North West Environmental Statistics 1997-98

The front cover shows 3C Waste Limited's Arpley landfill site in Warrington. It includes an area that has undergone conservation work to return it to nature, and provide a pleasant picnic area for local people.

Environmental Statistics 1997-98

This booklet provides a summary of waste and environment-related statistics for the North West Region during the financial year 1997-98. The Environment Agency regards this publication as part of its ongoing commitment to provide useful information on environmental issues. We hope it will be of value to Local Authorities, operators of waste management facilities, and a wide range of others (individuals and organisations) with an interest in waste planning and environmental issues.

Waste information in this booklet is compiled from site returns collected from licensed waste management facilities. Users should be aware that the information is also primarily deposit rather than arisings data and does not, therefore, include information on waste movements (including waste exported from the region for disposal). Neither does it include information on wastes which are recycled or recovered. Hopefully, data quality is improving year on year as better collection and handling systems are introduced.

Table 1 is broken down by Agency Area in order to allow comparison of key data sets with those published previously; the subsequent tables use a geographical breakdown based on Local Authorities, and the information contained reflects requests from users.

The booklet is the third in a series. It contains more detailed waste information than before, and, for the first time, some additional environmental information on water quality and industrial processes authorised under Integrated Pollution Control (IPC) regulations. Further developments are planned for next year.

Contents

Introduction: summary of waste inputs to North West sites in 1997-98.

Pollution Control legislation.

- Part 2 Summary tables: waste disposed of, treated & handled, licences in force; registration, complaint, and monitoring data.
- Part 3 Special waste arisings & deposits, waste movements and disposal/treatment methods used.
- Part 4 Detailed information on site inputs, outputs and remaining capacity at landfill sites licenced to accept household, industrial & commercial waste.
- Part 5 Other licensed waste management facilities.

 Part 6 Summary tables and maps of industrial processes authorised under Integrated
- Part 7 Water quality data covering bathing beaches, estuarine and river water quality.

There are two appendices: i) Data on landfill sites licensed to accept inert and construction/demolition waste, and ii) Input/output and recovery data for NW transfer and treatment operations, by local authority district.

INPUTS TO NORTH WEST WASTE MANAGEMENT FACILITIES

Table 1. provides a breakdown of the methods used to handle and dispose of waste in the North West in 1997-98. It shows the distribution of waste-related activities between the three Agency areas, and provides comparative data (where this is available) for 1996-7, in order to give some indication of trends in these activites.

Table 1. Waste handled and method used. (000's tonnes)

	So	uth	Cer	ntral	No	rth	Reg	jion
DISPOSAL OPERATIONS	1996-7	1997-8	1996-7	1997-8	1996-7	1997-8	1996-7	1997-8
Landfilled a) degradable b) non-degradable	5,937 4,177 1,760	6,027 4,794 1,233	2,603 1,668 935	2,678 1,493 1,185	1,168.0 780.0 388.0	1,843.0 606.0 1,237.0	9,708 6,625 3,083	10,548 6,893 3,655
2. Lagoon/borehole ¹	250	7,582	0		0.0		250	7,582
3. Incinerated ³	97	78	0	0	0.1	0.1	97	78
Total for final disposal	6,284	13,687	2,647	2,678	1,119.0	1,843.0	10,055	18,208
4.Recycled a) recovery ⁴ b) metal recycling sites ⁵	578 n/a 578	625 353 272	443 a/a 443	144 6 152	21.0 n/e 21.0	78.0 60.0 18.0	1,042 n/a 1,042	847 419 428
S. Treated	2,074	1,943	74	28	53.0	\$6.0	2,201	2,027
6. Handled by transfer station a) civic amounty files b) Other transfer	1,423 306 1,117	2.015 558 1.159	719 158 561	1,176 8 1,168	155.0 34.0 121.0	199.0 44.0 155.0	2,297 340 1,799	3.390 610 2.482
7. Other	40	n/a	23	11/2	0.0	n/a	63	n/a
Total waste disposed by other methods	4,115	4,583	1,259	1,348	229.0	333.0	5,604	6.264

Includes non-degradable waste disposed of at sites licensed for both degradable and non-degradable waste.

The big increase shown in disposal to lagoons and boreholes is the result of a change in the method of collecting the data; in 1997-98 the disposal weight shown includes water, in 1996-97 an estimate was made of the solids remaining after drainage/evaporation.

^{3 &#}x27;Incinerated' includes waste dealt with at sites authorised under both IPC and waste legislation.

⁴ Data on recovery is currently only available for a limited number of sites; it is included here for indicative ourposes.

^{5 &#}x27;Metal recycling sites' provides data for licensed waste management sites only. Exempt metal recycling sites are not required to make returns.

Part 2: Site inputs and remaining landfill capacity

Landfill sites continue to provide the main disposal routes for domestic waste and the majority of non-hazardous industrial and commercial waste. Tables 2, 4 & 5 summarise the remaining voidspace and site inputs for each Local Authority area. The North West, as a whole, currently has about six years' remaining disposal capacity but the level of provision is lower in Lancashire, Merseyside and Greater Manchester.

The region also has a number of other landfill sites licensed for the disposal of industrial and commercial waste, some of which are further restricted to the disposal of wastes produced by single firms.

Lagoons and boreholes are a particular feature of North West waste disposal provision, where they have been the principal method of disposal for the slurries and sludges produced by the region's chemicals sector. These facilities are dedicated to specific waste streams and, like in-house only sites, should not be considered as potentially available for other types of waste.

Table 2. Voidspace and deposits at sites licensed for Mixed and Biodegradable Waste

	Rema void (000		Perm depo (000	sits 1	Actual deposits (000 tpa)		
	1/4/97	1/4/98	1996-7	1997-8	1996-7	1997-8	
Cumbria	3,374	5,731		1,922	570	494	
Lancashire	8.766	8,609	2,627	2.275	1.279	1,460	
Merseyside	2.877	2,320	2,105	2,108	846	930	
Greater Manchester	9,750	7.821	2,596	3,667	1,247	1,494	
Cheshire	31,225	26,717		3,467	2,712	2,717	
North West Total	55,992	51,198		13,440	6,654	7,095	

Table 3. Deposit of waste at lagoons and boreholes licensed for Industrial Waste²

	Remaining voids	pace (000m3)	Actual deposits	(000 tpa)
	1/4/97	1/4/98	1996-7	1997-8
Cheshire (all NW)	35,429	32,025	2,576	7,582

^{1.} Tables 2, 3, 4, 5 show maximum annual deposits permitted by the site licence.

^{2.} Table 3: note change in method of recording borehole inputs explained in footnote to Table 1. N.B. input data for these sites can be misleading, as the solids content of the discharged material can be as low as 5% and the water which is also deposited will subsequently drain or evaporate off.

Table 4.4 Voidspace and deposits at sites licensed for Industrial & Commercial Waste

	Rema voids (000	pace	Permitted deposits 1 (000 tpa)	depo	Actual eposits 00 tpa)	
	1/4/97	1/4/98	1997-8	1996-7	1997-8	
Cumbria open gate in-house only	3,355 416	3.068	575	220 124	Z93	
Loncashire open gate in-house only	3,592 337	3,186		810 35	777	
Merseyside open gate in-house only	13 6.2	4 63		n/a		
G Manchester open gate in-house only	213 529	658	356	2.2 18	8	
Cheshire open gate in-house only	5,831 J.711		600	398	108	
TOTAL open gate in-house only	13,004 5,069	8,816	3,639	1,430 405	1,188	

Table 5.4 Voidspace and deposits at sites licensed for Industrial & Commercial Waste

	Rema voids (000	pace	Permitted deposits 1 (000 tpa)	leposits deposits		
	1/4/97	1/4/98	1997-8	1996-7	1997-8	
Cumbrio open gate in-house only	654 676		1,341	48 6.6	53	
Lancashire open gate in-house only	313 139.5	746		374	318	
Merseyside open gate in-house only	126	104	188	52		
G Manchester open gate in-house only	758 349	202		203	602	
Cheshire open gate in-house only	769	685	100	86	74 5.2	
TOTAL open gate in-house only	2,647 1,164.5	2,838	4,528	763 78.2	1,066	

Tables 4 and 5 show inputs for sites handling wastes on a commercial basis (open gate), and for sites dedicated to waste from a single producer (in-house only); these sites are not available for general use and the remaining voidspace and site inputs are not included are not included in the waste breakdown data on pages 6 and 7, or in the calculations of remaining capacity on pages 15, 17 and 19.

Table 6. Types of waste handled at licensed waste management facilities in North West England. 1997-981

		1		adjust		16		1
	100	Marin Marin	CIO	distribution of the connection	Service Service	Cillia	4	A HAR
Cumbria			(000's)	tonnes	per annu	ım		Total
1. Degradable landfill	0	245	499.4	2.6	39.9	0.5	0	787.4
2. Inert & C/D landfill inputs	0	52.5	0	0	0	D	0	52.5
3. Transfer operations								
inputs	0	80.9	66.4	0.2	6.9	0	0	154.7
outputs	0	6.6	37.7	0.1	1.2	0	0	45.9
recovered	0	39-3	6.4	11.3	0.2	0	0	57.7
4. Treatment Plants					1			
inputs	0	0	8.7	28.7	18.6	0	0	- 56.0
outputs recovered	0	0	0.04	36.9	5.8	0	0	54.8
	0	U	0.03	0.1	2.3	U		2.3
5. Metal recovery operations	0	0	0	10.1		0	0	0.1
inputs	0	0	0	18.1	0	0	0	18.1
Total to landfill								
	0	297.5	499.4	2.6	39.9	0.5	0	840.0
Total recovered ²	0	39.3	6.4	11.4	2.5	0.3	0	59.6
Lancashire			(000%)					T- 0
Lancasnire			(000s)	tonnes	per annu	ım		Tota
1. Degradable landfill inputs	0	870	1.264	0	40.6	0	62.4	2,237
2. Inert & C/D landfill	0	210.5	107.3	0		0	0	
inputs 3. Lagoon	0	210.5	107.3	0	0	0	0	317.8
inputs	0	0	0	0	0	0	0	(
4. Transfer operations								
	0	1000	402 5	760	10.7	0	0.2	
inputs	0	586.7	493.5	76.8	10.7	0	0 2	1,167
outputs	0	477.2	243.3	53.6	6.6	0	0.2	780
outputs recovered								780
outputs recovered 4. Treatment Plants	0	477.2	243.3	53.6	2.3	0	0 2	780
outputs recovered 4. Treatment Plants inputs	0	477.2 4.0	243.3 0.1 26.4	53.6	6.6 2.3	0	0 2 0	780
outputs recovered 4. Treatment Plants inputs outputs	0	477.2	243.3	53.6	2.3	0	0 2	780
outputs recovered 4. Treatment Plants inputs outputs 5. Metal recovery operations	0	477.2 4.0 1.6 0.1	243.3 0.1 26.4 0.2	53.6	6.6 2.3	0	0 2 0	780
outputs recovered 4. Treatment Plants inputs outputs 5. Metal recovery operations inputs	0 0	477.2 4.0 1.6 0.1	243.3 0.1 26.4 0.2	53.6 0 0	0.2 0.2 1.3	0 0 0	0 2 0 0 0 0	28.7 0.5
outputs recovered 4. Treatment Plants inputs outputs 5. Metal recovery operations	0	477.2 4.0 1.6 0.1	243.3 0.1 26.4 0.2	53.6	6.6 2.3 0.2 0.2	0 0	0 2 0	28.7 0.5
outputs recovered 4. Treatment Plants inputs outputs 5. Metal recovery operations inputs	0 0	477.2 4.0 1.6 0.1	243.3 0.1 26.4 0.2	53.6 0 0	0.2 0.2 1.3	0 0 0	0 2 0 0 0 0	28.7 0.9 137.9 137.9 2,559

		10	300	10	10	17/
- Aller	100	-	App. (C		(4)	S. S. S.
HE	4	de la	Orbit (8	2900	Clar	2

Merseyside & G. Manch	ester	(000's) tonnes per annum							
1. Degradable landfill inputs	0	275.5	2,098.1	0	58 2	1.2	0	2,433	
3. Inert & C/D landfill									
inputs	0	455.5	165.6	0	0	0	0	621.	
outputs	0	1.2	0.3	0	0	0	0	1.4	
recovered	0	37.7	78.9	0	0	0	0	116.	
4. Transfer operations									
inputs	0.6	315.9	733.7	0	83.6	24.9	0	1,158.	
outputs	0	93.6	484.8	0	60.6	4.7	0	643.7	
recovered	0	60.4	57.7	0	58.8	0	0	176.9	
5. Treatment Plants									
inputs	0	1.9	1,292	0	479.3	0	0.3	1.773	
outputs	0	0	936	0	153.0	0	0	1.089	
recovered	0	0.7	40.6	0	9.7	0	0	S	
6. Metal recovery operations									
inputs	0	0	3.6	207.9	3	0	0	214.5	
outputs	0	0	0.1	10.1	0	0	0	10.	
Total to landfill	0	744.5	2,263.7	0	58.2	1.2	0	3,057	
Total recovered ²	0	98.8	177.3	0	68.5	0	0	344	

Cheshire			(000's)	onnes	per ann	um		Total
1. Degradable landfill inputs	0	194.8	2,146	0	492.3	0.8	0	2,833.9
3. Inert & C/D landfill		(0.7						7.17
inputs	0	68.2	6.0	0	0	0	0	74.2
4. Lagoons & Boreholes inputs	0	655.5	27 3	0	6,899.7	0	0	7,582.5
outputs	0	0	0	0	0.2	0	0	0.2
4. Transfer operations								
inputs	0	115	173.1	0	3.1	66	0	297.8
outputs	0	\$5.4	5.9	0	0	0	0	61.3
5. Treatment Plants								
inputs	0	50.3	77.0	0	38.0	38.0	4.8	170.3
6. Metal recovery operations								
inputs	0	9.7	2.4	46	0	0	0	58.1
Total to landfill	0	263	2,152	0	492.3	0.8	0	2,908.1

^{1 1997-98} is the first time data has been available to provide a breakdown by type of waste and type of waste management facility. 1997-8 is also the first time data has been available for sites which treat and handle waste as well as disposing of it.

Data on recovery is not currently maintained for all sites and areas. Too much reliance should not, therefore, be placed on these recovery totals.

LICENSING ACTIVITIES

Table 7. Licences in Force

	Soc	South		Central		North		ion
	1/4/97	1/4/98	1/4/97	1/4/98	1/4/97	1/4/98	1/4/97	1/4/98
1. Landfill	123		99	86	75	77	297	270
a) dogradable	43	31	29	25	15	19.	87	75
b) mert and C&D		48		43	-	41		
c) in-house only	15	28	- 11	18	5		31	63
2. Transfer & Civic Amenity	248	194	134	137	33	31	145	
3. Metal Recovery (MRS) ¹	128		67	62	9		204	
4. Treatment Plants	43	45	8	9	3		54	5
5. Lagoons	15	16	0		0		15	
6. Others	26	10	4		1		31	
Total Licences	583	477	311	295	121	121	1016	89

^{1.} A number of MR sites fall outside the criteria set for licensing and will qualify as exempt activities.

REGISTRATION ACTIVITIES: 1

Table 8. Registered Exemptions²

	Soi	South		Central		North		Region	
	1996-7	1997-8	1996-7	1997-8	1996-7	1997-8	1996-7	1997-8	
Total Exemptions	3,010	3,613	1,339	1,704	773	1,400	5,122	6,717	
a) Landsprouding (7)	884		541	621	7	381	1,432	2.030	
b) Metal rayding (44 & 45)	238	183	42	51	1	- 1	281	235	
c) Land deposit (9 à 19)	371	391	94	164	155	216	620	771	
d) Other	1,557	1,553	662		610	857	2,829	3,223	

² The 1994 Waste Management Licensing Regulations introduced exemptions from licensing for a range of activities where disposal was not thought to pose any significant environmental threat and for certain activities involving the recycling or recovery of waste. The Agency is required to maintain a register of these activities. Many exemptions cover activities such as small scale waste storage, and recycling collection points and are unlikely to present any significant environmental threat. Those with the greatest potential for pollution are set out in categories a) to c) above.

REGISTRATION ACTIVITIES: 2

Table 9. Carriers & Brokers³

	South		Central		North		Region	
	1996-7	1997-8	1996-7	1997-8	1996-7	1997-8	1996-7	1996-8
Total Registrations	9,022	7,890 7,213	2,433	1,467 2,242	1,116	1,156	12,571	11,513
b) Brokers	346	677	42	43	12	16	400	736

Anyone carrying waste or arranging for its carriage or disposal as part of their business must be registered with the Agency. The Environment Agency operates a national registration system for carriers and brokers and maintains public registers of relevant information in each of its area offices.

ILLEGAL ACTIVITIES

Table 10. Incidents Notified

	So	South		Central		rth	Region		
	1996-7	1997-8	1996-7	1997-8	1996-7	1997-8	1996-7	1997-8	
1. Flytipping	322	474	241	251	101	29	664	751	
2. Licenced sites	284		4	100	n/a	40	288		
3. Exempt sites	n/a	18	n/a		n/a	0	n/a	18	
4. Illegal sites	n/a	47	n/a		n/a	4	n/a	13:	
6. Prosecutions	n/a	136	n/a	52	n/a	9	n/a	197	
5. Other illegal activity	7		0	258	0	0	7	26	

Enforcement action may arise as a result of complaints from local authorities and other organisations, or from members of the public All complaints are investigated and, where justified, recorded as incidents. Appropriate action is then taken. This action can range from arranging for the problem to be cleared up to issuing cautions, serving notices, and prosecuting offenders.

FORMER LANDFILL SITES

 Table 11.
 Former Landfill Sites⁵

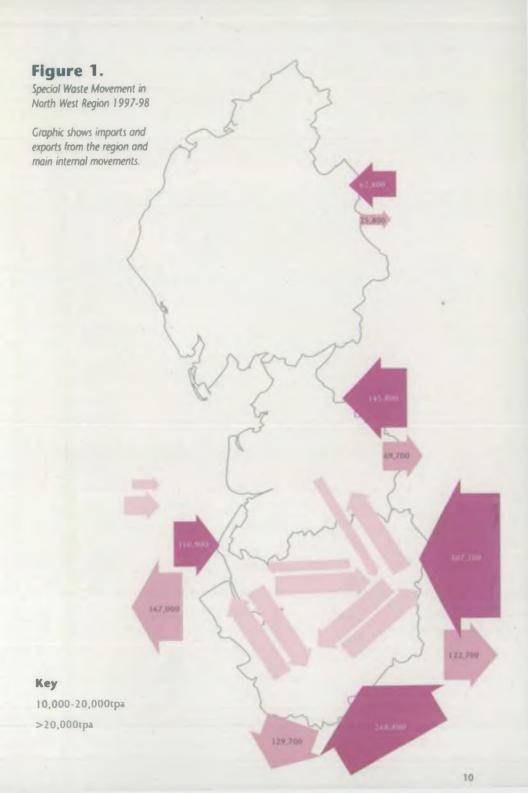
	South	Central	North	Region
	1997-8	1997-8	1997-8	1997-8
No. of notified sites	2,225		514	1,499

⁵ Includes landfill sites previously licensed under COPA and those previously operated by Local Authorities or businesses as waste disposal sites. These sites are potentially contaminated and likely to require remediation work under forthcoming regulations on contaminated land. Such sites can generate methane gas and may present an environmental risk. They are also the subject of legal searches carried out when development is proposed or property changes hands.

Part 3: Tracking of Special Wastes

These are wastes which are hazardous due to their physical and chemical properties; they may be toxic, flammable or hazardous. Special waste is subject to much tighter control; every initial consignment of special waste must be notified to the Agency before it leaves the place where it was produced, and a system of pre-notification ensures that special waste is tracked through every step of transport, treatment and disposal. The Agency has a computerised "cradle to grave" tracking system for this waste (SWaT) into which all data on waste movements and notified tonnages is entered. The system has been in operation for about 18 months and is now able to provide reports on arisings, fates, deposits, and movements of special waste between local authorities.

The table below and facing graphic are examples of the output which can be obtained. The data presented in figures 1, 2, and 3 are estimates based on notifications and, although they should be treated with some caution, they do provide a useful indication of the scale of movements and the disposal and recovery routes used for special waste.

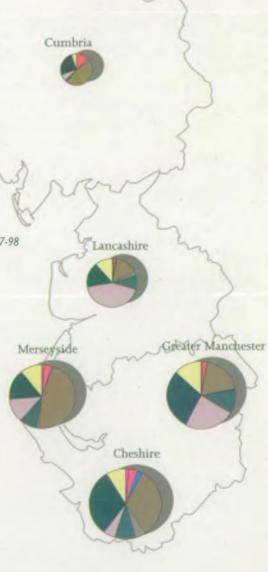

Figure 1 (facing) shows the high levels of imports into the region and gives an indication of the major internal movements. Figures 2 and 3 show the fates of the wastes arising and disposed of in each North West county. Taken together, these graphics clearly show the specialisation which exists within the region, with a concentration of treatment facilities in Greater Manchester, recovery (via special waste incineration) in Cheshire, and recycling (mainly use of solvents as secondary liquid fuels) in Lancashire. The roles which Cheshire and Cumbria play as landfill repositories for special waste is also apparent.

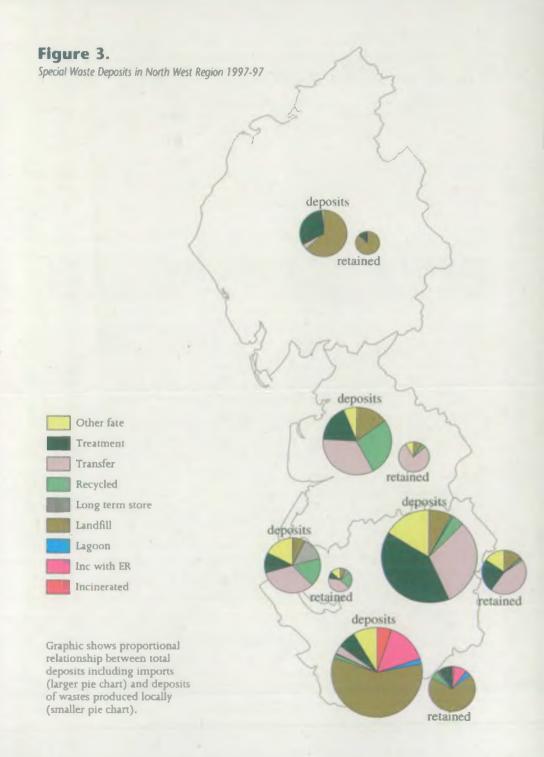
SPECIAL WASTE IN THE NORTH WEST 1997-98

	arisings	imports	exports disposal (tonnes annum)	local ¹ disposal	total ²
Cumbrio	49,500	62,800	25,800	23,700	87,000
Lancashire	110,500	145,800	69,700	40,800	186,600
Greater Manchester	209,500	307,200	122,700	86,800	394,000
Merseyside	192,000	110,900	167,000		135,900
Cheshire	231,300	268,800	129,700	101,600	370,400

Waste produced and disposed of within the same group of local authorities.

Total special waste disposed of within that group of local authorities.


Arisings and Fates of Special Wastes


Figures 2 & 3 show the different patterns of special waste management in the principle North West Local Authorities. Comparison of the two maps highlights the difference in scale and in disposal/treatment methods for waste arising locally and those being disposed of or treated in each county.

The smaller pie chart on Figure 3 shows the proportion of waste arising in each county which is also disposed of in the same county.

Figure 2.

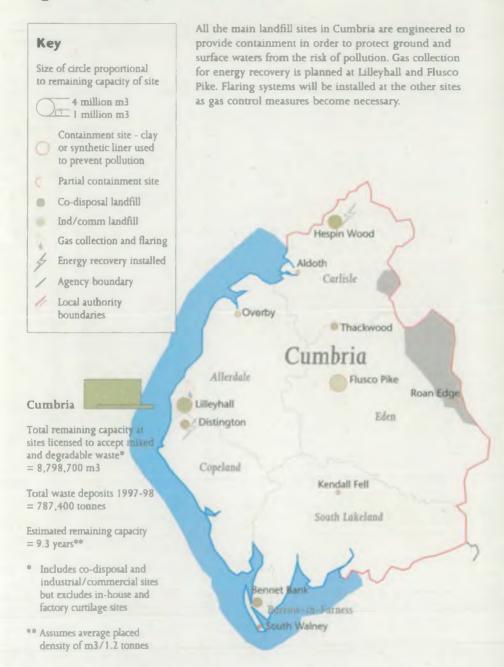
Special Waste Arising by County of Origin 1997-98

Part 4: Input returns and remaining capacities at sites licensed to accept mixed Biodegradable and Industrial & Commercial Wastes

This section provides a site-by-site listing of the inputs and remaining capacities for landfill sites in Cumbria, Lancashire, Merseyside, G. Manchester and Cheshire. The accompanying graphics show the location of each site, scaled to indicate its remaining disposal capacity. Additional information is also provided on the nature of the landfill operation, showing containment sites and those with collection and treatment or recovery of landfill gas. Figures 4, 5, and 6 also provide summaries of the remaining capacity in each county, and give estimates of the life expectation of existing sites 1.

Cumbria Waste Deposit Statistics

Operator	Location	District	void 1/4/97 000m3	void 1/4/98 000m3	permitted 000 s T	deposits 1996-97 000's T	deposits 1997 98 000 s T
Sites licenced to acce	pt biodegradable wast	e (co-disposa)				
Alco Waste M'ment Alco Waste M'ment Alco Waste M'ment D A Harrison Hayton Builders Caird Environmental	Lillyhall, Stage 1 Lillyhall, Stage 2 Lillyhall, Stage 3 Aldoth (2), Silloth Winbarrow Lane Bennet Bank	Allerdale Allerdale Allerdale Allerdale Allerdale Barrow	120 0 110.0 68.0	Non-Ope 25.0 2,000.0 92.5 Non Ope 18.0	200 156 75 rational 584	200 134 8 156 00 75 19.3	
Caird Environmental Cumbria Waste H & E Trotter Fleming & Coulthard Cumbria Waste	Bennet Bank (Phase 5) Hespin Wood Thackwood Grange Road, Egremont Distington Landfill	Barrow Carlisle Carlisle Copeland Copeland Total	1,862.0 382.0 0.0 540.0 3,082.0	780 0 1,693.2 448.9 672.9 5,730.5	Only r 416 75 416	93.8 29.5 0.0 103.0	114.6 12.8 117.6 494.3


Sites licenced to accept Industrial & Commercial Waste

Peter Greggians	Overby, Aspatria	Allerdale	5.0	288.0	75.0	32.8	16.7
Cumbria Waste	South Walney (S. Ext)	Barrow	2010	108.2	240.0	72.0	109.0
		Carhida					
Albright & Wilson	UFEX Raffiguate	Copeland	2000				338.0
Lakeland Waste	Flusco Pike, Pennih	Eden	2,753 ■				96.2
L & W Wilson Ltd	Roan Edge, Sedbergh I	Eden		187.6	750		5.5
British Gypsum Lit	Kirkley Thorns, Protein	Eden	700.6	100.0			- 13
Greenways	Kendal Fell (Phase 1)	S. Lakeland	1040	121.4		37.2	58 4
Greenways	Kendal Fell (Phase 1b)	S. Lakeland	0.0				
Greenways	Kendal Fell (Phase 2)	S. Lakeland			i-Operation		
James Cropper& Co	Burneside	S. Lakeland	voids	pace not kn	wn		7.3
	Total open gate		3,355.0	3,068.2	\$75.0	219.7	293.1

^{1.} This estimate is based on a simple comparison of remaining licensed capacity and current inputs. It does not include potential sites (i.e. with planning permission) or make any assumptions about changes in waste arisings or deposit/ disposal methods in future.

^{2.} Site licensed for industrial and commercial waste but also able to accept bonded asbestos.

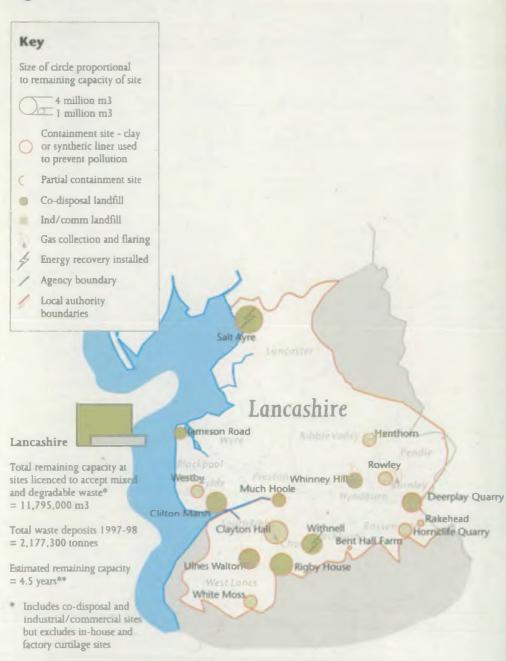
Figure 4. Remaining landfill capacity in Cumbria 1997-98

Lancashire Waste Deposit Statistics

Operator	Site address	district 000m3	void 1/4/97 000m3	void 1/4/98 000tpa	permitted 000T	deposits 1996-971 000T	deposits 1997-98
ites licensed to	accept mixed & biodegrada	ble waste (co	-disposal)				
Caird Env.	Deerplay Quarry 1	Burnley	991	990	75.0	7.7	14.5
Biffa Ltd	Withnell	Chorley	1,085		250.0	94 3	56.0
LWS Ltd	Ulnes Walton ²	Chorley	103	1,083	200.0	185.2	283.6
3C Waste Ltd	Rigby House Quarry ³	Chorley	1,500	1,500	250.0	pre-ope	rational
LWS Ltd	Clifton Marsh LFS, Freckleton	Fylde	1,490	1.046	450.0	379.8	497.2
LWS Ltd	Whinney Hill LFS, Altham	Hyndburn	969	673	350.0	294.8	295.7
LWS Ltd	Salt Ayre LFS Ovangle Road	Lancaster	2,166	2,017	2500	176.5	148.9
LWS Ltd	Much Hoole LFS, Station Road	S. Ribble	0	closed	150.0	12.5	2.3
LWS Ltd	Jameson Rd LFS, Fleetwood	Wyte	462	400	300.0	128 5	161.6
	TOTAL		8,766	8,609	2,275	1,279.0	1,459.7

Sites licensed to accept industrial and commercial waste

Edmund Proctor		Blackburn	18	70.8	364	1.5	80
Thomas Graveson	Goosehouse Quarry, Darwer	Blackburn	В	closed	15.0	596	97.5
William Style	Rollard More, Hapsier						
LWS Ltd	Rowley ¹	Burnley	161	450.0	250.0	198.1	78.8
Neales Waste	Clayton Hall, Whittle-le-Woods	Chorley	1,459	1,300 0	740.0	29.8	29.1
Mr M Woods	Westhy LFS, Annas Road	Fylde	278	278.0	100.8	142.0	193.1
William Blythe		Hyndburn					
R Townsend	Duckworth Hall	Hyndburn		closed	24.5	11.0	15.4
LWS Ltd	Cotestones, Warton	Lancaster	13	closed	75.0	24.2	22.1
LWS Ltd	Henthorn Road, Clitheroe	Ribble Valley	554	4710	75.0	55 2	50.8
LWS Ltd	Duckworth Clough	Rossendale		0.0	n/a	47 0	0.0
LWS Ltd	Rakehead Lane, Bacup	Rossendale	142	970	75.0	85.2	98.7
Park Pit Landfill	Horncliffe Quarry	Rossendale	470	n/a	600.0	104.4	126.6
J Routledge	White Moss Road	West Lancs	652	590.0	150.0	53.2	65.2
iCI Ltd		Wyre					
	Total open gate		3,592	3,186.0	2,105.0	810.0	777.3
	Total in-mouse only						

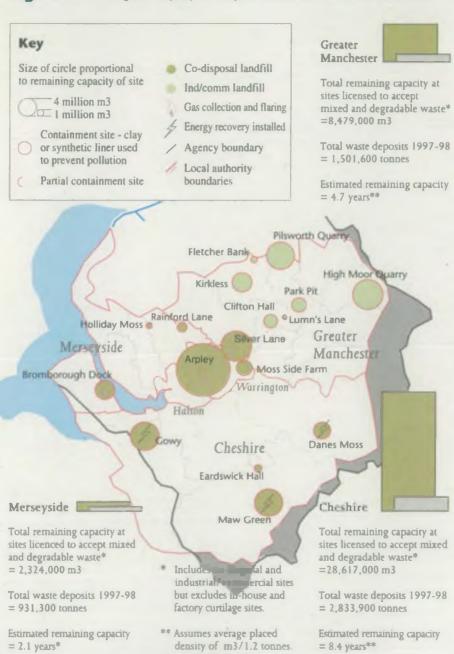

The site formerly known as Ford Quarry changed its name to Deerplay during 1997-98.

New site or phase came on stream during year.

The site formerly known as Houghton House Quarry changed its name to Rigby House Quarry during 1997-98.

Due to an error in data collection, the input tonnages for 1996/97 were incorrect in last year's publication; the corrected data is included here.

Figure 5. Remaining landfill capacity in Lancashire 1997-98


Merseyside, Greater Manchester & Cheshire Waste Deposit Statistics: Co-Disposal landfill sites

Operator	Site address	district	void 1/4/97 000m3	void 1/4/98 000m3	permitted 000tpa	deposits 1996 97 000T	deposits 1997 98 000T
MERSEYSIDE UK Waste M'gement Mersey Waste UK Waste M'gement	Hobday Moss Rainford Lane, Billinge Bromborough Dock North TOTAL	St Helens St Helens Wirral	587 2,290 2,877	450 1,700 2,320	340 468 800 2,108	94.0 416.2 846	424.4 137.5 367.6 929.5
G. MANCHESTER Terry Adams Leigh Bardon Biffa Waste Terry Adams Terry Adams L'fill M'gement	Pilsworth Quarry High Moor, Scouthead Clifton Hall Pealss Nook, Carrington Lower Green Lane Kirkless TOTAL	Bury Oldham Salford Trafford Wigan Wigan	3,500 4,400 950 900 9,750	2,500 4,000 800 	1,716 480 400 0 1,071 3,667	788 3 45.1 0 413.9 1,247	189 4 110.2 0 0 292 8
Brock pk 3C Waste 3C Waste Collier Industrial Waste 3C Waste	Gowy Landfill Eardswick Hall Maw Green Road Danes Moss Moss Side Farm, Rixton Arpley Landfill Site Silver Lane, Risley TOTAL	Chester Crewe Crewe Macclesfield Warrington Warrington Warrington	4,300 300 4,300 1,800 1,300 14,300 4,925 31,225	3,700 250 3,400 1,300 3,010 13,000 4,057 26,717	300 75 360 180 180 1,412 960 3,447	859.6	

Industrial & Commercial landfill sites

Lever Bros. MERSEYSIDE TOTALS	Wharfe St., Port Sunlight	Wirral Wirral	13 8 13	H	3	11/a 11/a	1.8
Charles Turner & Co Marshsalis Mono Ltd Harwood Quarry Co W. M. Tatham Ltd Mullaney H & Sons Landfill Management G. MANCHESTER TOTALS	Springside Mill Fletcher Bank Quarry Brookfold Lane Belfield Lane Brownedge Farm, Mossley Makerfield Way	Bokon Bury Bokon forenside Rochdale Salioni Tameside Wigan	n/a 96 500 42 42 25 0 213	n./a 100 94 500 40 100 24 0 658	n/a n/a 54.8 184 116.8 0	n/a n/a 0 n/a 2.2	1.8 3.6 0 1.4 1.2
Brock plc	- open gete Hapsford Landfill Waterworks Lane Eastharn Rake, Eastham	Chester Halton Warrangton Ellesmere Port	213 100 100 100 100 100 100 100 100 100 1	closed	600 600 600 600 25 625	169.2 176.7	16.4 91.5 90 116.9

Figure 6. Remaining landfill capacity in Merseyside, Greater Manchester and Cheshire 1997-98

Part 5: Other Waste Management Facilities

Figure 7. Landfill sites accepting ment and construction/demolition wastes

The region has a large number of sites licensed to accept inert and construction/demolition waste. Generally speaking, they are smaller and shorterlived than the sites licensed for biodegradable waste. The volume of waste being disposed of at these sites has declined following an increased use of inert materials for construction projects such as screening mounds, golf courses and equestrian centres (which are exempt from licensing under the 1994 Regulations), and re-use as secondary aggregates.

Summaries of waste tonnages handled in each main local authority area are given on pages 6 & 7; detailed returns for each site are included in appendix 1.

1. Rossendale

13. St Helens

Hyndburn
 Blackburn

14. Warrington15. Wigan

4. Chorley

16. Bolton

South Ribble
 West Lancs

17. Salford 18. Trafford

7. Sefton8. Liverpool

19. Manchester 20. Bury

9. Wirral 10. Ellesmere Port

21. Rochdale22. Oldham23. Tameside

11. Knowsley 12. Halton

24. Stockport

Key

- Landfill sites licensed to accept non-degradable waste
- Landfill non-degradable for owner/operators use only
- Sites licensed but not in use

Figure 8. Other NW facilities covered by waste management licensing regulations

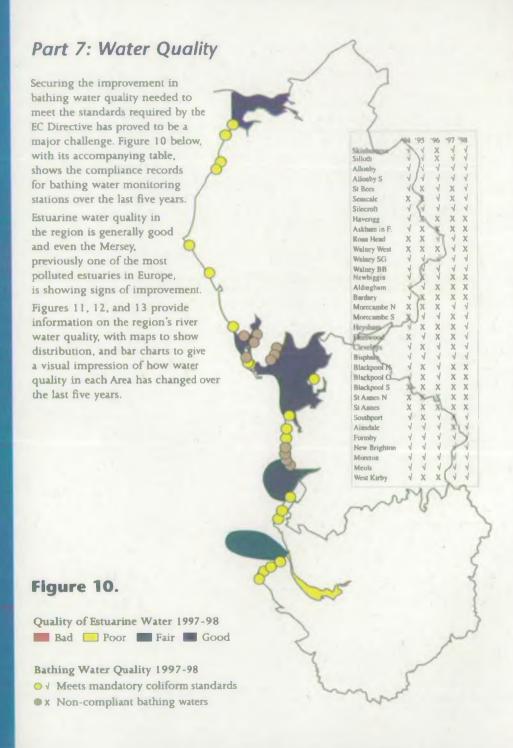
'Other' waste management activities include transfer stations, civic amenity sites, metal recovery sites, waste treatment plants, and waste storage facilities.

These activities tend to reflect the distribution of population and economic activity, showing a clear concentration in Merseyside and Greater Manchester. Summaries of waste tonnages handled at treatment plants, transfer stations, civic amenity sites, and metal recovery sites are given on pages 6 & 7; details of returns for local authority districts are included in appendix 2.

Key

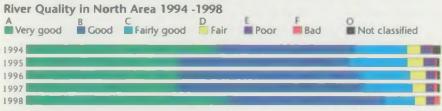
- ◆ Civic amenity site
- ♦ Waste transfer station
- Metal recovery site
- Treatment plant

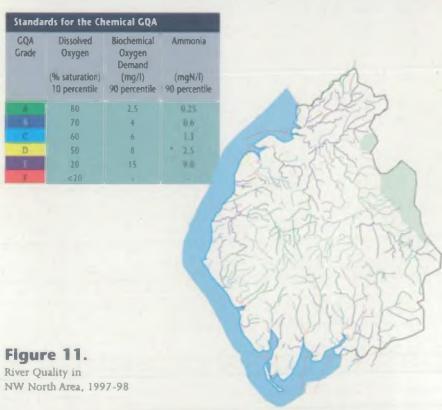
Part 6: Authorised Industrial Processes


The graphic shows the distribution of North West sites with authorisations to operate processes under Integrated Pollution Control (IPC) legislation or to use or process radio-active substances (RAS). Under the current regulations, authorisation is granted to processes rather than sites. So, in some cases, several processes may be operated on a single site. There are clear concentrations of activity around the Mersey Estuary and along the Cumbrian coast, where the region's heavy chemicals industry is primarily located.

The table (opposite) provide a breakdown of these authorisations by category and by local authority district.

Figure 9.


Location of processes authorised under Integrated Pollution Control legislation


Alleridate Barrow Carbinde Coppland 188m South Labriants Total	Slackbern Markpool Barnley Chordey Pride Wynothum Larranter Frendle Prendle Product Roads Milley Roads Riddle South Riddle West Larrantalie Wyre	Central Area	High Peak Newcaste science Total	High Peak	Kaowsky Liverpood Selfon S. Helma Wireal York South Area	Chester Congleton Creek & Nasonich E'Tour and Nesson Halton Macchefleld Vale Noyal Warrington	Bohns Bury Manchenter Ordinan Rechtable Sackjout Tammende Trafford Wigan	South Area		
W-04000	4-0000-000-00		000		Z	******			Toda	
HOCHOCH	*=		N B W		Zacac-					
	H0000-00-00000				Ñ	0		1	Distriction of the last of the	IPC
\$ - 5 4 0 5 F	4		e H e		N =	24-48-14	+1=-2		Of The	
*	***********								Mary 1	
* 0 0 2 0 - W	=======================================		14 15 10		Noone				All Mary	
£00-005	442242000000000000000000000000000000000		I Ha		32 9 0 17	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	700 20000		TOTAL	
Gaofore	#p=00045F00000		000		=00000	000000=	000000000		The last	
274-767	***************************************		HON		Banes:	22242002	RESERVEDE		to all line	
4wow-	*****				B		+++4		all the	RAS
******	¥0000-8070				2	*******			The State of	~
Merates	#=====================================		W 0 11		\$400x0	±2222 *** ±	=======================================		TOL STA	
									Deligible of the State of the S	

Freshwater Quality Indicators: Kilometres of river in each category North Area 1994-1998

	A	В	С	D	E	F	0
1994	1116.3	817	293.8	83.4	61.7	7.5	39.4
1995	899.2	979.6	349.6	99.2	67.2	8.9	12.2
1996	903.7	1037.4	305.9	95.3	50.7	13.9	12.2
1997	879.4	1105	277.4	79.5	45.7	19.9	12.2
1998	1172.7	925.9	176.3	68.8	46.3	29.1	0

Freshwater Quality Indicators: kilometres of river in each category Central Area 1994-1998

	A	В	С	D	E	F	O
1994	341	276.3	250.6	169.4	250.6	52.6	146.7
1995	210.4	434.2	274.8	190.3	318.5	37.5	21.5
1996	201.2	393 9	306.7	179.6	349.4	34.9	21.5
1997	209.2	321.6	379.2	203.2	329	23.7	21.3
1998	274.6	388.2	315.1	193.2	293.2	22.6	0

River Quality in Central Area 1994 - 1998

Freshwater Quality Indicators: kilometres of river in each category South Area 1994-1998

	A	В	С	D	E	F	0
1994	21.7	437.4	459	336	392.3	126.8	68.9
1995	43.4	469.8	390.3	461.9	361.9	113.9	4.1
1996	39.7	520.8	418.4	419.6	358	83.1	2.5
1997	61.6	431.8	534.5	336.9	362.9	111.9	2.5
1998	95.2	430.7	500.3	362	333.7	115.6	0.9

River Quality in South Area 1994 - 1998

Appendix 1: Site inputs and remaining capacities at sites licensed to accept inert and construction/demolition waste

Operator	site location	district	void 1/4//97	void 1/4/98	permitted	deposits 1996/97	deposits 1997/98	
			000m3	000m3	T000	000T	000T	
CUMBRIA								
Thomas Armstrong Ltd	New Cowper	Allerdale	426.2	558.2	1,047.0	6.8	4.3	
Cumbria CC	Broughton Craggs	Allerdale	64.8	61.4	25.0	4.0	4.5	
Cumbria CC	Brocklebank Quarry	Allerdale	15.5	15.0	2.5	0.7	0.4	
C Hindle	Longlands	Barrow	n/a	8.2	n/a	n/a	1.6	
Calrd Environmental	Todhills	Carlisle	65.0	70.0	75.0	32.0	24.8	
Ashbeech Ltd	Calsil Brickworks	Carlisle		7.8			0.5	
BG Pic	Rome Street	Carlisle		3.9			1.8	
Watsons Sand & Gravel	Peel Place Quarry	Copeland	n/a	3.0	n/a	n/a	2.7	
Cumbria CC	Galemire Quarry	Copeland	21.2	14.3	25.0	0.4	8.6	
Cumbria CC	Shore Road, Drigg	Copeland	41.3	40.7	25.0	0.3	0.8	
BNFL Ltd	Windscale landfill	Copeland		4.9	106	3.0	0.3	
BNFL Ltd	North up ext	Copeland	500	150.0	75	0	753.3	
BNFL Ltd	Calder tip ext	Copeland	136	135.3	75	3.6	0.6	
Cumbria Stone	Blasterfield Quarry	Eden	40	37.4		0	2.2	
Cumbria CC	Fairthorns Lane	South Lakeland	17.2	16.5	25.0	0.2	0.9	
NWW Ltd	Castle Hill	South Lakeland	1.8	1.0	18.2	1.7	1.1	
Priory Building Co	Black Bull Farm	South Lakeland	1.0	0.65	73.0	1.6	2.4	
County Contracting	Crag House	South Lakeland	-	312	25	0.3	0.4	
LANCASHIRE								
Star Paper Mill	Sappi Europe	Blackburn	19.3	44.0	5.0	1.0	0	
W Knowles Ltd	Thorny Height Quarry	Blackburn	pre-or	erational	24.5			
McAlpine/Amec	Spring Guide Farm	Blackburn	45.0	-	500.0	52.2	51.6	
Clive Hurt Plant Hire	Gt Knowley	Chorley		455.6	225.0	164.1	123.7	
Philips components	Close Brow Quarry	Hyndburn		99.0		6.0	1.9	
J W Hartley	Thwaite Gate	Lancaster	15.9	15	10.0	0.3	0.3	
J A Jackson	Ellel Quarry	Lancaster	50	50.0	5.0	0.5	0.4	
Tim Butler Plant	Middleton Road	Lancaster	67.5	52	90.0	24.8	12.8	
J A Jackson	Lightfoot Green	Preston	103.0	200.0	103.3	57.0	59.6	
Tustin Developments	Red Scar	Preston	pre-or	perational				
North West Water	Chapel Hill	Ribble Valley	18 8	15.6	24.0	1.3	2.7	
Castle Cement Ltd	Coplow Quarry	Ribble Valley	n/a	n/a	60 0	33.0	23.6	
William Pye Ltd	Lords Quarry	Ribble Valley	15.7	8.9	17.0	23.4	1.5	
William Pye Ltd	Penwortham GC	South Ribble	17.6	17.2	15.0	0.6	0.3	
Shows of Darwen	Darwen	West Lancs	n/a	49 0	1.0	0.7	0.5	
Henry Alty Ltd	Hesketh Bank	West Lancs	16.8	n/a	24.0	23.7	39.1	
Mainsprint Ltd	Round O Quarry	West Lanc		3,000	pre-o	perational		
Surfforce Ltd	Holland Colliery	West Lancs	not o	perational	2.5	-	-	
Ibstock Ltd	Ibstock	West Lancs	85.7	160.0	6.0	1.5	1.2	
Hardrock Ltd	Stoney Brow Quarry	West Lancs	10.0	1.5	60.0	49.0	29.3	
Kingscourt Develop	Kingscourt	Wyre	34.2	2.6	5.0	0.4	0.7	
Baxter Const.	Moss Side Lane	Wyre	3.3	3.3	20.0	1.1	0	
Wyre BC	Jameson Road	Wyre	<5,000	<5,000	140.0	122.9	0	
ICI Ltd	ICI Mine Sub.	Wyre		perational	18.3			
Brierkrete Ltd	Brierkrete	Wyre			0.24	0		

Operator	site location	district	1/4//97 000m3	void 1/4/98 000m3	permitted 000T	deposits 1996/97 000T	deposits 1997/98 000T
MERSEYSIDE							
NNQ Ltd	Berrington's Lane	St Helens	126	104	188.0	52.4	18.7
GREATER MANCHE	STER						
G & J Seddon	Georges Lane	Bolton	50	10	186.2	71.9	0.0
Park Pit Landfill	Roach Bank	Bury	595	86.9	547.5	n/a	423.4
East Lancs Paper Mill.	Church St East	Bury	7.8 n/a 25	n/a n/a 4.5	29.2 n/a 365.0	-1.8 n/a 25.0	n/a
SPH Group	Gorton	Manchester					0.2
F E Blakeman	Ferney Field Farm	Oldham					17.1
DEW Group	Higginshaw Lane	Oldham		no data			
Webfell Waste	Huddersfield Road	Oldham			no data		
T Kaberry	Bury New Road	Rochdale	new site	-	- 2	n/a	24.2
NWW Ltd	Newhey	Rochdale	321	471	0	23	0.7
National Power Ltd	Agecroft	Salford	20	20		- 6	0.3
W L Massey	Bong's Farm	Stockport	50	36	375.0	1.1	12.0
R Boothby	Hazel Knoll Farm	Stockport	20	20	20.1	0.5	0.3
Offerton Sand & Gravel	Marple Road	Stockport	n/a	n/a	198.4	104.8	124.9
New Soils Ltd	Greenside & Lowend T	ameside	45	45	146.8	n/a	0.3
Chartrange	Woodend Lane	Tameside			no data		
Redland Roof Tiles	Rediand Ltd	Wigan			ot operation	nal	
CHESHIRE							
British Salt	Cledford Lane	Congleton	n/a	11/2			5.2
Barrie (Plant Hire)	Hough Mill Quarry	Crewe	750	669	100	86	67.2
P Goddard	Hollinset Farm	Macclesfield	18.5	16.0	n/a	n/a	4.4
Park skip hire	Endon Quarry	Macclesfield	n/a	n/a	n/a	n/a	2.6

Appendix 2: Inputs, outputs and material recovered at sites licensed for transfer and treatment operations

District	inputs	outputs	recovered	HYNDBURN			
	000tpa	000tpa	000tpa	Household CA		n/a	0
Cumbia				Transfer Station	71.2	70.6	0
ALLERDALE				LANCACTER			
Household CA	6.0	5.0	1.0	LANCASTER		-/-	0
Transfer Station	7.2	2.6	3.5	Household CA Transfer Station	67.6	n/a 41.7	0
				Transfer Station	07.0	71./	U
BARROW IN FURNE				PENDLE			
Household CA	6.2	5.9	0.3	Household CA		n/a	0
Transfer Station	46.7	18.5	27.9	Transfer Station	31.4	4.7	0
Treatment Plant	53.7	54.8	0.8	Treatment Plant	4.3		
CARLISLE							
	0.4		2.4	PRESTON			
Household CA Transfer Station	8.4	5.8 24.5	2.6	Household CA		n/a	0
Transfer Station	100.0	24.3	23.0	Transfer Station	74.7	69.9	2.2
COPELAND							
Household CA	14.8	4.2	0.6	RIBBLE VALLEY			
Transfer Station	0	0	0	Household CA		n/a	0
TIEMSTER OTHER				Transfer Station	0.6	0.6	0
EDEN				ROSSENDALE			
Household CA	0.5	0.5	0	Household CA		n/a	0
Transfer Station	0	0	0	Transfer Station	0	0	0
Treatment Plant	2.3	. 0	1.7	Treatment Plant	2.7	0.3	0
				Treatment Figure	2.7	0.5	0
SOUTH LAKELAND				SOUTH RIBBLE			
Household CA	8.4	6.8	1.6	Household CA		n/a	0
Transfer Station	0	0	0	Transfer Station	27.8	26.0	0
Lancashire				Treatment Plant	21.4	0.2	0
BLACKBURN							
Household CA		7.9	0	WEST LANCS			
Transfer Station	94.3	98.2	0	Household CA		n/a	0
Hallster Station	77.3	70.2	U	Transfer Station	452.7	275.4	0
BLACKPOOL				WYRE			
Household CA		n/a	0	Household CA		n/a	0
Transfer Station	182.5	40.7	0	Transfer Station	37.3	28.7	0
				Transfer Station	37.3	20.7	0
BURNLEY							
Household CA		n/a	0	Morroweido			
Transfer Station	44.2	43.9	0	Merseyside			
				LIVERPOOL			
CHORLEY				Household CA		5.9	0
Household CA		n/a	0	Transfer Station	108.9	4.8	0
Transfer Station	61.1	63.7	0	Treatment Plant	44.7	0	0
FYLDE				SEFTON			
Household CA		n.a	0	Household CA	0	0	0
Transfer Station	12.6	n.a 11.7	0	Transfer Station	86.2	0	0
Hallster Station	12.0	61./	U	. and the death	50.2	0	

KNOWSLEY				TRAFFORD			
Household CA		0	0	Household CA		58.8	1.1
Transfer Station	83.7	0	0	Transfer Station	175.2	115.4	61.0
				Treatment Plant	756.0	394.5	25.6
ST HELENS							
Household CA		12.1	0	WIGAN			
Transfer Station	42.6	0	0	Household CA		38.3	0.2
Treatment Plant	7.9	0	0.7	Transfer Station	108.8	96.8	8.1
WIRRAL							
Household CA		18.8	. 0				
Transfer Station	56.2	- 0	0	Cheshire			
Treatment Plant	8.8	0	0	CHESTER			
				Household CA		n/a	n/a
				Transfer Station	8.9	0	0
Greater Man	chester						
BOLTON				CONGLETON			
Household CA		39.7	2.8	Household CA		12.5	n/a
Transfer Station	10.8	3.0	1.8	Transfer Station	10.7	0	0
Treatment Plant	10.3	10.0	0.1	Treatment Plant	36.2	0	0
neathern right	. 10.3	10.0	0.1				
BURY				CREWE & NANTW	ICH		
Household CA		69.2	0.6	Household CA		10.5	0
Transfer Station	25.8	24.9	0.3	Transfer Station	33.4	0	0
				CHECAMENE DON'T	G ALECTON		
MANCHESTER				ELLESMERE PORT	M MESION		
Household CA		24.6	0.3	Household CA Transfer Station	22.0	12.2	0
Transfer Station	89.5	79.8	64.0	Treatment Plant	22.0	0	0
Treatment Plant	626.4	418.7	1.4	freatment Plant	51.1	0	0
OLDHAM				HALTON			
Household CA		13.8	0.8	Household CA		11.9	n/a
Transfer Station	188.6	174.8	8.5	Transfer Station	122.5	44.7	0
naisier station	100.0	1 / T.O	0.3	Treatment Plant	14.8	0	0
ROCHDALE				Da Caparactar a smart			0
Household CA		90.3	0.9	MACCLESFIELD			
Transfer Station	88.0	92.6	0.2	Household CA		28.1	0
Treatment Plant	6.6	0.3	6.3	Transfer Station	38.1	16.5	0
SALFORD				VALE ROYAL			
Household CA		23.5	0.3	Household CA		10.4	0
Transfer Station	24.1		10.7	Transfer Station	6.2	9.7	0
Treatment Plant	158.4	154.2	4.2	Treatment Plant	1.8	0	0
STOCKPORT				MARONICTON			
Household CA		31.2	2.1	WARRINGTON		2	
Transfer Station	120.2	81.1	15.8	Household CA		26.3	
	- 2011			Transfer Station	56.1	0	0
TAMESIDE				Treatment Plant	66.4	0	0
Household CA		19.8	0.2				
Transfer Station	46.4	23.6	18.4				
Treatment Plant	34.2	9.3	3.8				

NORTH WEST REGION ADDRESSES

REGIONAL OFFICE Environment Agency PO Box 12 Richard Fairclough House Knutsford Road Warrington WA4 1HG Tel: 01925 653 999

Fax: 01925 415 961

CENTRAL AREA
OFFICE
Environment Agency
Lutra House
Dodd Way
Walton Summit
Bamber Bridge
Preston PR5 8BX
Tel: 01772 339 882
Fax: 01772 627 730

NORTH AREA OFFICE Environment Agency Ghyll Mount Gillan Way Penrith 40 Business Park Penrith Cumbria CA11 1BP

Tel: 01768 866 666 Fax: 01768 865 606 SOUTH AREA OFFICE Environment Agency Appleton House 430 Birchwood Boulevard Birchwood Warrington WA3 7WD

Tel: 01925 840 000 Fax: 01925 852 260

Area Administrative Boundaries

Regional Boundary

- Area Office
- ▲ Regional Headquarters

EA-North West

NATIONAL LIBRARY & INFORMATION SERVICE

HEAD OFFICE

Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol BS32 4UD

