

Tipulidae S -0.0548
Limnephilidae S &A -0.0516
Nemouridae A -0.0515
Ephemeridae A -0.0441
Planariidae S -0.0437
Aeshnidae A -0.0423
Gerridae S -0.0389
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Table 5.2 TON indicator taxa derived from the spring (S), autumn (A) MLR models
based on 76 BMWP taxa and 10 environmental variables.

Positive Indicators of TON Negative Indicators ofTON
Taxon Season Beta Taxon Season Beta
Haliplidae s 0.0774 Heptagenidae S & A -0.1009
Gammaridae A 0.0713 Leuctridae S & A -0.0958
Sialidae S 0.0713 Platycnemidae S -0.0911
Hydropsychidae S & A 0.0678 Chloroperlidae s -0.0737
Ephemerellidae S & A 0.0643 Nemouridae S. & A -0.0728
Scirtidae S ■ 0.0592 Beraeidae A -0.0699
Coenagriidae S 0.0566 Polycentropidae A -0.0689
Calopterygidae A 0.0546 Chironomidae S -0.0668
Planorbidae S & A 0.0523 Perlodidae S & A -0.0644
Asellidae s & A 0.0517 Oligochaeta S & A -0.0613
Goeridae s & A 0.0502 Leptoceridae s & A -0.0584
Erpobdellidae S 0.0498 Leptophlebiidae S -0.0577
Ancylidae s & A 0.0426 Gerridae s & A -0.0509
Tipulidae S 0.0419 Naucoridae s & A -0.0483
Dendrocoelidae A 0.0395 Hydrophilidae A -0.0422
Hydrometridae A 0.0383 Sphaeriidae S -0.0402
Nepidae A 0.0380 Lymnaeidae A -0.0400
Unionidae S 0.0350 Libellulidae S -0.0383

Planariidae s & A -0.0368
Capniidae A -0.0361
Aeshnidae s & A -0.0344
Potamanthidae S -0.0305

The main feature to note from Table 5.1 is the three strong (i.e. Beta > 0.1) positive indicators 
o f TRP that apply in both seasons, namely Asellidae, Calopterygidae and Coenagriidae. It is 
interesting to note that one of these, Asellidae, is a very commonly occurring taxon, whereas 
the other two are less common. Table 5.2 indicates that there are two fairly powerful negative 
indicators of TON that apply to both seasons, namely Heptagenidae and Leuctridae. Both 
tables list several taxa that were only found to be indicators of TRP and/or TON in just one of 
the two seasons.

5.2 Results from Neural Network Models

Once a neural network has been trained, the relative contribution that each input variable made 
to the final predictions was determined using a procedure called ‘impact analysis’. In this 
procedure, each input variable in turn is disabled and the performance of the model determined 
at each step. The percentage reduction in the correlation coefficient below its baseline value 
(i.e. with no disabled inputs) is recorded for each disabled variable. The variables that cause 
the greatest percentage impact are clearly the most important input variables in the model. 
Some variables may have negative impacts, indicating that their removal from the model would 
improve its performance. Thus, impact analysis is generally used to optimise the input vector 
by the progressive removal of variables with very weak or negative impacts. This involves 
several cycles of the impact analysis procedure, which can be time-consuming if the network 
has a large number of input variables.
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In this particular case, however, a single cycle of impact analysis was used to rank the taxa in 
terms of their importance as predictors of TRP and TON. The networks used for these 
analyses were:
a) the spring and autumn TRP models based on GQA classes ‘a’ and ‘b’ and a concentration 

, threshold of 0.5 mg/l (i.e. models psab0516 and paab0516); and
b) the spring and autumn TON models based on GQA classes ‘a’ and ‘b’ and a concentration 

threshold of 10 mg/I (i.e. models nsabl016 and naabl0l6).
The results of the analyses are given in Table 5.3.

Table 5.3 Results of impact analyses showing the taxa listed in order of their 
maximum impacts on the TRP and TON models. Only taxa with a 
maximum impact greater than two percent are listed. Their impacts on the 
spring and autumn models are given, together with their average impact.

TRP -  Percentage Impacts TON -  Percentage Impacts
Taxon Sprg Aut Avg Max Taxon Sprg Aut Avg Max
Perlidae 2.06 10.72 6.39 10.72 Gerridae 2.76 10.21 6.48 10.21
Potamanthidae 0.63 9.91 5.27 9.91 Leuctridae 8.37 1.94 5.15 8.37
Calopterygidae 1.43 6.85 4.14 6.85 Chloroperlidae .8.03 0.11 4.07 8.03
Nemouridae 1.22 6.55 3.89 6.55 Perlodidae 5.58 2.76 4.17 5.58
Planariidae 0.72 6.23 3.47 6.23 Taeniopterygidae 1.01 5.17 3.09 5.17
Chloroperlidae 6.14 2.54 4.34 6.14 Heptageniidae 4.86 1.88 3.37 4.86
Viviparidae 0.57 5.74 3.15 5.74 Platycnemidae 4.59 -0.13 2.23 4.59
Taeniopterygidae 0.22 5.71 2.97 5.71 Capniidae 4.34 2.32 3.33 4.34
Dryopidae 0.00 5.53 2.77 5.53 Beraeidae 1.31 4.33 2.82 4.33
Lepidostomatidae 111 4.90 3.00 4.90 Siphlonuridae 3.78 0.00 1.89 3.78
Libellulidae -0.52 4.59 2.04 4.59 Libellulidae 3.25 1,37 2.31 3.25
Haliplidae 1.29 4.18 2,74 4.18 Nemouridae 3.25 1.25 2.25 3,25
Heptageniidae 2.98 4.17 3.57 4.17 Notonectidae 2.97 0.16 1.57 2.97
Goeridae 4.13 1.10 2.62 4.13 Perlidae 1.89 2.71 2.30 2.71
Aeshnidae 1.83 4.11 2.97 4.11 Ae'shnidae 2.69 -0.11 1.29 2.69
Unionidae -0.59 4.08 1.75 4.08 Polycentropidae 0.37 2.63 1.50 2.63
Gerridae 0.21 4.06 2.13 4.06 Gyrinidae 0.31 2.48 1.40 2.48
Leuctridae 3.83 0.11 1.97 3.83 Potamanthidae 2.19 2.31 2.25 2.31
Odontoceridae -0.54 3.44 1.45 3.44 Lepidostomatidae 2.07 0.75 1.41 2.07
Aphelocheiridae 3.40 1.80 2.60 3.40
Beraeidae -0.08 3.26 1.59 3.26
Neritidae -0.34 3.14 1.40 3.14
Brachycentridae 1.78 3.04 2.41 3.04
Polycentropidae 1.00 2.87 1.93 2.87
Hydrometridae -0.48 2.66 1.09 2.66
Perlodidae 0.55 2.48 1.51 2.48
Cordulegasteridae 2.35 -1.41 0.47 2.35
Rhyacophilidae 2.10 0.81 1.46 2.10

The main points to be noted from these results are that:
a) there is considerable variability between the spring and autumn impacts of each taxon, some

even producing negative impacts in one season and strong positive ones in the other;
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b) the two most important indicators in the TRP model (i.e. Perlidae and Potamanthidae) were 
not even identified as important indicators by the MLR model;

c) only 11 of the 28 taxa identified as good (+ve or -ve) indicators of TRP by impact analysis 
also appeared in the list o f 35 taxa identified by the MLR model;

d) the top four indicators of TON (i.e. Gerridae, Leuctridae, Chloroperlidae and Perlodidae) 
that were identified by impact analysis were also identified by MLR as good indicators of 
TON in both seasons; and

e) 11 of the 19 taxa identified as good (+ve or -ve) indicators of TON by impact analysis also 
appeared in the list of 41 taxa identified by the MLR model.

Thus, there was better agreement between the TON lists than between the TRP lists. However, 
the total number of taxa common to the two lists was partly governed by the decision to 
confine the impact analysis list to those taxa with greater than two percent impact.

Table 5.4 lists those taxa that impact analysis identified as good indicators (+ve or -ve) of both 
TRP and TON. The indicator ranking of each taxon for TRP and TON is given, together with 
its overall ranking as a joint indicator. It is worth noting that the top four places in the joint 
ranking list are taken by stoneflies, namely Chloroperlidae, Taeniopterygidae, Perlidae and 
Nemouridae. However, it is well known that these creatures are sensitive to several other river 
quality factors, so how reliable are these results? This issue will be discussed in the Section 6.

Table 5.4 The BMWP taxa that were found to be good indicators of both TRP and 
TON by impact analysis on neural network models.

Taxon TRP Ranking TON Ranking Joint Ranking
Heptageniidae 13 6 6
Potamanthidae 2 18 7
T aeniopterygidae 8 5 2
Nemouridae 4 12 4
Leuctridae 18 2 8
Perlodidae ' 26 4 11
Perlidae 1 14 3
Chloroperlidae 6 3 1
Aeshnidae 15 15 13
Libellulidae 11 11 9
Gerridae 17 1 5
Polycentropidae 24 16 14
Beraeidae 21 9 12
Lepidostomatidae 10 19 10

5.3 Combined MLR and Neural Network Results

It was thought desirable to identify and rank those taxa that were found to be important 
indicators by both the MLR and neural network models. Thus, the taxa that were common to 
both lists were extracted and separately ranked according to their importance in each model. 
That is, they were ranked by the absolute value of their beta values (MLR models) and by their 
percentage impacts (neural network models). This was done separately for spring and autumn. 
The rankings derived for each model were then combined to produce overall rankings (based
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on the average of the two) for TRP and TON in spring and autumn. The results of this 
analysis are given in Table 5.5

Table 5.5 Positive and negative indicator taxa for TRP and TON in spring and autumn 
derived from a combination of multiple linear regression and neural network 
models. The rank order of the indicators (best = 1) in each season are given.

Indicator
Taxon

TRP TON

Type
Indicator Ranking Indicator Ranking

Spring Autumn Type Spring Autumn
Planariidae - ve 10 - ve 13 17
Dendrocoelidae + ve 11 + ve 20
Valvatidae - ve 9
Lymnaeidae - ve 18
Planorbidae + ve 15
Ancylidae + ve 19
Oligochaeta - ve 9 9
Giossiphoniidae + ve 3
Asellidae + ve 6
Gammaridae + ve 4
Heptagenidae - ve 2 7
Leptophlebiidae - ve 10
Ephemerellidae + ve 8
Potamanthidae - ve 14
Nemouridae - ve 5 - ve 6 10
Leuctridae - ve 3 - ve 1 1
Capniidae - ve 11
Perlodidae - ve 5 5
Chloroperlidae - ve 3
Platycnemidae - ve 4
Calopterygidae + ve 2 1 + ve 16
Aeshnidae + ve 1 - ve 12
Libellulidae + ve 6 - ve 7
Gerridae - ve 8 3
Naucoridae - ve 7 - ve 15 13
Haliplidae - ve 5
Hydrophilidae - ve 12
Rhyacophilidae - ve 4
Polycentropidae - ve 2 - ve 6
Limnephilidae - ve 9 10
Beraeidae - ve 4 - ve 2
Leptoceridae - ve 11
Goeridae - ve 7 + ve 14
Sericostomatidae - ve 8 8
Total Indicators 11 10 15 20
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The main points to note from these results are that:
a) there are almost twice as many indicators listed for TON as for TRP, indicating better 

agreement between the MLR and neural network models for TON than TRP;
b) two of the highly ranked positive indicators of TRP are surprisingly quite rare (e.g. 

Aeshnidae and Libellulidae, with only 31 and 32 occurrences respectively), but since they 
are negative indicators of TON they appear to thrive in low TON / high TRP conditions 
(which are quite rare);

c) Calopterygidae, a fairly common taxon, appears to be the best indicator (+ve) of TRP;
d) Leuctridae was clearly identified as the best indicator (-ve) o f TON; and
e) seven taxa were identified as positive indicators of TON, but only in the autumn, the highest 

ranked of which was Gammaridae.

5.4 Additional Information from Data Analysis

In view of the comments made about Aeshnidae and Libellulidae above, it was decided to 
determine the average TON/TRP ratios of GQA class ‘a’ and ‘b’ sites at which each BMWP 
taxon occurred. The results of this analysis are given in Tables C-l to C-4 in Appendix C. In 
Table C-1 the results are listed in taxonomic order, whereas in Tables C-2, C-3 and C-4 they 
are listed in order of average TRP, average TON and the average TON/ average TRP ratio 
respectively. These tables appear to contain valuable information that could help experienced 
limnologists to interpret the lists of indicator taxa given above, and thereby provide new 
insights or pointers for further research. For example, Coenagriidae, Hydrometridae, 
Platycnemidae and Phryganeidae (all having over 120 occurrences) tend to occur at low TON / 
TRP ratios. Does this have any ecological significance or explanation?

5.5 Relationships between TRP, TON and NFAM

Figure 5.1 shows the number o f BMWP families (NFAM) found in samples from GQA class 
‘a ’ or ‘b ’ sites plotted against TRP and TON. Although both graphs show considerable 
scatter, due to other factors affecting NFAM, some tentative conclusions can be drawn based 
on trends in the average values. Increases in TRP appear to be associated with a slight 
decrease in NFAM. Initial increases in TON, up to about 5 mg/l, are associated with an 
increase in NFAM from about 20 to 25. This is followed by a levelling off and then a steady 
decline of about 5 families per 10 mg/l of TON when TON concentrations exceed 7.5 mg/l.

TRP Concentration (mg/l)

Figure 5.1 Graphs showing the effect TRP and TON on NFAM.
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6. DISCUSSION AND SUMMARY OF RESULTS

6.1 Distribution Analyses

The results of the distribution analyses were discussed after presenting them in Sections 2.1 
(Spring and Autumn Concentration of TRP and TON), 2.2 (Geographical Distributions of TRP 
and TON) and 2.3 (Distribution of Recorded Occurrences of Cladophora). The main findings 
were that:
• TRP concentrations were, on average, over three times higher in the autumn of 1995 than 

they were in the spring.
• TON concentrations were approximately the same in the spring and autumn of 1995.
• High concentration of TRP and TON were, as expected, confined to lowland regions, with 

noticeable clusters occurring in Cheshire and a band from Somerset to Cambridge.
• ‘Severe’ intensities of Cladophora occurred most frequently in GQA class ‘d’ rivers, 

whereas ‘Moderate’ and ‘Light’ intensities occurred most frequently in GQA classes ‘c’ 
and cb’ respectively.

• ‘Light’ and ‘Moderate’ intensities of Cladophora were quite common in GQA class ‘a’ 
rivers.

It is also worth noting that the clusters of high TRP and TON mentioned above approximately 
correspond to the location of two important aquifers, the Bunter Sandstone in Cheshire and the 
northern edge of the Chalk from Swindon to south of Cambridge.

6.2 Relationships between Nutrients, Cladophora and Dissolved Oxygen

The results of these analyses were briefly discussed after presenting them in Sections 3.1 
(Nutrient Levels and Cladophora) and 3.2 (Nutrient Levels and Dissolved Oxygen). The main 
findings are listed below.

• Threshold concentrations of TRP and TON could not be identified in relation to the 
occurrence of Cladophora.

• No ‘Severe' intensities of Cladophora occurred below 0.06 mg/l of TRP or 1.2 mg/l of 
TON.

• MLR models for the prediction of DO indicated that TRP is inversely associated with 
DO(%), but TON is not.

• The MLR models for GQA class ‘a’ and ‘b’ sites indicate that the inverse association 
between DO(%) and TRP is about one-third the strength of that between DO(%) and 
AMTN (total ammoniacal nitrogen). One extra mg/l of TRP is associated with a reduction 
in DO(%) of about 3%, whereas an extra mg/l of AMTN is associated with a reduction of 
about 9%.

6.3 TRP and TON Predictive Models

The development of models to predict TRP and TON from macroinvertebrate and 
environmental data form the main part of the project. Four different modelling techniques 
were used: MLR; neural networks; MIR-max pattern recognition; and BBN. In view of the 
short duration of the project, the majority of the work was based upon neural networks
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because these provided the quickest means of developing appropriately complex non-linear 
models. The MLR models were developed to provide an initial set of baseline results against 
which to compare the later models. Although independent tests provide the only true measure 
of the overall performance of a model, they are more demanding of data and time consuming 
to perform. In view of this, and the fact that most of the tests were carried out to provide like- 
for-like comparisons and not absolute measures of performance, the majority of the tests were 
based on dependent tests (i.e. the training data). Thus, the results contain a mixture of 
dependent and independent performance figures, so one must be aware of which is being 
referred to. The independent performance figures are always lower than the dependent ones, 
but they provide the only true measure of performance. This section aims to provide a concise 
summary o f the results of the tests on all four model types. Brief comments on the results of 
the individual model types are given in Sections 4.1 (Multiple Linear Regression), 4.2 (Neural 
Networks), 4.3 (MIR-max Pattern Recognition) and 4.4 (Bayesian Belief Networks). The 
following bulleted sections highlight the conclusions that can be drawn from the tests on TRP 
and TON models.

• The first and most important conclusion to be drawn is that TON is far more predictable 
from macro invertebrate and environmental data than is TRP. Table 6.1 gives the maximum 
dependent and independent correlation coefficients achieved by any of the predictive 
models o f TRP and TON.

Table 6.1 Maximum dependent and independent correlation coefficients achieved by 
any of the TRP and TON models.

Maximum Dependent 
Correlation Coefficient

Maximum Independent 
Correlation Coefficient

Model Type Spring Autumn Spring Autumn
TRP 0.8384 0.7842 0.6084 0.4476
TON 0.9103 0.9217 0.7862 0.6630

In order to put these figures into perspective, it is worth noting that performance tests on 
neural network predictors o f ASPT and NFAM, that were trained and tested on cross­
validated subsets of the RIVPACS database, produced independent correlation coefficients 
o f 0.8261 and 0.5860 for ASPT and NFAM respectively (Walley and Fontama, 1998). It is 
not possible to quote corresponding figures for the RIVPACS model itself, because it was 
not developed using cross-validated data. However, Walley and Fontama (1998) did 
demonstrate that the neural networks performed marginally better than RIVPACS III when 
tested dependency. Thus, it can be reasonably assumed that these correlation coefficients 
are a fair reflection of the performance of RIVPACS III on independent data.

It appears, therefore, that TON can be predicted from macroinvertebrate and 
environmental data to a degree of reliability almost as good as that of RIVPACS III 
predictions o f ASPT. However, the best of the TRP models could only just match the 
reliability of RIVPACS III predictions of NFAM. In both cases, the spring models perform 
better than the autumn models when tested independently. Since Walley and Fontama 
(1998) concluded that the poor reliability of NFAM predictions cast doubt on its suitability 
for use in water quality classification, we feel that a similar conclusion must be drawn in 
relation to the TRP. That is, we conclude that TRP cannot be predicted to an acceptable 
degree of reliability from the 76 BMWP families and 10 environmental variables used in
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this study. It may, however, be possible to achieve an acceptable degree of reliability using 
macroinvertebrate data to species level, or by including appropriate macrophyte data in the 
input vector.

• The results of tests carried out on models based on abundance data and then present / 
absent data indicate that the abundance-based models performed only marginally better 
than present / absent models. This was contrary to expectations and previous experience, 
and the authors would wish to carry out a more extensive study of this issue before 
confirming this initial finding.

• The issue of whether the relationships between nutrient concentrations and the composition 
of macroinvertebrate communities is strongest in the cleaner rivers was investigated by 
comparing the performances of several dependent models, each based on different subsets 
of the input data.

The results demonstrated that models based on data from biological GQA classes ‘a’ and 
‘b’ performed noticeably better than those based upon all GQA classes (See Tables 4.-1, 4.2 
and 4.3). This was as expected, because the removal of GQA classes V  to ‘f  significantly 
reduced the confounding effect of organic pollution. However, attempts to achieve further 
improvements by removing samples having high concentration of TRP or TON did not 
produce a clear-cut conclusion.

TRP Models

Table 4.2 gives the results of tests on neural network models that were based on subsets of 
the GQA classes ‘a’ to ‘b’ data in which samples having TRP concentration greater than 
2.0, 1.0, 0.5 and 0.2 mg/l were progressively removed. The results for the spring models 
show that the correlation coefficient progressively increased from 0.562 to 0.681 as the 
threshold for exclusion was lowered, but those for the autumn models decreased from 
0.642 to 0.573. Factors that may contribute to this confusing behaviour are:
a) the fact that average TRP levels are three times as great in the autumn as they are in the 

spring, thus the autumn data have many more samples above the stated thresholds; and
b) many models, including neural networks, are unable to adequately model data that are 

heavily skewed, because during their training they see very few cases from the sparse 
end of the distribution.

The autumn model had many more samples with TRP greater than 0.2 mg/l so was able to 
model high TRP cases better than the spring model. Thus, the autumn models with 
thresholds of ‘None’ and 2.0 mg/l produced higher correlation coefficients (0.560 and 
0.642) than did their corresponding spring models (0.470 and 0.562). However, once 
these high TRP samples had been removed, the spring models out-performed the autumn 
models, implying that the spring data had a higher information content. It must also be 
remembered that the autumn data set was much depleted by the removal of the high TRP 
samples.

Techniques that aim to overcome the problems of highly skewed data include: a) the 
logarithmic (or similar) transformation of the data; and b) the replication o f rare cases in 
the training data set. A series of tests were carried out in which neural network models 
were trained using log-transformed spring TRP data with concentration thresholds ranging 
from ‘None’ down to 0.2 mg/l. The correlation coefficients between their predicted and
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actual TRP values were all less than those of their non-transformed counterparts by 
between 2 and 5 percent. A neural network based on a training set that included replication 
o f rare cases (see footnote to Table 4.2 for details) produced a significant improvement in 
the correlation coefficient compared to its non-replicated counterpart (i.e. 0.770 compared 
with 0.681). However, the validity of this approach is questionable, especially since the 
training data contained some 1200 repeat cases of high TRP samples. Since some samples 
were repeated eight times, it is possible that the neural network was over-trained on these 
cases.

TON Models

Table 4.3 gives the results of tests on neural network models that were based on subsets of 
the GQA classes ‘a’ to ‘b’ data in which samples having TON concentration greater than 
15 and 10 mg/] were progressively removed. The test results showed that in spring the 
model with a 15 mg/l threshold gave the best overall correlation, whereas in autumn it was 
the 10 mg/l model that gave the best result. However, the variations from the no-threshold 
case were less than achieved by the corresponding TRP models. This was probably due to 
the fact that the TON distributions were less skewed than the TRP distributions (See 
Figures 2.1 and 2.2).

Summary

The tests on both the MLR and neural network models confirmed the belief that correlation 
between nutrient concentrations (TRP and TON) and the composition of the 
macroinvertebrate community is strongest for good quality rivers (GQA classes ‘a’ and 
‘b ’). The spring TRP models produced results that appeared to confirm the finding of 
McGarrigle (1998) that the relationship breaks down at higher TRP concentration, but the 
autumn models contradicted this. In addition, the authors believe that the behaviour of the 
spring models was largely due to the highly skewed nature of the spring distribution of 
TRP values (see Figure 2.1). Thus, we are not able to confirm or reject the suggestion that 
the relationship breaks down at TRP concentration above 0.2 mg/l. Further detailed 
analyses may have provided a more conclusive answer to this question, but time and 
funding constraints did not permit this.

6.4 Identification of Indicator Taxa

The results of the tests carried out to identify indicator taxa for TRP and TON were not 
particularly conclusive, because there were noticeable differences between the taxa identified 
by the MLR models and the neural network impact analyses. These analyses are described and 
briefly discussed in Sections 5.1 (MLR models), 5.2 (Neural network impact analyses) and 5.3 
(Combined MLR and neural network results). On reflection, it is not surprising that there were 
such differences since the MLR models were linear, whereas the neural networks were non­
linear and hence more able to model the non-linear features o f the data. However, neural 
networks do have some weaknesses, including a tendency not to adequately represent highly 
skewed data, as mentioned earlier in relation to the autumn distribution of TRP. In addition, 
some of the input variables were highly skewed, and may have benefited from logarithmic 
transformation. Despite these weaknesses, the neural networks probably still gave the more 
reliable results. Nevertheless, there is considerable scope for further improvement and
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extension of these analyses, which unfortunately we were not able to carry through in the short 
timeframe of the project.

Despite these comments, some tentative conclusions can be drawn and there are several 
aspects of the results that are worthy of further comment. When reading through these 
conclusions and comments, remember that they refer to models based on abundance data, so 
much of the indicator value of a taxon may derive from differences between abundance levels, 
not just between presence and absence.

• All seven BMWP families of PLECOPTERA (Stoneflies) occurred in one or more of the 
lists of indicator taxa. All were found to be negative indicators of TRP and/or TON. That 
is, they all tended to occur at low concentrations of TRP and TON. This was not simply 
due to the fact they tend to prefer upland sites, where TRP and TON concentrations just 
happen to be lower than average. Site characteristics were well represented in all models by 
the 10 environmental variables, including altitude, slope and the nature of the substrate, so 
site type was effectively accounted for in the models. It is also worth noting that all of the 
families had high TON/TRP ratios (See Table C-4 in Appendix C), thus indicating that they 
are more indicative of low TRP concentrations than low TON concentrations.

• All of the eight BMWP families of EPHEMEROPTERA (Mayflies), except Caenidae, 
occurred in one or more of the lists of indicator taxa. All were found to be negative 
indicators of TRP and/or TON, except Ephemerellidae which was found by MLR to be a 
fairly strong positive indicator of TON in both spring and autumn. Further investigation of 
this finding revealed that Ephemerellidae is not so much an indicator of high TON 
concentrations as high TON/TRP ratios, thus its value appears to be as an indicator of 
relatively high TON at sites having relatively low TRP concentrations.

• 11 of the 16 BMWP families of TRICHOPTERA (Caddisflies) occurred in one or more of 
the lists of indicator taxa. These included three of the five caseless caddisflies 
(Rhyacophilidae, Polycentropidae and Hydropsychidae) and eight of the cased caddisflies 
(Limnephilidae, Beraeidae, Odontoceridae, Leptoceridae, Goeridae, Lepidostomatidae, 
Brachycentridae and Sericostomatidae). All, except Hydropsychidae and Goeridae, were 
found to be negative indicators of TRP and/or TON. Hydropsychidae was found by MLR 
to be a fairly strong positive indicator of TON in both spring and autumn. Goeridae is 
unusual in that it was found by MLR to be a fairly good positive indicator o f TON in both 
spring and autumn, but also a fairly strong negative indicator of TRP in autumn. It is a little 
surprising therefore that its TON/TRP ratio (20.5), although higher that the median for all 
76 taxa (13.8), is not noticeably different from those of the other caddisflies. It is also 
interesting to note the very wide range of TON/TRP ratios in which caddisflies occur, from
4.8 for Phryganeidae to 49.1 for Philopotamidae. Phryganeidae appears to be very tolerant 
of high TRP conditions (average TRP =1.10 mg/1), whereas Philopotamidae appears to be 
very intolerant of high TRP conditions (average TRP = 0.04 mg/1), yet neither of these two 
families has been identified as an indicator of TRP. Since this seems inexplicable, at least 
from this rather simple evidence, there is clearly a need for further investigation of this 
behaviour.

• All six BMWP families of ODONATA (Damselflies and Dragonflies) occurred in one or 
more of the lists of indicator taxa, although one, Cordulegasteridae, was only identified as 
a relatively weak indicator of spring TRP by the neural network impact analyses. Two of 
the damselflies, Calopterygidae and Coenagriidae, were identified by MLR as strong 
positive indicators of TRP in both spring and autumn, but the impact analyses only
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identified Calopterygidae. This could be due to the fact that if two strong indicators are 
highly correlated, a neural network may give higher preference to one than the other, thus 
an impact analysis only identifies the favoured one as a key indicator. The dragonfly 
Aeshnidae was also identified by MLR as a strong positive indicator of TRP in spring, but 
also as a weak negative indicator of TRP in autumn. However, Aeshnidae only occurred 31 
times in the whole database so the validity of this rather strange result is questionable. The 
damselfly Platycnemidae and the dragonfly Libellulidae were identified as positive 
indicators of TRP in autumn, but, like Aeshnidae, Libellulidae occurred very rarely (32 
times). However, all o f the ODONATA, except Cordulegasteridae, occurred at sites having 
very high average TRP values and very low TON/TRP ratios (See Table C-2 and C-4 in 
Appendix C), thus confirming their roles as positive indicators of TRP. Cordulegasteridae, 
on the other hand, occurred at sites having relatively low TRP and TON concentrations 
and moderately high TON/TRP ratios. The indicator values of ODONATA with respect to 
TON were not found to be as strong or conclusive as those for TRP. Coenagriidae and 
Calopterygidae were again identified by MLR as positive indicators, but only for one 
season (spring and autumn respectively). The less frequently occurring families, 
Platycnemidae (120 occurrences) , Libellulidae-and Aeshnidae were identified as negative 
indicators of TON, the latter in both spring and autumn and the other two in spring only. 
However, Tables C-3 and C-4 reveal that these three families occurred at moderately high 
TON concentrations but very low TON/TRP ratios. Thus their value as indicators seems to 
apply only to high TRP sites, where their presence implies lower than average TON values 
for such sites.

• All seven of the BMWP families of HEMIPTERA (Bugs) occurred in one or more of the 
lists of indicator taxa. Gerridae and Naucoridae were identified by MLR as good negative 
indicators of TON in both spring and autumn. The importance of Gerridae was confirmed 
by the fact that impact analysis identified it as the strongest indicator of TON, but 
Naucoridae did not even appear in the list of indicators derived by this means. Gerridae and 
Naucoridae were also identified by MLR as negative indicators of TRP, but only in the 
spring. Impact analysis confirmed that Gerridae is a good indicator .of TRP, but mainly in 
the autumn. Corixidae was found by MLR to be a strong negative indicator of TRP, but 
only in the autumn. The listings o f the other four families were not particular noteworthy. 
Hydrometridae and Nepidae were identified by MLR as weak positive indicators of TON in 
the autumn. Impact analysis identified Aphelocheiridae and Hydrometridae as weak 
indicators of TRP in the spring and autumn respectively, and Notonectidae as a weak 
indicator o f TON in the spring. Evidence from Tables C-2 and C-3 confirms that 
Hydrometridae and Notonectidae are positive indicators of TRP and TON respectively.

• Five of the seven BMWP families of COLEOPTERA (Beetles) occurred in one or more of 
the lists o f indicator taxa, the most significant of which was Haliplidae. This family was 
identified by MLR as the strongest positive indicator of TON and a good negative indicator 
o f TRP, but only in the spring in both cases. Impact analysis also identified Haliplidae as a 
good indicator o f TRP, but especially in the autumn. The other cases are less noteworthy. 
MLR identified Scirtidae as a good positive indicator of TON in spring, Hydrophilidae as a 
negative indicator of TON in autumn and Elmidae as a negative indicator of TRP in 
autumn. However, there is little evidence to support any of these assertions in Tables C-2 
and C-3.

• Nine of the ten BMWP families of Mollusca (Snails, Limpets and Mussels) occurred in one 
or more o f the lists of indicator taxa. However, only one family (Unionidae) was identified 
by both MLR and impact analysis, but for different reasons. MLP identified Unionidae as a
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weak positive indicator of TON in spring, whereas impact analysis identified it as a positive 
indicator of TRP in autumn. Thus, in this case, there is no agreement between MLP and 
impact analysis. The most significant indicators identified by MLR were Physidae and 
Valvatidae which were found to be fairly strong negative indicators of TRP in both spring 
and autumn, and Planorbidae and Ancylidae which were found to be positive indicators of 
TON in both spring and autumn. There is little evidence in Tables C-2 and C-3 to support 
these assertions, but a plot of TRP against abundance of Physidae showed that TRP 
declines with increased abundance, thus confirming that Physidae is a negative indicator of 
TRP. All of the other families were found to be relatively weak indicators of TRP or TON 
in one season only.

• The most significant findings with respect to the remaining BMWP families where that:
a) Asellidae was identified by MLR as the strongest positive indicator of TRP and a 

positive indicator of TON in spring and autumn in both cases, but these findings were 
not confirmed by the results of impact analysis; and

b) Glossiphoniidae was identified by MLR to be a fairly strong positive indicator of TRP 
in both spring and autumn, but this too was not confirmed by impact analysis.

It is clear from the above that in some cases there was good agreement between the indicators 
identified by MLR and impact analysis, but in other cases there was very little agreement. We 
believe that the truth lies somewhere between the two. However, we also believe that it is 
possible, with hindsight, to develop improved neural network predictors of TRP and TON and 
a better method of identifying the key indicators from them. Preliminary tests on a modified 
version of impact analysis have produced some promising results, but we need to develop 
software to automate the process so that it can be comprehensively tested.

6.5 General Comments on the Approach and Methods Used

This project aimed to answer several basic questions about the relationships between 
macroinvertebrates and nutrient concentrations in rivers using AI techniques. A general 
principle underlying the AI approach to the development of ‘expert systems’ is to start by 
observing the way in which the relevant experts perform their tasks and then- to encode this 
behaviour into a software system. Thus, the developer has to first gain a sound understanding 
of the field in question, its essential features and relationships, and the way in which the experts 
use these to draw conclusions. The developer may enhance these finding, and hence the 
performance of the final system, by deriving features and relationships from relevant databases, 
if they exist. In this particular project, the subject under investigation was one in which even 
the ‘experts’ have very limited knowledge of the precise relationships between the variables, 
hence its focus on database analysis. However, the limited time and resources available for the 
project meant that it was not possible to complete the essential groundwork, like the 
identification of key indicators of TRP and TON, before work had to commence on the pattern 
recognition (MIR-max) and plausible reasoning (BBN) models. Consequently, the 
development of these models was not complete at the time of testing. For example, it was not 
possible to design the input vectors to the MIR-max and EBBN models specifically for the 
prediction of TRP and TON, because at that stage the key indicator taxa for each were not 
known. In addition, there was not time to smooth the 76 conditional probability matrices of the 
EBBN model, thus it was based on the raw conditional probabilities. Although this resulted in
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it producing the best dependent results of all the models tested, it undermined its performance 
on independent data, as explained in Section 4.4.

The bulk of the work was carried out using another Al technique, a supervised neural network 
known as the multi-layered perceptron. This provided the quickest means of developing a 
range o f complex non-linear models that would enable us to perform the required 
investigations. In fact, these models produced the best overall performances on independent 
data, but this might not have been the case had time permitted the full development of the 
MIR-max and EBBN models. Nevertheless, supervised neural networks are very powerful 
modelling tools, and the authors have made extensive use of them in the past. However, they 
are ‘black-box’ models and it is difficult for the user to see how or why they produce certain 
results or conclusions. Care is also required in their uses, especially when modelling highly 
skewed data, as explained earlier in Section 6.3. BBN and MIR-max models handle skewed 
data in a far more satisfactory way, and are far more transparent in their operation. In 
addition, MLR-max models a powerful data visualisation facility that often enables users to gain 
greater insight into the behaviour of the real system (e.g. river ecology).
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7. Conclusions and Recommendations

7.1 Conclusions

• The relationship between the composition of the macroinvertebrate communities and 
nutrient (TRP and TON) concentrations was found to be stronger for good quality rivers 
(biological GQA classes ‘a’ and ‘b’) than for rivers covering all quality classes (GQA 
classes ‘a’-‘f).

• The relationship was found to be noticeably stronger for TON than TRP, and it was 
concluded that TON could be predicted from environmental and macroinvertebrate family- 
based data to an acceptable degree of reliability, but that TRP could not.

• The models based on present / absent data performed almost as well as those based on 
abundance data.

• There was some evidence to support the belief that the relationship between macro­
invertebrates and TRP breaks down at the concentrations above 0.2 mg/l TRP, but this was 
not conclusive because the effect could have been due to the highly skewed nature of the 
distribution of TRP.

• A series of MLR models of DO based on spring, autumn and annual data consistently 
indicated that TRP does have a negative effect (most probably indirectly) on DO (% sat).

• No relationship could be identified between recorded occurrences of Cladophora and 
concentrations of TRP and TON.

• Increasing concentrations of TRP were found to have a slight but continuous negative 
impact (probably indirectly) on NFAM, whereas increasing concentrations o f TON had a 
noticeable positive impact initially followed by a noticeable negative impact at higher 
concentrations.

• An analysis of the average TRP and TON concentrations of the sites at which each BMWP 
family occurred showed wide variations in average TRP values and TON/TRP ratios, but 
far less variation in average TON values.

• Lists of indicator taxa for TRP and TON were derived but these were not as conclusive as 
hoped owing to relatively poor agreement between the two methods used, but some 
tentative conclusions have been drawn.

7.2 Recommendations

Our main recommendation is that:

• A more substantial study should be carried out to explore in depth the issues addressed in 
this preliminary study, and to complete the development and testing of the AI models.

We recommend that the following should be included in the proposed project.

• Models should be developed and tested using an enhanced database having macro­
invertebrate, macrophyte and algae data, preferably with some taxa identified to species or 
genera level. This is particularly important in the case of the TRP models, where there is 
clearly a need for further improvement in performance.
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• Further analyses should be carried out to identify key indicator taxa. These should include 
neural network impact tests based on the modified procedure mentioned earlier and 
analyses based on information theory. This is an important prerequisite to the completion 
o f the MIR-max and BBN models.
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Appendix A

Geographical Distributions 

of

TRP, TON and Cladophora

A-1



Figure A-1. Spring distribution of Biological Monitoring Sites in England and Wales
at which the concentration of TRP was less than 0.2 mg/1 over the three months
preceding biological sampling.
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Figure A-2. Autumn distribution of Biological Monitoring Sites in England and Wales
at which the concentration of TRP was less than 0.2 mg/l over the three months
preceding biological sampling.
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Figure A-3. Spring distribution of Biological Monitoring Sites in England and Wales
at which the concentration of TRP equalled or exceeded 0.2 mg/1 over the three
months preceding biological sampling.
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Figure A-4. Autumn distribution of Biological Monitoring Sites in England and Wales
at which the concentration of TRP equalled or exceeded 0.2 mg/l over the three
months preceding biological sampling.
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Figure A-5. Combined Spring and Autumn distribution of Biological Monitoring Sites
in England and Wales at which the concentration of TON was less than 5 mg/l
over the three months preceding biological sampling.
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Figure A-6. Combined Spring and Autumn distribution of Biological Monitoring Sites
in England and Wales at which the concentration of TON equalled or exceeded 5 mg/1
over the three months preceding biological sampling.
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F igure A-7. Distribution o f recorded occurrences of Cladophora at Biological Monitoring 
Sites in England and Wales, based on data from the 1995 environmental stress survey.
(NB. Different recording practices within Regions/Areas produced an incomplete coverage.)
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Appendix B

Structure of the RPBBN and EBBN 

Bayesian Belief Networks



Figure B-l Structure of the River Pollution Bayesian Belief Network (RPBBN)
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Figure B-2 Structure of the dedicated Eutrophication Bayesian Belief Network (EBBN)
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Appendix C

Tables of Average TRP, TON 

and

TON/TRP ratios 

for

76 BMWP Families.



Table C-l Average TRP and TON (mg/1) at GQA class A&B sites where each taxon occurred, listed in taxonomic order.
Taxon Cases % Occurr. Avg. TRP Avg. TON TON/TRP Taxon Cases % Occurr. Avg. TRP Avg. TON TON/TRP
Planariidae 2273 52.70 0.298 4.14 13.90 Calopterygidae 985 22.84 0.650 5.36 8.25
Dendrocoelidae 265 6.14 0.499 5.74 11.50 Cordulegasteridae 132 3.06 0.125 3.25 25.98
Neritidae 369 8.56 0.476 5.49 11.53 Aeshnidae 31 0.72 0.819 4.56 5.57
Viviparidae 86 1.99 0.625 5.65 9.04 Libellulidae 32 0.74 1.101 5.12 4.65
Valvatidae 877 20.33 0.534 5.88 11.00 Hydrometridae 136 3.15 0.857 4.87 5.68
Hydrobiidae 3595 83.35 0,355 4.51 12.70 Gerridae 217 5.03 0.475 4.04 8.52
Lymnaeidae 2265 52.52 0.439 4.68 10.65 Nepidae 32 0.74 0.817 6.21 7.60
Physidae 835 19.36 0,570 5.35 9,39 Naucoridae 44 1.02 0.783 4.31 5,51
Planorbidae 1560 36.17 0.617 5.58 9.03 Apheiocheiridae 212 4.92 0.297 4.55 15.34
Ancylidae 2700 62.60 0.312 4.28 13.73 Notonectidae 306 7.09 0.728 5.46 7.50
Unionidae 245 5.68 0.669 5.39 8,06 Corixidae 988 22.91 0.594 5.53 9.31
Sphacriidae 3185 73.85 0.408 4.91 12.02 Haliplidae 1160 26.90 0.537 5.26 9.78
Oligochaeta 4215 97.73 0.334 4.36 13.03 Dytiscidae 2288 53.05 0.387 4.52 11.68
Piscicolidae 824 19.11 0.448 4.94 11,02 Gyrinidae 1873 43.43 0.232 3.74 16.12
Glossiphoniidae 2574 59.68 0.453 5.10 11.25 Hydrophilidae 1887 43.75 0.218 3.32 15.21
Hirudididae 1 0.02 0.227 6.14 27.04 Scirtidae 354 8.21 0.222 4.72 21.28
Erpobdcllidae 2457 56.97 0.433 4.96 11.44 Dryopidae 23 0.53 0.086 4.22 49.38
Asellidae 2146 49.76 0.527 5.45 10.34 Elmidae 3920 90.89 0.298 4.23 14.18
Corophiidae 67 1.55 0.794 5.68 7.15 Sialidae 1118 25.92 0.579 5.48 9.46
Gammaridae 3719 86.23 0.359 4.60 12.82 Rliyacophilidae 2406 55.78 0.152 3.55 23.42
Aslacidae 58 1.34 0.271 5.03 18.54 Philopotamidae 154 3.57 0.044 2.18 49.14
Siphlonuridae 5 0.12 0.048 2.68 56.27 Polycentropidae 1390 32.23 0.243 3.59 14.75 .
Baetidae 3850 89.27 0.302 4.18 13.83 Psychomyiidae 948 21.98 0.412 5.29 12.83
Heptagenidae 2201 51.03 0.121 3.17 26.16 Hydropsychidae 3350 77.67 0.273 4.08 14.92
Leptophlebiidae 1328 30.79 0.204 4.25 20.82 Hydroptilidae 1329 30.81 0.320 4.89 15.27
Ephemerellidae 1603 37.17 0.194 4.15 21.40 Phryganeidae 168 3.90 1.048 5.03 4.80
Potamanthidac 9 0.21 0.034 3.74 111.77 Limnephilidae 2590 60.05 0.242 ■ 4.64 19.18
Ephemcridae 1348 31.25 0.304 4.80 15.79 Molannidae 239 5.54 0.734 5.62 7.66
Caenidae 2197 50.94 0.409 4.67 11.44 Beraeidae 132 3.06 0.306 4.94 16,12
Taeniopterygidae 695 16.11 0.078 3.06 39.08 Odontoceridae 387 8.97 0.101 3.11 30.84
Nemouridae 1589 36.84 0.108 3.20 29.70 Leptoceridae 2682 62.18 0.390 4.53 11.63
Leuctridae 1985 46.02 0.126 2.97 23.54 Goeridae 1529 35.45 0.194 3.98 20.46
Capniidae 23 0.53 0.150 4.90 32.60 Lepidostoinalidae 1580 36.63 0.151 3.15 20.90
Perlodidae 1571 36.42 0.075 2.86 37.91 Brachycentridae 476 11.04 0.214 3.51 16.42
Perlidae 293 6.79 0.044 1.91 42.99 Sericoslomatidae 2328 53.98 0.170 3.61 21.18
Cliloroperlidae 812 18.83 0.051 2.47 48.78 Tipulidae 3022 70.07 0.252 4.16 16.55
Platycneinidae 120 2.78 0.927 5.17 5.57 Simuliidae 2935 68.05 0.244 4.04 16.57
Coenagriidae 703 16.30 0.813 5.69 7.00 Chironomidae 4232 98.12 0.330 4.34 13.15
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Table C-2 Average TRP and TON (mg/1) at GQA class A&B sites where each taxon occurred, listed in order of average TRP.
Taxon Cases % Occurr. Avg. TRP Avg. TON TON/TRP Taxon Cases % Occurr. Avr. TRP Avg. TON TON/TRP
Potamanthidae 9 0.21 0.033 3.74 111.77 Hydroptilidae 1329 30.81 0.320 4.89 15.27
Perlidae 293 6.79 0.044 1.91 42.99 Chironomidae 4232 98.12 0.330 4.34 13.15
Philopotainidae 154 3.57 0.044 2.18 49.14 Oligochaeta 4215 97.73 0.334 4.36 13.03
Siphlomiridae 5 0.12 0.048 2.68 56.27 Hydrobiidae 3595 83.35 0.355 4.51 12.70
Chloroperlidae 812 18.83 0.051 2.47 48.78 Gammaridae 3719 86.23 0.359 4.60 12.82
Perlodidae 1571 36.42 0.075 2.86 37.91 Dytiscidae 2288 53.05 0.387 4.52 11.68
Taeniopterygidae 695 16.11 0.078 3.06 39.08 Leptoceridae 2682 62.18 0.390 4.53 11.63
Dryopidae 23 0.53 0.086 4.22 49.38 Sphaeriidae 3185 73.85 0.408 4.91 12.02
Odontoceridae 387 8.97 0.101 3.11 30.84 Caenidae 2197 50.94 0.409 4.67 11.44
Nemouridae 1589 36.84 0,108 3.20 29.70 Psychomyiidae 948 21.98 0.412 5.29 12.83
Heptageniidae 2201 51.03 0.121 3.17 26.16 Erpobdellidae 2457 56.97 0.433 4.96 11.44
Cordulegasteridae 132 3.06 0.125 3.25 25.98 Lymnaeidae 2265 52.52 0.439 4.68 10.65
Leuctridac 1985 46.02 0.126 2.97 23.54 Piscicolidae 824 19.11 0.448 4.94 11.02
Capniidae 23 0.53 0.150 4.90 32.60 Glossiphoniidae 2574 59.68 0.453 5.10 11.25
Lepidostoinatidae 1580 36.63 0.151 3.15 20.90 Gerridae 217 5.03 0.475 4.04 8.52
Rhyacophilidae 2406 55.78 0.152 3.55 23.42 Neritidae 369 8.56 0.476 5.49 11.53
Sericosiomatidae 2328 53.98 0.170 3.61 21.18 Dendrocoelidae 265 6.14 0.499 5.74 11.50
Ephemerellidae 1603 37.17 0.194 4.15 21.40 Asellidae 2146 49.76 0.527 5.45 10.34
Goeridae 1529 35.45 0.194 3.98 20.46 Valvatidae 877 20.33 0.534 5.87 11.00
Leptophlebiidae 1328 30.79 0.204 4.25 20.82 Haliplidae 1160 26.90 0.537 5.26 9.78
Brachycentridae 476 11.04 0.214 3.51 16.42 Physidae 835 19.36 0.570 5.35 9.39
Hydrophilidae 1887 43.75 0.218 3.32 15.21 Sialidae 1118 25.92 0.579 5.48 9.46 .
Scirtidae 354 8.21 0.222 4.72 21.28 Corixidae 988 22.91 0.594 5.53 9.31
Hirudididae 1 0.02 0.227 6.14 27.04 Planorbidae 1560 36.17 0.617 5.58 9.03
Gyrinidae 1873 43.43 0.232 3.74 16.12 Viviparidae 86 1.99 0.625 5.65 9.04
Limncphilidae 2590 60.05 0.242 4.64 19.18 Calopterygidae 985 22.84 0.650 5.36 8.25
Polycentropidae 1390 32.23 0.243 3.59 14.75 Unionidae 245 5.68 0.669 ■ 5.39 8.06
Simuliidae 2935 68.05 0.244 4.04 16.57 Notonectidae 306 7.09 0.728 5.46 7.50
Tipulidae 3022 70.07 0.252 4.16 16.55 Molannidae 239 5.54 0.734 5.62 7.66
Astacidae 58 1.34 0.271 5.03 18.54 Naucoridae 44 1.02 0.783 4.31 5.51
Hydropsychidae 3350 77.67 0.273 4.08 14.92 Corophiidae 67 1.55 0.794 5.68 7.15
Apheloclieiridae 212 4.92 0.297 4.55 15.34 Coenagriidae 703 16.30 0.813 5.69 7.00
Planariidae 2273 52.70 0.298 4.14 13.90 Nepidae 32 0.74 0.817 6.21 7.60
Elmidae 3920 90.89 0.298 4.23 14.18 Aeshnidae 31 0.72 0.819 4.56 5.57
Baetidae 3850 89.27 0.302 4.18 13.83 Hydrometridae 136 3.15 0.857 4.87 5,68
Ephemeridae 1348 31.25 0.304 4.80 15.79 Platycnemidae 120 2.78 0.927 5.17 5.57
Beraeidae 132 3.06 0.306 4.94 16.12 Phryganeidae 168 3.90 1.048 5.03 4.80
Ancylidae 2700 62.60 0.312 4.28 13.73 Libellulidae 32 0.74 1.101 5.12 4.65
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Table C-3 Average TRP and TON (mg/l) at GQA class A&B sites where each taxon occurred, listed in order of average TON.
Taxon Cases % Occurr. Avg. TRP Avg. TON TON/TRP Taxon Cases % Occurr. Avg. TRP Avg. TON TON/TRP
Pcrlidae 293 6.79 0.044 1.91 42.99 Aeslmidae 31 0.72 0.819 4.56 5.57
Philopotnmidae 154 3.57 0.044 2.18 49.14 Gammaridae 3719 86.23 0.359 4.60 12.82
Chloroperlidae 812 18.83 0.051 2.47 48.78 Limnephilidae 2590 60.05 0.242 4.64 19.18
Siphlonuridae 5 0.12 0.048 2.68 56.27 Caenidae 2197 50.94 0.409 4.67 11.44
Perlodidae 1571 36.42 0.075 2.86 37.91 Lymnaeidae 2265 52.52 0.439 4.68 10.65
Leuctridae 1985 46.02 0.126 2.97 23.54 Scirtidae 354 8.21 0.222 4.72 21.28
Taeniopterygidae 695 16.11 0.078 3.06 39.08 Ephemeridae 1348 31.25 0.304 4.80 15.79
Odontoceridae 387 8.97 0.101 3.11 30,84 Hydrometridae 136 3.15 0.857 4.87 5.68
Lepidostomatidae 1580 36.63 0.151 3.15 20.90 Hydroptilidae 1329 30.81 0.320 4.89 15.27
Heptagenidae 2201 51.03 0.121 3.17 26.16 Capniidae 23 0.53 0.150 4.90 32.60
Ncmouridae 1589 36.84 0.108 3.20 29.70 Sphaeriidae 3185 73.85 0.408 4.91 12.02
Cordulegasteridae 132 3,06 0.125 3.25 25.98 Beraeidae 132 3.06 0.306 4.94 16,12
Hydrophilidae 1887 43.75 0.218 3.32 15.21 Piscicolidae 824 19.11 0.448 4.94 11.02
Brachyccntridae 476 11.04 0.214 3.51 16.42 Erpobdellidae 2457 56.97 0.433 4.96 11.44
Rhyacophilidae 2406 55.78 0.152 3.55 - 23.42 Astacidae 58 1.34 0.271 5,03 18.54
Polycentropidae 1390 32.23 0.243 3.59 14.75 Phryganeidae 168 3.90 1.048 5.03 4.80
Sericostomatidac 2328 53.98 0.170 3.61 21.18 Glossiphoniidae 2574 59.68 0.453 5.10 11.25
Potamantliidne 9 0.21 0.033 3.74 111.77 Libellulidae 32 0.74 1.101 5.12 4.65
Gyrinidae 1873 43.43 0.232 3.74 16.12 Platycnemidae 120 2.78 0.927 5.17 5.57
Goeridae 1529 35.45 0.194 3.98 20.46 Haliplidae 1160 26.90 0.537 5.26 9.78
Sitnuliidae 2935 68.05 0.244 4.04 16.57 Psychomyiidae 948 21.98 0.412 5.29 12.83
Gcrridac 217 5.03 0.475 4.04 8.52 Physidae 835 19.36 0.570 5.35 9.39 .
Hydropsychidae 3350 77.67 0.273 4.08 14.92 Calopterygidae 985 22.84 0.650 5.36 8.25
Planariidae 2273 52.70 0.298 4.14 13.90 Unionidae 245 5.68 0.669 5.39 8.06
Ephemerellidae 1603 37.17 0.194 4.15 21.40 Asellidae . 2146 49.76 0.527 5.45 10.34
Tipulidae 3022 70.07 0.252 4.16 16.55 Notonectidae 306 7.09 0.728 5.46 7.50
Baetidae 3850 89.27 0.302 4.18 13.83 Sialidae 1118 25.92 0.579 • 5.48 9.46
Dryopidac 23 0.53 0.086 4.22 49.38 Neritidae 369 8.56 0.476 5.49 11.53
Elmidae 3920 90.89 0.298 4.23 14.18 Corixidae 988 22.91 0.594 5.53 9.31
Leptophlebiidae 1328 30.79 0.204 4.25 20.82 Planorbidae 1560 36,17 0.617 5.58 9.03
Ancylidae 2700 62.60 0.312 4.28 13.73 Molannidae 239 5 54 0.734 5.62 7.66
Naucoridae 44 1.02 0.783 4.31 5.51 Viviparidae 86 1.99 0.625 5.65 9.04
Chironomidae 4232 98.12 0.330 4.34 13.15 Corophiidae 67 1.55 0.794 5.68 7.15
Oligochaeta 4215 97.73 0.334 4.36 13.03 Coenagriidae 703 16.30 0.813 5.69 7.00
Hydrobiidae 3595 83.35 0.355 4.51 12.70 Dendrocoelidae 265 6.14 0.499 5.74 11.50
Dytiscidae 2288 53.05 0.387 4.52 11.68 Valvatidae 877 20.33 0.534 5.87 11.00
Leptoceridae 2682 62.18 0.390 4.53 11.63 Hirudididae 1 0.02 0.227 6.14 27.04
Aphelocheiridae 212 4.92 0.297 4.55 15.34 Nepidae 32 0.74 0.817 6.21 7.60
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Table C-4 Average TRP and TON (mg/1) at GQA class A&B sites where each taxon occurred, listed in order of the TON/TRP ratio.
Taxon Cases % Occurr Avg. TRP Avg. TON TON/TRP Taxon Cases % Occurr. Avg. TRP Avg. TON TON/TRP
Libellulidae 32 0.74 1.101 5.12 4.65 Baetidae 3850 89.27 0.302 4.18 13.83
Pliryganeidae 168 3.90 1.048 5.03 4.80 Planariidae 2273 52.70 0.298 4.14 13.90
Naucoridae 44 1.02 0.783 4.31 5.51 Elmidae 3920 90.89 0,298 4.23 14.18
Aeshnidae 31 0.72 0.819 4.56 5.57 Polycentropidae 1390 32.23 0.243 3.59 14.75
Platycnemidae 120 2.78 0.927 5.17 5.57 Hydropsychidae 3350 77.67 0.273 4.08 14.92
Hydrometridae 136 3.15 0.857 4.87 5.68 Hydrophilidae 1887 43.75 0.218 3.32 15.21
Coenagriidae 703 16.30 0.813 5.69 7.00 Hydroptilidae 1329 30.81 0.320 4.89 15.27
Corophiidae 67 1.55 0.794 5.68 7.15 Aphelocheiridae 212 4.92 0.297 4.55 15.34
Notoneclidae 306 7.09 0.728 5.46 7.50 Ephemeridae 1348 31.25 0.304 4.80 15.79
Nepidae 32 0.74 0.817 6.21 7.60 Beraeidae 132 3.06 0.306 4.94 16.12
Molannidae 239 5.54 0.734 5.62 7.66 Gyrinidae 1873 43.43 0.232 3.74 16.12
Unionidae 245 5.68 0.669 5.39 8.06 Brachycentridae 476 11.04 0,214 3.51 16.42
Calopterygidae 985 22.84 0.650 5.36 8.25 Tipulidae 3022 70.07 0.252 4.16 16.55
Gerridae 217 5.03 0.475 4.04 8.52 Simuliidae 2935 68.05 0.244 4.04 16.57
Planorbidae 1560 36.17 0.617 5.58 9.03 Astacidae 58 1.34 0.271 5.03 18.54
Viviparidae 86 1.99 0.625 5.65 . 9.04 Limnephilidae 2590 > 60.05 0.242 4.64 19.18
Corixidae 988 22.91 0.594 5.53 9.31 Goeridae 1529 35.45 0.194 3.98 20.46
Physidae 835 19.36 0.570 5.35 9.39 Leptophlebiidae 1328 30.79 0.204 4.25 20.82
Sialidae 1118 25.92 0.579 5.48 9.46 Lepidostomatidae 1580 36.63 0.151 3.15 20.90
Haliplidae 1160 26.90 0.537 5.26 9.78 Sericostomatidae 2328 53.98 0.170 3.61 21.18
Asellidae 2146 49.76 0.527 5.45 10.34 Scirtidae 354 8.21 0.222 4.72 21.28
Lymnaeidae 2265 52.52 0.439 4.68 10.65 Ephemerellidae 1603 37.17 0,194 4.15 21.40
Valvatidae 877 20.33 0.534 5.87 11.00 Rhyacophilidae 2406 55.78 0.152 3.55 23.42
Piscicolidae 824 19.11 0.448 4.94 11.02 Leuctridae 1985 46.02 0.126 2.97 23.54
Glossiphoniidae 2574 59.68 0.453 5.10 11.25 Cordulegasteridae 132 3.06 0.125 3.25 25.98
Caenidae 2197 50.94 0.409 4.67 11.44 Heptagenidae 2201 51.03 0.121 3.17 26.16
Erpobdellidae 2457 56.97 0.433 4.96 11.44 Himdididae 1 0.02 0.227 6.14 27.04
Dendrococlidae 265 6.14 0.499 5.74 11.50 Nemouridae 1589 36.84 0.108 3.20 29.70
Neritidae 369 8.56 0.476 5.49 i 1.53 Odomoceridae 387 8.97 0.101 3.11 30.84
Leptoceridae 2682 62.18 0.390 4.53 11,63 Capniidae 23 0.53 0.150 4.90 32.60
Dytiscidae 2288 53.05 0.387 4.52 11.68 Perlodidae 1571 36.42 0.075 2.86 37.91
Sphaeriidae 3185 73.85 0.408 4.91 12.02 Taeniopterygidae 695 16.11 0.078 3.06 39.08
Hydrobiidae 3595 83.35 0.355 4.51 12.70 Perlidae 293 6.79 0.044 1.91 42.99 •
Gammaridae 3719 86.23 0.359 4.60 12.82 Chloroperlidae 812 18.83 0.051 2.47 48.78
Psychomyiidae 948 21.98 0.412 5.29 12.83 Philopotamidae 154 3.57 0.044 2.18 49.14
Oligochaeta 4215 97.73 0.334 4.36 13.03 Drvopidae 23 0.53 0.086 4.22 49.38
Chironomidae 4232 98.12 0.330 4.34 13.15 Siphlonuridae 5 0.12 0.048 2.68 56.27
Ancylidac 2700 62.60 0.312 4.28 13.73 Potamanthidae 9 0.21 0.033 3.74 111.77
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