DEVON AREA INTERNAL REPORT

AN INVESTIGATION TO DETERMINE THE WATER QUALITY OF CHURCHSTANTON STREAM.

MARCH 1996 DEV/E/13/96

Author: P. ROSE INVESTIGATIONS TECHNICIAN

> National Rivers Authority South Western Region

G R Bateman Area Manager (Devon)

614.77 NAT

c. 1 so

614.77/NAT NATIONAL RIVERS AUTHORITY An investigation to determine the water

50

.00

AN INVESTIGATION TO DETE CHURCHSTANTON STREAM.

DETERMINE THE WATER QUALITY OF

AKIP C.

1. INTRODUCTION

The Churchstanton Stream rises south of Churchstanton near Higher Munty (NGR ST 1982 1278). The stream flows north west for approximately 3.5 km before its confluence with the River Culm north of Lillycombe Farm (NGR ST 1690 1422).

Although the water quality of Churchstanton stream is not routinely monitored, the nearest site downstream on the River Culm at Bridge House, Clayhidon (R05C002 NGR ST 1600 1408), has a current River Ecosystem Use (RE) Class target of 2 and a long term target of 1 (see APPENDIX . I). These targets will be applied to the Churchstanton Stream.

The Churchstanton Sewage Treatment Works (WSTW7550FE) which has a descriptive consent was added to the routine programme mid 1995; no other discharges to the stream are routinely monitored (see Figure 1).

2. TERMS OF REFERENCE

2.1 **OBJECTIVES**

A request was received from the Water Quality Officer (WQO) for the area to investigate discharges into the stream and determine the extent of any impact. This report is a documentation of the study.

2.3 PROJECT TEAM

T. Cronin (Project Leader)

P. Rose (Project Manager, author)

3. METHOD

- 1. Talk to the WQO for the area in order to gain information on known problem areas within the catchment.
- 2. Appraise the Churchstanton Stream visually, by the use of field test kits and by making biological collections in order to track down and identify inputs to the stream which may be causing an impact.
- 3. Determine the impact of inputs to the stream both chemically and biologically.
- 3. Notify the WQO of all findings.

4. **RESULTS**

4.1 HISTORIC DATA

Analysis of routine samples taken from the final effluent of Churchstanton STW show no excessively high concentrations of basic sanitary detriminands from the start of NRA sampling (11 July 1995) to 16 February 1996 (see APPENDIX II).

River water samples taken for the 'Ups and Downs' programme show the STW effluent was not impacting on the stream. Exceedance of the BOD EQS above and below the final effluent discharge point (samples taken on 28 November 1995, BOD = 5.9 mg/l & 5.8 mg/l upstream and downstream respectively) was associated with rainfall (11.0 mm on the day) and was probably the result of a known upstream illegal discharge from Middle Munty Farm (see the appropriate proforma).

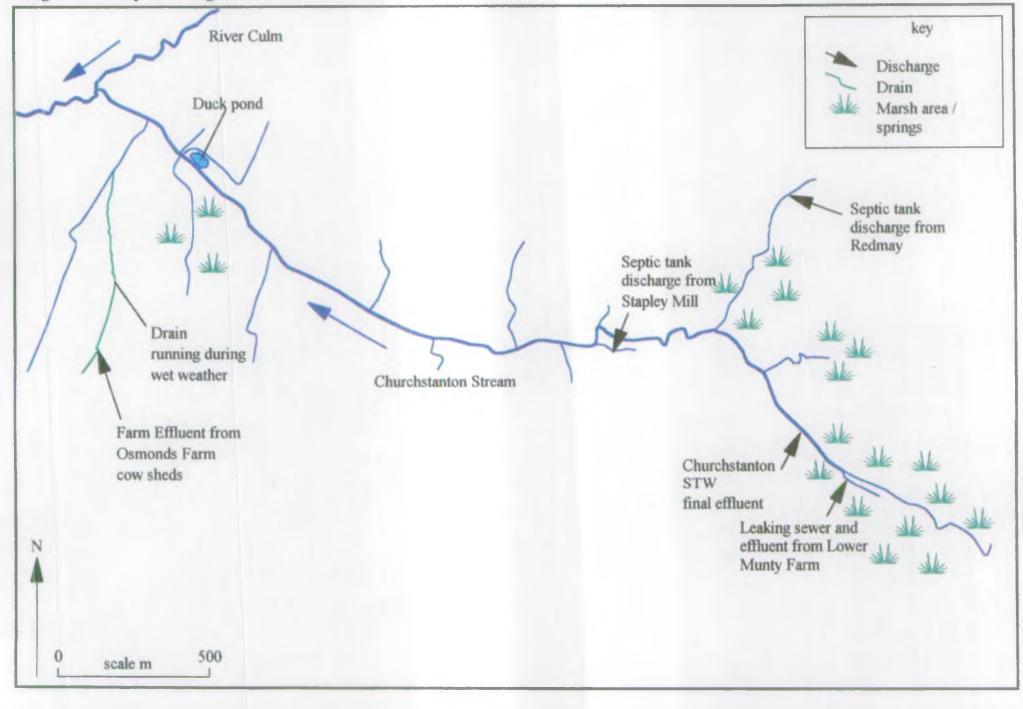
4.2 INVESTIGATION DATA

For results see Figure 1 and proforma.

5. **DISCUSSION**

Of the inputs identified, one from Osmonds Farm cattle sheds was found to cause an exceedance of EQS's in the road ditch leading to the stream during wet weather. The other 3 inputs found did not result in exceedances in the receiving waters at the time of investigation but have the potential to cause localised impact under certain conditions (see proforma).

Generally the water quality of the Churchstanton Stream was found to be good. The biological collections made contained many taxa indicative of good water quality (4 families or more of stoneflies at each site sampled with the exception of one site which had 3 families).


6. CONCLUSIONS

- 1. Osmonds Farm has the potential to cause a chemical impact on the Churchstanton Stream during wet weather.
- 2. Lower Munty Farm has the potential to cause a chemical impact on the Churchstanton Stream during wet weather and is probably responsible for BOD exceedances recorded up and downstream of Churchstanton STW.
- 3. Churchstanton STW was not causing an impact at the time of the investigation.
- 4. The field septic tank at Acombe will probably cause a localised chemical impact during low flow conditions; the barn / cattle shed effluent at Acombe has the potential to cause localised chemical impact during wet weather conditions.
- 5. The septic tank at Stapley Mill has the potential to cause localised chemical impact during low flow conditions in a tributary of Churchstanton Stream.

7. **RECOMMENDATIONS**

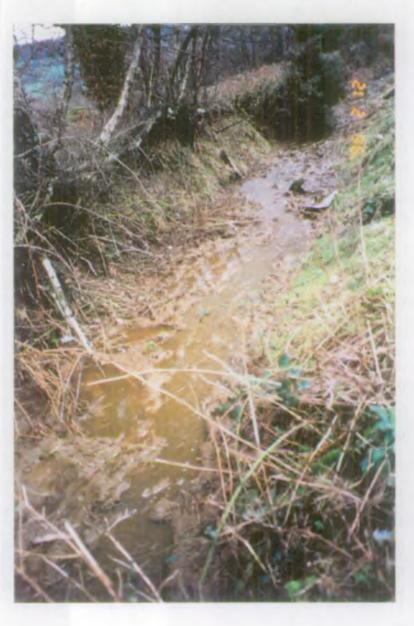
See proforma.

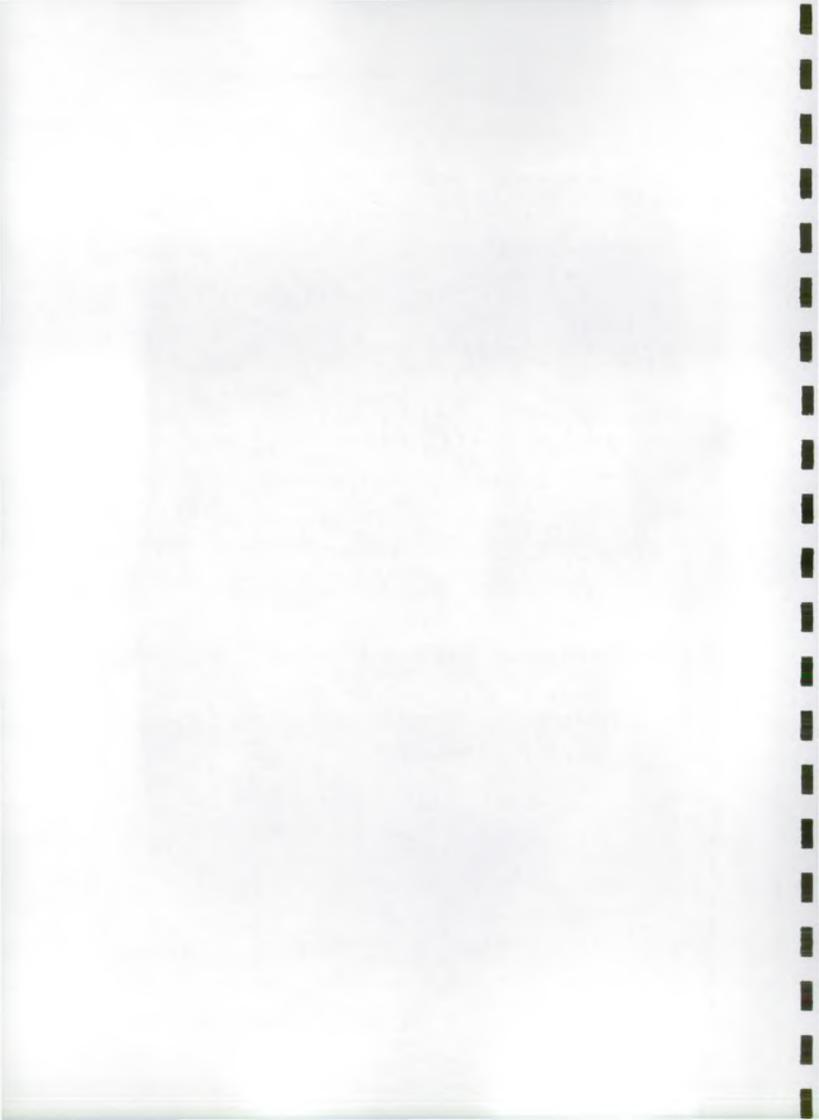
Figure 1. Map showing the Curchstanton Stream area.

SITE: **Osmonds** Farm WATERCOURSE Road drain entering Churchstanton stream NGR ST 1680 1340 (problem locality) **EVIDENCE OF WATER QUALITY PROBLEM** During inspection of the catchment in wet weather a road drain was green and smelt of farm effluent. The drain was fed by a field ditch coming from the direction of a set of cow sheds. Site Description Total Ammonia mg/l Site No. BOD mg/l Ditch D/S of cow sheds 28.0 457 1 Farm effluent 2 12.1 614 Surface water U/S of cow sheds 3 0.21 2.2 SOURCE OF PROBLEM: Surface water and farm waste was running off the open hard-standing of the sheds down to the field ditch (see photographs 1 & 2). REPRODUCED FROM THE ORDNANCE SURVEY MAP THE PERMISSION OF THE CONTROLLER OF HER STY'S STATIONERY OFFICE UNDER COPYRIGHT

IMPLICATIONS:

The ditch only runs during wet weather. On talking to local people, this problem has happened frequently in the past. Because of the quantity of rain required to result in the ditch running, dilution within the Churchstanton stream will be high and chemical impact will probably be evident but localised. It is unlikely that there would be any chemical impact within the River Culm during these conditions.


RECOMMENDATIONS:


The Water Quality Officer has been notified and will be visiting the farm.

IOE NO MUL29850X O-CROWN-COPYRCHT.

Photograph 2: Field ditch with run off from Osmonds Farm cattle sheds.

SITE:

Acombe, Stapley

WATERCOURSE Tributary of Churchstanton Stream

NGR

ST 1918 1389 (problem locality)

EVIDENCE OF WATER QUALITY PROBLEM

The tributary had a reduced macroinvertebrate taxa list and poorer substrate than other sites on the stream. On following up the watercourse, a septic tank discharge was found seeping up through the soil and entering the tributary.

Site Description	Site No.	Total Ammonia mg/l	BOD mg/l
U/S site	5	0.05	1.2
Small stream	4	0.06	2.1
U/S Septic Tank	3	0.09	1.2
D/S Septic Tank	2	2.1	0.48
Road drain entry	1	< 0.03	<1.0

SOURCE OF PROBLEM:

Besides the septic tank in the field, a barn / cattle shed upstream of the discharge had farm effluent oozing out of the wall into the ground near by the watercourse although none of the waste was directly entering the stream at the time of investigation (a small length of the stream is culverted at this point, see photographs 3 & 4).

A road drain had a condom visible through the grating indicating the possibility of a septic tank connection. The entry point of the drain to the stream was not confirmed but a water sample was taken where a further road drain in the same line entered the tributary.

EY MA THE ORDNANCE SUI Willand REPRODUCED FROM WITH THE PERMISSION OF THE CONTROLLER OF HER ollage Redmu MAJESTY'S STATIONERY OFFICE, UNDER COPYRIGHT LICENCE NO. WU29859X @ CROWN COPYRIGHT arobs Blackdown Hi 91 ۵. Willowbrook Grabha Rrucke Dale Tower Kerlyn D

SITE:

Acombe, Stapley

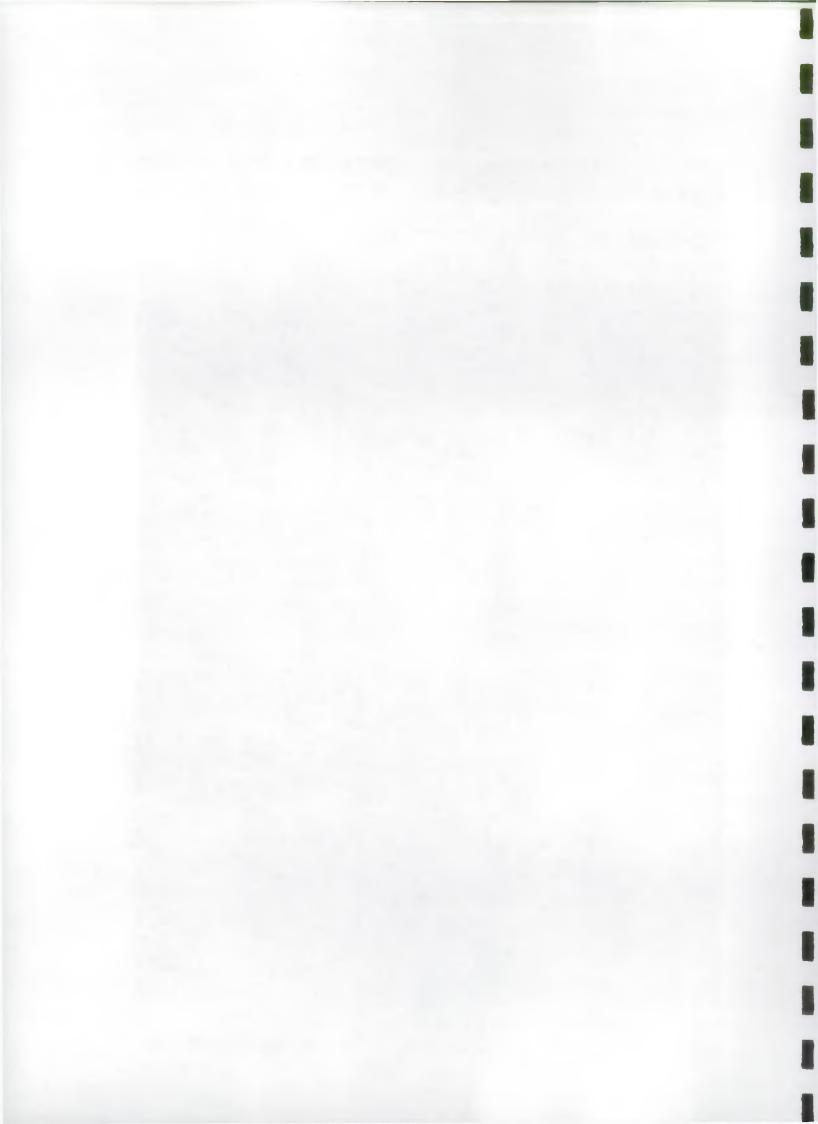
Continued

IMPLICATIONS:

None of the inputs were resulting in EQS exceedances for a RE class 2 river at the time of sampling. However, during wet weather the farm waste from the barn may have a localised impact on the stream and during dry weather flows in summer, the septic tank discharge in the field and that to the road drain may impact the tributary chemically.

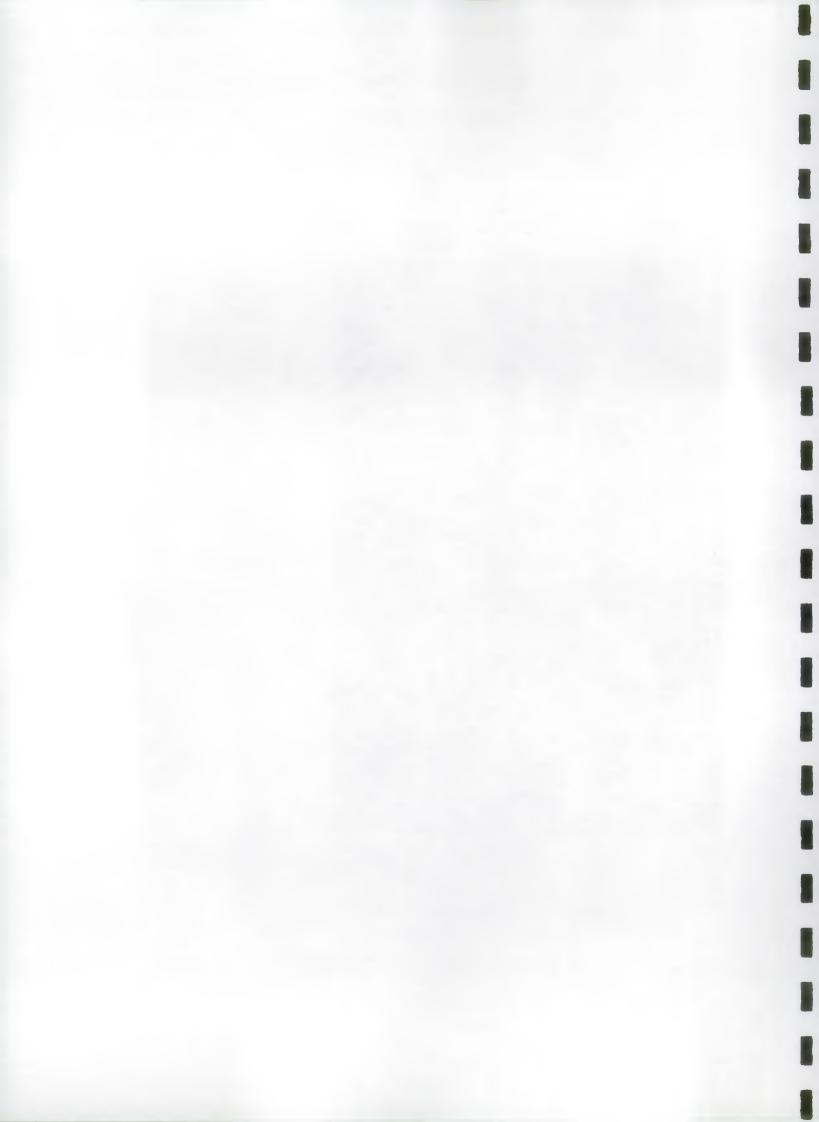
No biological collection could be made upstream of the whole area due to unsuitable sampling conditions.

RECOMMENDATIONS:


The Water Quality Officer has been notified and will be visiting the site.

Photograph 3: Septic Tank discharge at Acombe.

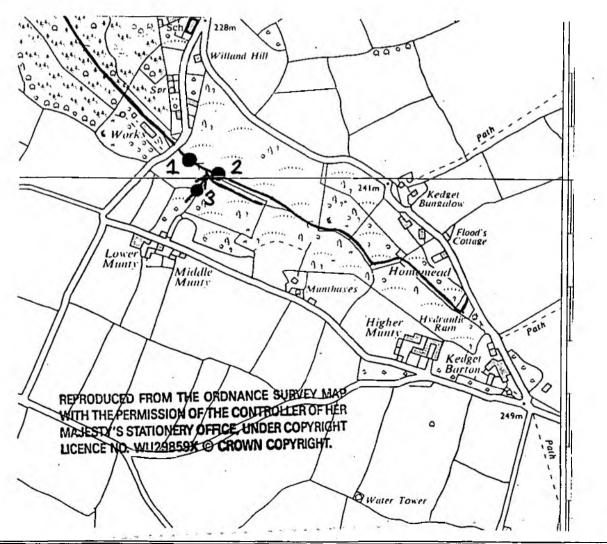
Photograph 4: Barn / shed seepage at Acombe.



	Stapley Mill			
WATERCOURSE	Tributary of Churchstantor	ı stream		٥
NGR	ST 1680 1340 (problem lo	cality)		
EVIDENCE OF WA	ATER QUALITY PROBL	EM		
septic tank discharge		ent smell around Stapley Mill ary of the stream. Sewage fi U/S.		
		0,0,	2	
Water samples taken	did not exceed EQS for a R	E class 2 river.		
Site Description D/S of discharge	Site No.	Total Ammonia mg/l <0.03	BOD mg/l 1.6	
U/S of discharge	2	0.05	1.4	
	(en all and all all all all all all all all all al	e tributary.	Laurets Laneside	
WITH	NCED FROM THE ORDNANCOS	Hydraudic Hydraudic Stapley Cottures We URVE NoAP 44 Ho Stapley Cottures URVE NoAP 44 Ho Ho Ho He Ho Ho He Ho Ho Ho He Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho	Luneside Rosennout	
WITLT MAJES LICENC MAJES LICENC MPLICATIONS: The biological comm of bad water quality.	UCED FROM THE ORDINANCE HE PERMISSION DE THE CONTRA TY'S STATIONERY OFFICE, UNDER TY'S STATIONERY OFFICE, UNDER THE NO. WU29859X © CROWN CO	Hydraudic Hydraudic Stapley Cottures We Ho Stapley Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho	Pay, Plantation Pay, Plantation Pay Furm was by no means income	ever,

Photograph 5: Septic Tank discharge Stapley Mill.

SITE:	Lower Munty Farm			
WATERCOURSE	Churchstanton Stream	÷		2.4
NGR	ST 1938 1300 (problem locality)		- S -	
EVIDENCE OF WA	ATER QUALITY PROBLEM			


Site Description Site No. Total Ammonia mg/l BOD mg/l D/S site < 0.03 <1.0 1 Farm waste effluent 4.4 0,0 2 3 U/S site < 0.03 <1.0

assessment to be carried out up and downstream of the area.

....

SOURCE OF PROBLEM:

The problem was a combination of farm waste entering the stream and a cracked sewage pipe coming from the farm towards the stream.

IMPLICATIONS:

No chemical or biological impact was detected in the stream: indeed the biological collections made both up and downstream of the input were indicative of good water quality.

However, during wet weather, there is likely that run off from the farm could cause a chemical impact in the stream. The 'Ups and Downs' programme sampling of Churchstanton STW downstream of the farm show a BOD exceedance during wet weather (26 November 1995 BOD = 5.9 mg/l U/S works, 11.0 mm rain on the day, 11.0 mm total for previous 2 days) which is probably attributable to the farm effluent.

RECOMMENDATIONS:

The Water Quality Officer is in discussion with the farmer.

APPENDIX I

TABLE 1 : STANDARDS FOR THE FIVE RIVER ECOSYSTEM USE CLASSES

Use Class	DO % sat 10%ile	BOD (ATU) mg/l 90%ile	Toഫ Ammonia ngN/1 95%ile	Un-ionised Ammonia mgN/l 95%ile	pH S%ile & 95%ile	Hardness mg/1 CaCO,	Dissolved Copper µg/1 95%ile	Total Zinc µg/l 95%ile	Class Description
l	BO	2.5	0.25	0.021	6.0 - 9.0	≤10 >10 and ≤50 >50 and ≤100 >100	5 22 40 112	30 200 300 400	Water of very good quality suitable for all fish species
2	70	10	0.6	0 02:	6040	≤ 10 > 10 and ≤ 50 > 50 and ≤ 100 > 100	\$ 22 40 112	30 200 300 500	Water of good quality suitable for all fish species
3	60	6 0	23.	0 021	60-90	≤ 10 > 10 and ≤ 50 > 50 and ≤ 100 > 100	5 22 40 112	300 700 1000 2000	Water of fair quality suitable for big class course fish populations
4	50	80	2.5		6.0 - 9.0	≤10 >10 and ≤50 >50 and ≤100 >100	5 22 40 112	300 700 1000 2000	Water of fair quality suitable for coarse fish populations
5	. 20	15.0	9.0			63.			Water of poor quality which is likel to limit coarse fish populations

APPENDIX II

.

ANALYTICAL SUMMARY OF :-

	TOT		ov ne e		0 M 11	PRTEE	AM OF	CHURC	HSTANT	ON S T W	*	
- Tt			NOT AV									
				AMMON-		IDS O	XYGEN	BOD	FH			
11.		Туре		IA	ธบรเ		ISS	ATU				
Date	Time	Purp	Mat	MG/L M	N MG.	/L %	SATN	MG/L	D			
					- . ,	-			~ (
110795				0.03		3	95		.0(
250795 300895				0.03		3 3<	99 100		.1 .0<		•	
051095				0.0		3(95		.0(
131095				0.03		3<	'94		.1		~	
161095				0.03		Э	96		.0<			
221195				0.0		ЭК	94		.0<			
281195	1325	SAUD	2F				35	5	.9			
121295					3<				.1	1.	· ·	
110196				0.34		46			.9			
260196	1050	SAUD	2F	0.0;	3	Э	101	1	. 1			
								1151	+ - 0.		~	
lype "	0" to	Lont	inue, "	'F'' tor	prev	lous	scree	TYPE		ONLINE	READY	
											NEAD I	•
												•
					ANALY	TICAL	. SUMM	ARY D	- :			
100	TR	IBUTA	RY OF F	IVER C	ULM U	IPSTRE	EAM OF	CHUR	CHSTANT	ON S T W		
D	ISFE	ATURE	NOT AV									
							DXYGEN		F'H-			
A	·	Type		IA.			DISS	ATU	. · · ·	1.* · · · · · · ·	· · · · · ·	
Date	lime	Purp	Mat	MG/L	N MG	7 L 7	SATN	MG/L	U			
160296	11/0											
		SALID	28	0.0	37	34	99	1	.2		÷	
	1140	SAUD	2R	0.0	3<	3(99	1	.2			
	, 1140	SAUD	2R	0.0	3<	3<	99	1	.2			
	, 1140	SAUD	2R	0.0	3<	3(99	1	.2			
	, 1140	SAUD	2R	0.0	3<	3(99	1	.2			
	× 1140	SAUD	2R	0.0	3<	3<		1	.2			
	/ 1140	SAUD \	2R	0.0	3<	3(1	.2			
	2	SAUD \	2R	0.0	3(3<		1	.2			
	, 1140 ,	SAUD \	2R	0.0	3<	3<	99	1	.2			
	2	SAUD \	2R	0.0	3(3(99	1	.2		·	
	2	SAUD \	2R	0.0	3(3<	99	1	.2			
	<i>e</i>	· \						,				1
	<i>e</i>	· \						,	" to Gu	it () ONLINE	READY	
	<i>e</i>	· \						'n, "Q	" to Gu		READY	
	<i>e</i>	· \						'n, "Q	" to Gu		READY	· ·
	<i>e</i>	· \						'n, "Q	" to Gu		READY	
	<i>e</i>	· \						'n, "Q	" to Gu		READY	
	<i>e</i>	· \						'n, "Q	" to Gu		READY	, , ,
	<i>e</i>	· \						'n, "Q	" to Gu		READY	۰ ۲
	<i>e</i>	· \						'n, "Q	" to Gu		READY	
	<i>e</i>	· \						'n, "Q	" to Gu		READY	
	<i>e</i>	· \						'n, "Q	" to Gu		READY	
	<i>e</i>	· \						'n, "Q	" to Gu		READY	
	<i>e</i>	· \						'n, "Q	" to Gu		READY	
	<i>e</i>	· \						'n, "Q	" to Gu		READY	

5 1 5

•

× 1. 1.

ANALYTICAL SUMMARY OF :-

1

M3:

-

. .

Se

10	·CHURCHS 0/09/85:-	800	MG/L, SS AMMON- SC	MG/L. DLIDS CXY0		MG/L N, Ph	FLOW
Date	Type Time Purp		IA SL MG/L N M				
250795 300895 051095 131095 161095 221195	1410 SAUD 1305 SAUD 1235 SAUD 1600 SQMS 1220 SQMS 1235 SQMS 1505 SQMS 1320 SQMS	45 45 45 45 45 45	0.50(0.50(0.50(0.60 0.70 0.50(0.50(0.50(14 3< 22 4 3 11 56		7.4 7.0 7.5 7.6 7.4 6.7 7.5 7.0	
121295 110196	1320 SGMS 1325 SQMS 1215 SQMS 1040 SQMS	45 45,	0.50(0.50(0.50(3∢ ,15 3	3.0 3.0	7.2	
Туре "(⊇″ to Cont	inue _" "F	₽" for pre	evious sc	reen, "Q" : TYPE	to Quit (: ONLIM	
	CHURCH9		STW-	EFFLUENT	UMMARY OF:		Et Out
7 1 1 2 4	Type	and provide	AMMON- SI	OLIDS OXY USP DIS	GEN BOD S ATU ATN MG/L O	PH Physical Physical	
160296	1130 SQM5	5 4S ·	0.50(31	4.0	< ⁽ / ×	i.
Ус. 1					· · ·	in state	2 7 4
	1						
					1		
Type ?"	C" to Cont	tinue, "	P" for pr	evious sc	reen, "Q"		
			r . • . • .		TYPE	ONL I	NE READY
			det a sur la			il and	
			er de si				

ANALYTICAL SUMMARY DF:-

TRIBUTARY OF RIVER OULM DOWNETREAM OF CHURCHETANTON 5 T W DIS FEATURE NOT AVAILABLE

		Type		AMMON-	SOLIES SUSP			5:4	CONEUC
Date	Time	• •	Mat	MG/L N					US/CM
:10795	1400	SAUD	2F	0.034			1.0(
250775	1200	SAĽD	EF	0.030	(Э	96	1.5		
300395	1225	SAUD	2F	0.030	(B·	(100	1.04		
051095	1550	SAUD	EF	0.03:	(t S:				
191095	1210	SAUD	2F	0.034	(3.	(92	1.04		
161095	1230	SAUE	EF	0.034	Э.				4.0
221125	1455	SAUD	2F	0.034	(3-	(95	1.04		
231195	1315	SAUB	2F	0,40	83	93	5.8		
121295	1320	SAUD	2F	0.03	(5	104	1.4		
110196	1210	SAUD	2F	0.33	49	95	3.3		
260196				0.03	З	99	1.2		

Type "C' to Continue, "P" For previous scheer, "Q" to Quit () Type — ONLINE READY

ANALYTICAL SUMMARY OF :-

TRIBUTARY OF RIVER CULM DOWNSTREAM OF CHURCHSTANTON S T W DIS FEATURE NOT AVAILABLE AMMON- SOLIDS OXYGEN BOD PH CONDUC Type IA SUSP DISS ATU TIVITY Date Time Purp Mat MG/L N MG/L % SATN MG/L 0 US/CM

160296 1135 SAUD 2R 0.03(3(99 1.2 080396 1105 SAUD 2R 0.08 9 101 1.5

Type "C" to Continue, "F" for previous screen, "Q" to Quit () TYPE ONLINE READY